WO2012163053A1 - 用于拉伸大直径光纤预制棒的感应炉 - Google Patents

用于拉伸大直径光纤预制棒的感应炉 Download PDF

Info

Publication number
WO2012163053A1
WO2012163053A1 PCT/CN2011/082236 CN2011082236W WO2012163053A1 WO 2012163053 A1 WO2012163053 A1 WO 2012163053A1 CN 2011082236 W CN2011082236 W CN 2011082236W WO 2012163053 A1 WO2012163053 A1 WO 2012163053A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
optical fiber
sleeve
induction
fiber preform
Prior art date
Application number
PCT/CN2011/082236
Other languages
English (en)
French (fr)
Inventor
方东权
王涛
孙建华
Original Assignee
长飞光纤光缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆有限公司 filed Critical 长飞光纤光缆有限公司
Priority to AP2013007239A priority Critical patent/AP3696A/en
Priority to US14/112,686 priority patent/US8950218B2/en
Publication of WO2012163053A1 publication Critical patent/WO2012163053A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/64Induction furnaces, i.e. HF/RF coil, e.g. of the graphite or zirconia susceptor type
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/80Means for sealing the preform entry or upper end of the furnace

Definitions

  • the invention relates to a large-diameter optical fiber preform induction drawing furnace heating device for communication optical fiber manufacturing, belonging to the technical field of optical fiber manufacturing equipment.
  • the fiber drawing process is to complete the wire drawing process by melting the optical fiber preform through a drawing furnace at a high temperature.
  • the existing fiber drawing furnace heating device is mainly composed of a furnace shell, a heat generating sleeve installed in the furnace, an insulating layer installed on the outer circumference of the heating sleeve, and an induction coil.
  • the existing fiber drawing furnace is mainly suitable for processing optical fiber preforms with a diameter of 60-80 mm.
  • the technical problem to be solved by the present invention is to provide a large-diameter optical fiber preform induction wire drawing furnace heating device which can be adapted to the drawing processing of a large-diameter optical fiber preform by the above-mentioned prior art, and has a simple structure and stable working performance. .
  • the technical solution adopted by the present invention to solve the above-mentioned problems is as follows: a cylindrical furnace shell and a graphite heating sleeve installed in the furnace, and an insulating layer is coated on the outer circumference of the graphite heating sleeve and an induction coil is installed
  • the graphite heating sleeve has a diameter of 150-240 mm, an axial length of 500-800 mm, and an induction coil having a maximum power of 80-100 kW.
  • a floating sealing gland is arranged on the upper end of the graphite heating sleeve.
  • the inner hole of the floating sealing gland is arranged with the upper end of the graphite heating sleeve, and the outer circumference of the floating sealing gland is arranged with the top cover furnace hole of the furnace shell.
  • the outlet of the furnace at the lower end of the graphite heating sleeve is inwardly contracted into a tapered sleeve shape, the angle between the taper sleeve taper surface and the large end end surface is 70-85°, and the axial length of the taper sleeve is 80 ⁇ 400 Mm.
  • the lower end of the furnace shell is correspondingly contracted inwardly into a frustum shape, and the angle between the tapered surface of the frustum and the end surface of the large end is 30 to 50°.
  • the insulating layer is formed by rolling a rectangular flexible long-fiber graphite felt into a roll shape, the curled layer is 3-10 layers, and the single-side thickness of the heat insulating layer is 20-30 mm.
  • the top cover furnace bore is provided with two layers of sealing rings, and the two layers of sealing rings are arranged with the outer circumference of the floating sealing gland.
  • a through hole corresponding to the inner hole of the graphite heating sleeve is opened in the middle of the floating sealing gland, and a lower end surface of the floating sealing gland is provided with an annular opening, and the inner hole and the inner end surface of the annular opening are Graphite heating jacket phase configuration.
  • a glass support frame is arranged at the large end surface of the lower frustum in the furnace shell, and the glass support frame is connected with the lower end of the heat insulation layer.
  • the induction coil is disposed above the glass support frame in the furnace shell.
  • the beneficial effects of the invention are as follows: 1.
  • the diameter can be 100 ⁇ 200 Mm large-diameter optical fiber preform for effective wire drawing; 2.
  • the temperature gradient distribution of the drawing furnace is more suitable for drawing and fiber-forming. Temperature distribution requirements; 3
  • the use of floating seal gland structure can better adapt to the thermal expansion and contraction of the graphite heating jacket, compared with the fixed gland can effectively prevent damage and failure of the heating jacket and other devices, thereby ensuring the furnace cavity
  • the sealing improves the working stability and service life of the drawing furnace; 4.
  • the thermal insulation layer is formed by soft long-fiber graphite felt curled into a roll shape, which not only has good heat preservation effect, but also has low induction heat generation, and is simple in structure and convenient. Production and production costs are low.
  • Figure 1 is a front cross-sectional structural view showing an embodiment of the present invention.
  • FIG. 2 is an enlarged view of M in FIG. 1.
  • FIG. 2 is an enlarged view of M in FIG. 1.
  • the graphite heating sleeve is a circular sleeve shape, the inner hole diameter is 150 ⁇ 240mm, the axial length is 500 ⁇ 800mm, and the lower end of the graphite heating sleeve is At the exit of the furnace, it is contracted inwardly into a tapered sleeve shape.
  • the angle between the taper sleeve taper surface and the large end end face is B78°, and the axial length of the taper sleeve is 120. Mm, the lower end of the taper sleeve is connected to the furnace bottom sealing plate 8 installed at the port.
  • An insulating layer 4 is coated on the outer circumference of the graphite heating sleeve, and an induction coil 3 is disposed outside the insulating layer, and the insulating layer is formed by rolling a rectangular soft long-fiber graphite felt into a roll, and the curling layer is 6 layers.
  • the thickness of the insulation layer is 25 Mm.
  • a glass support frame 5 is disposed at a large section of the lower end frustum in the furnace shell, and the glass support frame is coupled to the lower end of the heat insulation layer.
  • the induction coil 3 is disposed above the glass support frame in the furnace shell, and the maximum power of the induction coil is 80-100 kW.
  • a floating sealing gland 1 is disposed at the upper end of the heating sleeve, and the floating sealing gland is opened in the middle.
  • the top cover of the casing is arranged in the furnace hole, the top cover furnace hole is provided with two layers of sealing rings 9, the two layers of sealing rings are arranged with the outer periphery of the floating sealing gland, and the floating sealing gland and the top cover are arranged
  • the furnace bore sealing ring is arranged in a floating manner without bolt locking.
  • the floating sealing gland When the graphite heating sleeve is expanded and contracted up and down, the floating sealing gland is pushed up to make it move up or down with its own weight, and the displacement can reach 10 ⁇ 20mm.
  • the inner chamber of the furnace shell is sealed; the furnace shell is filled with inert gas and maintains a positive pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

一种用于拉伸大直径光纤预制棒的感应炉,包括炉壳体、石墨发热套、保温层以及感应线圈。在石墨发热套的上端设置浮动密封压盖,浮动密封压盖的内孔与石墨发热套上端相配置,且浮动密封压盖的外周与炉壳体的顶部盖板炉膛孔相配置。浮动密封压盖的使用提高了炉的工作稳定性和延长了炉的寿命。

Description

[根据细则37.2由ISA制定的发明名称] 用于拉伸大直径光纤预制棒的感应炉 技术领域
本发明涉及一种用于通信光纤制造的大直径光纤预制棒感应拉丝炉加温装置,属于光纤制造设备技术领域。
背景技术
光纤拉丝是通过拉丝炉将光纤预制棒高温熔融后完成拉丝成纤过程。现有的光纤拉丝炉加温装置主要由炉壳体、安设在炉膛中的发热套、安设在发热套外周的保温层和感应线圈构成。现有的光纤拉丝炉主要适于加工直径为60~80毫米的光纤预制棒。随着光纤技术的发展光纤拉丝领域开始寻求加工直径为100mm以上的光纤大直径预制棒的拉丝,以寻求大幅降低光纤拉丝成本、提高拉丝设备的制造效率。在此背景下,现有的光纤拉丝炉由于受主要构件结构和发热量梯度分布等诸多因素的限制,难以适应大直径光纤预制棒的拉丝加工,因此,大直径预制棒拉丝炉的研发就显得非常关键。
技术问题
本发明所要解决的技术问题在于针对上述现有技术存在的不足而提供一种可适于大直径光纤预制棒拉丝加工、且结构简单、工作性能稳定的大直径光纤预制棒感应拉丝炉加温装置。
技术解决方案
本发明为解决上述提出的问题所采用的技术方案为:包括有筒状的炉壳体和安设在炉膛中的石墨发热套,在石墨发热套的外周包覆有保温层并安设感应线圈,其特征在于所述的石墨发热套内孔直径为150~240mm,轴向长度为500~800mm,感应线圈的最大功率为80~100千瓦,在石墨发热套的上端安设有浮动密封压盖,浮动密封压盖的内孔与石墨发热套上端相配置,浮动密封压盖的外周与炉壳体的顶部盖板炉膛孔相配置。
按上述方案,所述的的石墨发热套下端的炉膛出口处向内收缩成锥套状,锥套锥面与大端端面的夹角为70~85°,锥套的轴向长度为80~400 mm。
按上述方案,所述的炉壳体下端相应向内收缩成锥台形,锥台的锥面与大端端面的夹角为30~50°。
按上述方案,所述的保温层由矩形的软性长纤维石墨毡卷曲成卷筒状而成,卷曲层为3~10层,保温层的单边厚度为20~30 mm。
按上述方案,所述的顶部盖板炉膛孔安设有2层密封圈,2层密封圈与浮动密封压盖的外周相配置。
按上述方案,所述的浮动密封压盖的中间开设有与石墨发热套内孔相对应的通孔,浮动密封压盖的下端面设置有环形止口,环形止口的内孔和内端面与石墨发热套相配置。
按上述方案,在炉壳体内下方锥台的大端面处安设玻璃支撑架,玻璃支撑架与保温层下端相衔接。
按上述方案,所述的感应线圈安设在炉壳体内玻璃支撑架的上方。
有益效果
本发明的有益效果在于:1、能够对直径为100~200 mm的大直径光纤预制棒进行有效的拉丝加工;2、通过发热套下端形状的改变,保温层和感应线圈在路壳体内的合理布局,使得拉丝炉的温度梯度分布更适于拉丝成纤的温度分布要求;3、采用浮动密封压盖结构能更好的适应石墨发热套的热胀冷缩,与固定压盖相比能有效防止发热套等器件的损害和失效,从而保证炉壳体内腔的密封,提高了拉丝炉的工作稳定性和使用寿命;4、保温层由软性长纤维石墨毡卷曲成卷筒状而成,不仅保温效果好,感应发热量极低,而且结构简单,便于制作且制作成本低。
附图说明
图1为本发明一个实施例的正剖视结构图。
图2为图1中的M处放大图。
本发明的最佳实施方式
以下结合附图进一步说明本本发明的实施例。包括有筒状的炉壳体6,炉壳体的上部安设有顶部盖板2,炉壳体下端相应向内收缩成锥台形,锥台的锥面与大端端面的夹角A=40°,炉壳体的中部设置上下贯通的炉膛,炉膛中安设石墨发热套7,石墨发热套为圆套形,内孔直径为150~240mm,轴向长度为500~800mm,石墨发热套下端为炉膛出口处,向内收缩成锥套状,锥套锥面与大端端面的夹角B78°,锥套的轴向长度为120 mm,锥套的下端与安设在端口的炉底封板8相接。在石墨发热套的外周包覆有保温层4,保温层外安设感应线圈3,所述的保温层由矩形的软性长纤维石墨毡卷曲成卷筒状而成,卷曲层为6层,保温层的单边厚度为25 mm。在炉壳体内下端锥台的大断面处安设玻璃支撑架5,玻璃支撑架与保温层下端相衔接。感应线圈3安设在炉壳体内玻璃支撑架的上方,感应线圈的最大功率为80~100千瓦,在发热套的上端安设有浮动密封压盖1,所述的浮动密封压盖的中间开设有与石墨发热套内孔相对应的通孔,浮动密封压盖的下端面设置有环形止口,环形止口的内孔和内端面与石墨发热套相配置,浮动密封压盖的外周与炉壳体的顶部盖板炉膛孔相配置,所述的顶部盖板炉膛孔安设有2层密封圈9,2层密封圈与浮动密封压盖的外周相配置,浮动密封压盖与顶部盖板炉膛孔密封圈以浮动方式相配置,无需螺栓锁定,当石墨发热套热胀冷缩上下伸缩时顶推浮动密封压盖,使其上移或随自重下降,位移量可达10~20mm,始终保持炉壳体内腔的密封;炉壳体内充有惰性气体并保持正压。

Claims (8)

1、一种大直径光纤预制棒感应拉丝炉加温装置,包括有筒状的炉壳体和安设在炉膛中的石墨发热套,在石墨发热套的外周包覆有保温层并安设感应线圈,其特征在于所述的石墨发热套内孔直径为150~240mm,轴向长度为500~800mm,感应线圈的最大功率为80~100千瓦,在石墨发热套的上端安设有浮动密封压盖,浮动密封压盖的内孔与石墨发热套上端相配置,浮动密封压盖的外周与炉壳体的顶部盖板炉膛孔相配置。
2、按权利要求1所述的大直径光纤预制棒感应拉丝炉加温装置,其特征在于所述的的石墨发热套下端的炉膛出口处向内收缩成锥套状,锥套锥面与大端端面的夹角为70~85°,锥套的轴向长度为0~400 mm。
3、按权利要求2所述的大直径光纤预制棒感应拉丝炉加温装置,其特征在于所述的炉壳体下端相应向内收缩成锥台形,锥台的锥面与大端端面的夹角为30~50°。
4、按权利要求1或2所述的大直径光纤预制棒感应拉丝炉加温装置,其特征在于所述的保温层由矩形的软性长纤维石墨毡卷曲成卷筒状而成,卷曲层为3~10层,保温层的单边厚度为20~30 mm。
5、按权利要求1或2所述的大直径光纤预制棒感应拉丝炉加温装置,其特征在于所述的顶部盖板炉膛孔安设有2层密封圈,2层密封圈与浮动密封压盖的外周相配置。
6、按权利要求5所述的大直径光纤预制棒感应拉丝炉加温装置,其特征在于所述的浮动密封压盖的中间开设有与石墨发热套内孔相对应的通孔,浮动密封压盖的下端面设置有环形止口,环形止口的内孔和内端面与石墨发热套相配置。
7、按权利要求1或2所述的大直径光纤预制棒感应拉丝炉加温装置,其特征在于在炉壳体内下方锥台的大端面处安设玻璃支撑架,玻璃支撑架与保温层下端相衔接。
8、按权利要求7所述的大直径光纤预制棒感应拉丝炉加温装置,其特征在于所述的感应线圈安设在炉壳体内玻璃支撑架的上方。
PCT/CN2011/082236 2011-05-31 2011-11-15 用于拉伸大直径光纤预制棒的感应炉 WO2012163053A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AP2013007239A AP3696A (en) 2011-05-31 2011-11-15 Induction furnace used for stretching large-diameter preformed bars of optical fiber
US14/112,686 US8950218B2 (en) 2011-05-31 2011-11-15 Heating apparatus of induction furnace used for stretching large-diameter preformed rods of optical fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101436211A CN102249534B (zh) 2011-05-31 2011-05-31 大直径光纤预制棒感应拉丝炉加温装置
CN201110143621.1 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012163053A1 true WO2012163053A1 (zh) 2012-12-06

Family

ID=44977166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082236 WO2012163053A1 (zh) 2011-05-31 2011-11-15 用于拉伸大直径光纤预制棒的感应炉

Country Status (4)

Country Link
US (1) US8950218B2 (zh)
CN (1) CN102249534B (zh)
AP (1) AP3696A (zh)
WO (1) WO2012163053A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923943B (zh) * 2012-11-07 2015-07-15 长飞光纤光缆股份有限公司 一种用于光纤拉丝炉的发热套
CN109264986B (zh) * 2018-11-26 2019-03-29 南京华信藤仓光通信有限公司 一种光纤拉丝加热炉的护套盖板结构
CN110885185B (zh) * 2019-12-27 2024-04-19 国网湖北省电力有限公司荆州供电公司 一种用于光纤拉丝炉光纤预制棒加热的石墨组件
CN112608022B (zh) * 2020-11-23 2022-11-08 武汉唐联光电科技有限公司 一种保偏光纤预制棒拉丝炉
WO2022143290A1 (en) * 2020-12-29 2022-07-07 Shenzhen Eigate Technology Co., Ltd. Atomization cup, smoke guiding cup, and atomizer assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354731A (zh) * 1999-05-10 2002-06-19 皮雷利·卡维系统有限公司 将大直径预型件拉成光纤的方法和感应炉
JP2003212561A (ja) * 2002-01-24 2003-07-30 Sumitomo Electric Ind Ltd ガラス母材の製造方法および製造装置
CN101328013A (zh) * 2007-06-22 2008-12-24 江苏亨通光纤科技有限公司 大尺寸光纤预制棒拉制光纤的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547644A (en) * 1984-02-24 1985-10-15 At&T Technologies, Inc. Apparatus for heating a preform from which lightguide fiber is drawn
ID26017A (id) * 1998-04-03 2000-11-16 Sumitomo Electric Industries Tanur dan metode untuk penarikan kabel serat optis
US6460378B1 (en) * 2000-02-29 2002-10-08 Xiaoyuan Dong Collapsing a multitube assembly and subsequent optical fiber drawing in the same furnace
US20020178762A1 (en) * 2001-06-01 2002-12-05 Foster John D. Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber
FI113533B (fi) * 2002-01-18 2004-05-14 Photonium Oy Kuidunvetouunin tiivistys
FI116524B (fi) * 2003-06-13 2005-12-15 Photonium Oy Kuidunvetouunin kuumennuselementin eristys
CN201003032Y (zh) * 2006-11-04 2008-01-09 江苏亨通光纤科技有限公司 光纤拉丝炉中心管的一体化保温层
JP5023016B2 (ja) * 2007-08-10 2012-09-12 信越化学工業株式会社 光ファイバ製造装置および線引き炉のシール方法
CN201626915U (zh) * 2010-02-11 2010-11-10 长飞光纤光缆有限公司 光纤拉丝炉热炉换棒装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354731A (zh) * 1999-05-10 2002-06-19 皮雷利·卡维系统有限公司 将大直径预型件拉成光纤的方法和感应炉
JP2003212561A (ja) * 2002-01-24 2003-07-30 Sumitomo Electric Ind Ltd ガラス母材の製造方法および製造装置
CN101328013A (zh) * 2007-06-22 2008-12-24 江苏亨通光纤科技有限公司 大尺寸光纤预制棒拉制光纤的方法

Also Published As

Publication number Publication date
US8950218B2 (en) 2015-02-10
AP2013007239A0 (en) 2013-11-30
CN102249534A (zh) 2011-11-23
CN102249534B (zh) 2013-09-18
US20140041416A1 (en) 2014-02-13
AP3696A (en) 2016-05-31

Similar Documents

Publication Publication Date Title
WO2012163053A1 (zh) 用于拉伸大直径光纤预制棒的感应炉
CN102432015B (zh) 均温型高效电加热炉
CN105222597A (zh) 一种卧式扩散炉快速降温炉体
CN205808105U (zh) 一种铸造用铝合金熔炼保温炉
CN217423968U (zh) 一种适用多合一镀膜的炉体结构
CN202246092U (zh) 全辐射式高效电加热炉
CN202329218U (zh) 高温真空炉的水冷电极
CN208545452U (zh) 一种非圆形通道热风管道砌筑结构
CN211946806U (zh) 一种光纤预制棒融缩石墨炉
CN202170244U (zh) 多晶硅还原炉
CN206341444U (zh) 一种预加热器
CN202945388U (zh) 一种新型低能耗的低温碳化炉
CN203021302U (zh) 还原炉电极石英绝缘构件
CN212834143U (zh) 一种石墨电极装置及硅铸锭炉
CN202329215U (zh) 一种高温电阻炉的引电系统结构
CN216385091U (zh) 一种具有高效保温的锂电池负极材料制备高温炉
CN104722763B (zh) 一种气雾化锡粉用中间包保温装置的制备方法
CN2748851Y (zh) 多级碳化硅电加热管式玻化炉
CN204678900U (zh) 一种电弧炉盖
CN205774925U (zh) 一种多晶硅铸锭炉的溢流隔离装置
CN205980741U (zh) 一种电弧冶炼炉炉盖
CN204045554U (zh) 一种用于高温扩散氧化炉的水冷炉体
CN209416023U (zh) 一种连续式高温管式炉
CN104515395A (zh) 一种高温炉床支撑装置
CN209536989U (zh) 一种用于氢化炉防短路的发热体及氢化炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14112686

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866547

Country of ref document: EP

Kind code of ref document: A1