WO2012163300A1 - 电池 - Google Patents

电池 Download PDF

Info

Publication number
WO2012163300A1
WO2012163300A1 PCT/CN2012/076413 CN2012076413W WO2012163300A1 WO 2012163300 A1 WO2012163300 A1 WO 2012163300A1 CN 2012076413 W CN2012076413 W CN 2012076413W WO 2012163300 A1 WO2012163300 A1 WO 2012163300A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrolyte
positive electrode
active material
current collector
Prior art date
Application number
PCT/CN2012/076413
Other languages
English (en)
French (fr)
Inventor
陈璞
王静
刘洋
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110450986.9A external-priority patent/CN103107373B/zh
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to KR1020147000057A priority Critical patent/KR101758967B1/ko
Priority to JP2014513047A priority patent/JP6006789B2/ja
Priority to US14/123,430 priority patent/US9680154B2/en
Priority to EP12793965.0A priority patent/EP2717377B1/en
Publication of WO2012163300A1 publication Critical patent/WO2012163300A1/zh
Priority to US15/592,014 priority patent/US10727491B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0442Anodisation, Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/521Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of iron for aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of electrochemical energy storage, and particularly relates to a battery.
  • the widespread use of new energy by humans has led to a rapid expansion of the secondary battery market.
  • the requirements for secondary batteries in the current new energy system are ubiquitous. Whether it is electric vehicles, wind energy, solar grid integration or power grid peaking, there is an urgent need for a secondary battery that is cheap, reliable, safe and long-lived.
  • the secondary batteries currently in development are mainly concentrated in lithium ion batteries, high temperature sodium u batteries, sodium nickel chloride batteries and vanadium flow batteries. These batteries have their own advantages, such as lithium-ion batteries and high-temperature sodium batteries, long life and high energy density, vanadium flow battery is theoretically unlimited life. But no matter what kind of battery, it can't meet the requirements of cheap, reliable, safe and long life.
  • Traditional lithium-ion batteries are too expensive and have potential safety hazards; high-temperature sodium-sulfur battery manufacturing technology has high thresholds and high price; many technical bottlenecks of vanadium flow batteries have not been able to achieve breakthroughs.
  • vanadium oxide such as LiV 3 0 8 is a battery in which the negative electrode and water are electrolytes, but therefore the stability of the negative electrode in charge and discharge in water and the vanadium have certain toxicity, thereby limiting the development of such a battery.
  • the structure of the aqueous lithium ion secondary battery that has been proposed has failed to break away from the structure based on the lithium ion extraction-embedding principle, such as V0 2 /LiMn 2 0 4 , LiV 3 O 8 /LiNi 0 . 81 Co 0 . 19 O 2 , TiP 2 0 7 /LiMn 2 0 4 , LiTi 2 (P0 4 ) 3 /LiMn 2 0 4 , LiV 3 0 8 /LiCo0 2 and the like.
  • V0 2 /LiMn 2 0 4 LiV 3 O 8 /LiNi 0 . 81 Co 0 . 19 O 2
  • TiP 2 0 7 /LiMn 2 0 4 LiTi 2 (P0 4 ) 3 /LiMn 2 0 4
  • LiV 3 0 8 /LiCo0 2 LiV 3 0 8 /LiCo0 2 and the like
  • the present invention aims to provide a battery that is low cost, safe, and excellent in performance.
  • a battery comprising a positive electrode, a negative electrode, an electrolyte, the positive electrode comprising a positive active material, the positive active material capable of reversibly extracting-embeding ions; the negative electrode comprising at least a negative current collector not participating in an electrochemical reaction;
  • the liquid includes at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte; the electrolyte capable of ionizing at least one active ion or/and at least one of reduction-deposition and oxidation-dissolution at the negative electrode during charge and discharge a positively releasable-embedded ion in the positive electrode during charging and discharging; the negative electrode further comprising a negative active material formed on a surface of the negative current collector, wherein the negative active material can be oxidized-dissolved during discharge Reactive ion.
  • the anode active material is formed in the negative by coating, plating or sputtering. On the collector.
  • the negative electrode active material comprises a simple substance of a metal selected from at least one of Zn, Fe, Cr, Cu, Mn, and Ni.
  • the material of the anode current collector is selected from one of the metals Ni, Cu, Ag, Pb, Sn, Fe, Al or the passivated metal.
  • the material of the anode current collector is selected from a carbon-based material, stainless steel, silicon or a metal having a plating/coating layer containing a substance, an alloy of C, Sn, In, Ag, Pb, Co. Or at least one of oxides.
  • the plating/coating has a thickness ranging from 1 to 1000 nm.
  • the anode further comprises a porous layer formed on a surface of the anode current collector, the porous layer having micrometers or submicron or nanometer pores.
  • the porous layer comprises a carbon-based material selected from at least one of Ketjen black, activated carbon, carbon nanotubes, carbon fibers, and graphite.
  • the porous layer comprises a carbon-based material which is a mixture of activated carbon powder and a binder, and the activated carbon powder accounts for 20-99% by weight of the porous layer.
  • the anode further includes a graphene layer formed on a surface of the anode current collector.
  • the anode current collector is copper, and the anode active material is zinc.
  • the anode active material is formed on a surface-pretreated anode current collector, and the surface pretreatment is at least one selected from the group consisting of mechanical treatment, chemical treatment, and electrochemical treatment.
  • the electrolyte has a pH in the range of 3 -7.
  • the active ion is present in the electrolyte in the form of at least one of a chlorate, a sulfate, a nitrate, an acetate, a formate, and a phosphate.
  • the positive electrode active material is capable of reversibly extracting - intercalating lithium ions, sodium ions, magnesium ions or zinc ions.
  • the material of the cathode current collector is selected from the group consisting of graphite, stainless steel, aluminum alloy, passivated stainless steel or aluminum alloy.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, and an electrolyte, the positive electrode comprising a positive active material, the positive active material capable of reversibly extracting-embeding ions; and the negative electrode comprising an active material of a negative electrode participating in an electrochemical reaction;
  • the electrolyte includes at least one solvent capable of dissolving an electrolyte and ionizing the electrolyte; the electrolyte being capable of ionizing at least one ion capable of reversible elution-embedding at the positive electrode; the positive active material excluding the Reversible prolapse-embedded
  • the first operation of the battery is a discharge process in which the reversible elution-embedded ions are embedded in the positive active material, and the negative active material is oxidized-dissolved into the active ions.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, and an electrolyte, the positive electrode comprising a positive active material, the positive active material capable of reversibly extracting-embeding ions; and the negative electrode comprising an active material of a negative electrode participating in an electrochemical reaction;
  • the electrolyte includes at least one solvent capable of dissolving an electrolyte and ionizing the electrolyte; the electrolyte being capable of ionizing at least one active ion that undergoes reduction-deposition at the negative electrode and at least one capable of occurring at the positive electrode Reversible extraction-embedded ions; the positive active material capable of desorbing and embedding the reversible eluting-embedded ions; the first operation of the battery is to remove the reversible eluting-embedded ions in the positive active material,
  • the active ion reduction-deposition is a charging process of the negative electrode active material or a discharge process
  • the first operation of the battery is a charging process in which the positive active material desorbs the reversible eluting-embedded ions, and the active ions are reduced-deposited into the negative active material.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, and an electrolyte, the positive electrode comprising a positive active material, the positive active material capable of reversibly extracting-embeding ions; and the negative electrode comprising an active material of a negative electrode participating in an electrochemical reaction;
  • the electrolyte includes at least one solvent capable of dissolving an electrolyte and ionizing the electrolyte; the electrolyte being capable of ionizing at least one ion capable of reversible elution-embedding at the positive electrode; the positive active material capable of being eluted and The reversible elution-embedded ions are embedded; the first operation of the battery is a discharge process in which the reversible elution-embedded ions are embedded in the positive active material, and the negative active material is oxidized-dissolved into the active ions.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, and an electrolyte, the positive electrode comprising a positive active material, the positive active material capable of reversibly extracting-embeding ions; and the negative electrode comprising an active material of a negative electrode participating in an electrochemical reaction;
  • the electrolyte includes at least one solvent capable of dissolving an electrolyte and ionizing the electrolyte; the electrolyte is capable of ionizing at least one active ion that undergoes reduction-deposition at the negative electrode; the positive active material is capable of being extracted and embedded Reversible elution-embedded ions; the first operation of the battery is to remove the reversible eluting-embedded ions in the positive active material, and the active ions are reduced-deposited in the negative electrode to be the negative active material Charging process.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, an electrolyte, the positive electrode comprising a positive active material, the positive active material capable of reversibly extracting-embeding ions; An anode active material of an electrochemical reaction; the electrolyte comprising at least one solvent capable of dissolving an electrolyte and ionizing the electrolyte; the electrolyte capable of ionizing at least one active ion which undergoes reduction-deposition at the anode;
  • the reversible elution-embedded ions in the positive electrode active material are in a saturated state; the first operation of the battery is to remove the reversible elution-embedded ions in the positive active material, and the active ions are reduced in the negative electrode It is a charging process of the negative active material.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, and an electrolyte, the positive electrode comprising a positive active material, the positive active material capable of reversibly extracting-embeding ions; and the negative electrode comprising an active material of a negative electrode participating in an electrochemical reaction;
  • the electrolyte includes at least one solvent capable of dissolving an electrolyte and ionizing the electrolyte; the electrolyte being capable of ionizing at least one active ion that undergoes reduction-deposition at the negative electrode; the reversible of the positive active material
  • the eluted-embedded ions are in a supersaturated state, and the surface of the positive active material is modified or coated with a metal or a metal oxide; the first operation of the battery is to remove the reversible eluting-embedded ions from the positive active material.
  • the metal is aluminum and the metal oxide is aluminum oxide.
  • the invention provides a battery with safe operation, low production cost, excellent cycle performance and long service life. At the same time, the battery has a plurality of modes for the first time operation, and is convenient for the user to select according to his own needs.
  • the battery of the invention is suitable for the field of large-scale energy storage. Energy storage systems and alternatives to lead-acid batteries.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode and an electrolyte, the positive electrode comprising a positive electrode current collector and a positive electrode active material participating in an electrochemical reaction, the positive electrode active material being capable of reversibly extracting-embedding ions;
  • a negative current collector is included;
  • the electrolyte includes at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte; the electrolyte is capable of ionizing at least one charge-discharge process to reduce-deposit and oxidize-dissolve at the negative electrode Reactive ion;
  • the material of the positive current collector is selected from one of a carbon-based material, a metal or an alloy.
  • the carbon-based material is selected from the group consisting of glassy carbon, graphite, foamed carbon, carbon felt, and carbon fiber.
  • the metal is selected from the group consisting of Al, Fe, Cu, Pb, Ti, Cr, Mo, Co, Ag or one of the above-mentioned metals which have been passivated.
  • the alloy is selected from the group consisting of stainless steel, aluminum alloy, Ni alloy, Ti alloy, Cu alloy, Co alloy, Ti-Pt alloy, Pt-Rh alloy or passivated one of the above alloys.
  • the material of the anode current collector is selected from one of the metals Ni, Cu, Ag, Pb, Sn, Fe, Al or the passivated metal.
  • the material of the anode current collector is selected from a carbon-based material, stainless steel, silicon or a metal having a plating/coating layer containing a substance of C, Sn, In, Ag, Pb, Co, and Zn. At least one of an alloy, an oxide, or an oxide.
  • the plating/coating has a thickness ranging from 1 to 1000 nm.
  • the active ions include metal ions selected from at least one of Zn, Fe, Cr, Cu, Mn, and Ni.
  • the metal ion is present in the electrolyte in the form of at least one of a chlorate, a sulfate, a nitrate, an acetate, a formate, and a phosphate.
  • the positive electrode active material is capable of reversibly extracting-embedded lithium ions, sodium ions, zinc ions or magnesium ions.
  • the material of the cathode current collector is selected from the group consisting of graphite, stainless steel, aluminum alloy, passivated stainless steel or aluminum alloy.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode and an electrolyte, the positive electrode comprising a positive electrode current collector and a positive electrode active material participating in an electrochemical reaction, the positive electrode active material being capable of reversibly extracting-embedding ions;
  • a negative current collector is included;
  • the electrolyte includes at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte; the electrolyte is capable of ionizing at least one charge-discharge process to reduce-deposit and oxidize-dissolve at the negative electrode
  • the active ion; the material of the positive current collector is selected from the group consisting of stainless steel, aluminum alloy, passivated stainless steel or aluminum alloy.
  • the model of the aluminum alloy is a 6000 series aluminum alloy.
  • the stainless steel is a 300 series stainless steel.
  • the anode further includes an anode active material which is oxidizable-dissolved into the active ions during discharge of the battery.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, and an electrolyte, the positive electrode comprising a positive active material, the positive active material capable of reversibly extracting-embeding ions; and the negative electrode comprising an active material of a negative electrode participating in an electrochemical reaction;
  • the electrolyte includes at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte; the electrolyte is capable of ionizing at least one active ion that undergoes reduction-deposition and oxidation-dissolution at the negative electrode during charge and discharge or And at least one charge-discharge process capable of reversibly extracting-embedded ions at the positive electrode, the negative electrode active material being oxidizable-dissolved into the active ions during discharge; the material of the positive electrode current collector comprising a carbon selected from the group consisting of carbon One of a base material, a metal or an alloy.
  • the invention also provides a battery comprising a positive electrode, a negative electrode, an electrolyte and a separator, the positive electrode A positive electrode current collector and a positive electrode active material participating in an electrochemical reaction, the positive electrode active material being capable of reversibly extracting-embeding ions; the negative electrode comprising a negative electrode current collector, the negative electrode current collector not participating in an electrochemical reaction; At least one solvent capable of dissolving the electrolyte and ionizing the electrolyte; the electrolyte capable of ionizing at least one active ion that undergoes reduction-deposition and oxidation-dissolution at the negative electrode during charge and discharge; the positive current collector
  • the material includes one selected from the group consisting of carbon-based materials, metals, and alloys.
  • the invention also provides a method for treating a battery current collector, wherein the treated current collector has good stability in the working voltage range of the battery, thereby ensuring the charge and discharge stability of the battery.
  • a method of treating a battery current collector comprising subjecting the battery current collector to chemical passivation treatment or electrochemical passivation treatment.
  • the chemical passivation treatment comprises oxidizing the current collector by an oxidizing agent to form a passivation film on the surface of the current collector, the oxidizing agent being selected from concentrated nitric acid or sorghum sulfate.
  • the electrochemical passivation treatment comprises charging and discharging the current collector or charging and discharging a battery containing the current collector to form a passivation film on the surface of the current collector.
  • the invention also provides a method for processing a battery current collector, wherein the current collector is selected from the group consisting of metal aluminum, aluminum alloy or stainless steel, and the passivation treatment method is: charging and discharging a battery containing the current collector, and charging The voltage is charged to 2.35 - 2.45V, and the voltage is discharged to 1.35 - 1.45V during discharge, and the number of charge and discharge is not less than 1.
  • the present invention also provides a method for treating a battery current collector, the current collector is selected from the group consisting of aluminum metal, aluminum alloy or stainless steel, and the passivation treatment method is: a three-electrode system using the current collector as a working electrode or The two-electrode system containing the current collector is charged and discharged, and the voltage is charged to 2.35 - 2.45V during charging, and the voltage is discharged to 1.35 - 1.45V during discharge.
  • the invention also provides a method for treating a battery current collector, wherein the current collector is selected from an aluminum alloy or a stainless steel, and the passivation treatment method is: placing the current collector in an oxidant solution for 0.5 - 1 hour, A surface of the current collector is formed into a passivation film, and the current collector is taken out and washed and dried.
  • the battery provided by the invention is safe in operation, low in production cost, and the current collector treated by the passivation method provided by the invention has good stability in the working range of the battery, does not participate in the battery reaction, and the battery has excellent cycle performance and Long life, suitable as a storage system for large-scale energy storage and a substitute for lead-acid batteries.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode and an electrolyte, the positive electrode comprising a positive electrode current collector and a positive electrode active material participating in an electrochemical reaction, the positive electrode active material being reversible Out-embeding ions; the anode comprising at least a cathode current collector; the electrolyte comprising at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte; the electrolyte being capable of ionizing at least one charge and discharge process in the
  • the negative electrode undergoes reduction-deposition and oxidation-dissolved active ions; the surface of the negative electrode current collector is formed with a porous layer or a graphene layer having micrometers or submicron or nanoscale pores.
  • the porous layer or the graphene layer has a thickness ranging from 0.05 to 1 mm.
  • the micron or submicron pores occupy 50 to 95% by volume of the porous layer.
  • the nano-scale pores occupy a volume of the porous layer in a range of 10-99%.
  • the nano-scale pores have an average diameter ranging from 1 to 150 nm.
  • the material of the porous layer is selected from a carbon-based material.
  • the carbon-based material is at least one selected from the group consisting of Ketjen carbon black, activated carbon, carbon nanotubes, carbon fibers, and graphite.
  • the carbon-based material is a mixture of activated carbon powder and a binder, and the activated carbon powder accounts for 20-99% by weight of the porous layer.
  • the anode further includes an anode active material formed on a surface of the anode current collector, and the anode active material is oxidizable-dissolved into the active ions during discharge of the battery.
  • the material of the anode current collector is selected from one of the metals Ni, Cu, Ag, Pb, Sn, Fe, Al or the passivated metal.
  • the material of the anode current collector is selected from a carbon-based material, stainless steel, silicon or a metal having a plating/coating layer containing a substance of C, Sn, In, Ag, Pb, Co, and Zn. At least one of an alloy, an oxide, or an oxide.
  • the plating/coating has a thickness ranging from 1 to 1000 nm.
  • the active ions include metal ions selected from at least one of Zn, Fe, Cr, Cu, Mn, and Ni.
  • the metal ion is present in the electrolyte in the form of at least one of a chlorate, a sulfate, a nitrate, an acetate, a formate, and a phosphate.
  • the positive electrode active material is capable of reversibly extracting-embedded lithium ions, sodium ions, zinc ions or magnesium ions.
  • the material of the cathode current collector is selected from the group consisting of graphite, stainless steel, aluminum alloy, passivated stainless steel or aluminum alloy.
  • the invention also provides a battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the positive electrode comprises a positive electrode a polar active material, the positive active material capable of reversibly extracting-embeding ions; the negative electrode comprising an anode active material participating in an electrochemical reaction; the electrolyte comprising at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte; The electrolyte is capable of ionizing out at least one active ion in the reduction-deposition and oxidation-dissolution of the negative electrode during the charge and discharge process and/or at least one charge-discharge process in the positive electrode capable of reversibly extracting-embedded ions.
  • the negative active material can be oxidized-dissolved into the active ion during discharge; the negative electrode further includes a porous layer or a graphene layer formed on a surface of the negative active material, the porous layer having micron or submicron or nanometer Grade pores.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, an electrolyte, and a separator, the positive electrode comprising a positive electrode current collector and a positive electrode active material participating in an electrochemical reaction, the positive electrode active material being a compound capable of reversibly extracting-embedding ions
  • the negative electrode is an electrochemically conductive electrode that does not participate in an electrochemical reaction;
  • the electrolyte is an aqueous solution containing at least a metal ion that undergoes reduction-deposition and oxidation-dissolution at the negative electrode during charge and discharge;
  • the negative electrode includes a negative electrode current collector and a porous layer having micropores formed on a surface of the negative electrode current collector.
  • the battery provided by the invention has safe operation and low production cost, and a porous layer or a graphene layer is formed on the surface of the negative electrode, which can provide a larger deposition specific surface area for the active ions in the electrolyte, and effectively reduce the generation of dendrite of the negative electrode.
  • the active ion migration distance is shortened, the diffusion resistance of the active ions in the charge and discharge process is solved, and the battery has good electrochemical performance and cycle life.
  • the battery of the invention is suitable as an energy storage system in the field of large-scale energy storage and Alternative to the lead-acid battery
  • the present invention also provides a battery comprising a positive electrode, a negative electrode and an electrolyte, the positive electrode comprising a positive electrode current collector and a positive electrode active material participating in an electrochemical reaction, the positive electrode active material being capable of reversibly extracting-embedding ions
  • the anode includes at least a cathode current collector;
  • the electrolyte includes at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte; the electrolyte being capable of ionizing at least one charge and discharge process to reduce the anode Deposition and oxidation-dissolved reactive ions; ⁇ range liquid was 3-7.
  • the solvent is water or an alcohol solution.
  • the active ions include metal ions selected from at least one of Zn, Fe, Cr, Cu, Mn, Ni, and Sn.
  • the active ion is present in the electrolyte in the form of at least one of a chlorate, a sulfate, a nitrate, an acetate, a formate, and a phosphate.
  • the electrolyte has a pH of 4.
  • the material of the anode current collector is selected from one of the metals Ni, Cu, Ag, Pb, Sn, Fe, Al or the passivated metal.
  • the material of the anode current collector is selected from a carbon-based material, stainless steel, silicon or a metal having a plating/coating layer containing a substance of C, Sn, In, Ag, Pb, Co, and Zn. At least one of an alloy, an oxide, or an oxide.
  • the plating/coating has a thickness ranging from 1 to 1000 nm.
  • the positive electrode active material is capable of reversibly extracting-embedded lithium ions, sodium ions, zinc ions or magnesium ions.
  • the material of the cathode current collector is selected from the group consisting of graphite, stainless steel, aluminum alloy, passivated stainless steel or aluminum alloy.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, an electrolyte, and a separator, the positive electrode comprising a positive electrode current collector and a positive electrode active material participating in an electrochemical reaction, the positive electrode active material being a compound capable of reversibly extracting-embedding ions
  • the negative electrode is an electrochemically conductive electrode that does not participate in an electrochemical reaction;
  • the electrolyte is an aqueous solution containing at least a metal ion that undergoes reduction-deposition and oxidation-dissolution in the negative electrode during charge and discharge;
  • the pH of the solution ranges from 3-7.
  • the present invention also provides a battery comprising a positive electrode, a negative electrode, and an electrolyte, the positive electrode comprising a positive active material, the positive active material capable of reversibly extracting-embeding ions; and the negative electrode comprising an active material of a negative electrode participating in an electrochemical reaction;
  • the electrolyte includes at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte; the electrolyte is capable of ionizing at least one active ion that undergoes reduction-deposition and oxidation-dissolution at the negative electrode during charge and discharge or And at least one charge-discharge process capable of reversibly extracting-embedded ions in the positive electrode, wherein the negative electrode active material can be oxidized-dissolved into the active ions during discharge; the electrolyte has a pH range of 3 - 7.
  • the battery provided by the invention has the advantages of safe operation and low production cost, and the active ion and the reversible detachment-embedded ion having the proper concentration in the electrolyte are ensured in the range of the electrolyte pH of 3-7, thereby ensuring the capacity of the battery.
  • the battery has good electrochemical performance and cycle life, and the battery of the invention is suitable as an energy storage system in the field of large-scale energy storage and as a substitute for lead-acid batteries.
  • FIG. 1 is a schematic structural view of a battery according to a first embodiment of the present invention
  • FIG. 2 is a schematic view showing a charging process of a battery according to a first embodiment of the present invention
  • FIG. 3 is a schematic view showing a discharge process of a battery according to a first embodiment of the present invention
  • FIG. 4 is a schematic structural view of a battery according to a second embodiment of the present invention
  • Figure 5 is a cycle diagram of the cycle of the non-passivated stainless steel 304 in the sulfate electrolyte in Example 1-1;
  • Figure 6 is a cyclical diagram of the passivated stainless steel 3 16 in the sulfate electrolyte in Example 1-2;
  • Figure 7 is a cyclical diagram of the passivated stainless steel 3 16P in the nitrate electrolyte in Examples 1-3;
  • Figure 8 is a cycle diagram of the passivated aluminum alloy in the acetate electrolyte in Examples 1-4;
  • Figure 9 is the cycle of the passivated aluminum alloy in the sulfate electrolyte in Examples 1-5.
  • Fig. 10 is a cyclic pulsation diagram of the graphite foil in the hydrochloride electrolyte of Examples 1 to 6, and
  • Fig. 11 is the unpassivated stainless steel of the embodiment 1-7 in the hydrochloride electrolysis
  • Fig. 12 is a graph showing the relationship between the voltage and the discharge capacity of the battery provided in Example 3-1;
  • Fig. 13 is the relationship between the discharge capacity and the number of cycles of the battery provided in Example 3-1.
  • Figure 14 is a graph showing the relationship between the discharge capacity and the number of cycles of the battery provided in Example 2-3;
  • Figure 15 is a graph showing the relationship between the discharge capacity and the number of cycles of the battery provided in Example 3-4;
  • Figure 7 is a graph showing the relationship between the coulombic efficiency and the number of cycles of the battery provided in Example 3-4;
  • Figure 17 is a graph showing the relationship between the discharge capacity and the number of cycles of the battery provided in Example 3-4;
  • - 1 shows the structure of the porous layer formed on the surface of the anode current collector
  • FIG 19 is a partially porous layer is an enlarged schematic view of FIG 18;
  • Figure 20 is a graph showing the first charge and discharge voltage-capacity of the battery provided in Example 4-1;
  • Figure 2 is a cycle diagram of the battery provided in Example 5-1;
  • Figure 22 is a cycle diagram of a battery provided in Example 5.2;
  • Figure 23 is a cycle diagram of the battery provided in Example 3-5;
  • Figure 24 is a cycle diagram of a battery provided in Example 5.4;
  • Figure 25 is a cycle diagram of the cycle of the battery provided in Example 5-6;
  • Figure 26 is a cycle diagram of the battery provided in Examples 5-9;
  • Figure 27 is a graph showing the relationship between the first charge and discharge of the battery and the voltage provided in Example 6-1;
  • Figure 28 is a graph showing the relationship between the discharge capacity of the battery and the number of cycles provided in Example 6-1
  • Figure 29 is a graph showing the relationship between the cell coulombic efficiency and the number of cycles provided in Example 6-1
  • Figure 30 is a graph of Example 6-2
  • Figure 3 is a graph showing the relationship between the cell coulombic efficiency and the number of cycles provided in Example 6-1
  • Figure 32 is the discharge capacity of the battery provided in Example 2-4.
  • Figure 33 is a graph showing the relationship between the discharge capacity and the number of cycles of the battery provided in Example 6-5. among them:
  • the battery provided by the invention has high energy density and stable cycle performance, and has considerable application prospects in fields such as portable electronic products such as mobile phones and notebook computers, electric vehicles, and electric tools.
  • a battery comprising a positive electrode 10, a negative electrode 20, and an electrolyte (not shown).
  • the positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material 14 participating in an electrochemical reaction, the positive electrode active material 14 is capable of reversibly extracting-embeding ions;
  • the negative electrode 20 includes at least a negative electrode current collector 22; and
  • the electrolyte solution includes at least one capable of dissolving the electrolyte and causing the electrolyte An ionized solvent;
  • the electrolyte is capable of ionizing at least one reactive ion 28 that undergoes reduction-deposition and oxidation-dissolution at the negative electrode during charge and discharge.
  • FIG. 1 is a schematic structural view of a battery according to a first embodiment of the present invention.
  • the battery negative electrode 20 includes only the negative current collector 22.
  • the positive electrode active material 14 participates in the positive electrode reaction and is capable of reversibly extracting - intercalating ions or functional groups. Specifically, the positive electrode active material 14 can reversibly elute-embed lithium ions, sodium ions, zinc ions or magnesium ions.
  • the positive electrode active material 14 may be a compound capable of reversibly deintercalating-intercalating lithium ion-doped spinel structure conforming to the general formula Li 1+x Mn y M z O k , wherein -1 ⁇ X ⁇ 0.5, 1 ⁇ y ⁇ 2.5, 0 ⁇ z ⁇ 0.5, 3 ⁇ k ⁇ 6, M is at least one selected from the group consisting of Na, Li, Co, Mg, Ti, Cr, V, Zn, Zr, Si, and Al.
  • the positive electrode active material 14 contains LiMn 2 0 4 . More preferably, the positive electrode active material 14 contains a doped or coated modified LiMn 2 0 4 .
  • the positive electrode active material 14 may be a compound capable of reversibly deintercalating-intercalating lithium ion in a layered structure conforming to the general formula Li 1+x M y M' z M" c 0 2+n , wherein -l ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 1 , 0 ⁇ z ⁇ 1, 0 ⁇ c ⁇ 1, -0.2 ⁇ n ⁇ 0.2, M, M', M ⁇ are respectively selected from Ni, Mn, Co, Mg, Ti, Cr, V, Zn, At least one of Zr, Si or Al.
  • the positive electrode active material 14 contains LiCo0 2 .
  • the positive electrode active material 14 may be a compound capable of reversibly extracting-intercalating lithium ions in an olivine structure conforming to the general formula Li x M y M' y (X0 4 ) n , wherein 0 ⁇ X ⁇ 2, 0 ⁇ y ⁇ 0.6, 1 ⁇ n ⁇ 1.5, M It is selected from Fe, Mn, V or Co, and M' is at least one selected from the group consisting of Mg, Ti, Cr, V or Al, and X is at least one selected from the group consisting of S, P or Si.
  • the positive electrode active material 14 contains LiFePO 4 .
  • LiMn 2 0 4 can not represent the general formula of "manganese manganate" which is widely used, but should be of the general formula Li 1 +x Mn y M z O k prevails widely, including various modified LiMn 2 0 4 .
  • LiFeP0 4 and LiCo0 2 should also be broadly understood to include modifications through various doping, cladding, etc., which are in accordance with Li x M 1 -y M' y (X0 4 ) n and Li 1 + , respectively.
  • x M y M' z M" c 0 2+n positive electrode active material is in accordance with Li x M 1 -y M' y (X0 4 ) n and Li 1 + , respectively.
  • the positive electrode active material 14 of the present invention is a reversible elution-intercalation lithium ion compound
  • LiMn 2 0 4 , LiFeP0 4 , LiCo0 2 , LiM x P0 4 , LiM x SiO y may be selected.
  • M is a variable metal
  • a compound capable of deintercalating-inserting sodium ions such as NaVP0 4 F
  • a compound capable of deintercalating-embedding zinc ions such as ⁇ - ⁇ 0 2
  • a compound capable of deintercalating-embedding magnesium ions such as MgM x O y (where M is a metal, 0.5 ⁇ x ⁇ 3, 2 ⁇ y ⁇ 6) and a compound having a similar function capable of deintercalating-embedding an ion or a functional group
  • MgM x O y where M is a metal, 0.5 ⁇ x ⁇ 3, 2 ⁇ y ⁇ 6
  • a compound having a similar function capable of deintercalating-embedding an ion or a functional group can be used as the positive electrode active material 14 of the battery of the present invention.
  • a conductive agent and a binder are added in addition to the positive electrode active material 14 in the positive electrode slurry.
  • the conductive agent is selected from one or more of a conductive polymer, activated carbon, graphene, carbon black, carbon fiber, metal fiber, metal powder, and metal flake.
  • the binder is selected from the group consisting of polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyimide, polyester, polyether, fluorinated polymer, polydivinyl polyethylene glycol, polyethylene glycol diacrylic acid One of an ester, polyethylene glycol dimethacrylate, or a mixture and derivative of the above polymers.
  • the binder is selected from the group consisting of polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF).
  • the positive current collector 12 acts only as a carrier for electron conduction and collection, and does not participate in the electrochemical reaction, that is, within the operating voltage range of the battery, the positive current collector 12 can be stably present in the electrolyte without other side reactions, thereby ensuring that the battery has Stable cycle performance.
  • the material of the cathode current collector 12 is selected from one of a carbon-based material, a metal or an alloy.
  • the carbon-based material is selected from the group consisting of glassy carbon, graphite, carbon felt, carbon fiber, or a conductive material having a 3D double continuous structure.
  • the conductive material having a 3D double continuous structure includes, but is not limited to, foamed carbon.
  • Graphite includes, but is not limited to, graphite foil and graphite sheets.
  • the metal is selected from one of Al, Fe, Cu, Pb, Ti, Cr, Mo, Co, Ag or the passivated metal described above.
  • the alloy is selected from the group consisting of stainless steel, aluminum alloy, Ni alloy, Ti alloy, Cu alloy, Co alloy, Ti-Pt alloy, Pt-Rh alloy or passivated one of the above alloys.
  • Stainless steel includes stainless steel foil or stainless steel mesh.
  • stainless steel models can be, but are not limited to, 300 series stainless steel, such as stainless steel 304, 3 16, 3 16L or 3 16P.
  • the model of the aluminum alloy may be, but not limited to, an alloy of the 6000 series, such as an aluminum alloy 6061.
  • the anode 20 includes only the anode current collector 22, and the anode current collector 22 serves only as a carrier for electron conduction and collection, and does not participate in the electrochemical reaction.
  • the material of the anode current collector 22 is selected from at least one of metal Ni, Cu, Ag, Pb, Mn, Sn, Fe, Al, Zn or passivated metal, or elemental silicon, or a carbon-based material, wherein Carbon-based materials include graphite materials, such as commercial graphite-pressed foils, in which graphite accounts for a weight ratio ranging from 90% to 100%.
  • the material of the anode current collector 22 may also be selected from stainless steel or passivated stainless steel.
  • Stainless steel includes, but is not limited to, stainless steel mesh and stainless steel foil.
  • stainless steel models may be, but are not limited to, 300 series stainless steel, such as stainless steel 304, 3 16, 3 16L or 3 16P.
  • the anode current collector 22 may be selected from a metal containing a plating/coating having a high hydrogen evolution potential, thereby reducing the occurrence of a negative side reaction.
  • the plating/coating layer is selected from at least one of a simple substance, an alloy, or an oxide containing C, Sn, In, Ag, Pb, Co, and Zn.
  • the thickness of the plating/coating ranges from 1 to 1000 nm. For example: Tin, lead or silver is plated on the surface of the negative current collector of copper foil or graphite foil.
  • the main purpose of passivating the positive current collector 12 or the negative current collector 22 is to form a passivated oxide film on the surface of the current collector, thereby stably collecting and conducting electrons during charging and discharging of the battery. It does not participate in the battery reaction, ensuring stable battery performance.
  • the fluid collection passivation treatment method includes chemical passivation treatment or electrochemical passivation treatment.
  • the chemical passivation treatment involves oxidizing the current collector by an oxidant to form a passivation film on the surface of the current collector.
  • the principle of oxidant selection is that the oxidant can form a passivation film on the surface of the current collector without dissolving the current collector.
  • the oxidizing agent is selected from, but not limited to, concentrated nitric acid or sorghum sulfate (Ce(S0 4 ) 2 ).
  • the chemical passivation treatment step is: placing the current collector in the oxidant solution for 0.5-1 hour to form a passivation film on the surface of the current collector, and finally taking out the current collector for washing and drying.
  • the specific passivation treatment process is: placing the stainless steel into a 20% concentrated nitric acid solution at 50 ° C for 0.5 hours to form a stainless steel surface.
  • the passivation film was finally taken out and washed with water and dried in a drying oven at 50 °C.
  • the electrochemical passivation treatment includes charging and discharging the current collector or charging and discharging the battery containing the current collector to form a passivation film on the surface of the current collector.
  • Directly charging and discharging the current collector that is, pre-passivation treatment before the current collector is used for battery assembly, specifically, charging and discharging the three-electrode system using the current collector as a working electrode, and then selecting a suitable counter electrode and Reference electrode.
  • the voltage is charged to 2.35-2.45V during charging, and the voltage is discharged to 1.35 - 1.45V during discharge.
  • the current collector may be a metal such as aluminum metal; the current collector may also be an alloy such as stainless steel or aluminum alloy.
  • an aluminum alloy is used as a working electrode, a zinc foil is used as a counter electrode and a reference electrode, and the electrolyte contains 1.5 mol/L zinc acetate and 3 mol/L lithium acetate.
  • the aqueous solution charges and discharges the three-electrode system, and the voltage is charged to 2.4V during charging, so that the surface of the aluminum alloy is oxidized at 2.4V to form a passivated oxide film, and the discharge voltage is 1.4V.
  • the current collector may be a metal such as metal aluminum; the current collector may also be an alloy such as stainless steel or aluminum alloy.
  • the positive active material 14 is LiMn 2 0 4
  • the positive current collector 12 is an aluminum alloy
  • the negative current collector 22 is a copper foil
  • the electrolyte is 1
  • the aqueous solution of .5 mol/L zinc acetate and 3 mol/L lithium acetate is charged to 2.4V during charging, that is, the cut-off voltage during charging is 2.4V, which causes the aluminum alloy surface to oxidize at 2.4V to form a passivation.
  • Membrane The cut-off voltage during discharge is 1.4V, and the number of times the battery is charged and discharged is not less than one. The more times the battery is charged and discharged, the better the effect of aluminum alloy passivation and the more stable it is in the electrolyte.
  • the voltage at the time of charging reaches 2.4 V and remains for a while, and the corrosion current of the aluminum alloy is significantly reduced as the holding time increases.
  • the maintenance time is gradually extended from 10 minutes to 1 hour.
  • the corrosion current of the aluminum alloy is significantly decreased, and the maintenance time is gradually extended from 1 hour to 24 hours.
  • the corrosion current is not significantly reduced, therefore, Preferably, the charging voltage is maintained at 2.4V and maintained for at least 1 hour.
  • the electrolyte is a weak acid or a neutral aqueous solution, such as chlorate, sulfate, nitrate, acetate, A
  • the acid salt or phosphate, the positive electrode current collector 12 and the negative electrode current collector 22 can be kept stable in the electrolyte, that is, no side reaction occurs in the battery operating voltage window, thereby ensuring the stability of the battery performance.
  • the passivation treatment method of the current collector provided by the present invention is applicable to both the cathode current collector 12 and the anode current collector 22.
  • a porous layer 30 is formed on the surface of the anode 20, and the porous layer 30 is formed on the surface of the anode 20 in any suitable manner such as coating, pressing, or the like.
  • the porous layer 30 has a thickness ranging from 0.05 to 1 mm, the porous layer 30 has micron or submicron or nanometer pores, and the micron or submicron pores occupy 50 to 95% of the volume of the porous layer 30.
  • the nano-scale pores occupy 10-99% of the volume range of the porous layer 30, the average diameter of the nano-scale pores ranges from 1 to 999 nm, and the average diameter of the nano-sized pores ranges from 1 to 150 nm.
  • the porous layer 30 does not participate in the electrochemical reaction of the anode 20, and the porous layer 30 has a large specific surface area, which can provide a larger deposition specific surface area for the deposition-reduced active ions 28 during charging, so that the active ions 28 are in the anode set.
  • the surface of the fluid 22 is deposited more uniformly, effectively reducing the generation of dendrites.
  • the porous layer 30 formed on the surface of the anode current collector 22 can also shorten the migration distance of the active ions 28 during charging and discharging, and the active ions 28 can only be diffused by a short distance to complete the charging and discharging process, thereby solving the active ions 28 There is a problem of diffusion resistance during the reaction.
  • a thinner separator can be used in the preparation of the battery, so that the oxygen generated by the positive electrode during the charging process, especially during overcharge, can be more easily migrated to the negative electrode 20 for reduction, and the battery is enhanced. Reversibility.
  • the material of the porous layer 30 is selected from a carbon-based material selected from at least one of carbon black, activated carbon, carbon nanotubes, carbon fibers, and graphite.
  • Carbon black includes, but is not limited to, Ketjen carbon black (KB), acetylene black.
  • KB has a large specific surface area and a strong adsorption capacity, which makes the active ions deposit more evenly on the negative electrode 20, and KB's strong electrical conductivity can improve the electrochemical performance of the entire battery during high current charge and discharge.
  • the carbon-based material may be a mixture of activated carbon and a binder, and the activated carbon may comprise from 20 to 99% by weight of the porous layer 30.
  • the specific surface area of the activated carbon ranges from 200 to 3000 m 2 /g.
  • the commercial activated carbon powder particle size range l -200 mm
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the porous layer 30 has a thickness in the range of 0.1 to 0.2 mm, and the NMP accounts for 50-70% by weight of the porous layer mixture.
  • the form of activated carbon includes, but is not limited to, activated carbon powder, activated carbon particles, activated carbon felt or live
  • the carbon fiber cloth, activated carbon felt or activated carbon fiber cloth has a specific surface area ranging from 100 to 2200 m 2 /g.
  • the activated carbon particles are mixed with the conductive graphite, and uniformly mixed with PVDF, NMP, and coated on the surface of the anode current collector 22.
  • the thickness of the porous layer 30 is between 0.1 and 0.2 mm.
  • the function of the conductive graphite is to increase the electron conductivity of the negative electrode porous layer 30.
  • the active carbon accounts for 20-80% by weight of the porous layer 30, the conductive graphite accounts for 5-20% by weight of the porous layer 30, and the adhesive PVDF occupies 5-15% by weight of the porous layer 30.
  • Activated carbon materials have a porous structure and a large specific surface area, and are also inexpensive compared to carbon-based materials of carbon nanotubes. Further, the process of specifically producing a negative electrode containing a porous layer is relatively simple and easy to industrialize.
  • a graphene layer is formed on the surface of the anode 20.
  • Graphene has outstanding thermal conductivity and mechanical properties, theoretical specific surface area of up to 2600 m 2 /g, and high-speed electron mobility at room temperature. Therefore, the graphene layer formed on the surface of the negative electrode 20 can not only provide more deposition for the active ion 28 The large surface area can further improve the conductivity of the negative electrode 20, thereby improving the electrochemical performance of the battery with a large current.
  • the anode 20 since the anode 20 includes only the anode current collector 22, a porous layer or a graphene layer is formed on the surface of the anode current collector 22.
  • the electrolyte includes at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte, the solvent comprising at least one of an aqueous solution or an alcohol solution including, but not limited to, ethanol or methanol.
  • the electrolyte is capable of ionizing at least one reactive ion 28 which undergoes reduction-deposition and oxidation-dissolution in the negative electrode 20 during charge and discharge.
  • the concentration of the active ion 28 ranges from 0.5 to 15 mol/L.
  • the active ions 28 comprise metal ions selected from at least one of Zn, Fe, Cr, Cu, Mn, Ni, Sn.
  • Metal ions are present in the electrolyte in the form of chlorates, sulfates, nitrates, acetates, formates, phosphates, and the like.
  • the metal ion is present in the electrolyte in the form of a sulfate, acetate or a mixture of sulfate and acetate.
  • the electrolyte further comprises an electrolyte capable of ionizing at least one ion 16 which can be reversibly extracted-embedded in the positive electrode 10 during charge and discharge, thereby increasing the ion exchange rate between the positive electrode active material 14 and the electrolyte, Improve the battery's large rate charge and discharge performance.
  • the positive electrode active material 14 is a compound capable of reversibly extracting-intercalating lithium ions, and the electrolyte can also ionize lithium ions.
  • the reversible detachment-embedded ion 16 includes a lithium ion or a sodium ion or a magnesium ion or a zinc ion, and the concentration of the reversible-embedded ion 16 in the electrolyte is in the range of 0.1 to 30 mol/L.
  • the concentration of active ions 28 in the electrolyte must reach a certain range.
  • the electrolyte is over-alkali, it will affect the solubility of the active ions 28 in the electrolyte; when the electrolyte is too acidic, the electrode material will corrode.
  • the pH of the electrolyte in the present invention ranges from 3 -7.
  • the principle of charge and discharge of the battery is as follows: During charging, the reversible elution-embedded ions in the positive electrode active material 14 are removed, and the metal is oxidized and the electrons are released along with the positive electrode active material 14; The external circuit reaches the battery negative electrode 20, while the active ions 28 in the electrolyte are electron-reduced at the negative electrode 20 and deposited on the surface of the negative current collector 22 to form the active ion deposition layer 26.
  • the discharge process is the reverse process of charging, as shown in Figure 3.
  • the first operation of the battery is a charging process in which the reversible extraction-embedded ions in the positive electrode active material 14 and the active ions 28 are reduced-deposited at the negative electrode 20 into the active ion deposition layer 26.
  • the capacity of the battery depends on the capacity of the positive electrode active material 14, and therefore, when the battery is first charged, it is necessary to contain sufficient reversible elution-embedded ions 16 in the positive electrode active material 14. The battery cannot be used as a power source until the user performs the charging process, thus ensuring that the battery capacity is not lost in any way before use.
  • a second embodiment of the present invention provides a battery.
  • the anode 20 further includes a cathode formed on the surface of the anode current collector 22 in the second embodiment.
  • the active material 24, the negative electrode active material 24, can be oxidized-dissolved into active ions 28 during discharge.
  • the anode current collector 22 serves only as a carrier for electron conduction and collection, and does not participate in the reaction of the anode 20, and the anode active material 24 is formed on the anode current collector 22 by coating, plating or sputtering.
  • the sputtering method includes, but is not limited to, magnetron control. Sputtering.
  • the anode current collector 22 is a copper foil
  • the anode active material 24 is zinc
  • zinc is formed on the surface of the copper foil by electroplating.
  • the anode active material 24 is formed on the surface-pretreated anode current collector 22, and the surface pretreatment method includes at least one of mechanical treatment, chemical treatment, or electrochemical treatment.
  • the method of pretreating Cu may be manual/mechanical polishing, removing the dull portion of the surface while having a certain roughness on the surface, but the Cu may not be completely removed by manual grinding. Impurities on the surface, such as CuO, require further chemical treatment of Cu.
  • the chemical treatment may be performed by immersing a mixture of different acids, such as sulfuric acid, nitric acid and hydrochloric acid.
  • the specific method of pretreatment depends on the selection of the anode current collector 22, usually mechanical, Chemical and electrochemical methods are combined.
  • the anode 20 includes the anode current collector 22 and the anode active material 24, and therefore, a porous layer or a graphene layer is formed on the surface of the anode current collector 22.
  • the negative electrode active material is formed on the surface of the porous layer or the graphene layer by coating, electroplating or sputtering.
  • the positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material 14.
  • the positive electrode current collector 12 does not participate in the electrochemical reaction, and the positive electrode active material 14 can reversibly extract-embed ions such as lithium ions, sodium ions, zinc ions or magnesium ions, but in the second embodiment, the positive electrode activity is not limited in the preparation of the battery.
  • the positive electrode active material 14 can have four states: does not contain reversible elution-embedded ions 16 , contains and can be further embedded in reversible extraction - embedded ions 16.
  • the electrolyte includes at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte, and the solvent includes an aqueous solution or an alcohol solution including, but not limited to, ethanol and methanol.
  • the electrolyte can ionize at least one active ion 28 in the reduction/deposition and oxidation-dissolution of the anode 20 during at least one charge and discharge process or at least one charge and discharge process in the positive electrode 10 can be reversibly extracted-embedded ions 16 Or both active ion 28 and reversible elution-embedded ions 16.
  • the positive electrode active material 14 can reversibly elute-embed ions during charge and discharge, but for the positive electrode active material 14 itself, it may not contain reversible elution-embedded ions 16 and may include reversible elution - embedded ions 1 6 and internal structures can also have holes that accept reversible elution-embedded ions 16 or they can contain reversible elution-embedded ions 16 and reach saturation or even supersaturation, therefore, the battery
  • the positive electrode active material 14 has a large selection space in the material selection.
  • the electrolyte may contain active ions 28 and/or reversible elution-embedded ions 16 , so that the battery of the present invention can be selected according to different applications. Different battery working modes, battery adaptability. The mode of operation of the battery composed of the positive electrode active material 14 and the electrolyte in different states will be further explained below.
  • a battery comprising a positive electrode 10, a negative electrode 20, and an electrolyte (not shown).
  • the positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material 14, and the positive electrode active material 14 is capable of reversibly extracting-embedding ions.
  • the anode 20 includes a cathode current collector 22 and an anode active material 24 that participates in an electrochemical reaction.
  • the electrolyte includes at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte.
  • the electrolyte can ionize at least one of the ions 16 capable of reversible elution-embedding in the positive electrode 10; the positive active material 14 does not contain Reversible extraction-embedded ions 16; the first work of the battery is reversible elution in the electrolyte - the embedded ions 16 are embedded in the positive active material 14, and the negative active material 24 is oxidized - dissolved into active ions 28 during the discharge process.
  • the positive electrode active material 14 is Mn 2 0 4
  • the negative electrode active material 24 is metal Zn
  • the electrolyte contains LiAc. Since the positive electrode active material 14 does not contain lithium, and the electrolyte contains lithium ions, the battery operates for the first time to embed lithium ions in the electrolyte into the positive electrode active material 14, and the negative electrode active material 24 is oxidized and dissolved into Zn 2+ . Discharge process.
  • the electrolyte further comprises an electrolyte capable of ionizing the active ions 28, and the active ions 28 can undergo reduction-deposition and oxidation-dissolution in the anode 20, so that ion exchange between the anode 20 and the electrolyte can be accelerated when the battery is discharged. speed.
  • the positive electrode active material 14 can be operated as long as it can reversibly elute-embed ions during charge and discharge, without limiting the positive electrode active material 14 to contain reversible elution-embedded ions 16. Although the positive active material 14 does not contain the reversible elution-embedded ions 16, the battery needs to be a discharge process when it is first operated, but when the user purchases the battery of the present invention, the battery can also be directly used as a power source, and the battery life is very high. long.
  • a battery comprising a positive electrode 10, a negative electrode 20, and an electrolyte.
  • the positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material 14, and the negative electrode 20 includes a negative electrode current collector 22 and a negative electrode active material 24 participating in an electrochemical reaction.
  • the electrolyte includes at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte, and the electrolyte can be ionized.
  • the first work of the battery is reversible - the elution of the embedded ions 16 from the positive active material 14 , the charging process of the active ions 28 in the reduction and deposition of the negative electrode 20 or the reversible extraction - the embedded ions 16 are embedded in the positive active material 14 , the negative electrode
  • the active material 24 oxidizes and dissolves into a discharge process of the active ions 28.
  • the positive electrode active material 14 contains Li x x Mn 2 0 4
  • the negative electrode active material 24 is metal Zn
  • the electrolytic solution contains zinc acetate and lithium acetate.
  • the positive electrode active material 14 can both remove Li + , and at the same time, there are holes in the spinel structure of the positive electrode active material 14 for Li + insertion in the electrolyte.
  • the first working mode of the battery can be discharge: Li in the electrolyte + embedded in Li ⁇ x Mn 2 0 4 , the negative active material 24 metal Zn is oxidized and dissolved into Zn 2+ ; the first working mode of the battery can be charging: Li + x Mn 2 0 4 in the Li + , in the electrolyte Zn 2+ is reduced and deposited on the anode 20 to form a living ion deposition layer 26.
  • the first work of the battery can be either a charging process or a discharging process.
  • the first operation of the battery is reversible extraction - the embedded ions 16 are removed from the positive active material 14, and the active ions 28 are subjected to a reduction-deposition charging process at the negative electrode 20.
  • a battery comprising a positive electrode 10, a negative electrode 20, an electrolyte, a positive electrode 10 comprising a positive electrode current collector 12 and a positive electrode active material 14, and a negative electrode 20 comprising a negative electrode current collector 22 and an anode active material 24 participating in an electrochemical reaction;
  • the electrolyte solution comprising at least one a solvent capable of dissolving the electrolyte and ionizing the electrolyte;
  • the electrolyte is capable of ionizing at least one ion 16 capable of reversible elution-embedding in the positive electrode 10;
  • the positive active material 14 is capable of deintercalating and embedding the reversible elution-embedded ion 16;
  • the work is reversible extraction-embedded ions 16 are embedded in the positive active material 14, and the negative active material 24 is oxidized-dissolved into the active ion 28 discharge process.
  • the positive electrode active material 14 contains Li ⁇ x Mn 2 0 4
  • the negative electrode active material 24 is metal Zn
  • the electrolytic solution contains lithium acetate.
  • the positive electrode active material 14 can remove both Li + and Li +
  • the electrolyte contains Li + . Therefore, the first work of the battery is Li + insertion into Li ⁇ x Mn 2 0 4 , oxidation of metal Zn - dissolution into Zn 2+ The discharge process.
  • the battery needs to be a discharge process for the first time, when the user purchases the battery of the present invention, it can also be directly used as a power source without affecting the performance of the battery, and the battery can be normally charged and discharged after the first operation, and the battery is used. The life is very long.
  • a battery comprising a positive electrode 10, a negative electrode 20, an electrolyte, a positive electrode 10 comprising a positive electrode current collector 12 and a positive electrode active material 14, a positive electrode active material 14 capable of reversibly extracting-embedding ions; a negative electrode 20 comprising a negative electrode current collector 22 and participating in an electrochemical reaction
  • the electrolyte solution includes at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte;
  • the electrolyte is capable of ionizing at least one active ion 28 which undergoes reduction-deposition and oxidation-dissolution in the anode 20;
  • the first work of the battery is Reversible extraction - a charging process in which the intercalating ions are removed from the positive active material 14 and the active ions 28 are reduced-deposited in the negative electrode 20.
  • the positive electrode active material 14 contains Li ⁇ x Mn 2 0 4
  • the negative electrode active material 24 is metal Zn
  • the electrolyte contains zinc acetate.
  • the positive electrode active material 14 can both remove Li + and also insert Li + , thus, the battery
  • the first work is a charging process in which Li + is removed from Li ⁇ x Mn 2 0 4 and Zn 2 + in the electrolyte is reduced-deposited in the negative electrode 20.
  • a battery comprising a positive electrode 10, a negative electrode 20, and an electrolyte.
  • the positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material 14, and the positive electrode active material 14 is capable of reversibly extracting-embedding ions;
  • the electrolyte includes at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte; and the electrolyte is capable of ionizing at least one active ion 28 which undergoes reduction-deposition at the anode 20
  • the reversible extraction-embedded ions in the positive active material 14 reach a saturated state; the first work of the battery is reversible elution - the charging process of the embedded ions 1 6 from the positive electrode 10 and the active ions 28 at the negative electrode 20 reduction-deposition.
  • the reversible elution-embedded ions 16 in the positive electrode active material 14 are in a saturated state, that is, the reverse-embedded ions 16 have substantially occupied the hole positions in the structure of the positive electrode active material 14, and the positive electrode active material 14
  • the structure is stable and can work stably during battery charging and discharging.
  • the first time the battery needs to be charged it can be reversed - the embedded ions 1 6 are removed from the positive active material 14, and the active ions 28 in the electrolyte are reduced-deposited at the negative electrode 20.
  • the user needs to charge the battery when purchasing it, this is because the battery capacity will not be lost in any way before the first use, thus ensuring the performance of the battery in later use.
  • the electrolyte further comprises an electrolyte capable of ionizing the ion 16 capable of reversible elution-embedding in the positive electrode 10, so that when the battery is discharged, the exchange rate of the ions in the positive electrode 10 and the electrolyte can be increased, and the speed is increased. Battery large rate charge and discharge performance.
  • the electrolyte can operate the battery as long as it contains the active ions 28 capable of reduction-deposition and oxidation-dissolution in the anode 20, that is, in the electrolyte of the battery, only the active ions 28 need to be added, instead of It is mandatory to have ions 16 that can be reversibly extracted-embedded to operate the battery.
  • the battery has a simple electrolyte composition and a low manufacturing cost, and the battery has a wider range of applications.
  • a battery comprising a positive electrode 10, a negative electrode 20, an electrolyte, a positive electrode 10 comprising a positive electrode current collector 12 and a positive electrode active material 14, a positive electrode active material 14 capable of reversibly extracting-embedding ions; a negative electrode 20 comprising a negative electrode current collector 22 and participating electricity a chemically reacted negative electrode active material 24;
  • the electrolyte solution includes at least one solvent capable of dissolving the electrolyte and ionizing the electrolyte;
  • the electrolyte is capable of ionizing at least one active ion 28 which undergoes reduction-deposition in the negative electrode 20; and reversible release in the positive electrode active material 14 -
  • the embedded ion 16 is in a supersaturated state; the first operation of the battery is reversible elution - the ionization of the embedded ion 16 from the positive electrode 10, the reduction of the active ion 28 at the negative electrode 20, and the deposition of the negative active
  • the reversible elution-embedded ion 16 in the positive electrode active material 14 is in a supersaturated state, that is, when the positive electrode active material 14 is prepared, the positive electrode active material 14 is further subjected to saturation on the basis of the positive electrode active material 14
  • the ion implantation treatment is performed to increase the capacity of the positive electrode active material 14, and in order to ensure the structural stability of the positive electrode active material 14, the surface of the positive electrode active material 14 is passed.
  • the metal includes, but is not limited to, Al
  • the metal oxide includes, but is not limited to, A1 2 0 3 .
  • the positive electrode active material 14 is Li 1 + x Mn 2 O 4 (0 ⁇ X ⁇ 0.5) coated with A1 2 0 3
  • the negative electrode active material 24 is metal Zn
  • zinc acetate is contained in the electrolytic solution.
  • the content of Li + in the positive electrode active material 14 has reached a supersaturated state. Therefore, the first operation of the battery is the removal of Li + from Li 1 + x Mn 2 0 4 , and the reduction of Zn 2+ in the electrolyte at the negative electrode 20 is The charging process of the active ion deposition layer 26.
  • the electrolyte further comprises an electrolyte capable of ionizing the reversible elution-embedded ions 16 in the positive electrode 10, so that when the battery is charged, the ion exchange rate between the positive electrode 10 and the electrolyte can be accelerated, and the charge and discharge performance of the battery can be improved.
  • an electrolyte capable of ionizing the reversible elution-embedded ions 16 in the positive electrode 10, so that when the battery is charged, the ion exchange rate between the positive electrode 10 and the electrolyte can be accelerated, and the charge and discharge performance of the battery can be improved.
  • the first working mode of the battery has more options, and thus, the producer can use the user's application.
  • a combination of the positive electrode 10, the negative electrode 20, and the electrolyte in the battery is selected to produce a battery having a different charge and discharge mode.
  • a third embodiment of the present invention also discloses a battery, which differs from the battery disclosed in the second embodiment in that: in the third embodiment, the anode 20 contains only the anode current collector 22, but the anode current collector 22 not only serves as electron conduction and collection.
  • the carrier also corresponds to the negative active material capable of participating in the reaction of the negative electrode 20, and can be oxidized-dissolved into the active ion 28 during discharge of the battery, that is, the material of the negative current collector 22 is the same as that of the active ion 28, for example: active ion 28 is zinc ion, and the corresponding negative current collector 22 is metal zinc.
  • the anode 20 includes the anode current collector 22 participating in the electrochemical reaction, and therefore, the porous layer or the graphene layer is formed on the surface of the anode current collector 22.
  • the positive electrode active material 14 of the battery positive electrode 10 is LiMn 2 0 4
  • the positive electrode current collector 12 is a stainless steel mesh
  • the negative electrode current collector 22 is metal zinc
  • the electrolytic solution is an aqueous solution containing a zinc salt.
  • the electrolyte is an aqueous solution containing a zinc salt and a lithium salt. Metal zinc can participate in the reaction of the negative electrode 20.
  • the separator may be an organic or inorganic porous material, and the separator has a porosity ranging from 20 to 95% and a pore diameter ranging from 0.001 to 100 ⁇ m.
  • the battery provided by the invention has high energy density (up to 60%-80% of lithium ion battery), high power density (expected to reach 200% of lithium ion battery, or even higher), easy to manufacture, completely non-toxic, Environmentally friendly, easy to recycle and low cost (the same capacity battery, expected to reach 60% of lead-acid batteries, 20% of lithium-ion batteries, or even lower), and has good cycle performance, in the implementation In the mode, the capacity of the battery is maintained above 90% after 4000 cycles. Therefore, the battery of the present invention is a new generation of green energy, and is very suitable as a storage system for large-scale energy storage and a substitute for lead-acid batteries.
  • volume percentage refers to the weight of the solute in a 100 ml solution.
  • all professional and scientific terms used herein have the same meaning as those skilled in the art.
  • any methods and materials similar or equivalent to those described may be employed in the methods of the present invention.
  • the preferred embodiments and materials described herein are for illustrative purposes only.
  • a three-electrode system was constructed by cyclic enthalpy method (C V) to test the stability of different current collectors in the electrolyte.
  • the stainless steel is used as the working electrode, the stainless steel model is 304, the zinc electrode is the counter electrode and the reference electrode, and the stainless steel electricity is studied by cyclic enthalpy method in the sulfate electrolyte 2mol/L ZnS0 4 and 2mol/L Li 2 S0 4 . Chemical behavior, voltage range is 1.0-2.4V. Stainless steel is not passivated.
  • Figure 5 is a cyclic ⁇ -amplitude curve of stainless steel 304 which has not been passivated in Example 1-1. It can be seen from the figure that when the stainless steel is firstly anodically scanned, a broad oxidation peak appears at 1.9 V (Vs. Zn), and then a distinct 0 2 precipitation peak appears, accompanied by an increase in current. In the subsequent cathode scan, a relatively small reduction peak appeared at 1.4V. The oxidation peak at 1.9 V after the cycle was hindered, meaning that an oxide layer was formed on the surface of the stainless steel in the first cycle, and the oxide layer inhibited further oxidation of the inner layer of the stainless steel surface. However, the oxide layer may cause the precipitation of 0 2 . As a result, the precipitation peak of oxygen migrates to a low potential and becomes larger and larger.
  • the passivated stainless steel is used as the working electrode, the stainless steel model is 3 16, the zinc electrode is the counter electrode and the reference electrode, and the cyclic antimony method is used in the sulfate electrolyte 2mol/L ZnS0 4 and 2mol/L Li 2 S0 4 .
  • the electrochemical behavior of passivated stainless steel was investigated with a voltage range of 1.0-2.4V.
  • the method of passivating stainless steel is chemical passivation.
  • the specific process is as follows: At 50 °C, stainless steel 3 16 is placed in a 20% concentrated nitric acid solution for 0.5 h to form a passivation film on the surface of the stainless steel. The stainless steel is washed with water and dried.
  • Figure 6 is a cycle pulsation curve of the passivated stainless steel of Example 1-2.
  • the passivated stainless steel is used as the working electrode, the stainless steel model is 3 16P, the zinc electrode is the counter electrode and the reference electrode, and the circulation is performed in the nitrate electrolyte 3mol/L Zn(N0 3 ) 2 and 6mol/L LiN0 3
  • the method was used to study the electrochemical behavior of passivated stainless steel with a voltage range of 1.0-2.4V.
  • the method of passivating the stainless steel was the same as in Example 1-2.
  • Figure 7 is a CV curve of a passivated stainless steel 3 16P in a nitrate electrolyte.
  • the aluminum alloy was used as the working electrode, the zinc electrode was used as the counter electrode and the reference electrode, and the electric properties of the aluminum alloy were studied by cyclic enthalpy method in the acetate electrolyte of 1.5 mol/L Zn(Ac) 2 and 3 mol/L LiAc. Chemical behavior, voltage range is 1.0-2.4V, aluminum alloy is passivated at 2.4V.
  • the aluminum alloy was used as the working electrode, the zinc electrode was used as the counter electrode and the reference electrode, and the electrochemical behavior of the aluminum alloy was studied by cyclic enthalpy method in the urea salt electrolyte 2mol/L ZnS0 4 and 2mol/L Li 2 S0 4 .
  • the voltage range is 1.0-2.4V, and the aluminum alloy is passivated on the surface at 2.4V.
  • Figures 8 and 9 are CV curves of the aluminum alloys in the acetate and sulfate electrolytes of Examples 1-4 and 1-5, respectively.
  • a significant oxidation peak occurs during the first anode scan, and the current fluctuates slightly. This phenomenon may be attributed to the oxidation of the aluminum alloy surface or the illegal pull current generated by ion adsorption or other processes.
  • the aluminum alloy is electrochemically oxidized at 2.4V, a passivation film is formed. After the first anode scan, there is no peak at 1.0-2. IV, and the 0 2 precipitation potential migrates to a high potential, and the oxygen evolution current become smaller. It shows that the aluminum alloy after electrochemical passivation is very stable in the working voltage range of the water battery.
  • the graphite foil was used as the working electrode, the zinc electrode was used as the counter electrode and the reference electrode.
  • the electrochemical behavior of the graphite foil was investigated by cyclic enthalpy method in the hydrochloride electrolyte 4mol/L ZnCl 2 and 3mol/L LiCl.
  • the non-passivated stainless steel was used as the working electrode, the zinc electrode was the counter electrode and the reference electrode, and the passivation method was used to study the unpassivated in the hydrochloride electrolyte 4mol/L ZnCl 2 and 3mol/L LiCl. The electrochemical behavior of the treated stainless steel.
  • Figure 10 and Figure 1 1 show the CV curves for Examples 1 -6 and 1 -7, respectively. It can be seen from the CV curve that the graphite foil is relatively stable in the chlorate solution. Except for the precipitation of oxygen at a high potential, there is no obvious oxidation or reduction peak under the entire electrochemical window. This phenomenon demonstrates carbon.
  • the base material is suitable as a current collector in a chlorate solution, while the unpassivated stainless steel is less suitable for a chlorate solution.
  • a three-electrode system was constructed using the Tafel curve to test the corrosion rates of different current collectors in the acetate electrolyte.
  • Aluminum foil was used as the working electrode, zinc was used as the counter electrode and the reference electrode.
  • the corrosion behavior of the aluminum foil was studied by Tafel curve in the acetate electrolyte of 1.5 mol/L Zn(Ac) 2 and 3 mol/L LiAc.
  • Example 2-3 A stainless steel 304 rod was used as the working electrode, and the remaining three electrode compositions and test conditions were the same as in Example 2-1.
  • Example 2-3 A stainless steel 304 rod was used as the working electrode, and the remaining three electrode compositions and test conditions were the same as in Example 2-1.
  • Example 2-3 A stainless steel 304 rod was used as the working electrode, and the remaining three electrode compositions and test conditions were the same as in Example 2-1.
  • Example 2-3
  • a graphite rod was used as the working electrode, and the remaining three electrode compositions and test conditions were the same as in Example 2-1.
  • the aluminum alloy was used as the working electrode, and the remaining three electrode compositions and test conditions were the same as those in Example 2-1.
  • Passivated stainless steel 304 was used as the working electrode, and the remaining three electrode compositions and test conditions were the same as in Example 2-1. Specific stainless steel is treated by chemical passivation.
  • the passivated aluminum alloy was used as the working electrode, and the remaining three electrode compositions and test conditions were the same as those in Example 2-1.
  • the aluminum alloy is treated by electrochemical passivation, and the aluminum alloy is charged and discharged, and the charge and discharge cycle is performed once.
  • the passivated aluminum alloy was used as the working electrode, and the remaining three electrode compositions and test conditions were the same as those in Example 2-1.
  • the specific aluminum alloy is treated by electrochemical passivation, and the aluminum alloy is charged and discharged, and the electrochemical passivation charge and discharge cycle is 50 times.
  • the corrosion current can be obtained from the Tafel curve and Equation 1. Based on the area and density of the working electrode And possible corrosion mechanisms (the number of electron migrations during the corrosion process), resulting in corrosion rates for several different positive current collectors as shown in Table 1, among which. R is the corrosion resistance, I c . destroy is the corrosion current. Equation 1: Table 1
  • LiMn 2 0 4 is used as a positive electrode active material, and the positive electrode active material, the conductive agent acetylene black (AB), and the binder polyvinylidene fluoride (PVDF) are mixed in a weight ratio of 83:10:7 and dissolved in N-methyl group.
  • a positive electrode slurry was prepared in pyrrolidone (NMP).
  • the positive electrode current collector was a graphite foil, and the positive electrode slurry was coated on the positive electrode current collector, and dried in air at 10 ° C for 24 hours to prepare a positive electrode.
  • the battery anode current collector is a stainless steel rod.
  • the electrolyte was an aqueous solution containing a concentration of 4 mol/L of zinc chloride and 3 mol/L of lithium chloride, and the pH of the electrolytic solution was adjusted to 4 by titrating 0.1 mol/L of lithium hydroxide into the electrolytic solution.
  • the diaphragm is a glass felt cloth.
  • the positive electrode and the negative electrode were assembled into a battery, and the separator was partitioned therebetween to inject an electrolyte solution. After the battery was assembled, it was allowed to stand for 12 hours and then charged and discharged at a 4 C rate.
  • Charge and discharge voltage range is 12 is a graph showing the relationship between the voltage and the discharge capacity of the battery according to Example 3-1 of the present invention.
  • the coulombic efficiency of the battery is about 97%, and it also indicates that the electrochemical performance of the battery is excellent and almost no side reaction occurs during the cycle.
  • Example 13 is a graph showing the relationship between the discharge capacity and the number of cycles of the battery according to Example 3-1 of the present invention.
  • the initial capacity of the battery is 0.35 mAh
  • the specific capacity based on the positive electrode material is 1 HmAhg" 1
  • the capacity efficiency after 1000 cycles of the battery is still 90%, indicating that the cycle performance of the battery is very good.
  • Example 3-6 The battery positive active material in Example 3-6 was LiLO8Coo.03Alo.03M.94O4, and the remaining battery construction and assembly methods were the same as those in Example 3-1.
  • Figure 14 is a graph showing the relationship between the discharge capacity and the number of cycles of the battery provided in Example 3-2. As can be seen from the figure, the capacity efficiency after the battery cycle of 4000 cycles is still 95%, indicating that the doping modification treatment has been used. The cycle life of the battery of the LiMn 2 0 4 positive electrode active material is further improved.
  • LiL05M .89Coo.03Alo.03O4 was used as the positive electrode active material, and the positive electrode active material, binder P VDF, super-p carbon black were mixed in a weight ratio of 83:10:7 and dissolved in N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • a positive electrode slurry was prepared in the middle, and the positive electrode current collector was a graphite plate having a thickness of 1 mm.
  • the charge and discharge voltage range is 1.5-2. IV.
  • the remaining composition of the battery and the test method are the same as those in the embodiment 3-1.
  • Example 15 is a graph showing the relationship between the discharge capacity and the number of cycles of the battery provided in Example 3-3. It can be clearly seen from the figure that the discharge capacity of the battery cycle of 4000 times is almost equal to the first discharge capacity, and the battery is not only stable in cycle performance. And the cycle life is long.
  • Figure 16 is a graph showing the Coulomb efficiency versus the number of cycles of the battery provided in Example 3-3. It can be seen from the figure that the coulombic efficiency is still close to 100% after 4000 cycles of the battery, indicating the charge and discharge performance of the battery of the present invention. Very stable.
  • LiMn 2 0 4 as a positive electrode active material, the positive electrode active material, the binder polytetrafluoroethylene (PTFE), and the super-p carbon black were mixed at a ratio of 83:10:7 and dissolved in N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • the positive electrode current collector was a stainless steel mesh having a thickness of 30 ⁇ m, and the stainless steel was not passivated.
  • the positive electrode slurry was coated on the positive electrode current collector, and dried in air at 110 ° C for 24 hours to prepare a positive electrode.
  • the battery negative current collector is a thickness ⁇ copper foil.
  • the electrolyte solution is a solution of 0.1 mol/L lithium hydroxide and titrated with an electrolyte solution having a concentration of 1 mol/L lithium acetate and 1.5 mol/L zinc acetate.
  • the pH of the electrolyte was adjusted to 4 by O.lmol/LHAc.
  • the diaphragm is a glass felt cloth.
  • the positive electrode and the negative electrode were assembled into a battery, and the separator was partitioned therebetween to inject an electrolyte solution. After the battery was assembled, it was allowed to stand for 12 hours and then charged and discharged at a rate of 0.5 C.
  • the charge and discharge voltage range is 1.5-2. IV.
  • Figure 17 is a graph showing the discharge capacity of the battery provided in Example 3-4 as a function of the number of cycles. It can be clearly seen from the figure that the initial discharge capacity of the battery is almost the same as the first discharge capacity after the cycle of 250 times, indicating that the cycle performance of the battery is very stable, and the battery provided by the present invention has excellent electrochemical performance.
  • LiMn 2 0 4 is used as the positive electrode active material, according to the positive electrode active material 90%, conductive carbon black 6%, adhesive SBR (styrene-butadiene rubber emulsion) 2%, enhancer CMC (carboxymethyl cellulose sodium) 2% The ratio of CMC is mixed with a certain amount of water first, then the positive active material and conductive carbon black are added, stirred for 2 hours, and finally added to SBR and stirred for 10 minutes to obtain a positive electrode slurry.
  • the positive electrode current collector was a graphite foil having a thickness of 0.1 mm, and the positive electrode slurry was coated on a positive electrode current collector, and the thickness was 0.3 mm, and dried at 120 degrees for 12 hours to prepare a positive electrode sheet.
  • the battery negative current collector was a graphite foil having a thickness of 0.1 mm.
  • Activated carbon powder (coconut fired, specific surface area 1500 m 2 /g), conductive carbon black, PVDF mixed in a ratio of 90:5:5, dissolved in NMP, coated on the negative current collector graphite A porous layer was formed on the foil to a thickness of 0.1 mm.
  • the electrolytic solution was an aqueous solution containing a concentration of 4 mol/L of zinc chloride and 3 mol/L of lithium chloride, and the separator was a non-woven membrane.
  • the positive electrode tab and the negative electrode tab were assembled into a battery with a separator separated therebetween.
  • FIG. 18 is a schematic view showing the structure in which a porous layer is formed on the surface of the anode current collector of the present invention. During charging and discharging, zinc is deposited/dissolved at the negative electrode. Micron-sized pores in activated carbon are effective in adsorbing large amounts of electrolyte and providing zinc deposition sites.
  • Figure 19 is a partial enlarged view of the porous layer of Figure 18, and the active ion deposited layer 26 deposited inside the porous layer is apparent.
  • the charging and discharging voltage range is 1.4-2.15V (that is, the constant current is charged to 2.15V with a current of 100 mAh, and then the constant current is discharged to 1.4 V, and thus the operation is repeated).
  • Figure 20 is a graph showing the first charge and discharge voltage-capacity curve of a LiMn 2 0 4 /Zn battery according to Example 4-1 of the present invention.
  • a battery was fabricated in the same manner as in Example 4-1 except that tin plating of copper foil was used as a battery negative current collector.
  • copper foil Compared to graphite foil, copper foil has better electrical conductivity, higher mechanical strength and thinner.
  • Pick The use of copper foil is beneficial to improve the discharge performance of the negative electrode of the battery, and at the same time, it can reduce the volume of the battery and increase the volumetric energy density of the battery.
  • pure copper foil cannot be used as the negative electrode of ion exchange batteries because the efficiency of zinc deposition is very low on the surface of copper foil. Therefore, a layer of tin can be plated on the surface of the copper foil to improve deposition efficiency.
  • the charge and discharge curves of the battery fabricated in this embodiment are substantially similar to those of the first embodiment.
  • a battery was fabricated in the same manner as in Example 4-1 except that a commercially available activated carbon fiber cloth was used as the battery porous layer.
  • the activated carbon cloth has a microstructure similar to that of activated carbon, and has a thickness (uncompressed) of about 0.5 mm and a compression of 0.1 to 0.2 mm.
  • the activated carbon fiber cloth had a specific surface area of 800 m 2 /g.
  • the activated carbon fiber cloth and the negative electrode current collector were cut into the same size, and were sequentially stacked in accordance with the negative electrode current collector-activated carbon fiber cloth-nonwoven film separator-positive electrode.
  • the structure of the battery thus formed is the same as that of the battery shown in Fig. 15, except that the material of the porous layer includes an activated carbon fiber cloth.
  • the battery manufactured by the above method has a simple structure and can be industrially produced at a faster speed.
  • the activated carbon fiber cloth can also provide a sufficiently large specific surface area of the negative electrode.
  • LiMn 2 0 4 is used as a positive electrode active material, and is uniformly mixed according to a weight ratio of positive electrode active material, activated carbon black and binder PVDF of 8:1:1, and cut into a disk having a diameter of 12 mm and a thickness of 0.1-0.2 mm, and pressed into aluminum.
  • a positive electrode is formed on the alloy current collector.
  • the negative electrode is a metal zinc having a diameter of 12 mm and a thickness of 1 mm, and the metal zinc serves as both a negative electrode active material and a negative electrode current collector.
  • the gap between the positive and negative electrodes is 5 mm, and the diaphragm is filter paper.
  • the electrolyte was a mixed aqueous solution of lithium sulfate and zinc sulfate containing 4 mol/L of lithium ion and 2 mol/L of zinc ion, and the pH of the electrolytic solution was adjusted to 5 by titration with 0.1 mol/L of LiOH.
  • the battery is charged and discharged with a voltage range of 1.4-2.4V and a scan rate of 0.5mV/s.
  • the positive electrode collector fluid aluminum alloy forms a passivation film on the surface at a high voltage of 2.4V.
  • the positive electrode current collector is an aluminum alloy foil having a thickness of 50 ⁇ m
  • the negative electrode is a metal zinc foil having a thickness of 50 ⁇ m
  • the electrolyte is 1.5 mol/L Zn(Ac) 2 and 2 mol/L LiAc
  • the separator is a glass felt cloth.
  • the remaining battery composition and test method are the same as those in Embodiment 5-1.
  • 21 and 22 are CV graphs of the batteries provided in Examples 5-1 and 5-2, respectively.
  • two reduction peaks (1.85 V and 1.7 V) which are consistent with the mechanism of lithium ion extraction/embedding in organic electrolytes.
  • a small oxidation peak appeared after the cycle, and the peak current appeared at 1.6V.
  • the cause of this oxidation peak may be proton-out-embedding. This result further confirmed that the battery of the present invention is excellent in stability and has excellent charge and discharge cycle performance.
  • the positive current collector is a passivated stainless steel 304
  • the thickness of the stainless steel 304 is 50 ⁇ m
  • the electrolyte is 2 mol/L ZnS0 4 and 2 mol/L Li 2 S0 4
  • the separator is a glass felt cloth
  • the remaining batteries The composition is the same as the embodiment 5-1, and the charge and discharge voltage interval is 1.4-2. IV.
  • the specific method of passivating the stainless steel is as follows: At 50 ° C, the stainless steel is placed in 20% concentrated nitric acid for half an hour to form a passivation film on the surface of the stainless steel.
  • Figure 23 is a CV curve of the battery in Example 5-3.
  • Example 5-4 the cathode current collector was passivated stainless steel 304, the electrolyte was 3 mol/L Zn(N0 3 ) 2 and 6 mol/L LiN0 3 , and the remaining batteries were composed of the same example 5-1, charging and discharging voltage.
  • the interval is 1.4-2.2V.
  • the method of specifically passivating the stainless steel is the same as that of the embodiment 5-3.
  • Figure 24 is a CV curve of the battery in Example 5-4.
  • a battery was fabricated in the same manner as in Example 5-1 except that the passivated 304 type stainless steel having a thickness of 1 mm was used instead of the graphite foil as a positive electrode current collector.
  • the specific passivation treatment process was: at 50 ° C, The stainless steel was placed in 20% nitric acid for half an hour to form a passivation film on the stainless steel surface.
  • the electrolytic solution was an aqueous solution containing a concentration of 1.5 mol/L of zinc acetate and 3 mol/L of lithium acetate.
  • the negative electrode of the battery is metal zinc. After the battery was assembled, it was allowed to stand for 12 hours, and then the battery was charged and discharged with a constant current of 1 mA.
  • the charge and discharge voltage range is 1.4-2.2V.
  • a battery was fabricated in the same manner as in Example 5-1 except that a passivated type 316 type stainless steel was used instead of the type 304 stainless steel as a positive electrode current collector, and the specific passivation treatment process was the same as in Examples 5-5. After the battery was assembled, it was allowed to stand for 12 hours, and then the battery was charged and discharged with a constant current of 1 mA and 3 mA, respectively. The charge and discharge voltage range is 1.4-2.2V.
  • Figure 25 is a CV curve of the battery of Example 5-6.
  • a battery was fabricated in the same manner as in Example 5-6, except that the electrolytic solution was an aqueous solution containing zinc sulfate at a concentration of 3 mol/L and 3 mol/L lithium sulfate. After the battery is assembled, it is allowed to stand for 12 hours, and then the battery is charged and discharged with a constant current of 1 mA, 2 mA, and 3 mA, respectively.
  • the charge and discharge voltage range is 1.4-2.2V.
  • a battery was fabricated in the same manner as in Example 5-7 except that the passivated metal aluminum was used as a positive electrode current collector.
  • the process of passivating the metal aluminum is: after the battery is assembled, it is allowed to stand for 12 hours, then the battery is charged and discharged with a constant current of 1 mA, and the voltage is charged to 2.4V during charging, that is, the charging and discharging voltage interval is 1.4-2.4V, a passivation film is formed on the surface of the metal aluminum.
  • the battery was cycled by charging and discharging the batteries in Examples 5-1 to 5-8.
  • Table 2 shows the battery performance of the battery in Examples 5-1 to 5-8 charged and discharged at a constant current of 1 mA and cycled 80 times:
  • the battery performance of the passivated stainless steel as the positive electrode current collector is superior in both the capacity retention rate and the charge and discharge efficiency.
  • Example 5-6 a 3 mA constant current charge and discharge test was performed. After 80 cycles, the capacity retention rate was 94%, and the charge and discharge efficiency was 98%. The battery performance was better than the 1 mA constant current charge and discharge test result.
  • the battery of the present invention has excellent battery performance at a large current.
  • Example 5-7 a constant current charge and discharge test of 2 mA and 3 mA was carried out. After 80 cycles, the capacity retention rates were 92% and 72%, respectively, and the charge and discharge efficiencies were 99%.
  • the batteries provided in Examples 5-7 were The battery with 2mA constant current charge and discharge has the best performance.
  • LiMn 2 0 4 was used as a positive electrode active material, and the mixture was mixed with a positive electrode active material, activated carbon black, and a binder PVDF in a weight ratio of 8:1:1, and coated on a passivated stainless steel current collector to form a positive electrode.
  • the stainless steel passivation method was the same as in Example 5-1.
  • the negative electrode was a metal zinc foil having a thickness of 50 ⁇ m, and the metal zinc also served as a negative electrode active material and a negative electrode current collector.
  • the diaphragm is a glass felt cloth.
  • the electrolytic solution was a mixed aqueous solution containing 2 mol/L of lithium acetate, 1.5 mol/L of zinc acetate, and 1 mol/L of zinc phthalate to adjust the pH of the electrolyte to 5.
  • the battery is charged and discharged with a voltage range of 1.4 to 4. IV and a scan rate of 0.5 mV/s.
  • Figure 26 is a CV curve of the battery provided in Example 5-9. The experimental results show that the coulombic efficiency of the battery in the cycle of 200 times is close to 100%, indicating that the battery using the mixed electrolyte salt has stable charge and discharge performance.
  • LiMn 2 0 4 was used as the positive electrode active material, and the positive electrode active material, super-p carbon black, and the binder PVDF were uniformly mixed in a weight ratio of 83:10:7, and NMP was used as a dispersing agent to prepare a positive electrode slurry, which was uniformly coated.
  • the positive electrode current collector graphite foil was coated with a thickness of 80 ⁇ m, and then dried and pressed to obtain a positive electrode.
  • the negative electrode is a metal zinc foil having a thickness of 50 ⁇ m, and the metal zinc is both a negative electrode active material and also serves as a negative electrode current collector.
  • the diaphragm is a glass felt cloth.
  • the electrolytic solution was a deionized aqueous solution containing 3 mol/L of lithium chloride and 4 mol/L of zinc chloride, and the pH of the electrolytic solution was adjusted to 4 by dropwise addition of 0.1 mol/L of LiOH solution to the electrolytic solution.
  • the battery is charged and discharged at a voltage of 1.5 to 2. 1 V at a rate of 4C.
  • Fig. 27 is a graph showing the relationship between the first charge and discharge of the battery in Example 6-1 and the voltage. It can be seen from the figure that the initial discharge capacity of the battery is about 0.35 mAh.
  • Figure 28 shows the relationship between the discharge capacity of the battery and the number of cycles. After the battery is cycled for 1000 times, the capacity of the battery remains above 85 %, and the capacity attenuation is small, indicating that the battery has very good stability.
  • Figure 29 shows the relationship between the cell coulombic efficiency and the number of cycles. It can be seen from the figure that the coulombic efficiency of the battery after 1000 cycles is above 80%.
  • LiMn 2 0 4 as a positive electrode active material, a positive electrode active material, super-p carbon black, and a binder
  • the PVDF was uniformly mixed in a weight ratio of 83:10:7, and a positive electrode slurry was prepared by using NMP as a dispersing agent, uniformly coated on a positive electrode current collector graphite foil having a thickness of 80 ⁇ m, and then dried and pressed to obtain a positive electrode.
  • the negative electrode is a metal zinc foil having a thickness of 50 ⁇ m, and the metal zinc is both a negative electrode active material and also serves as a negative electrode current collector.
  • the separator is a non-woven fabric.
  • the electrolyte solution was an aqueous solution containing 3 mol/L of lithium chloride and 4 mol/L of zinc chloride, and the pH of the electrolytic solution was adjusted to 4 by dropwise addition of 0.1 mol/L of LiOH solution to the electrolytic solution.
  • charge and discharge the battery at a voltage of 1.5 to 2. 1 V at a rate of 1 C.
  • Figure 30 is a graph showing the discharge capacity of the battery provided in Example 6-2 as a function of the number of cycles. The battery was slightly attenuated after 30 cycles, but the decay rate was very slow.
  • Figure 3 1 shows the relationship between the cell coulombic efficiency and the number of cycles.
  • the cycle efficiency of the battery after cycling 30 times is nearly 90%.
  • LiMn 2 0 4 is used as a positive electrode active material, and a positive electrode active material, super-p carbon black, and a binder CMC-SBR are uniformly mixed in a weight ratio of 83:10:7, and a positive electrode slurry is prepared by using NMP as a dispersing agent. Both were coated on a positive electrode current collector stainless steel foil having a thickness of 50 ⁇ m, and the stainless steel was not passivated, followed by drying and pressing to obtain a positive electrode.
  • the negative electrode is a metal zinc foil having a thickness of 40 ⁇ m, and the metal zinc is both a negative electrode active material and also serves as a negative electrode current collector.
  • the diaphragm is a glass felt cloth.
  • the electrolyte is an aqueous solution containing 1 mol/L of lithium acetate and 1.5 mol/L of zinc acetate, and the pH of the electrolyte is adjusted by adding 0.1 mol/L of LiOH and 0.1 mol/L of HAc solution to the electrolyte. Is 4.
  • the battery was charged and discharged at a temperature of 0.5 C in a voltage range of 1.5 to 2. IV.
  • Example 6-3 The battery experiment results in Example 6-3 showed that the discharge capacity retention rate and the Coulomb efficiency of the battery cycle were close to 100%, indicating that the battery has excellent cycle performance and longevity.
  • Example 6-4 the battery was charged and discharged at 55 ° C to investigate the charge and discharge performance of the battery at a high temperature.
  • the other compositions and test methods of the battery were the same as those in Example 6-3.
  • Figure 32 is a graph showing the relationship between the discharge capacity and the number of cycles of the battery provided in Example 6-4. As can be seen from the figure, the battery still has a good discharge capacity retention rate at a high temperature of 55 ° C, and the battery cycle is almost 160 times. There is no significant capacity degradation.
  • LiMn 2 0 4 is used as a positive electrode active material, and a positive electrode active material, super-p carbon black, and a binder PVDF are uniformly mixed in a weight ratio of 83:10:7, and a positive electrode slurry is prepared by using NMP as a dispersing agent. Covered on a positive current collector stainless steel mesh with a thickness of 30 ⁇ , the stainless steel is not passivated, then Drying and pressing to obtain a positive electrode.
  • the negative electrode is a metal zinc foil having a thickness of ⁇ ⁇ , which is both a negative electrode active material and also serves as a negative electrode current collector.
  • the diaphragm is a glass felt cloth.
  • the electrolyte is an aqueous solution containing 1 mol/L lithium acetate and 1.5 mol/L zinc acetate, and the pH of the electrolyte is adjusted by adding 0.1 mol/L of LiOH and 0.1 mol/L HAc solution to the electrolyte. Is 4.
  • the battery was charged and discharged at a temperature of 0.5 C in a voltage range of 1.5 to 2. IV.
  • Figure 33 is a graph showing the relationship between the discharge capacity and the number of cycles of the battery provided in Example 6-5. It can be seen from the figure that the discharge capacity of the battery cycle is almost no attenuation, indicating that the battery provided by the present invention has good charge and discharge stability. .
  • LiMn 2 0 4 was used as the positive electrode active material, and the positive electrode active material, super-p carbon black, and the binder PVDF were uniformly mixed in a weight ratio of 8:1, and NMP was used as a dispersing agent to prepare a positive electrode slurry, which was uniformly coated.
  • a positive current collector graphite foil having a thickness of 80 ⁇ m followed by drying and pressing to obtain a positive electrode.
  • the negative electrode current collector was a graphite foil having a thickness of 50 ⁇ m, and the metallic zinc was plated on the graphite foil as a negative electrode active material.
  • the diaphragm is a glass felt cloth.
  • the electrolytic solution was an aqueous solution containing 2 mol/L of lithium acetate and 1.5 mol/L of zinc acetate, and the pH of the electrolytic solution was adjusted to 4 by dropwise addition of 0.1 mol/L of LiOH solution to the electrolytic solution.
  • the battery is charged and discharged at a voltage of 1.5 C. IV at a rate of 0.5 C.
  • a battery was fabricated in the same manner as in Example 7-1 except that the 3 16 type stainless steel was used instead of the graphite foil as the anode current collector.
  • a battery was fabricated in the same manner as in Example 7-1 except that a copper foil was used instead of the graphite foil as a negative current collector.
  • the batteries provided in Examples 7-1 to 7-3 have good cycle performance.

Abstract

本发明揭示了一种电池,包括正极、负极、电解液,所述正极包括正极活性物质,所述正极活性物质能够可逆脱出-嵌入离子;所述负极至少包括不参与电化学反应的负极集流体;所述电解液包括至少一种能够溶解电解质并使所述电解质电离的溶剂;所述电解质能够电离出至少一种充放电过程中在所述负极发生还原-沉积和氧化-溶解的活性离子或/和至少一种充放电过程中在所述正极能够可逆脱出-嵌入的离子;所述负极还包括形成于所述负极集流体表面的负极活性物质,所述负极活性物质在放电过程中能够氧化-溶解为所述活性离子。本发明提供的电池操作安全,生产成本低,循环性能优良并且寿命长久,适合作为大型储能领域的储能体系以及铅酸电池的替代品。

Description

电 池 技术领域
本发明属于电化学储能领域, 具体涉及一种电池。
背景技术
人类对新能源的广泛运用, 导致了二次电池市场的急速扩大。 当前新能 源体系中对二次电池的要求无处不在。 无论是电动汽车, 风能, 太阳能并网 还是电网调峰, 都急需一种廉价, 可靠, 安全和寿命长的二次电池。 目前所 发展的二次电池主要集中在锂离子电池, 高温钠 u电池, 钠镍氯电池和钒液 流电池。 这些电池都具有各自的优点, 比如锂离子电池和高温钠 u电池寿命 长以及能量密度高, 钒液流电池更是理论上具备无限的寿命等。 但无论哪种 电池, 都无法同时满足廉价, 可靠, 安全和寿命长的要求。 传统的锂离子电 池过于昂贵, 且有安全隐患; 高温钠硫电池制造技术门槛高, 售价昂贵; 钒 液流电池多项技术瓶颈 目前都未能获得突破等。
为此很多研究者都致力于水系锂离子电池的研究, 希望以此大幅降低锂 离子电池的成本并提高安全性, 并提出了一些以 LiMn204为正极, 钒的氧化 物例如 LiV308等为负极、 水为电解液的电池, 但因此类负极在水中充放电的 稳定性差以及钒具有一定的毒性, 从而限制了此类电池的发展。 截至目前, 已经提出的水系锂离子二次电池的结构都未能摆脱基于锂离子脱出 -嵌入原 理的结构, 比如 已经有报道的 V02/LiMn204, LiV3O8/LiNi0.81Co0.19O2, TiP207/LiMn204 , LiTi2(P04)3/LiMn204, LiV308/LiCo02等。
发明 内容
本发明旨在提供一种低成本、 安全可靠且性能优良的电池。
一种电池, 包括正极、 负极、 电解液, 所述正极包括正极活性物质, 所 述正极活性物质能够可逆脱出 -嵌入离子; 所述负极至少包括不参与电化学反 应的负极集流体; 所述电解液包括至少一种能够溶解电解质并使所述电解质 电离的溶剂; 所述电解质能够电离出至少一种充放电过程中在所述负极发生 还原-沉积和氧化 -溶解的活性离子或 /和至少一种充放电过程中在所述正极能 够可逆脱出-嵌入的离子; 所述负极还包括形成于所述负极集流体表面的负极 活性物质, 所述负极活性物质在放电过程中能够氧化 -溶解为所述活性离子。
优选的, 所述负极活性物质通过涂覆、 电镀或溅射的方法形成于所述负 极集流体上。
优选的, 所述负极活性物质包括金属单质, 所述金属选自 Zn、 Fe、 Cr、 Cu、 Mn、 Ni中的至少一种。
优选的, 所述负极集流体的材料选自金属 Ni、 Cu、 Ag、 Pb、 Sn、 Fe、 Al或经过钝化处理的上述金属中的一种。
优选的, 所述负极集流体的材料选自碳基材料、 不锈钢、 硅或具有镀 / 涂层的金属, 所述镀 /涂层含有 C、 Sn、 In , Ag、 Pb、 Co 的单质、 合金、 或 者氧化物中至少一种。
优选的, 所述镀 /涂层的厚度范围在 l - 1000nm之间。
优选的, 所述负极还包括形成于所述负极集流体表面的多孔层, 所述多 孔层具有微米或亚微米或纳米级孔隙。
优选的, 所述多孔层包括碳基材料, 所述碳基材料选自科琴碳黑、 活性 碳、 碳纳米管、 碳纤維、 石墨中的至少一种。
优选的, 所述多孔层包括碳基材料, 所述碳基材料为活性碳粉末与粘结 剂的混合物, 所述活性碳粉末占所述多孔层的重量百分比范围为 20-99%。
优选的, 所述负极还包括形成于所述负极集流体表面的石墨烯层。
优选的, 所述负极集流体为铜, 所述负极活性物质为锌。
优选的, 所述负极活性物质形成于经过表面预处理的负极集流体, 所述 表面预处理选自机械处理、 化学处理或电化学处理中的至少一种。
优选的, 所述电解液的 pH值范围为 3 -7。
优选的, 所述活性离子以氯酸盐、 硫酸盐、 硝酸盐、 醋酸盐、 甲酸盐、 磷酸盐中的至少一种形式存在于所述电解液中。
优选的, 所述正极活性物质能够可逆脱出-嵌入锂离子、 钠离子、 镁离子 或锌离子。
优选的, 所述正极集流体的材料选自石墨、 不锈钢、 铝合金、 经过钝化 的不锈钢或铝合金。
本发明还提供了一种电池, 包括正极、 负极、 电解液, 所述正极包括正 极活性物质, 所述正极活性物质能够可逆脱出 -嵌入离子; 所述负极包括参与 电化学反应的负极活性物质; 所述电解液包括至少一种能够溶解电解质并使 所述电解质电离的溶剂; 所述电解质能够电离出至少一种在所述正极能够发 生可逆脱出-嵌入的离子; 所述正极活性物质不包括所述可逆脱出 -嵌入的离 子; 所述电池的首次工作是所述可逆脱出-嵌入的离子嵌入所述正极活性物质、 所述负极活性物质氧化 -溶解为所述活性离子的放电过程。
本发明还提供了一种电池, 包括正极、 负极、 电解液, 所述正极包括正 极活性物质, 所述正极活性物质能够可逆脱出 -嵌入离子; 所述负极包括参与 电化学反应的负极活性物质; 所述电解液包括至少一种能够溶解电解质并使 所述电解质电离的溶剂; 所述电解质能够电离出至少一种在所述负极发生还 原 -沉积的活性离子和至少一种在所述正极能够发生可逆脱出 -嵌入的离子; 所述正极活性物质能够脱出和嵌入所述可逆脱出-嵌入的离子; 所述电池的首 次工作是所述正极活性物质中脱出所述可逆脱出-嵌入的离子、 所述活性离子 还原-沉积为所述负极活性物质的充电过程或者所述可逆脱出 -嵌入的离子嵌 入到所述正极活性物质、所述负极活性物质氧化 -溶解为所述活性离子的放电 过程。
优选的, 所述电池首次工作是所述正极活性物质脱出所述可逆脱出 -嵌入 的离子、 所述活性离子还原-沉积为所述负极活性物质的充电过程。
本发明还提供了一种电池, 包括正极、 负极、 电解液, 所述正极包括正 极活性物质, 所述正极活性物质能够可逆脱出 -嵌入离子; 所述负极包括参与 电化学反应的负极活性物质; 所述电解液包括至少一种能够溶解电解质并使 所述电解质电离的溶剂; 所述电解质能够电离出至少一种在所述正极能够发 生可逆脱出-嵌入的离子; 所述正极活性物质能够脱出和嵌入所述可逆脱出 - 嵌入的离子; 所述电池的首次工作是所述可逆脱出 -嵌入的离子嵌入到所述正 极活性物质、 所述负极活性物质氧化 -溶解为所述活性离子的放电过程。
本发明还提供了一种电池, 包括正极、 负极、 电解液, 所述正极包括正 极活性物质, 所述正极活性物质能够可逆脱出 -嵌入离子; 所述负极包括参 与电化学反应的负极活性物质; 所述电解液包括至少一种能够溶解电解质并 使所述电解质电离的溶剂; 所述电解质能够电离出至少一种在所述负极发生 还原-沉积的活性离子; 所述正极活性物质能够脱出和嵌入所述可逆脱出 -嵌 入的离子; 所述电池的首次工作是所述正极活性物质中脱出所述可逆脱出 - 嵌入的离子、所述活性离子在所述负极还原-沉积为所述负极活性物质的充电 过程。
本发明还提供了一种电池, 包括正极、 负极、 电解液, 所述正极包括正 极活性物质, 所述正极活性物质能够可逆脱出 -嵌入离子; 所述负极包括参与 电化学反应的负极活性物质; 所述电解液包括至少一种能够溶解电解质并使 所述电解质电离的溶剂; 所述电解质能够电离出至少一种在所述负极发生还 原 -沉积的活性离子; 所述正极活性物质中所述可逆脱出 -嵌入的离子处于饱 和状态; 所述电池的首次工作是所述正极活性物质中脱出所述可逆脱出 -嵌入 的离子、所述活性离子在所述负极还原沉积为所述负极活性物质的充电过程。
本发明还提供了一种电池, 包括正极、 负极、 电解液, 所述正极包括正 极活性物质, 所述正极活性物质能够可逆脱出 -嵌入离子; 所述负极包括参与 电化学反应的负极活性物质; 所述电解液包括至少一种能够溶解电解质并使 所述电解质电离的溶剂; 所述电解质能够电离出至少一种在所述负极发生还 原 -沉积的活性离子; 所述正极活性物质中所述可逆脱出 -嵌入的离子处于过 饱和状态, 所述正极活性物质的表面由金属或金属氧化物修饰或包覆; 所述 电池的首次工作是所述正极活性物质中脱出所述可逆脱出-嵌入的离子、 所述 活性离子在所述负极还原 -沉积为所述负极活性物质的充电过程。
优选的, 所述金属为铝, 所述金属氧化物为氧化铝。
本发明提供的一种电池操作安全、 生产成本低、 循环性能优良并且寿命 长久, 同时电池首次工作具有多种模式, 方便用户根据自身需求来选择, 本 发明中的电池适合作为大型储能领域的储能体系以及铅酸电池的替代品。
本发明还提供了一种电池, 包括正极, 负极和电解液, 所述正极包括正 极集流体和参与电化学反应的正极活性物质, 所述正极活性物质能够可逆脱 出 -嵌入离子; 所述负极至少包括负极集流体; 所述电解液包括至少一种能够 溶解电解质并使所述电解质电离的溶剂; 所述电解质能够电离出至少一种充 放电过程中在所述负极发生还原-沉积和氧化-溶解的活性离子; 所述正极集 流体的材料选自碳基材料、 金属或合金中的一种。
优选的, 所述碳基材料选自玻璃碳、 石墨、 泡沫碳、 碳毡、 碳纤維中的 一种。
优选的, 所述金属选自 Al、 Fe、 Cu、 Pb、 Ti、 Cr、 Mo、 Co、 Ag或经过 钝化处理的上述金属中的一种。
优选的, 所述合金选自不锈钢、 铝合金、 Ni 合金、 Ti 合金、 Cu合金、 Co合金、 Ti-Pt合金、 Pt-Rh合金或经过钝化处理的上述合金中的一种。
优选的, 所述负极集流体的材料选自金属 Ni、 Cu、 Ag、 Pb、 Sn、 Fe、 Al或经过钝化处理的上述金属中的一种。 优选的, 所述负极集流体的材料选自碳基材料、 不锈钢、 硅或具有镀 / 涂层的金属, 所述镀 /涂层含有 C、 Sn、 In , Ag、 Pb、 Co、 Zn的单质、 合金、 或者氧化物中至少一种。
优选的, 所述镀 /涂层的厚度范围在 l - 1000nm之间。
优选的, 所述活性离子包括金属离子, 所述金属选自 Zn、 Fe、 Cr、 Cu、 Mn、 Ni中的至少一种。
优选的, 所述金属离子以氯酸盐、 硫酸盐、 硝酸盐、 醋酸盐、 甲酸盐、 磷酸盐中的至少一种形式存在于所述电解液中。
优选的, 所述正极活性物质能够可逆脱出-嵌入锂离子、 钠离子、 锌离子 或者镁离子。
优选的, 所述正极集流体的材料选自石墨、 不锈钢、 铝合金、 经过钝化 的不锈钢或铝合金。
本发明还提供了一种电池, 包括正极, 负极和电解液, 所述正极包括正 极集流体和参与电化学反应的正极活性物质, 所述正极活性物质能够可逆脱 出 -嵌入离子; 所述负极至少包括负极集流体; 所述电解液包括至少一种能够 溶解电解质并使所述电解质电离的溶剂; 所述电解质能够电离出至少一种充 放电过程中在所述负极发生还原-沉积和氧化-溶解的活性离子; 所述正极集 流体的材料选自不锈钢、铝合金、经过钝化处理的不锈钢或铝合金中的一种。
优选的, 所述铝合金的型号为 6000 系列的铝合金。
优选的, 所述不锈钢的型号为 300 系列的不锈钢。
优选的, 所述负极还包括负极活性物质, 所述负极活性物质在所述电池 放电过程中能够氧化-溶解为所述活性离子。
本发明还提供了一种电池, 包括正极、 负极、 电解液, 所述正极包括正 极活性物质, 所述正极活性物质能够可逆脱出 -嵌入离子; 所述负极包括参与 电化学反应的负极活性物质; 所述电解液包括至少一种能够溶解电解质并使 所述电解质电离的溶剂; 所述电解质能够电离出至少一种充放电过程中在所 述负极发生还原-沉积和氧化-溶解的活性离子或 /和至少一种充放电过程中在 所述正极能够可逆脱出-嵌入的离子, 所述负极活性物质在放电过程中能够氧 化-溶解为所述活性离子; 所述正极集流体的材料包括选自碳基材料、 金属或 合金中的一种。
本发明还提供了一种电池, 包括正极、 负极、 电解液和隔膜, 所述正极 包括正极集流体和参与电化学反应的正极活性物质, 所述正极活性物质能够 可逆脱出 -嵌入离子; 所述负极包括负极集流体, 所述负极集流体不参与电化 学反应; 所述电解液包括至少一种能够溶解电解质并使所述电解质电离的溶 剂; 所述电解质能够电离出至少一种充放电过程中在所述负极发生还原 -沉积 和氧化 -溶解的活性离子; 所述正极集流体的材料包括选自碳基材料、 金属或 合金中的一种。
本发明还提供了一种电池集流体的处理方法, 经过处理后的集流体在电 池工作电压范围内具有良好的稳定性, 从而保证电池的充放电稳定性能。
一种电池集流体的处理方法, 包括将所述电池集流体进行化学钝化处理 或电化学钝化处理。
优选的, 所述化学钝化处理包括通过氧化剂氧化所述集流体, 使所述集 流体表面形成钝化膜, 所述氧化剂选自浓硝酸或硫酸高铈。
优选的, 所述电化学钝化处理包括对所述集流体进行充放电或对含有所 述集流体的电池进行充放电处理, 使所述集流体表面形成钝化膜。
本发明还提供了一种电池集流体的处理方法, 所述集流体选自金属铝、 铝合金或不锈钢, 所述钝化处理方法为: 对含有所述集流体的电池进行充放 电, 充电时电压均充至 2.35 -2.45V , 放电时电压均放至 1 .35 - 1 .45V , 所述充 放电次数不小于 1。
本发明还提供了一种电池集流体的处理方法, 所述集流体选自金属铝、 铝合金或不锈钢, 所述钝化处理方法为: 对以所述集流体为工作电极的三电 极体系或含有所述集流体的两电极体系进行充放电, 充电时电压均充至 2.35 -2.45V , 放电时电压均放至 1 .35 - 1 .45V。
本发明还提供了一种电池集流体的处理方法, 所述集流体选自铝合金或 不锈钢, 所述钝化处理方法为: 将所述集流体置入氧化剂溶液中, 維持 0.5 - 1 小时, 使所述集流体表面形成钝化膜, 取出所述集流体清洗并干燥。
本发明提供的电池操作安全, 生产成本低, 并且经过本发明提供的钝化 方法处理的集流体在电池工作范围内的稳定性能很好, 不会参与电池反应, 使得电池具有优良的循环性能并且寿命长久, 适合作为大型储能领域的储能 体系以及铅酸电池的替代品。
本发明还提供了一种电池, 包括正极, 负极和电解液, 所述正极包括正 极集流体和参与电化学反应的正极活性物质, 所述正极活性物质能够可逆脱 出 -嵌入离子; 所述负极至少包括负极集流体; 所述电解液包括至少一种能够 溶解电解质并使所述电解质电离的溶剂; 所述电解质能够电离出至少一种充 放电过程中在所述负极发生还原-沉积和氧化-溶解的活性离子; 所述负极集 流体表面形成有多孔层或石墨烯层, 所述多孔层具有微米或亚微米或纳米级 孔隙。
优选的, 所述多孔层或石墨烯层的厚度范围为 0.05- l mm。
优选的, 所述微米或亚微米级孔隙占所述多孔层的体积范围为 50-95 %。 优选的, 所述纳米级孔隙占所述多孔层的体积范围为 10-99%。
优选的, 所述纳米级孔隙的平均直径的范围为 l - 150nm。
优选的, 所述多孔层的材料选自碳基材料。
优选的, 所述碳基材料选自科琴碳黑、 活性碳、 碳纳米管、 碳纤維、 石 墨中的至少一种。
优选的, 所述碳基材料为活性碳粉末与粘结剂的混合物, 所述活性碳粉 末占所述多孔层的重量百分比范围为 20-99%。
优选的, 所述负极还包括形成于所述负极集流体表面的负极活性物质, 所述负极活性物质在所述电池放电过程中能够氧化 -溶解为所述活性离子。
优选的, 所述负极集流体的材料选自金属 Ni、 Cu、 Ag、 Pb、 Sn、 Fe、 Al或经过钝化处理的上述金属中的一种。
优选的, 所述负极集流体的材料选自碳基材料、 不锈钢、 硅或具有镀 / 涂层的金属, 所述镀 /涂层含有 C、 Sn、 In , Ag、 Pb、 Co、 Zn的单质、 合金、 或者氧化物中至少一种。
优选的, 所述镀 /涂层的厚度范围在 l - 1000nm之间。
优选的, 所述活性离子包括金属离子, 所述金属选自 Zn、 Fe、 Cr、 Cu、 Mn、 Ni中的至少一种。
优选的, 所述金属离子以氯酸盐、 硫酸盐、 硝酸盐、 醋酸盐、 甲酸盐、 磷酸盐中的至少一种形式存在于所述电解液中。
优选的, 所述正极活性物质能够可逆脱出-嵌入锂离子、 钠离子、 锌离子 或者镁离子。
优选的, 所述正极集流体的材料选自石墨、 不锈钢、 铝合金、 经过钝化 的不锈钢或铝合金。
本发明还提供了一种电池, 包括正极、 负极、 电解液, 所述正极包括正 极活性物质, 所述正极活性物质能够可逆脱出 -嵌入离子; 所述负极包括参与 电化学反应的负极活性物质; 所述电解液包括至少一种能够溶解电解质并使 所述电解质电离的溶剂; 所述电解质能够电离出至少一种充放电过程中在所 述负极发生还原-沉积和氧化-溶解的活性离子或 /和至少一种充放电过程中在 所述正极能够可逆脱出-嵌入的离子, 所述负极活性物质在放电过程中能够氧 化-溶解为所述活性离子; 所述负极还包括形成于所述负极活性物质表面的多 孔层或石墨烯层, 所述多孔层具有微米或亚微米或纳米级孔隙。
本发明还提供了一种电池, 包括正极、 负极、 电解液和隔膜, 所述正极 包括正极集流体和参与电化学反应的正极活性物质, 所述正极活性物质是能 够可逆脱出-嵌入离子的化合物; 所述负极是不参与电化学反应的电化学情性 导电电极; 所述电解液是水溶液, 至少含有在充放电过程中在所述负极发生 还原 -沉积和氧化 -溶解的金属离子; 所述负极包括负极集流体和形成于所述 负极集流体表面的具有微米孔隙的多孔层。
本发明提供的电池操作安全, 生产成本低, 负极表面形成有多孔层或石 墨烯层, 一方面可以为电解液中的活性离子提供更大的沉积比表面积, 有效 的减少负极枝晶的产生, 另一方面还縮短活性离子迁移距离, 解决了活性离 子在充放电过程的扩散阻力问题, 使得电池具有良好的电化学性能以及循环 寿命, 本发明的电池适合作为大型储能领域的储能体系以及铅酸电池的替代 本发明还提供了一种电池, 包括正极, 负极和电解液, 所述正极包括正 极集流体和参与电化学反应的正极活性物质, 所述正极活性物质能够可逆脱 出 -嵌入离子; 所述负极至少包括负极集流体; 所述电解液包括至少一种能够 溶解电解质并使所述电解质电离的溶剂; 所述电解质能够电离出至少一种充 放电过程中在所述负极发生还原-沉积和氧化-溶解的活性离子; 所述电解液 的 ρΗ值范围为 3-7。
优选的, 所述溶剂为水或醇溶液。
优选的, 所述活性离子包括金属离子, 所述金属选自 Zn、 Fe、 Cr、 Cu、 Mn、 Ni、 Sn中的至少一种。
优选的, 所述活性离子以氯酸盐、 硫酸盐、 硝酸盐、 醋酸盐、 甲酸盐、 磷酸盐中的至少一种形式存在于所述电解液中。
优选的, 所述电解液的 pH值为 4。 优选的, 所述负极集流体的材料选自金属 Ni、 Cu、 Ag、 Pb、 Sn、 Fe、 Al或经过钝化处理的上述金属中的一种。
优选的, 所述负极集流体的材料选自碳基材料、 不锈钢、 硅或具有镀 / 涂层的金属, 所述镀 /涂层含有 C、 Sn、 In , Ag、 Pb、 Co、 Zn的单质、 合金、 或者氧化物中至少一种。
优选的, 所述镀 /涂层的厚度范围在 l - 1000nm之间。
优选的, 所述正极活性物质能够可逆脱出-嵌入锂离子、 钠离子、 锌离子 或者镁离子。
优选的, 所述正极集流体的材料选自石墨、 不锈钢、 铝合金、 经过钝化 的不锈钢或铝合金。
本发明还提供了一种电池, 包括正极、 负极、 电解液和隔膜, 所述正极 包括正极集流体和参与电化学反应的正极活性物质, 所述正极活性物质是能 够可逆脱出-嵌入离子的化合物; 所述负极是不参与电化学反应的电化学情性 导电电极; 所述电解液是至少含有充放电过程中在所述负极发生还原-沉积和 氧化-溶解的金属离子的水溶液; 所述电解液的 pH值范围为 3-7。
本发明还提供了一种电池, 包括正极、 负极、 电解液, 所述正极包括正 极活性物质, 所述正极活性物质能够可逆脱出 -嵌入离子; 所述负极包括参与 电化学反应的负极活性物质; 所述电解液包括至少一种能够溶解电解质并使 所述电解质电离的溶剂; 所述电解质能够电离出至少一种充放电过程中在所 述负极发生还原-沉积和氧化-溶解的活性离子或 /和至少一种充放电过程中在 所述正极能够可逆脱出-嵌入的离子, 所述负极活性物质在放电过程中能够氧 化-溶解为所述活性离子; 所述电解液的 pH值范围为 3 -7。
本发明提供的电池操作安全, 生产成本低, 在电解液 pH值为 3-7的范围 内保证电解液中具有适合浓度的活性离子和可逆脱出 -嵌入离子, 从而保证电 池的容量, 本发明中的电池具有良好的电化学性能以及循环寿命, 本发明的 电池适合作为大型储能领域的储能体系以及铅酸电池的替代品。
附图说明
图 1是本发明第一实施方式电池结构示意图;
图 2是本发明第一实施方式电池充电过程示意图;
图 3是本发明第一实施方式电池放电过程示意图;
图 4是本发明第二实施方式电池结构示意图; 图 5是实施例 1 - 1 中未经钝化处理的不锈钢 304在硫酸盐电解液中的循 环仗安曲线图;
图 6是实施例 1 -2 中经过钝化处理的不锈钢 3 1 6在硫酸盐电解液中的循 环仗安曲线图;
图 7是实施例 1 -3中经过钝化处理的不锈钢 3 16P在硝酸盐电解液中的循 环仗安曲线图;
图 8是实施例 1 -4中钝化的铝合金在醋酸盐电解液中的循环仗安曲线图; 图 9是实施例 1 -5中钝化的铝合金在硫酸盐电解液中的循环仗安曲线图; 图 1 0是实施例 1 -6 中石墨箔在盐酸盐电解液中的循环仗安曲线图 , 图 1 1是实施例 1 - 7中未钝化不锈钢在盐酸盐电解液中的循环仗安曲线图 图 12是实施例 3 - 1提供的电池的电压与放电容量的关系曲线图; 图 1 3是实施例 3 - 1提供的电池的放电容量与循环次数的关系曲线图; 图 14是实施例 3 -2提供的电池的放电容量与循环次数的关系曲线图; 图 1 5是实施例 3 -3提供的电池的放电容量与循环次数的关系曲线图; 图 1 6是实施例 3 -3提供的电池的库伦效率与循环次数的关系曲线图; 图 1 7是实施例 3 -4提供的电池的放电容量与循环次数的关系曲线图; 图 1 8是实施例 4 - 1 中负极集流体表面形成有多孔层的结构示意图 , 图 1 9是图 1 8 中多孔层的局部放大示意图;
图 20是实施例 4 - 1提供的电池首次充放电电压-容量的曲线图; 图 2 1是实施例 5 - 1提供的电池的循环仗安曲线图;
图 22是实施例 5 -2提供的电池的循环仗安曲线图;
图 23是实施例 5 -3提供的电池的循环仗安曲线图;
图 24是实施例 5 -4提供的电池的循环仗安曲线图;
图 25是实施例 5 -6提供的电池的循环仗安曲线图;
图 26是实施例 5 -9提供的电池的循环仗安曲线图;
图 27是实施例 6 - 1提供的电池首次充放电与电压的关系曲线;
图 28是实施例 6 - 1提供的电池放电容量与循环次数的关系曲线图 , 图 29是实施例 6 - 1提供的电池库伦效率与循环次数的关系曲线图 , 图 30是实施例 6 -2提供的电池的放电容量与循环次数的关系曲线图; 图 3 1是实施例 6 -2提供的电池库伦效率与循环次数的关系曲线图 , 图 32是实施例 6 -4提供的电池的放电容量与循环次数的关系曲线图; 图 33是实施例 6-5提供的电池的放电容量与循环次数的关系曲线图。 其中:
10.正极 20.负极 28.活性离子
12.正极集流体 22.负极集流体 30.多孔层
14.正极活性物质 24.负极活性物质
16.可逆脱出 -嵌入的离子 26.活性离子沉积层
具体实施方式
本发明提供的电池具有较高的能量密度, 稳定的循环性能, 在如手机、 笔记本电脑等便携式电子产品, 电动汽车, 电动工具等领域具有可观的应用 前景。
一种电池, 包括正极 10、 负极 20和电解液(未示出)。 正极 10 包括正极 集流体 12和参与电化学反应的正极活性物质 14, 正极活性物质 14能够可逆 脱出 -嵌入离子; 负极 20至少包括负极集流体 22; 电解液包括至少一种能够 溶解电解质并使电解质电离的溶剂; 电解质能够电离出至少一种充放电过程 中在负极发生还原-沉积和氧化-溶解的活性离子 28。
请参阅图 1 所示, 图 1 为本发明第一实施方式电池结构示意图, 在第一 实施方式中, 电池负极 20仅包括负极集流体 22。
正极活性物质 14 参与正极反应, 并且能够可逆脱出 -嵌入离子或者官能 团。 具体的, 正极活性物质 14 能够可逆脱出-嵌入锂离子、 钠离子、 锌离子 或者镁离子。
正极活性物质 14可以是符合通式 Li1+xMnyMzOk的能够可逆脱出-嵌入锂 离子的尖晶石结构的化合物,其中, -1≤ X≤0.5, 1< y <2.5, 0< z≤0.5, 3< k≤6, M选自 Na、 Li、 Co、 Mg、 Ti、 Cr、 V、 Zn、 Zr、 Si、 Al 中的至少一种。 优选 的, 正极活性物质 14含有 LiMn204。 更优选的, 正极活性物质 14含有经过 摻杂或包覆改性的 LiMn204
正极活性物质 14 可以是符合通式 Li1+xMyM'zM"c02+n的能够可逆脱出- 嵌入锂离子的层状结构的化合物, 其中, -l< x≤0.5, 0< y <1 , 0< z <1, 0< c ≤1, -0.2< n <0.2, M, M', M〃分別选自 Ni、 Mn、 Co、 Mg、 Ti、 Cr、 V、 Zn、 Zr、 Si或 Al的中至少一种。 优选的, 正极活性物质 14含有 LiCo02
正极活性物质 14 可以是符合通式 LixM yM'y(X04)n的能够可逆脱出-嵌 入锂离子的橄榄石结构的化合物, 其中, 0< X ≤2, 0< y <0.6, 1< n <1.5, M 选自 Fe、 Mn、 V或 Co, M'选自 Mg、 Ti、 Cr、 V或 Al的中至少一种, X选 自 S、 P或 Si中的至少一种。 优选的, 正极活性物质 14含有 LiFeP04
在目前锂电池工业中, 几乎所有正极活性物质 14都会经过摻杂、 包覆等 改性处理。 但摻杂, 包覆改性等手段造成材料的化学通式表达复杂, 如 LiMn204 已经不能够代表目前广泛使用的 "锰酸锂"的通式, 而应该以通式 Li1 +xMnyMzOk为准, 广泛地包括经过各种改性的 LiMn204。 同样的, LiFeP04 以及 LiCo02也应该广泛地理解为包括经过各种摻杂、 包覆等改性的, 通式分 別符合 LixM1 -yM'y(X04)n和 Li1 +xMyM'zM"c02+n的正极活性物质。
本发明的正极活性物质 14 为可逆脱出-嵌入锂离子化合物时, 可以选用 如 LiMn204、 LiFeP04、 LiCo02、 LiMxP04、 LiMxSiOy (其中 M 为一种变价金 属)等化合物。 此外, 可脱出-嵌入钠离子的化合物如 NaVP04F, 可脱出 -嵌入 锌离子的化合物如 γ-Μη02, 可脱出-嵌入镁离子的化合物如 MgMxOy (其中 M 为一种金属, 0.5< x <3, 2< y <6)以及具有类似功能, 能够脱出 -嵌入离子或 官能团的化合物都可以作为本发明电池的正极活性物质 14。
具体的实施方式中, 在制备正极浆料时, 正极浆料中除了正极活性物质 14之外, 还需添加导电剂和粘结剂。
导电剂选自导电聚合物、 活性碳、 石墨烯、 碳黑、 碳纤維、 金属纤維、 金属粉末、 以及金属薄片 中的一种或多种。
粘结剂选自聚乙烯氧化物、 聚丙烯氧化物, 聚丙烯腈、 聚酰亚胺、 聚酯、 聚醚、 氟化聚合物、 聚二乙烯基聚乙二醇、 聚乙二醇二丙烯酸酯、 聚乙二醇 二甲基丙烯酸中的一种、 或上述聚合物的混合物及衍生物。 在具体实施方式 中, 粘结剂选自聚四氟乙烯(PTFE)或聚偏氟乙烯(PVDF)。
正极集流体 12仅作为电子传导和收集的载体, 不参与电化学反应, 即在 电池工作电压范围内,正极集流体 12能够稳定的存在于电解液中而没有其他 副反应发生, 从而保证电池具有稳定的循环性能。 正极集流体 12的材料选自 碳基材料、 金属或合金中的一种。
具体的, 碳基材料选自玻璃碳、 石墨、 碳毡、 碳纤維、 或具有 3D 双连 续结构的导电材料中的一种。 其中, 具有 3D 双连续结构的导电材料包括但 不仅限于泡沫碳。 石墨包括但不仅限于石墨箔和石墨板。
金属选自 Al、 Fe、 Cu、 Pb、 Ti、 Cr、 Mo、 Co、 Ag或经过钝化处理的上 述金属中的一种。 合金选自不锈钢、 铝合金、 Ni合金、 Ti合金、 Cu合金、 Co合金、 Ti-Pt 合金、 Pt-Rh 合金或经过钝化处理的上述合金中的一种。 不锈钢包括不锈钢 箔或不锈钢网, 具体的, 不锈钢的型号可以是但不限于 300 系列的不锈钢, 如不锈钢 304、 3 16、 3 16L或 3 16P。 铝合金的型号可以是但不限于 6000 系列 的铝合金, 如铝合金 6061。
负极 20仅包括负极集流体 22, 并且负极集流体 22仅作为电子传导和收 集的载体, 不参与电化学反应。
负极集流体 22 的材料选自金属 Ni、 Cu、 Ag、 Pb、 Mn、 Sn、 Fe、 Al、 Zn 或经过钝化处理的上述金属中的至少一种, 或者单质硅, 或者碳基材料, 其中, 碳基材料包括石墨材料, 比如商业化的石墨压制的箔, 其中石墨所占 的重量比例范围为 90- 100%。 负极集流体 22的材料还可以选自不锈钢或经钝 化处理的不锈钢。 不锈钢包括但不仅限于不锈钢网和不锈钢箔, 同样的, 不 锈钢的型号可以是但不限于 300 系列的不锈钢, 如不锈钢 304、 3 16、 3 16L 或 3 16P。
另外, 负极集流体 22 还可以选自含有析氫电位高的镀 /涂层的金属, 从 而降低负极副反应的发生。 镀 /涂层选自含有 C、 Sn、 In , Ag、 Pb、 Co、 Zn 的单质, 合金, 或者氧化物中至少一种。 镀 /涂层的厚度范围为 l - 1000nm。 例如: 在铜箔或石墨箔的负极集流体表面镀上锡, 铅或银。
将正极集流体 12或负极集流体 22进行钝化处理的主要目的是使集流体 的表面形成一层钝化的氧化膜, 从而在电池充放电过程中, 能起到稳定的收 集和传导电子的作用, 而不会参与电池反应, 保证电池性能稳定。 集流体钝 化处理方法包括化学钝化处理或电化学钝化处理。
化学钝化处理包括通过氧化剂氧化集流体, 使集流体表面形成钝化膜。 氧化剂选择的原则为氧化剂能使集流体表面形成一层钝化膜而不会溶解集流 体。 氧化剂选自但不仅限于浓硝酸或硫酸高铈(Ce(S04)2)。
具体的, 化学钝化处理步骤为: 将集流体置入氧化剂溶液中, 維持 0.5- 1 小时, 使集流体表面形成钝化膜, 最后取出集流体清洗并干燥。
在一个用化学钝化处理不锈钢网或不锈钢箔的实施例中, 具体钝化处理 过程为: 在 50 °C下, 将不锈钢置入 20%的浓硝酸溶液, 維持 0.5个小时, 使 不锈钢表面形成钝化膜, 最后取出不锈钢用水清洗并在 50°C的干燥箱中干燥。
在另一个用化学钝化处理不锈钢网或不锈钢箔的实施例中, 具体钝化处 理过程为: 将不锈钢置入 0.75 mol/L的 Ce(S04)2溶液中, 維持 0.5个小时, 使不锈钢表面形成钝化膜, 最后取出不锈钢用水清洗并在 50 °C的干燥箱中干 燥。
电化学钝化处理包括对集流体进行充放电或对含有集流体的电池进行充 放电处理, 使集流体表面形成钝化膜。
直接对集流体进行充放电,即在集流体用于电池組装前进行预钝化处理, 具体的, 对以集流体作为工作电极的三电极体系进行充放电, 再相应选择合 适的对电极和参比电极。 充电时电压均充至 2.35-2.45V , 放电时电压均放至 1 .35 - 1 .45V。 集流体可以是金属, 如金属铝; 集流体也可以是合金, 如不锈 钢或铝合金。 当然, 也可以采用以集流体为工作电极的两电极体系进行充放 电, 充电时电压均充至 2.35-2.45V, 放电时电压均放至 1 .35 - 1 .45V。
在一个直接钝化铝合金集流体的实施方式中, 以铝合金作为工作电极, 锌箔作为对电极和参比电极, 电解液为含有 1 .5 mol/L醋酸锌和 3 mol/L醋酸 锂的水溶液, 对三电极体系进行充放电, 充电时电压充至 2.4V , 使得铝合金 表面在 2.4V下氧化形成一层钝化的氧化膜, 放电时截止电压为 1 .4V。
也可以对含有集流体的电池进行充放电从而达到对集流体进行钝化的 目 的, 充电时电压均充至 2.35-2.45V , 放电时电压均放至 1 .35- 1 .45V , 充放电 次数不小于 1。 集流体可以是金属, 如金属铝; 集流体也可以是合金, 如不 锈钢或铝合金。
在一个对集流体組装成电池后进行钝化处理的实施方式中, 正极活性物 质 14为 LiMn204, 正极集流体 12为铝合金, 负极集流体 22为铜箔, 电解液 为含有 1 .5 mol/L醋酸锌和 3 mol/L醋酸锂的水溶液,充电时电压均充至 2.4V, 即充电时的截止电压为 2.4V , 使得铝合金表面在 2.4V 下氧化形成一层钝化 膜; 放电时截止电压为 1 .4V , 对电池进行充放电次数不小于 1 次。 电池充放 电的次数越多, 铝合金钝化的效果越好, 在电解液中越稳定。
在采用电化学钝化处理铝合金的方法中,充电时电压达到 2.4V后并保持 一段时间, 铝合金的腐蚀电流会随着維持时间的增加而显著降低。 具体的, 充电电压达到 2.4V后維持时间从 10分钟逐步延长至 1 小时, 铝合金的腐蚀 电流会显著下降, 維持时间从 1 小时逐步延长至 24小时, 腐蚀电流下降不是 很明显, 因此, 更优选的, 充电电压达到 2.4V后并維持至少 1 小时。
电解液为弱酸或中性水溶液, 如氯酸盐、 硫酸盐、 硝酸盐、 醋酸盐、 甲 酸盐或磷酸盐, 正极集流体 12和负极集流体 22在电解液中能够保持稳定, 即在电池工作电压窗口下没有副反应发生, 从而保证电池性能的稳定性。 本 发明提供的集流体的钝化处理方法, 对正极集流体 12和负极集流体 22都适 用。
为了使电解液中的活性离子 28在负极 20表面沉积的更加均匀, 负极 20 表面形成有多孔层 30, 多孔层 30 以任何适宜的方式如涂覆、 压制等方式形 成于负极 20表面。
多孔层 30的厚度范围为 0.05- l mm, 多孔层 30具有微米或亚微米或纳米 级孔隙, 微米或亚微米级孔隙占多孔层 30 的体积范围为 50-95 %。 纳米级孔 隙占多孔层 30体积范围的 10-99%,纳米级孔隙的平均直径的范围为 1 -999nm 优选的, 纳米级孔隙的平均直径的范围为 l - 150nm。
多孔层 30不参与负极 20的电化学反应,多孔层 30具有很大的比表面积, 能够为充电过程中发生沉积-还原的活性离子 28 提供更大的沉积比表面积, 使得活性离子 28在负极集流体 22表面沉积地更加均 , 有效的减少负极枝 晶的产生。 另外, 通过形成于负极集流体 22 表面的多孔层 30, 还可以縮短 活性离子 28 充放电过程中迁移距离, 活性离子 28只需要扩散较短的距离就 能够完成充放电过程, 解决了活性离子 28反应过程中存在扩散阻力的问题。 同时, 由于在负极 20设置了多孔层 30,在制备电池时能够使用更薄的隔膜, 使电池充电过程中, 尤其是过充电时正极产生的氧气能够更容易迁移到负极 20进行还原, 增强电池的可逆性。
多孔层 30的材料选自碳基材料,碳基材料选自碳黑、活性碳、碳纳米管、 碳纤維、 石墨中的至少一种。
碳黑包括但不仅限于科琴碳黑(KB)、 乙炔黑。 KB 具有很大的比表面积 和很强的吸附能力, 可以使活性离子在负极 20上沉积地更加均匀, 而且 KB 很强的导电能力能够提高整个电池的大电流充放电时的电化学性能。
碳基材料可以是活性碳与粘结剂的混合物,活性碳占多孔层 30的重量范 围为 20-99%。 活性碳的比表面积范围为 200-3000m2/g。 具体的, 将商业化活 性碳粉末(粒径范围 l -200mm)和聚偏氟乙烯(PVDF)均匀混合, 加入 N-甲基吡 咯烷酮(NMP)溶解成糊状, 涂覆于负极集流体 22 表面。 多孔层 30 厚度范围 为 0. 1 -0.2mm, NMP 占多孔层混合物的重量范围为 50-70%。
活性碳的形态包括但不仅限于活性碳粉末、 活性碳颗粒、 活性碳毡或活 性碳纤維布, 活性碳毡或活性碳纤維布的比表面积范围为 100-2200m2/g。 具体的, 将活性碳颗粒与导电石墨混合, 再与 PVDF, NMP均匀混合, 涂覆在负极集流体 22表面。 多孔层 30的厚度介于 0. 1 -0.2mm之间。 导电石 墨的作用在于增加负极多孔层 30 的电子传导能力。 其中, 活性碳占多孔层 30的重量范围为 20-80%, 导电石墨占多孔层 30的重量范围为 5-20%, 粘接 剂 PVDF 占多孔层 30的重量范围为 5- 15 %。 活性碳材料具有多孔结构以及较 大的比表面积, 价格也相对碳纳米管类的碳基材料便宜。 而且, 具体制作含 有多孔层的负极的工艺也相对简单, 容易产业化。
优选的, 负极 20表面形成有石墨烯层。 石墨烯具有突出的导热性能和力 学性能,理论比表面积高达 2600m2/g, 以及室温下高速的电子迁移率, 因此, 形成于负极 20表面的石墨烯层不仅能为活性离子 28的沉积提供更大的表面 积, 同时还能进一步提高负极 20的导电子能力, 从而提高电池大电流的电化 学性能。
在第一实施方式中, 由于负极 20 仅包括负极集流体 22, 因此, 多孔层 或石墨烯层是形成于负极集流体 22表面。
电解液包括至少一种能够溶解电解质并使电解质电离的溶剂, 溶剂包括 水溶液或者醇溶液中的至少一种, 醇溶液包括但不仅限于乙醇或甲醇。
电解质能够电离出至少一种充放电过程中在负极 20 发生还原-沉积和氧 化-溶解的活性离子 28。
活性离子 28 的浓度范围为 0.5 - 15mol/L。 在具体的实施方式中, 活性离 子 28 包括金属离子, 金属选自 Zn、 Fe、 Cr、 Cu、 Mn、 Ni、 Sn 中的至少一 种。
金属离子以氯酸盐、 硫酸盐、 硝酸盐、 醋酸盐、 甲酸盐、 磷酸盐等形式 存在于电解液中。 优选的, 金属离子以硫酸盐、 醋酸盐或硫酸盐和醋酸盐的 混合物的形式存在于电解液中。
优选的, 电解液中还包括一种电解质, 电解质能够电离出至少一种充放 电过程中在正极 10能够可逆脱出 -嵌入的离子 16, 从而提高正极活性物质 14 与电解液中的离子交换速度, 提高电池的大倍率充放电性能。 具体的, 正极 活性物质 14 为能够可逆脱出-嵌入锂离子的化合物, 电解质对应的还能够电 离出锂离子。 可逆脱出 -嵌入的离子 16 包括锂离子或钠离子或镁离子或锌离 子, 可逆脱出 -嵌入的离子 16在电解液中的浓度范围为 0. 1 -30mol/L。 为了保证电池容量, 电解液中的活性离子 28 的浓度必须达到一定范围, 当电解液过碱时, 会影响电解液中活性离子 28 的溶解度; 当电解液过酸时, 则会出现电极材料腐蚀和充放电过程中质子共嵌入等问题, 因此, 本发明中 电解液的 pH值范围为 3 -7。
请参照图 2所示, 电池的充放电原理为: 充电时, 正极活性物质 14 中脱 出可逆脱出 -嵌入的离子 1 6, 同时伴随正极活性物质 14 内变价金属被氧化, 并放出电子; 电子经由外电路到达电池负极 20, 同时电解液中的活性离子 28 在负极 20得到电子被还原, 并沉积在负极集流体 22表面, 形成活性离子沉 积层 26。 放电过程则为充电的逆过程, 如图 3所示。
在第一实施方式中,电池的首次工作是正极活性物质 14 中脱出可逆脱出 -嵌入的离子 1 6、 活性离子 28在负极 20发生还原-沉积为活性离子沉积层 26 的充电过程。 电池的容量取决于正极活性物质 14的容量, 因此, 电池首次充 电时, 正极活性物质 14 中需要包含足够的可逆脱出 -嵌入的离子 16。 使用者 在不进行充电过程前电池是不能作为电源使用的, 因此保证了电池的容量在 使用前不受到任何形式的损失。
第二实施方式
请参照图 4所示, 本发明第二实施方式提供了一种电池, 与第一实施方 式中揭示的电池的区別是:第二实施方式中负极 20还包括形成于负极集流体 22表面的负极活性物质 24, 负极活性物质 24在放电过程中能够氧化-溶解为 活性离子 28。
负极集流体 22仅作为电子传导和收集的载体, 不参与负极 20反应, 负 极活性物质 24 通过涂覆、 电镀或溅射的方法形成于负极集流体上 22, 溅射 方法包括但不仅限于磁控溅射。 具体的, 负极集流体 22为铜箔, 负极活性物 质 24为锌, 锌通过电镀的方法形成于铜箔表面。
优选的, 负极活性物质 24形成于经过表面预处理的负极集流体 22上, 表面预处理的方法包括机械处理、 化学处理或电化学处理中的至少一种。 具 体的, 当 负极集流体 22为 Cu时, 对 Cu进行预处理的方法可以是手动 /机械 打磨, 去除其表面暗淡部分同时使其表面具有一定的粗糙度, 但由于手动打 磨不能彻底的清除 Cu表面上的杂质, 如 CuO, 因此对 Cu需要进一步的化学 处理,化学处理的方法可以是配制不同的酸的混合液对其进行浸泡,如硫酸, 硝酸和盐酸。 预处理的具体方法取决于负极集流体 22 的选材, 通常是机械、 化学、 电化学三种方法结合。
本实施方式中, 负极 20 包括负极集流体 22 和负极活性物质 24, 因此, 多孔层或石墨烯层是形成于负极集流体 22表面。 负极活性物质通过涂覆、 电 镀或者溅射等方式形成于多孔层或者石墨烯层表面。
同样的, 正极 1 0包括正极集流体 12和正极活性物质 14。 正极集流体 12 不参与电化学反应, 正极活性物质 14 能够可逆脱出 -嵌入离子, 如锂离子、 钠离子、 锌离子或者镁离子, 但在第二实施方式中, 在制备电池时不用限定 正极活性物质 14本身是否含有锂离子、 钠离子、 锌离子或者镁离子, 具体来 说, 正极活性物质 14可以有四种状态: 不含有可逆脱出 -嵌入的离子 1 6、 含 有并且还能够进一步嵌入可逆脱出 -嵌入的离子 1 6、 含有可逆脱出-嵌入的离 子 16 并且可逆脱出 -嵌入的离子 16 达到饱和状态、 含有可逆脱出-嵌入的离 子 1 6并且可逆脱出 -嵌入的离子 1 6达到过饱和状态。
电解液包括至少一种能够溶解电解质并使电解质电离的溶剂, 溶剂包括 水溶液或醇溶液, 醇溶液包括但不仅限于乙醇和甲醇。
此时, 电解质能够电离出至少一种充放电过程中在负极 20 发生还原-沉 积和氧化-溶解的活性离子 28或至少一种充放电过程中在正极 1 0能够可逆脱 出 -嵌入的离子 1 6或同时含有活性离子 28和可逆脱出 -嵌入的离子 1 6。
第二实施方式揭示的电池,正极活性物质 14在充放电过程中能够可逆脱 出 -嵌入离子, 但是对于正极活性物质 14本身而言, 可以不包含可逆脱出-嵌 入的离子 1 6, 可以包含可逆脱出 -嵌入的离子 1 6并且内部结构中还能有接受 可逆脱出 -嵌入的离子 1 6的空穴,还可以是自身包含可逆脱出 -嵌入的离子 16 并且达到饱和状态甚至过饱和状态, 因此, 电池的正极活性物质 14在选材上 有很大的选择空间, 进一步, 电解液中可以包含活性离子 28和 /或可逆脱出- 嵌入的离子 1 6, 使得本发明中的电池可以根据不同的应用场合选择不同的电 池工作模式, 电池适应性强。 下面进一步阐述不同状态的正极活性物质 14 和电解液构成的电池的工作模式。
一种电池, 包括正极 1 0、 负极 20、 电解液(未示出)。 正极 10 包括正极 集流体 12 和正极活性物质 14, 正极活性物质 14 能够可逆脱出 -嵌入离子。 负极 20包括负极集流体 22和参与电化学反应的负极活性物质 24。 电解液包 括至少一种能够溶解电解质并使电解质电离的溶剂。 电解质能够电离出至少 一种在正极 10 能够发生可逆脱出 -嵌入的离子 16 ; 正极活性物质 14 不含有 可逆脱出 -嵌入的离子 16 ; 电池的首次工作是电解液中可逆脱出 -嵌入的离子 16嵌入到正极活性物质 14、 负极活性物质 24氧化-溶解为活性离子 28 的放 电过程。
具体的, 正极活性物质 14为 Mn204, 负极活性物质 24为金属 Zn, 电解 液中包含 LiAc。 由于正极活性物质 14 中不含锂, 而电解液中包含锂离子, 因此, 电池首次工作为电解液中锂离子嵌入到正极活性物质 14, 负极活性物 质 24金属 Zn氧化-溶解为 Zn2+的放电过程。
优选的, 电解液中还包括能电离出活性离子 28 的电解质, 活性离子 28 在负极 20能够发生还原-沉积和氧化-溶解, 这样, 在电池放电时, 可以加快 负极 20与电解液中离子交换速度。
正极活性物质 14 只要符合在充放电过程中能够可逆脱出-嵌入离子这一 条件即可工作, 而不用限定正极活性物质 14 必须含有可逆脱出 -嵌入的离子 16。 虽然正极活性物质 14不包含能够可逆脱出 -嵌入的离子 16, 电池首次工 作时需为放电过程, 但是使用者在购买到本发明中的电池时, 同样可以直接 作为电源使用, 同时电池使用寿命非常长。
一种电池, 包括正极 10、 负极 20、 电解液。 正极 10包括正极集流体 12 和正极活性物质 14, 负极 20包括负极集流体 22和参与电化学反应的负极活 性物质 24, 电解液包括至少一种能够溶解电解质并使电解质电离的溶剂, 电 解质能够电离出至少一种在负极 20 发生还原-沉积和氧化-溶解的活性离子 28 和至少一种在正极 10 能够发生可逆脱出 -嵌入的离子 16 ; 正极活性物质 14能够脱出和嵌入可逆脱出 -嵌入的离子 16 ; 电池的首次工作是可逆脱出-嵌 入的离子 16从正极活性物质 14 中脱出、 活性离子 28在负极 20还原并沉积 的充电过程或者是可逆脱出 -嵌入的离子 16嵌入正极活性物质 14、 负极活性 物质 24氧化并溶解为活性离子 28的放电过程。
具体的,正极活性物质 14含有 Li^xMn204,负极活性物质 24为金属 Zn, 电解液中包含醋酸锌和醋酸锂。 正极活性物质 14既能脱出 Li+, 同时, 正极 活性物质 14的尖晶石结构中还有空穴可供电解液中 Li+嵌入, 因此, 电池首 次工作模式可以是放电: 电解液中的 Li+嵌入到 Li^xMn204, 负极活性物质 24金属 Zn氧化并溶解为 Zn2+ ;电池首次工作模式可以是充电:即 Li^xMn204 中脱出 Li+, 电解液中的 Zn2+在负极 20还原并沉积形成活性离子沉积层 26。
因此, 电池首次工作既可以是充电过程, 也可以是放电过程。 使用者在 购买到本发明中的电池时, 无需考虑使用前是对电池进行充电还是对电池进 行放电, 即可使用, 并且本发明的电池使用寿命非常长。
优选的, 电池首次工作为可逆脱出 -嵌入的离子 16从正极活性物质 14 中 脱出, 活性离子 28在负极 20发生还原 -沉积的充电过程。
一种电池, 包括正极 10、 负极 20、 电解液, 正极 10包括正极集流体 12 和正极活性物质 14, 负极 20包括负极集流体 22和参与电化学反应的负极活 性物质 24; 电解液包括至少一种能够溶解电解质并使电解质电离的溶剂; 电 解质能够电离出至少一种在正极 10能够发生可逆脱出 -嵌入的离子 16 ; 正极 活性物质 14能够脱出和嵌入可逆脱出 -嵌入的离子 16 ; 电池的首次工作是可 逆脱出 -嵌入的离子 16嵌入正极活性物质 14、 负极活性物质 24氧化-溶解为 活性离子 28的放电过程。
具体的,正极活性物质 14含有 Li^xMn204,负极活性物质 24为金属 Zn, 电解液中包含醋酸锂。 正极活性物质 14 既能脱出 Li+, 也能嵌入 Li+, 电解 液中含有 Li+, 因此, 电池首次工作是 Li+嵌入到 Li^xMn204、 金属 Zn氧化- 溶解为 Zn2+的放电过程。
虽然电池首次工作需为放电过程, 但是使用者在购买到本发明中的电池 时, 同样可以直接作为电源使用, 而不影响电池的性能, 并且电池首次工作 后可正常的充放电, 同时电池使用寿命非常长。
一种电池, 包括正极 10、 负极 20、 电解液, 正极 10包括正极集流体 12 和正极活性物质 14, 正极活性物质 14 能够可逆脱出 -嵌入离子; 负极 20 包 括负极集流体 22 和参与电化学反应的负极活性物质 24; 电解液包括至少一 种能够溶解电解质并使电解质电离的溶剂; 电解质能够电离出至少一种在负 极 20发生还原-沉积和氧化-溶解的活性离子 28;电池的首次工作是可逆脱出 -嵌入离子从正极活性物质 14脱出、 活性离子 28在负极 20还原 -沉积的充电 过程。
具体的,正极活性物质 14含有 Li^xMn204,负极活性物质 24为金属 Zn, 电解液中含有醋酸锌, 正极活性物质 14既能脱出 Li+, 也能嵌入 Li+, 因此, 电池首次工作是 Li+从 Li^xMn204中脱出、 电解液中的 Zn2 +在负极 20发生还 原 -沉积的充电过程。
一种电池, 包括正极 10、 负极 20、 电解液, 正极 10包括正极集流体 12 和正极活性物质 14, 正极活性物质 14 能够可逆脱出 -嵌入离子; 负极 20 包 括负极集流体 22 和参与电化学反应的负极活性物质 24; 电解液包括至少一 种能够溶解电解质并使电解质电离的溶剂; 电解质能够电离出至少一种在负 极 20 发生还原-沉积的活性离子 28; 正极活性物质 14 中可逆脱出-嵌入的离 子 1 6 达到饱和状态; 电池的首次工作是可逆脱出 -嵌入的离子 1 6 从正极 1 0 脱出、 活性离子 28在负极 20还原 -沉积的充电过程。
本领域技术人员公知, 正极活性物质 14 中可逆脱出 -嵌入的离子 1 6处于 饱和状态, 即可逆脱出 -嵌入的离子 16 已基本占据正极活性物质 14结构中的 空穴位置, 并且正极活性物质 14结构稳定, 在电池充放电过程中能够稳定工 作。
电池首次工作需为充电过程, 即可逆脱出 -嵌入的离子 1 6 从正极活性物 质 14 中脱出, 电解液中的活性离子 28在负极 20 发生还原-沉积。 虽然使用 者在购买到这种电池时需对其进行充电操作, 但是正因如此, 电池容量在首 次使用前不会受到任何形式的损失, 从而保证了电池在后期使用的性能。
优选的, 电解液中还包括能电离出在正极 1 0 能够发生可逆脱出-嵌入的 离子 1 6的电解质, 这样, 在电池放电时, 可以加快正极 1 0与电解液中离子 的交换速度, 提高电池大倍率充放电性能。
因此, 电解液只要包含能在负极 20发生还原-沉积和氧化-溶解的活性离 子 28即可能够让电池工作, 也就是说, 这种电池的电解液中, 只需要加入活 性离子 28, 而不强制要求需要含有能够可逆脱出 -嵌入的离子 16, 即可使电 池正常工作。 电池的电解液成分简单, 制造成本低, 电池具有更广泛的应用。
一种电池, 包括正极 1 0、 负极 20、 电解液, 正极 1 0包括正极集流体 12 和正极活性物质 14, 正极活性物质 14 能够可逆脱出 -嵌入离子; 负极 20 包 括负极集流体 22 和参与电化学反应的负极活性物质 24; 电解液包括至少一 种能够溶解电解质并使电解质电离的溶剂; 电解质能够电离出至少一种在负 极 20 发生还原-沉积的活性离子 28; 正极活性物质 14 中可逆脱出-嵌入的离 子 1 6 处于过饱和状态; 电池的首次工作是可逆脱出 -嵌入的离子 1 6 从正极 1 0脱出、 活性离子 28在负极 20还原-沉积为 负极活性物质 24的充电过程。
本领域技术人员公知, 正极活性物质 14 中可逆脱出 -嵌入的离子 1 6处于 过饱和状态, 即制备正极活性物质 14时, 在正极活性物质 14处于饱和的基 础上, 进一步对正极活性物质 14 进行嵌离子处理, 以提高正极活性物质 14 的容量, 为了保证正极活性物质 14的结构稳定, 正极活性物质 14的表面通 过金属或金属氧化物来修饰或包覆。 具体的, 金属包括但不仅限于 Al, 金属 氧化物包括但不仅限于 A1203
具体的, 正极活性物质 14为 A1203包覆的 Li1 +xMn2O4(0< X <0.5), 负极 活性物质 24 为金属 Zn, 电解液中包含醋酸锌。 正极活性物质 14 中 Li+的含 量已达到过饱和状态, 因此, 电池首次工作是 Li+从 Li1 +xMn204中脱出、 电 解液中的 Zn2+在负极 20发生还原-沉积为活性离子沉积层 26的充电过程。
优选的, 电解液中还包括能电离出在正极 10 能够发生可逆脱出-嵌入的 离子 16的电解质, 这样, 在电池充电时, 可以加快正极 10与电解液中离子 交换速度, 提高电池充放电性能。
由于第二实施方式中电池的负极 20包括负极集流体 22和参与电化学反 应的负极活性物质 24, 所以电池的首次工作模式有了更多的选择, 由此, 生 产者可以根据使用者的应用场合, 选择电池中正极 10、 负极 20 以及电解液 的搭配, 制造出具有不同充放电模式的电池。
第三实施方式
本发明第三实施方式还揭示了一种电池, 与第二实施方式揭示的电池的 区別是: 第三实施方式中负极 20仅包含负极集流体 22, 但是负极集流体 22 不仅作为电子传导和收集的载体, 同时还相当于负极活性物质能够参与负极 20反应, 在电池放电过程中能够氧化-溶解为活性离子 28, 即负极集流体 22 的材料同活性离子 28的单质材料相同, 例如: 活性离子 28 为锌离子, 对应 的负极集流体 22为金属锌。
在第三实施方式中, 负极 20 包括参与电化学反应的负极集流体 22, 因 此,多孔层或石墨烯层是形成于负极集流体 22表面。具体到第三实施方式中, 电池正极 10的正极活性物质 14为 LiMn204, 正极集流体 12为不锈钢网, 负 极集流体 22为金属锌, 电解液为含有锌盐的水溶液。 优选的, 电解液为含有 锌盐和锂盐的水溶液。 金属锌可以参与负极 20反应。
本发明中的电池如需用到隔膜时, 隔膜可以是有机或无机的多孔材料, 隔膜的孔隙率范围为 20-95 %, 孔径范围为 0.001 - 100μηι。
本发明提供的电池, 具有能量密度高(可达锂离子电池的 60%-80%), 功 率密度大(可望达到锂离子电池的 200%, 甚至更高), 易于制造, 完全无毒, 环保, 容易回收且成本低廉(同样容量的电池, 可望达到铅酸电池的 60%, 锂 离子电池的 20%, 甚至更低)等特点, 并且具有很好的循环性能, 在具体实施 方式中, 电池在循环 4000周后容量仍維持在 90%以上。 因此, 本发明中的电 池作为新一代的绿色能源, 非常适合作为大型储能领域的储能体系以及铅酸 电池的替代品。
本发明中的重量、 体积百分比中的单位是本领域技术人员所熟知的, 例 如体积百分比是指在 100 毫升的溶液中溶质的重量。 除非另行定义, 文中所 使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。 此外, 任 何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。 文中所 述的较佳实施方法与材料仅作示范之用。
下面结合实施例, 更具体地说明本发明的内容。 应当理解, 本发明的实 施并不局限于下面的实施例, 对本发明所做的任何形式上的变通和 /或改变都 将落入本发明保护范围。 在本发明中, 若非特指, 所有的份、 百分比均为重 量单位, 所有的设备和原料等均可从市场购得或是本行业常用的。
通过循环仗安法(C V), 构建三电极体系来测试不同集流体在电解液中的 稳定性。
实施例 1 - 1
以不锈钢为工作电极, 不锈钢型号为 304,锌电极为对电极和参比电极, 在硫酸盐电解液 2mol/L ZnS04和 2mol/L Li2S04中通过循环仗安法来研究不 锈钢的电化学行为, 电压范围为 1 .0-2.4V。 不锈钢没有经过钝化处理。
图 5是实施例 1 - 1 中未经钝化处理的不锈钢 304 的循环仗安曲线。 从图 中可以看出不锈钢首次阳极扫描时, 在 1 .9V(Vs.Zn)处出现一个宽的氧化峰, 接着出现了明显的 02 析出峰, 伴随着电流增大。 在随后的阴极扫描中, 在 1 .4V 处出现了相对较小的还原峰。 循环 1 次之后的 1 .9V处的氧化峰受到阻 碍, 意味着在第一次循环中在不锈钢表面形成了氧化层, 氧化层抑制了不锈 钢表面内层的进一步氧化。 但是氧化层也许能引发 02的析出。 因此导致氧的 析出峰向低电势迁移并且变得越来越大。
实施例 1 -2
以钝化的不锈钢为工作电极, 不锈钢型号为 3 16, 锌电极为对电极和参 比电极, 在硫酸盐电解液 2mol/L ZnS04和 2mol/L Li2S04中通过循环仗安法 来研究钝化的不锈钢的电化学行为, 电压范围为 1 .0-2.4V。
钝化不锈钢的方法为化学钝化, 具体过程为: 在 50 °C下, 将不锈钢 3 16 置入 20%的浓硝酸溶液, 維持 0.5h, 使不锈钢表面形成钝化膜, 最后取出不 锈钢用水清洗并干燥。
图 6是实施例 1 -2 中经过钝化处理的不锈钢的循环仗安曲线。
实验结果显示在含有氧化剂的溶液如浓 HN03溶液中钝化后, 不锈钢变 得更稳定, 并且 02的析出峰重现性好, 在不同的循环周期 02的析出峰形没 有明显的区別。 另一方面, 02析出电势稍微向高电势迁移, 并且在 2.0V 前 没有出现明显的氧的析出。 这一结果对水系电池非常重要, 因为经过钝化的 不锈钢在水系电池工作电压范围内非常稳定。
实施例 1 -3
以钝化的不锈钢为工作电极, 不锈钢型号为 3 16P, 锌电极为对电极和参 比电极, 在硝酸盐电解液 3mol/L Zn(N03)2和 6mol/L LiN03中通过循环仗安 法来研究钝化的不锈钢的电化学行为, 电压范围为 1 .0-2.4V。
钝化不锈钢的方法同实施例 1 -2。
图 7是经过钝化处理的不锈钢 3 16P在硝酸盐电解液中 CV曲线。
实施例 1 -4
以铝合金为工作电极, 锌电极为对电极和参比电极, 在醋酸盐电解液 1 .5mol/L Zn(Ac)2和 3mol/L LiAc中通过循环仗安法来研究铝合金的电化学行 为, 电压范围为 1 .0-2.4V, 铝合金在 2.4V下表面发生钝化。
实施例 1 -5
以铝合金为工作电极, 锌电极为对电极和参比电极, 在 u酸盐电解液 2mol/L ZnS04和 2mol/L Li2S04中通过循环仗安法来研究铝合金的电化学行 为, 电压范围为 1 .0-2.4V, 铝合金在 2.4V下表面发生钝化。
图 8和图 9分別为实施例 1 -4和 1 -5 中铝合金在醋酸盐和硫酸盐电解液 中的 CV 曲线。 在图 8 中, 首次阳极扫描时出现了显著的氧化峰, 电流略微 出现波动, 这一现象可能归因于铝合金表面的氧化或离子吸附产生的非法拉 第电流或其他过程。 铝合金在 2.4V时表面被电化学氧化, 形成钝化膜, 第一 次阳极扫描后, 在 1 .0-2. I V均没有任何峰, 并且 02析出电势向高电势迁移, 析氧电流变小。 表明经过电化学钝化后的铝合金在水系电池工作电压范围内 非常稳定。
实施例 1 -6
以石墨箔为工作电极, 锌电极为对电极和参比电极, 在盐酸盐电解液 4mol/L ZnCl2和 3mol/L LiCl 中通过循环仗安法来研究石墨箔的电化学行为。 实施例 1 -7
以未经钝化处理的不锈钢为工作电极, 锌电极为对电极和参比电极, 在 盐酸盐电解液 4mol/L ZnCl2和 3mol/L LiCl 中通过循环仗安法来研究未经钝 化处理的不锈钢的电化学行为。
图 10和图 1 1 分別为实施例 1 -6和 1 -7的 CV 曲线。通过 CV曲线可以看 出石墨箔在氯酸盐溶液中相对稳定, 除了在高电势下发生氧的析出之外, 在 整个电化学窗口下没有出现明显的氧化或还原峰, 这一现象论证了碳基材料 适合在氯酸盐溶液中作为集流体, 而未经钝化处理的不锈钢不太适合于氯酸 盐溶液。
通过 Tafel 曲线, 构建三电极体系来测试不同集流体在醋酸盐电解液中 的腐蚀速率。
实施例 2- 1
以铝箔为工作电极, 锌为对电极和参比电极, 在醋酸盐电解液 1 .5mol/L Zn(Ac)2和 3mol/L LiAc中, 通过 Tafel曲线来研究铝箔的腐蚀行为。
实施例 2-2
以不锈钢 304棒作为工作电极,其余三电极組成和测试条件同实施例 2- 1。 实施例 2-3
以石墨棒作为工作电极, 其余三电极組成和测试条件同实施例 2- 1。
实施例 2-4
以铝合金作为工作电极, 其余三电极組成和测试条件同实施例 2- 1。
实施例 2-5
以钝化的不锈钢 304作为工作电极, 其余三电极組成和测试条件同实施 例 2- 1。 具体不锈钢是通过化学钝化处理的。
实施例 2-6
以钝化的铝合金为工作电极,其余三电极組成和测试条件同实施例 2- 1。 铝合金是通过电化学钝化处理的, 对铝合金进行充放电, 充放电循环 1 次。
实施例 2-7
以钝化的铝合金作为工作电极,其余三电极組成和测试条件同实施例 2- 1。 具体铝合金是通过电化学钝化处理的, 对铝合金进行充放电, 电化学钝化充 放电循环 50次。
腐蚀电流可以从 Tafel 曲线和式 1 得到。 基于工作电极的面积、 密度以 及可能的腐蚀机理 (;在腐蚀过程中电子迁移的数量), 得到如表 1 所示的几种 不同正极集流体的腐蚀速率, 其中。 R为腐蚀电阻, Ic。„为腐蚀电流。 式 1:
Figure imgf000028_0001
表 1
Figure imgf000028_0002
从表 1 可以看出: 铝翁的腐蚀速率最高, 不锈钢和铝合金在醋酸盐溶液 中的腐蚀速率相比于铝箔小 10倍。分別经过化学钝化和电化学钝化处理后的 不锈钢和铝合金的腐蚀速率下降 6- 12倍。 并且, 铝合金进一步电化学氧化后 的腐蚀速率还会进一步下降, 电化学氧化处理循环 50次后腐蚀速率下降 150 倍。 这一结果与 CV结果吻合, CV结果表明循环数次后析氧曲线变弱。
进一步, 通过具体实施例来研究电池的电化学性能。
实施例 3 - 1
以 LiMn204为正极活性物质, 将正极活性物质、 导电剂乙炔黑(AB)、 粘 结剂聚偏氟乙烯(PVDF)按照 83 : 10 : 7的重量比例混合并且溶解在 N-甲基吡 咯烷酮(NMP)中制得正极浆料。 正极集流体为石墨箔, 将正极浆料均 涂覆 于正极集流体上, 在空气中 1 10 °C下干燥 24 小时制成正极。 电池负极集流体 为不锈钢杆。电解液为含有浓度为 4mol/L氯化锌和 3 mo l/L氯化锂的水溶液, 通过往电解液中滴定 0. 1 mol/L 氫氧化锂将电解液的 pH值调为 4。 隔膜为玻 璃毡布。 将正极、 负极組装成电池, 中间以隔膜隔开, 注入电解液。 待电池 組装好之后静置 12小时随后开始以 4C倍率充电和放电。 充放电电压区间为 图 12为本发明实施例 3-1提供的电池的电压与放电容量的关系曲线, 电 池的库伦效率约为 97%, 同时也表明电池的电化学性能优良且循环过程中几 乎没有副反应发生。
图 13为本发明实施例 3-1提供的电池的放电容量与循环次数的关系曲线, 从图 中可以看出, 电池初始容量为 0.35mAh, 基于正极材料的比容量为 1 HmAhg"1, 并且电池循环 1000周后的容量效率仍有 90%, 表明电池的循环 性能非常好。
实施例 3-2
实施例 3-6 中电池正极活性物质为 LiLO8Coo.03Alo.03M .94O4, 其余电池 构成和組装方法与实施例 3-1相同。
图 14为实施例 3-2提供的电池的放电容量与循环次数的关系曲线, 从图 中可以看出, 电池循环 4000周后的容量效率仍有 95%, 表明采用摻杂改性处 理过的 LiMn204正极活性物质的电池的循环寿命进一步获得提高。
实施例 3-3
以 LiL05M .89Coo.03Alo.03O4为正极活性物质, 将正极活性物质、 粘结剂 P VDF、 super-p碳黑按照 83: 10: 7的重量比例混合并且溶解在 N-甲基吡咯 烷酮(NMP)中制得正极浆料, 正极集流体为厚度 lmm的石墨板。 充放电电压 区间为 1.5-2. IV。 电池其余构成以及测试方法同实施例 3-1。
图 15是实施例 3-3提供的电池的放电容量与循环次数的关系曲线, 从图 中可以清晰看出, 电池循环 4000次的放电容量与首次放电容量几乎相等, 电 池不仅循环性能非常稳定, 并且循环寿命长。
图 16是实施例 3-3提供的电池的库伦效率与循环次数的关系曲线, 从图 中可以看出电池循环 4000次后, 库伦效率仍接近 100%, 表明本发明中的电 池的充放电性能非常稳定。
实施例 3-4
以 LiMn204为正极活性物质,将正极活性物质、粘结剂聚四氟乙烯(PTFE)、 super-p碳黑按照 83:10:7的比例混合并且溶解在 N-甲基吡咯烷酮(NMP)中制 得正极浆料。 正极集流体为厚度 30 μ m的不锈钢网, 不锈钢不经过钝化, 将 正极浆料均 涂覆于正极集流体上,在空气中 110°C下干燥 24小时制成正极。 电池负极集流体为厚度 ΙΟμηι 铜箔。 电解液为含有浓度为 lmol/L 醋酸锂和 1.5mol/L 醋酸锌的水溶液, 通过往电解液中滴定 0. lmol/L 氫氧化锂和 O.lmol/LHAc将电解液的 pH值调为 4。 隔膜为玻璃毡布。 将正极、 负极組装 成电池, 中间以隔膜隔开, 注入电解液。 待电池組装好之后静置 12 小时随后 开始以 0.5C倍率充电和放电。 充放电电压区间为 1.5-2. IV。
图 17是实施例 3-4提供的电池的放电容量与循环次数的关系曲线。从图 中可以清晰看到: 电池首次放电容量为, 循环 250次后的放电容量与首次放 电容量几乎没有差別, 表明电池的循环性能非常稳定, 本发明提供的电池具 有优异的电化学性能。
实施例 4-1
以 LiMn204为正极活性物质, 按照正极活性物质 90%、 导电碳黑 6%、 粘接剂 SBR (丁苯橡胶乳)2%、 增裯剂 CMC (羧甲基纤維素钠) 2%的比例, 先将 CMC 与一定量水混合均匀, 再加入正极活性物质及导电碳黑, 搅拌 2 小时, 最后加入 SBR搅拌 10分钟得到正极浆料。 正极集流体为厚度 0.1mm的石墨 箔, 将正极浆料均 涂覆在正极集流体上, 厚度 0.3mm, 120度烘干 12小时 制成正极片 。 电池负极集流体为厚度 0.1mm 的石墨箔。 将活性碳粉末(椰壳 烧制, 比表面积 1500 m2/g), 导电碳黑, PVDF 以 90:5:5 的比例混合均匀, 加入 NMP 将其溶解, 均 涂覆在负极集流体石墨箔上制得多孔层, 厚度为 0.1mm。 电解液为含有浓度为 4mol/L 氯化锌和 3mol/L 氯化锂的水溶液, 隔 膜为无纺布隔膜。 将正极片 , 负极片 組装成电池, 中间以隔膜隔开。 注入电 解液, 电解液大部分储存于多孔层中, 充放电过程中电解液中的 Zn2+/Zn 在 负极发生还原 -沉积和氧化 -溶解反应, 尤其是在多孔层内部以及多孔层与负 极集流体之间的界面上发生还原 -沉积和氧化 -溶解反应。 图 18为本发明负极 集流体表面形成有多孔层的结构示意图。充放电过程中,锌在负极沉积 /溶解。 活性碳中微米级的孔隙能够有效吸附大量电解液和提供锌沉积基点。 图 19 为图 18 中多孔层的局部放大图,可明显看到沉积在多孔层内部的活性离子沉 积层 26。 待电池組装好之后静置 12小时随后开始以 1C倍率充电和放电。 充 放电电压区间为 1.4-2.15V (即以 lOOmAh的电流恒流充电至 2.15V, 然后恒流 放电至 1.4V, 如此循环操作)。 图 20为本发明实施例 4-1 的 LiMn204/Zn电池 首次充放电电压-容量曲线图。
实施例 4-2
与实施例 4-1 相同的方式制造电池, 不同的是以铜箔镀锡作为电池负极 集流体。 相对石墨箔来说, 铜箔导电性能更好, 机械强度更高, 也更薄。 采 用铜箔有利于提高电池的负极放电性能, 同时也能减少电池体积, 提高电池 的体积能量密度。 但单纯的铜箔并不能作为离子交换电池的负极, 因为在铜 箔表面, 锌沉积的效率很低。 因此, 可以在铜箔表面镀一层锡, 以提高沉积 效率。
由于负极集流体本身并不能大大影响电池的性能, 以该实施方式所做电 池的充放电曲线与实施方式一基本相似。
实施例 4-3
与实施例 4-1 相同的方式制造电池, 不同的是以市售活性碳纤維布作为 电池多孔层。 该活性碳布的微观结构与活性碳类似, 厚度(未压縮)为 0.5mm 左右, 压縮后在 0.1 -0.2mm之间。 该活性碳纤維布的比表面积为 800m2/g。 将 活性碳纤維布与负极集流体剪切成同样大小, 按照负极集流体 -活性碳纤維布 -无纺布隔膜-正极电极依次重叠。 以此形成的电池的结构与图 15所示的电池 结构相同, 只是多孔层的材料包括活性碳纤維布。 很明显, 上面的方法制造 的电池的结构简单, 能够以更快的速度进行工业化生产。 与实施方式一和实 施方式二中提到的由活性碳組成的多孔层一样, 活性碳纤維布也能提供足够 大的负极比表面积。
实施例 5-1
以 LiMn204为正极活性物质,按照正极活性物质、活性碳黑、粘接剂 PVDF 重量比 8:1:1 混合均匀, 裁剪成直径 12mm、 厚度 0.1-0.2mm的圆片 , 压制在 铝合金集流体上, 做成正极。 负极为直径 12mm、 厚度 lmm的金属锌, 金属 锌兼作负极活性物质和负极集流体。 正、 负极之间间隔 5mm, 隔膜为滤纸。 电解液为含有 4mol/L锂离子和 2mol/L锌离子的硫酸锂和硫酸锌的混合水溶 液, 通过滴定加入 0. lmol/L的 LiOH调节电解液的 pH为 5。
对电池进行充放电, 电压范围为 1.4-2.4V, 扫描速率为 0.5mV/s。 正极集 流体铝合金在高电压 2.4V时表面形成钝化膜。
实施例 5-2
实施例 5-2 中, 正极集流体为厚度 50μηι的铝合金箔, 负极为厚度 50μηι 的金属锌箔, 电解液为 1.5mol/L Zn(Ac)2和 2mol/L LiAc, 隔膜为玻璃毡布, 其余电池組成以及测试方法同实施例 5-1。
图 21和图 22分別为实施例 5-1和 5-2提供的电池的 CV曲线图。从图中 可以看出,每一次阳极和阴极扫描均对应有两个显著的氧化峰(1.95V和 1.85 V) 和两个还原峰(1.85 V和 1.7V), 这与锂离子在有机电解质中的脱出 /嵌入机理 相一致。 除了这两个明显的氧化还原电对之外, 循环一次后还出现了较小的 氧化峰, 峰电流出现在 1.6V, 这个氧化峰的起因可能是质子的脱出-嵌入。 这一结果进一步验证了本发明电池的稳定性很好, 并且具有优异的充放电循 环性能。
另外, 实施例 5-2 中的电池在循环 600次后的库伦效率仍接近 90%, 表 明电池的充放电效率很高。
实施例 5-3
实施例 5-3 中, 正极集流体为经过钝化的不锈钢 304, 不锈钢 304 的厚 度为 50μηι, 电解液为 2mol/L ZnS04和 2mol/L Li2S04, 隔膜为玻璃毡布, 其 余电池組成同实施例 5-1, 充放电电压区间为 1.4-2. IV。 具体钝化不锈钢的方 法为: 在 50°C下, 将不锈钢置入 20%的浓硝酸长达半小时, 使不锈钢表面形 成一层钝化膜。
图 23 为实施例 5-3 中电池的 CV曲线。
实施例 5-4
实施例 5-4 中, 正极集流体为经过钝化的不锈钢 304, 电解液为 3mol/L Zn(N03)2和 6mol/L LiN03, 其余电池組成同实施例 5- 1, 充放电电压区间为 1.4-2.2V。 具体钝化不锈钢的方法同实施例 5-3。
图 24为实施例 5-4 中电池的 CV曲线。
实施例 5-5
与实施例 5-1相同的方式制造电池, 所不同的是以厚度为 1mm的经过钝 化处理的 304型不锈钢代替石墨箔作为正极集流体, 具体钝化处理过程为: 在 50°C下, 将不锈钢置入 20%的硝酸长达半小时, 使不锈钢表面形成一层钝 化膜。 电解液为含有浓度为 1.5mol/L 醋酸锌和 3mol/L 醋酸锂的水溶液。 电 池负极为金属锌。 待电池組装好之后静置 12 小时, 随后开始以 1mA恒电流 对电池进行充电和放电。 充放电电压区间为 1.4-2.2V。
实施例 5-6
与实施例 5-1 相同的方式制造电池, 所不同的是以钝化处理的 316 型不 锈钢代替 304 型不锈钢作为正极集流体, 具体钝化处理过程同实施例 5-5。 待电池組装好之后静置 12 小时, 随后开始分別以 1mA和 3mA的恒电流对电 池进行充电和放电。 充放电电压区间为 1.4-2.2V。 图 25是实施例 5-6 中电池的 CV 曲线。
实施例 5-7
与实施例 5-6 相同的方式制造电池, 所不同的是电解液为含有浓度为 3 mol/L硫酸锌和 3 mol/L硫酸锂的水溶液。 待电池組装好之后静置 12 小时, 随后开始分別以 lmA、 2mA、 3mA的恒电流对电池进行充电和放电。 充放电 电压区间为 1.4-2.2V。
实施例 5-8
与实施例 5-7 相同的方式制造电池, 所不同的是以钝化处理的金属铝作 为正极集流体。对金属铝钝化处理的过程为:待电池組装好之后静置 12小时, 随后开始以 1 mA 恒电流对电池进行充电和放电, 充电时电压均充至 2.4V, 即充放电电压区间为 1.4-2.4V, 使金属铝表面形成一层钝化膜。
容量保持率测试
通过对实施例 5-1 到 5-8 中的电池进行充放电操作, 以检测电池的循环 性能。
表 2 为实施例 5-1 到 5-8 中的电池在 1mA恒电流下充放电, 循环 80次 的电池性能:
表 2
Figure imgf000033_0001
从表 2 中可以看出, 经过钝化处理的不锈钢作为正极集流体时的电池性 能从容量保持率和充放电效率两方面都比较优异。
对实施例 5-6 以 3mA 的恒电流充放电测试, 循环 80 次后容量保持率为 94%, 充放电效率为 98%, 电池性能优于以 1 mA恒电流充放电测试结果, 说 明本发明中的电池在大电流下具有优异的电池性能。
对实施例 5-7 以 2mA、 3 mA 的恒电流充放电测试, 循环 80 次后容量保 持率分別为 92%和 72%,充放电效率均为 99%,实施例 5-7提供的电池以 2mA 恒电流充放电的电池性能最佳。
实施例 5 -9
以 LiMn204为正极活性物质,按照正极活性物质、活性碳黑、粘接剂 PVDF 重量比 8 : 1 : 1 混合均 , 涂覆在钝化的不锈钢集流体上, 做成正极。 不锈钢 钝化方法同实施例 5 -3。 负极为厚度 50μηι的金属锌箔, 金属锌兼作负极活性 物质和负极集流体。隔膜为玻璃毡布。电解液为含有 2mol/L醋酸锂、 1 .5mol/L 醋酸锌和 1 mol/L ¾酸锌的混合水溶液, 调节电解液 pH为 5。
对电池进行充放电, 电压范围为 1 .4-2. IV, 扫描速率为 0.5mV/s。
图 26为实施例 5 -9提供的电池的 CV 曲线, 实验结果显示, 电池在循环 200次的库伦效率接近 100%, 表明采用混合电解质盐的电池具有稳定的充放 电性能。
实施例 6- 1
以 LiMn204 为正极活性物质, 将正极活性物质、 super-p 碳黑、 粘接剂 PVDF按照重量比例 83 : 10 :7混合均匀, 以 NMP作为分散剂,制得正极浆料, 均匀涂覆在厚度 80μηι 的正极集流体石墨箔上, 随后干燥、 压制得到正极。 负极为厚度 50μηι 的金属锌箔, 金属锌既是负极活性物质, 同时还兼做负极 集流体。 隔膜为玻璃毡布。 电解液为含有 3mol/L 氯化锂和 4mol/L 氯化锌的 去离子水溶液,通过向电解液中滴加 0. 1 mol/L的 LiOH溶液调节电解液的 pH 为 4。 室温下, 在电压范围 1 .5 -2. 1 V 以 4C倍率对电池进行充放电。
图 27为实施例 6- 1 中的电池首次充放电与电压的关系曲线, 从图中可以 看出电池首次放电容量约为 0.35mAh。
图 28 为电池放电容量与循环次数的关系曲线, 电池在循环 1000次后电 池的容量仍保持在 85 %以上, 容量衰减很小, 表明电池具有非常好的稳定性 能。
图 29为电池库伦效率与循环次数的关系曲线,从图中可以看出电池在循 环 1000次后的库伦效率在 80%以上。
实施例 6-2
以 LiMn204 为正极活性物质, 将正极活性物质、 super-p 碳黑、 粘接剂 PVDF按照重量比例 83 : 10: 7混合均匀, 以 NMP作为分散剂,制得正极浆料, 均匀涂覆在厚度 80μηι 的正极集流体石墨箔上, 随后干燥、 压制得到正极。 负极为厚度 50μηι 的金属锌箔, 金属锌既是负极活性物质, 同时还兼做负极 集流体。 隔膜为无纺纤維布。 电解液为含有 3mol/L 氯化锂和 4mol/L 氯化锌 的水溶液,通过向电解液中滴加 0. 1 mol/L的 LiOH溶液调节电解液的 pH为 4。 室温下, 在电压范围 1 .5 -2. 1 V 以 1 C倍率对电池进行充放电。
图 30为实施例 6-2提供的电池的放电容量与循环次数的关系曲线, 电池 在循环 30次后容量略有衰减, 但衰减速率很慢。
图 3 1 为电池库伦效率与循环次数的关系曲线, 电池在循环 30次后的库 伦效率将近 90%。
实施例 6-3
以 LiMn204 为正极活性物质, 将正极活性物质、 super-p 碳黑、 粘接剂 CMC-SBR按照重量比例 83 : 10: 7 混合均匀, 以 NMP作为分散剂, 制得正极 浆料, 均 涂覆在厚度 50μηι的正极集流体不锈钢箔上, 不锈钢不经过钝化, 随后干燥、 压制得到正极。 负极为厚度 40μηι 的金属锌箔, 金属锌既是负极 活性物质, 同时还兼做负极集流体。 隔膜为玻璃毡布。 电解液为含有 l mol/L 醋酸锂和 1 .5mol/L醋酸锌的水溶液, 通过向电解液中滴加 0. 1 mol/L的 LiOH 和 0. 1 mol/L HAc溶液调节电解液的 pH 为 4。 室温下, 在电压范围 1 .5 -2. I V 以 0.5C倍率对电池进行充放电。
实施例 6-3 中电池实验结果显示, 电池循环 320 次的放电容量保持率以 及库伦效率均接近 100%, 表明电池具有非常优异的循环性能以及寿命。
实施例 6-4
在实施例 6-4 中, 将电池置于 55 °C下进行充放电, 以研究电池在高温下 的充放电性能, 电池其他組成以及测试方法同实施例 6-3。
图 32为实施例 6-4提供的电池的放电容量与循环次数的关系曲线, 从图 中可以看出, 电池在 55 °C高温下, 依然具有良好的放电容量保持率, 电池循 环 160次几乎没有明显的容量衰减。
实施例 6-5
以 LiMn204 为正极活性物质, 将正极活性物质、 super-p 碳黑、 粘接剂 PVDF按照重量比例 83 : 10: 7混合均匀, 以 NMP作为分散剂,制得正极浆料, 均匀涂覆在厚度 30μηι 的正极集流体不锈钢网上, 不锈钢不经过钝化, 随后 干燥、 压制得到正极。 负极为厚度 Ι Ομηι 的金属锌箔, 金属锌既是负极活性 物质, 同时还兼做负极集流体。 隔膜为玻璃毡布。 电解液为含有 l mol/L醋酸 锂和 1 .5mol/L 醋酸锌的水溶液, 通过向电解液中滴加 0. l mol/L 的 LiOH 和 0. 1 mol/L HAc溶液调节电解液的 pH 为 4。 室温下, 在电压范围 1 .5 -2. I V 以 0.5C倍率对电池进行充放电。
图 33 为实施例 6-5提供的电池的放电容量与循环次数的关系曲线图, 从 图中可以看出, 电池循环 30次放电容量几乎没有衰减, 表明本发明提供的电 池充放电稳定性能良好。
实施例 7- 1
以 LiMn204 为正极活性物质, 将正极活性物质、 super-p 碳黑、 粘接剂 PVDF按照重量比例 8 : 1 :混合均匀, 以 NMP作为分散剂, 制得正极浆料, 均 匀涂覆在厚度 80μηι 的正极集流体石墨箔上, 随后干燥、 压制得到正极。 负 极集流体为厚度 50μηι 的石墨箔, 金属锌镀在石墨箔上作为负极活性物质。 隔膜为玻璃毡布。电解液为含有 2mol/L醋酸锂和 1 .5mol/L醋酸锌的水溶液, 通过向电解液中滴加 0. 1 mol/L的 LiOH溶液调节电解液的 pH为 4。 室温下, 在电压范围 1 .5-2. IV 以 0.5 C倍率对电池进行充放电。
实施例 7-2
与实施例 7- 1 相同的方式制造电池, 所不同的是 3 16 型不锈钢代替石墨 箔作为负极集流体。
实施例 7-3
与实施例 7- 1 相同的方式制造电池, 所不同的是铜箔代替石墨箔作为负 极集流体。
实施例 7- 1 到 7-3提供的电池, 电池具有良好的循环性能。
尽管发明人已经对本发明的技术方案做了较详细的阐述和列举, 应当理 解, 对于本领域技术人员来说, 对上述实施例作出修改和 /或变通或者采用等 同的替代方案是显然的, 都不能脱离本发明精神的实质, 本发明中出现的术 语用于对本发明技术方案的阐述和理解, 并不能构成对本发明的限制。

Claims

权 利 要 求 书
1 . 一种电池, 包括正极、 负极、 电解液, 其特征在于:
所述正极包括正极活性物质, 所述正极活性物质能够可逆脱出 -嵌入离子; 所述负极至少包括不参与电化学反应的负极集流体;
所述电解液包括至少一种能够溶解电解质并使所述电解质电离的溶剂; 所述电解质能够电离出至少一种充放电过程中在所述负极发生还原 -沉积 和氧化 -溶解的活性离子或 /和至少一种充放电过程中在所述正极能够可 逆脱出-嵌入的离子;
所述负极还包括形成于所述负极集流体表面的负极活性物质,所述负极活 性物质在放电过程中能够氧化 -溶解为所述活性离子。
2. 根据权利要求 1 所述的电池, 其特征在于: 所述负极活性物质通过涂覆、 电镀或溅射的方法形成于所述负极集流体上。
3. 根据权利要求 1 所述的电池, 其特征在于: 所述负极活性物质包括金属 单质, 所述金属选自 Zn、 Fe、 Cr、 Cu、 Mn、 Ni中的至少一种。
4. 根据权利要求 1 所述的电池, 其特征在于: 所述负极集流体的材料选自 金属 Ni、 Cu、 Ag、 Pb、 Sn、 Fe、 Al或经过钝化处理的上述金属中的一种。
5. 根据权利要求 1 所述的电池, 其特征在于: 所述负极集流体的材料选自 碳基材料、 不锈钢、 硅或具有镀 /涂层的金属, 所述镀 /涂层含有 C、 Sn、 In、 Ag、 Pb、 Co的单质、 合金、 或者氧化物中至少一种。
6. 根据权利要求 5 所述的电池, 其特征在于: 所述镀 /涂层的厚度范围在 l - 1000nm之间。
7. 根据权利要求 1 所述的电池, 其特征在于: 所述负极还包括形成于所述 负极集流体表面的多孔层, 所述多孔层具有微米或亚微米或纳米级孔隙。
8. 根据权利要求 7 所述的电池, 其特征在于: 所述多孔层包括碳基材料, 所述碳基材料选自科琴碳黑、 活性碳、 碳纳米管、 碳纤維、 石墨中的至少 一种。
9. 根据权利要求 7 所述的电池, 其特征在于: 所述多孔层包括碳基材料, 所述碳基材料为活性碳粉末与粘结剂的混合物,所述活性碳粉末占所述多 孔层的重量百分比范围为 20-99%。
10. 根据权利要求 1 所述的电池, 其特征在于: 所述负极还包括形成于所述 负极集流体表面的石墨烯层。
1 1 . 根据权利要求 1 所述的电池, 其特征在于: 所述负极集流体为铜, 所述 负极活性物质为锌。
12. 根据权利要求 1 所述的电池, 其特征在于: 所述负极活性物质形成于经 过表面预处理的负极集流体, 所述表面预处理选自机械处理、 化学处理或 电化学处理中的至少一种。
13. 根据权利要求 1 所述的电池, 其特征在于: 所述电解液的 pH值范围为 3 -7。
14. 根据权利要求 1 所述的电池, 其特征在于: 所述活性离子以氯酸盐、 硫 酸盐、 硝酸盐、 醋酸盐、 甲酸盐、 磷酸盐中的至少一种形式存在于所述电 解液中。
15. 根据权利要求 1 所述的电池, 其特征在于: 所述正极活性物质能够可逆 脱出-嵌入锂离子、 钠离子、 镁离子或锌离子。
16. 根据权利要求 1 所述的电池, 其特征在于: 所述正极集流体的材料选自 石墨、 不锈钢、 铝合金、 经过钝化的不锈钢或铝合金。
PCT/CN2012/076413 2011-06-03 2012-06-03 电池 WO2012163300A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147000057A KR101758967B1 (ko) 2011-06-03 2012-06-03 전지
JP2014513047A JP6006789B2 (ja) 2011-06-03 2012-06-03 電池
US14/123,430 US9680154B2 (en) 2011-06-03 2012-06-03 Battery
EP12793965.0A EP2717377B1 (en) 2011-06-03 2012-06-03 Battery
US15/592,014 US10727491B2 (en) 2011-06-03 2017-05-10 Battery

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
CN201110149469 2011-06-03
CN201110149469.8 2011-06-03
CN201110176937.0 2011-06-28
CN201110176937 2011-06-28
CN201110343551.4 2011-11-03
CN201110343571.1 2011-11-03
CN201110343551 2011-11-03
CN201110343571 2011-11-03
CN201110359601.8 2011-11-14
CN201110359583.3 2011-11-14
CN201110359601 2011-11-14
CN201110359583 2011-11-14
CN201110451069.2 2011-12-29
CN201110451069 2011-12-29
CN201110450986.9 2011-12-29
CN201110450038.5 2011-12-29
CN201110450986.9A CN103107373B (zh) 2011-11-14 2011-12-29 电池
CN201110450038 2011-12-29
CN201210155966 2012-05-18
CN201210155966.3 2012-05-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/123,430 A-371-Of-International US9680154B2 (en) 2011-06-03 2012-06-03 Battery
US15/592,014 Continuation US10727491B2 (en) 2011-06-03 2017-05-10 Battery

Publications (1)

Publication Number Publication Date
WO2012163300A1 true WO2012163300A1 (zh) 2012-12-06

Family

ID=50185363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076413 WO2012163300A1 (zh) 2011-06-03 2012-06-03 电池

Country Status (5)

Country Link
US (2) US9680154B2 (zh)
EP (1) EP2717377B1 (zh)
JP (1) JP6006789B2 (zh)
KR (1) KR101758967B1 (zh)
WO (1) WO2012163300A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192034A (ja) * 2013-03-27 2014-10-06 Tokyo Univ Of Science 二次電池電極用水系組成物および二次電池正極用電極
CN104253283A (zh) * 2013-06-28 2014-12-31 苏州宝时得电动工具有限公司 电池
CN104347894A (zh) * 2013-08-02 2015-02-11 中国人民解放军63971部队 一种沉积型水系锂离子电池
JP2015095431A (ja) * 2013-11-14 2015-05-18 株式会社豊田中央研究所 水溶液系二次電池
EP3067973A1 (en) * 2013-11-06 2016-09-14 Chastnoe Uchrezhdenie "Nazarbayev University Research and Innovation System" Aqueous lithium-ion battery
US10109858B1 (en) * 2015-05-08 2018-10-23 Tronox Llc Method for preparing electrolytic manganese dioxide
EP3486992A1 (en) * 2013-06-28 2019-05-22 Positec Power Tools (Suzhou) Co., Ltd Battery
CN110299509A (zh) * 2019-05-16 2019-10-01 同济大学 锂离子电池负极极片、其制备方法以及锂离子二次电池
US11069891B2 (en) 2014-09-26 2021-07-20 Positec Power Tools (Suzhou) Co., Ltd. Battery, battery pack and continuous power supply

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929408B2 (en) * 2013-11-08 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Electrode member, secondary battery, and method for manufacturing electrode member
KR102588454B1 (ko) * 2014-12-12 2023-10-11 바이킹 파워 시스템즈 피티이. 엘티디. 전기화학 셀 및 이를 제조하는 방법
CN105990582A (zh) 2015-03-06 2016-10-05 苏州宝时得电动工具有限公司 电池
WO2016152055A1 (en) * 2015-03-25 2016-09-29 Sharp Kabushiki Kaisha Transition metal cyanometallate cathode battery with metal plating anode
KR20230166136A (ko) * 2015-06-18 2023-12-06 24엠 테크놀로지즈, 인크. 단일 파우치 배터리 셀들 및 제조 방법들
JP2017027944A (ja) * 2015-07-24 2017-02-02 御国色素株式会社 リチウムイオン電池
KR101898383B1 (ko) * 2016-03-16 2018-09-12 가부시끼가이샤 도시바 이차 전지, 전지 팩 및 차량
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
CA3031513A1 (en) 2016-07-22 2018-01-25 Nantenergy, Inc. Moisture and carbon dioxide management system in electrochemical cells
US10193188B2 (en) 2016-08-31 2019-01-29 Toyota Motor Engineering & Manufacturing North America, Inc. Aqueous electrolyte with ethers and batteries using the electrolyte
JP2018120848A (ja) * 2017-01-26 2018-08-02 本田技研工業株式会社 リチウムイオン二次電池
WO2018187561A1 (en) 2017-04-06 2018-10-11 Jaramillo Mateo Cristian Refuelable battery for the electric grid and method of using thereof
BR112019022887A2 (pt) * 2017-05-01 2020-05-19 Salient Energy Inc aditivos de eletrólitos para eletrodos de zinco metálico
JP6662353B2 (ja) 2017-07-18 2020-03-11 トヨタ自動車株式会社 負極集電体、負極、及び、水系リチウムイオン二次電池
KR102278634B1 (ko) 2017-12-20 2021-07-16 주식회사 엘지에너지솔루션 리튬이차전지용 음극, 이의 제조방법 및 이를 포함한 리튬이차전지
US11611115B2 (en) 2017-12-29 2023-03-21 Form Energy, Inc. Long life sealed alkaline secondary batteries
WO2019241531A1 (en) * 2018-06-14 2019-12-19 Research Foundation Of The City University Of New York A high-voltage ion-mediated flow/flow-assist manganese dioxide - zinc battery
JP6922855B2 (ja) * 2018-06-18 2021-08-18 トヨタ自動車株式会社 水系電解液及び水系カリウムイオン電池
AU2019310592A1 (en) 2018-07-27 2021-01-21 Form Energy, Inc. Negative electrodes for electrochemical cells
CN110649322A (zh) * 2019-09-03 2020-01-03 河南豫清新能源产业有限公司 一种高比能量锂离子电池的制造方法
US20220352527A1 (en) 2019-10-04 2022-11-03 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
US11742525B2 (en) 2020-02-07 2023-08-29 24M Technologies, Inc. Divided energy electrochemical cell systems and methods of producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061863A1 (en) * 2001-01-31 2002-08-08 Korea Institute Of Science And Technology A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same
CN101154745A (zh) * 2007-09-20 2008-04-02 复旦大学 一种水系可充锂或钠离子电池
CN102055029A (zh) * 2010-12-17 2011-05-11 复旦大学 一种高安全性水系有机系混合型锂离子电池

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773060B2 (ja) * 1989-01-31 1995-08-02 東ソー株式会社 二次電池
CN1059757C (zh) 1993-07-10 2000-12-20 北京大学 二次锂离子水溶液电池
JPH0997625A (ja) * 1995-09-29 1997-04-08 Seiko Instr Inc 非水電解質二次電池およびその製造方法
US6183718B1 (en) * 1996-12-09 2001-02-06 Valence Technology, Inc. Method of making stabilized electrochemical cell active material of lithium manganese oxide
JP3173594B2 (ja) * 1998-08-31 2001-06-04 株式会社ファインセル マンガン塩(ii)とカ−ボン粉末を添加した硫酸亜鉛(ii)水溶液二次電池
JP4206565B2 (ja) * 1999-06-22 2009-01-14 ソニー株式会社 非水電解質電池
JP2001052747A (ja) * 1999-08-06 2001-02-23 Matsushita Electric Ind Co Ltd リチウム二次電池
US8980477B2 (en) * 2000-12-22 2015-03-17 Fmc Corporation Lithium metal dispersion in secondary battery anodes
AU2003235322A1 (en) * 2002-04-26 2003-11-10 Mitsui Mining And Smelting Company, Ltd. Negative electrode for non-aqueous electrolyte secondary cell and method for manufacture thereof, and non-aqueous electrolyte secondary cell
US7450563B2 (en) 2003-01-06 2008-11-11 At&T Intellectual Property, Ii, L.P. Call setup request confirmation
CA2599730A1 (en) * 2005-03-01 2006-09-08 Powergenix Systems, Inc. Method of manufacturing nickel zinc batteries
JP2007115671A (ja) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極およびそれを用いたリチウムイオン二次電池
KR100949330B1 (ko) * 2005-11-29 2010-03-26 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차전지
US9048508B2 (en) * 2007-04-20 2015-06-02 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
WO2009008280A1 (ja) * 2007-07-11 2009-01-15 Kabushiki Kaisha Toyota Chuo Kenkyusho 水系リチウム二次電池
CN102027625B (zh) * 2008-04-07 2017-05-03 卡内基美浓大学 钠离子为主的水相电解质电化学二次能源储存装置
US9356281B2 (en) 2008-05-20 2016-05-31 GM Global Technology Operations LLC Intercalation electrode based on ordered graphene planes
JP4558835B2 (ja) * 2008-07-31 2010-10-06 パナソニック株式会社 重合体、半導体膜、電極、電極活物質、電気化学素子および蓄電デバイス
JP5400370B2 (ja) * 2008-12-16 2014-01-29 公立大学法人首都大学東京 非水電解液系二次電池用負極およびそれを用いたリチウムイオン二次電池
JP2010165508A (ja) * 2009-01-14 2010-07-29 Sony Corp 負極および二次電池
CN101540417B (zh) 2009-04-15 2011-01-26 清华大学深圳研究生院 可充电的锌离子电池
JP5263115B2 (ja) * 2009-10-13 2013-08-14 株式会社豊田中央研究所 水溶液系二次電池
WO2011079482A1 (zh) 2009-12-29 2011-07-07 万向电动汽车有限公司 一种电池
CN101783416A (zh) 2010-01-28 2010-07-21 深圳市创明电池技术有限公司 一种锂离子电池的制造方法
CN102005615B (zh) 2010-09-29 2013-01-09 清华大学深圳研究生院 可充电的镍离子电池
CN102208598B (zh) 2011-05-12 2014-03-12 中国科学院宁波材料技术与工程研究所 石墨烯涂层改性的锂二次电池的电极极片及其制作方法
DE112017004148T5 (de) * 2016-08-19 2019-05-23 Semiconductor Energy Laboratory Co., Ltd. Verfahren zum Steuern der Stromzufuhr in einer Halbleitervorrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061863A1 (en) * 2001-01-31 2002-08-08 Korea Institute Of Science And Technology A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same
CN101154745A (zh) * 2007-09-20 2008-04-02 复旦大学 一种水系可充锂或钠离子电池
CN102055029A (zh) * 2010-12-17 2011-05-11 复旦大学 一种高安全性水系有机系混合型锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717377A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192034A (ja) * 2013-03-27 2014-10-06 Tokyo Univ Of Science 二次電池電極用水系組成物および二次電池正極用電極
US10854928B2 (en) 2013-06-28 2020-12-01 Positec Power Tools (Suzhou) Co., Ltd. Electrolyte and battery
CN104253283A (zh) * 2013-06-28 2014-12-31 苏州宝时得电动工具有限公司 电池
EP3758126A1 (en) * 2013-06-28 2020-12-30 Positec Power Tools (Suzhou) Co., Ltd Battery
EP3486992A1 (en) * 2013-06-28 2019-05-22 Positec Power Tools (Suzhou) Co., Ltd Battery
US10418666B2 (en) 2013-06-28 2019-09-17 Positec Power Tools (Suzhou) Co., Ltd. Battery
CN104347894A (zh) * 2013-08-02 2015-02-11 中国人民解放军63971部队 一种沉积型水系锂离子电池
EP3067973A1 (en) * 2013-11-06 2016-09-14 Chastnoe Uchrezhdenie "Nazarbayev University Research and Innovation System" Aqueous lithium-ion battery
EP3067973A4 (en) * 2013-11-06 2017-04-26 Chastnoe Uchrezhdenie "Nazarbayev University Research and Innovation System" Aqueous lithium-ion battery
US10347947B2 (en) 2013-11-06 2019-07-09 Nazarbayev University Research and Innovation System Aqueous lithium-ion battery
JP2015095431A (ja) * 2013-11-14 2015-05-18 株式会社豊田中央研究所 水溶液系二次電池
US11069891B2 (en) 2014-09-26 2021-07-20 Positec Power Tools (Suzhou) Co., Ltd. Battery, battery pack and continuous power supply
US10109858B1 (en) * 2015-05-08 2018-10-23 Tronox Llc Method for preparing electrolytic manganese dioxide
CN110299509A (zh) * 2019-05-16 2019-10-01 同济大学 锂离子电池负极极片、其制备方法以及锂离子二次电池

Also Published As

Publication number Publication date
US20170244102A1 (en) 2017-08-24
US9680154B2 (en) 2017-06-13
EP2717377B1 (en) 2020-08-05
JP2014515546A (ja) 2014-06-30
KR20140039022A (ko) 2014-03-31
EP2717377A4 (en) 2015-01-28
EP2717377A1 (en) 2014-04-09
US10727491B2 (en) 2020-07-28
US20150311516A1 (en) 2015-10-29
JP6006789B2 (ja) 2016-10-12
KR101758967B1 (ko) 2017-07-17

Similar Documents

Publication Publication Date Title
US10727491B2 (en) Battery
CN102903973B (zh) 电池
CN102903924B (zh) 电池
WO2011079482A1 (zh) 一种电池
WO2017020860A1 (zh) 电池、电池组以及不间断电源
CN103107373B (zh) 电池
WO2017024720A1 (zh) 一种高容量锂离子电池负极材料的制备方法
CN111362254A (zh) 一种氮掺杂碳纳米管负载磷掺杂四氧化三钴复合材料的制备方法及应用
CN107482182B (zh) 碳包覆离子掺杂磷酸锰锂电极材料及其制备方法
CN103094583B (zh) 电池及电池集流体的处理方法
CN107403968A (zh) 水系二次电池
WO2021208299A1 (zh) 一种水系钠基混合离子二次电池
CN104882637B (zh) 电解液和电化学储能装置
CN103094627A (zh) 电池
CN108400292A (zh) 一种铋单质纳米片复合电极的制备方法及其应用
CN107331830B (zh) 一种锂硫电池的复合正极及其制备方法
CN113066988B (zh) 一种负极极片及其制备方法和用途
CN103647040A (zh) 电极浆料、负电极及应用该负电极的锂离子电池
CN113782710A (zh) 一种高性能可充放电水系锌碘电池及其制备方法
CN103427119B (zh) 电池
WO2016202276A1 (zh) 正极材料及电池
CN114976029A (zh) 一种电芯及电池
CN114134382A (zh) 一种多孔铜锗铝锂电负极材料的制备方法
CN109301198B (zh) 一种镍纳米片阵列负载氧化锌复合电极及制备方法
CN113851616A (zh) 锂金属表面包覆二氧化锰的方法及负极材料、负极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014513047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147000057

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14123430

Country of ref document: US