WO2012161547A2 - 권선형 유도 전동기의 회전자 전류 제어 장치 - Google Patents

권선형 유도 전동기의 회전자 전류 제어 장치 Download PDF

Info

Publication number
WO2012161547A2
WO2012161547A2 PCT/KR2012/004155 KR2012004155W WO2012161547A2 WO 2012161547 A2 WO2012161547 A2 WO 2012161547A2 KR 2012004155 W KR2012004155 W KR 2012004155W WO 2012161547 A2 WO2012161547 A2 WO 2012161547A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
induction motor
phase
voltage
unit
Prior art date
Application number
PCT/KR2012/004155
Other languages
English (en)
French (fr)
Other versions
WO2012161547A3 (ko
Inventor
박시우
김부광
김성완
Original Assignee
주식회사 자이벡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 자이벡 filed Critical 주식회사 자이벡
Priority to CN201280022263.1A priority Critical patent/CN103582999A/zh
Publication of WO2012161547A2 publication Critical patent/WO2012161547A2/ko
Publication of WO2012161547A3 publication Critical patent/WO2012161547A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/07Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings
    • H02P2207/073Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings wherein only one converter is used, the other windings being supplied without converter, e.g. doubly-fed induction machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to the control of the winding type induction motor, and more particularly, the current flowing through the rotor winding of the winding type induction motor to the power supply side and at the same time, the overcurrent flowing in the rotor winding of the winding type induction motor during reverse phase braking. It relates to an apparatus for controlling.
  • a winding type induction motor is a secondary winding by winding a three-phase winding around the rotor iron core, and a slip ring is provided at the tip of each phase winding to guide the secondary current to the outside through a brush.
  • Such a wound induction motor can realize a large starting torque by connecting an external resistance to the rotor winding and adjusting the resistance value. Therefore, it is still widely used for the purpose of starting a large inertial load such as a crane, a rolling mill, or a compressor that requires a large starting torque.
  • the conventional winding type induction motor controls torque and speed by connecting an external resistor to each phase of the rotor winding output and gradually short circuiting (adjusting the resistance value). Therefore, while there is an advantage that can choose any maximum, minimum torque, there is a disadvantage that a large loss occurs in the external resistance connected to the rotor winding.
  • PWM pulse width modulation
  • a wound induction motor According to an embodiment of the present invention, a wound induction motor
  • a rotor current control apparatus for a wound induction motor including a voltage booster for boosting a voltage induced in the rotor using the rotor winding itself of the wound induction motor as an inductor.
  • the rotor current control device the rotor current control device
  • the braking system may further include a phase switching unit for switching the upper order of the system power to the reverse phase to supply the stator winding of the wound induction motor.
  • the rotor current control device the rotor current control device
  • It may further include an inductance unit connected to each phase of the rotor winding of the wound induction motor to control overcurrent generated during braking.
  • the phase switching unit In addition, according to an embodiment of the present invention, the phase switching unit, the phase switching unit, and
  • a first semiconductor switch connected at both ends of the stator winding
  • a second semiconductor switch connected at both ends of the stator winding
  • a third semiconductor switch unit connected at both ends of the stator winding to a third phase
  • a fourth semiconductor switch unit having one end connected to the second phase and another end connected to the third phase;
  • One end may be connected to the third phase, and the other end of the second semiconductor switch may be connected to the second phase.
  • each of the first to fifth semiconductor switch units includes at least one semiconductor switch
  • the semiconductor switch may include a bidirectional thyristor element.
  • the fourth and fifth semiconductor switch parts when the second and third semiconductor switch parts are turned on, the fourth and fifth semiconductor switch parts are turned off.
  • the second and third semiconductor switch parts When the fourth and fifth semiconductor switch parts are turned on, the second and third semiconductor switch parts may be turned off.
  • the rotor current control device the rotor current control device
  • the apparatus may further include a power regeneration unit for transferring the voltage boosted by the voltage boosting unit to a system power source.
  • the said voltage boosting part is
  • a rotor current controller including switching elements having one end connected to each phase of the rotor winding to control a current of the rotor winding
  • An anode may be connected to each phase of the rotor winding to include a boost diode unit including diodes for transferring current from the rotor to the power regenerative unit.
  • the said power regenerative part is
  • It may include a system-linked regenerative inverter for converting the voltage boosted by the voltage boosting unit to an alternating voltage to supply the system voltage.
  • the said grid-connected regenerative inverter is,
  • PWM pulse width modulation
  • a backflow prevention diode may be further included between the voltage boosting unit and the power regenerative unit to prevent current from flowing back from the power regenerative unit to the voltage boosting unit.
  • the switching elements may include an insulated gate bipolar transistor (IGBT), a field-effect transistor (FET), and a gate turn-off thyristor. , GTO), and at least one semiconductor switch including a bipolar junction transistor (BJT).
  • IGBT insulated gate bipolar transistor
  • FET field-effect transistor
  • GTO gate turn-off thyristor
  • BJT bipolar junction transistor
  • the rotor current control device the rotor current control device
  • a surge filter may be further connected to the other end of the switching elements and the cathode of the diodes to absorb a surge voltage generated during switching of the switching elements, thereby preventing burnout of the switching elements.
  • FIG. 1 is an overall configuration diagram of a rotor current control device for a wound induction motor according to a first embodiment of the present invention.
  • FIG. 2 is an overall configuration diagram of a rotor current control device for a wound induction motor according to a second embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a relationship between torque and slip according to a magnitude of a voltage applied to a stator winding of a wound induction motor.
  • FIG. 4 is a diagram showing an equivalent circuit equivalent to that of the second embodiment of the present invention shown in FIG. 2.
  • FIG. 5 is a diagram for explaining a control mode of the second embodiment of the present invention shown in FIG. 2.
  • the rotor current control device uses a winding induction motor IM including a stator winding 111a and a rotor winding 111b and a rotor winding 111b of the winding induction motor IM as an inductor. It may include a voltage boosting unit 110 for boosting the voltage induced in the winding (111b), the power regeneration unit 120 for transmitting the voltage boosted by the voltage boosting unit 110 to the system power supply 100 ) May be further included.
  • the voltage boosting unit 110 includes switching elements Q1 to Q3 having one end connected to each phase A, B, and C of the rotor winding 111b to control the current of the rotor winding 111b.
  • An anode is connected to each of the phases A, B, and C of the rotor winding control unit 112 and the rotor winding 111b to transfer current from the rotor winding 111b to the power regenerative unit 120.
  • the boost diode unit 113 including the diodes D1 to D3 may be included.
  • the power regenerative device is connected to the other end of the switching elements Q1 to Q3 and the cathode of the diodes D1 to D3 to be generated when switching the switching elements Q1 to Q3.
  • the surge filter 140 for preventing the burning of the switching elements Q1 to Q3 and the reverse flow for preventing the current from flowing back from the power regenerative unit 120 to the voltage boosting unit 110.
  • the prevention diode 130 may further include.
  • the voltage boosting unit 110 may boost the voltage induced in the rotor winding 111b using the rotor winding 111b of the wound induction motor IM as an inductor.
  • the voltage boosting is performed for each phase A, B, and C, and the boosted voltage may be transmitted to the power regeneration unit 120 through the backflow prevention diode 130.
  • the voltage boosting unit 110 may include a rotor current control unit 112 and a boost diode unit 113.
  • the boost diode unit 111 may include three diodes D1 through D3, and the three diodes D1 through D3 may have anodes connected to respective phases A, B, and C of the rotor winding 111b.
  • the cathode may be connected to the power regenerative unit 120 through the backflow prevention diode 130.
  • the rotor current control unit 112 may include three switching elements Q1 to Q3, and the three switching elements Q1 to Q3 may be formed in each phase A, B, of the rotor winding 111b. One end is connected to each C) to control the current flowing in the rotor winding 111b.
  • each phase (A, B, C) of the rotor winding (111b) is used as an inductor, and accordingly, phase A of the rotor winding (111b)-switching element (Q1)-
  • the diode D1, the B phase switching element Q2 of the rotor winding 111b, the diode D2, and the C phase switching element Q3 of the rotor winding 111b, diode D3, are You will be configuring a boost converter.
  • the above-described rotor current controller 112 includes an insulated gate bipolar transistor (IGBT), a field-effect transistor (FET), a gate turn-off thyristor (GTO), and It may be at least one semiconductor switch selected from semiconductor switches including a bipolar junction transistor (BJT).
  • IGBT insulated gate bipolar transistor
  • FET field-effect transistor
  • GTO gate turn-off thyristor
  • BJT bipolar junction transistor
  • the voltage boosting unit 110 uses the rotor winding 111b of each phase A, B, and C of the winding type induction motor IM as an inductor. By controlling the current flowing through the electron winding 111b through the rotor current control unit 112 and the boost diode unit 113, it can function as a boost converter.
  • the voltage boosted by the voltage boosting unit 110 may be transmitted to the power regenerative unit 120 through the backflow prevention diode 130.
  • the voltage generated by the voltage boosting unit 110 is greater than the voltage of the system power supply 100, there is a technical effect that can be regenerated to the system power supply 100 without an additional boosting device such as a transformer.
  • the power regenerative unit 120 converts the voltage boosted by the voltage boosting unit 110 into an AC voltage and supplies the converted voltage to the system power supply 100.
  • the power regenerative unit 120 may include a charging capacitor C and a grid take over regenerative inverter.
  • the grid take over regenerative inverter may be any one selected from a pulse width modulation (PWM) inverter and a 120 degree energized inverter. Can be.
  • PWM pulse width modulation
  • the reverse flow prevention diode 130 may have a configuration in which an anode is commonly connected to the cathodes of the diodes D1 to D3 included in the boost diode unit 113, and the cathode is connected to the power regenerative unit 120. .
  • the reverse flow prevention diode 130 may prevent the current from flowing back from the power regeneration unit 120 to the voltage boosting unit 110.
  • the surge filter 140 is commonly connected to the other ends of the switching elements Q1 to Q3 constituting the rotor current controller 112 and the anodes of the diodes D1 to D3 included in the boost diode unit 113. It can include a configuration.
  • the surge filter 140 may prevent the burnout of the switching elements Q1 to Q3 by absorbing a surge voltage generated when the switching elements Q1 to Q3 are switched.
  • the above-described surge filter 140 is composed of a capacitor, the capacity of which may be determined by the magnitude of the generated surge voltage and the parasitic inductance existing up to the backflow prevention diode 130 and the grid power supply 100.
  • the surge filter 140 according to the first embodiment of the present invention shows a capacitor, the present invention is not limited thereto, and the surge filter 140 may be configured as a snubber circuit combining a capacitor-diode and a capacitor-diode-resistance.
  • the controller 150 detects the speed 161 of the rotor, the current 162 of the rotor, and the voltage / phase / frequency 163 of the rotor, and based on the detected information, the rotor current controller ( The control signals SWm and SWr for controlling the switching elements Q1 to Q3 of the 112 and the switching elements Q4 to Q9 of the power regeneration unit 120 are generated.
  • the switching elements Q1 to Q3 of the rotor current controller 112 and the switching elements Q4 to Q9 of the power regenerative unit 120 are turned on by the generated control signals SWm and SWr.
  • control signals SWm, SWr based on the speed 161 of the rotor, the current 162 of the rotor, and the voltage / phase / frequency of the rotor 163 may be implemented by various algorithms. It is not embodied as an embodiment of the present invention.
  • a speed and torque control of a wound induction motor IM are performed by an applied system power supply 100, and thus, a circuit magnetically coupled to a stator winding of a wound induction motor IM. Voltages are induced in each of the phases A, B, and C of the electron winding 111b.
  • the controller 150 detects the speed 161 of the rotor, the current 162 flowing through the rotor winding 111b, and the voltage / phase / frequency 163 of the rotor, and detects the detected information 161, 162, Based on 163, control signals SWm and SWr for controlling the switching elements Q1 to Q3 of the rotor current controller 112 and the switching elements Q4 to Q9 of the power regenerative unit 120 are generated. do.
  • the switching elements Q1 to Q3 of the rotor current controller 112 repeatedly turn on / off by the control signal SWm generated by the controller 150, and the rotor
  • the winding 111b functions as an inductor so that the voltage induced in the rotor winding 111b is boosted by the voltage boosting unit 110.
  • each phase (A, B, C) of the rotor winding (111b) is used as an inductor, and thus, the phase A-switching element of the rotor winding (111b).
  • Q1 -diode D1, B phase-switching element (Q2) -diode D2 of rotor winding 111b and C phase-switching element (Q3) -diode D3 of rotor winding 111b A total of three boost converters will operate independently or in conjunction.
  • the rotor winding 111b functioning as an inductor when the switching element Q1 is turned on.
  • the current increases, and when the switching element Q1 is turned off, the current of the rotor winding 111b is boosted by the power regenerative unit 120.
  • the rest of the boost converter module can operate similarly.
  • the voltage boosted by the voltage boosting unit 110 described above may be transmitted to the power regenerative unit 120, and the transferred voltage may be transmitted to the system power supply 100 by the power regenerative unit 120.
  • the power regenerative unit 120 may be a grid takeover type regenerative inverter, and specifically, may be any one selected from a pulse width modulation (PWM) inverter and a 120 degree energized inverter.
  • PWM pulse width modulation
  • FIG. 2 is an overall block diagram of the rotor current control device for the wound induction motor according to the second embodiment of the present invention.
  • the phase inversion unit 150 and the inductance unit 114 are added.
  • An overcurrent may occur in the electron winding 111b, thereby causing a problem in that the diodes 110, 130, and 140 and the switching elements 112 and 120 at the rear end thereof are damaged. Therefore, a method for limiting the above-described overcurrent according to the second embodiment shown in FIG. 2 below will be described.
  • the phase switching unit 150 may switch the upper order of the system power supply 100 to reverse phase for braking and supply the reverse phase to the stator winding 111a of the wound induction motor IM.
  • the phase switching unit 150 has a first semiconductor switch T1 connected at both ends to the first phase A of the stator winding 111a, and both ends connected to the second phase B of the stator winding 111a. One end is connected to the second semiconductor switch T2, the third semiconductor switch T3 connected at both ends of the third phase C of the stator winding 111a, and the second phase B, and And a fourth semiconductor switch part T4 having the other end connected to the phase C, and a fifth semiconductor switch part T5 having one end connected to the third phase C and the other end connected to the second phase B. can do.
  • the fourth and fifth semiconductor switch units T4 and T5 are turned off, and the fourth and fifth semiconductors are turned off.
  • the switch units T4 and T5 are turned on, the second and third semiconductor switch units T2 and T3 may be turned off.
  • the magnitude of the voltage induced in the rotor winding (111b) can be determined by the following equation (1).
  • Vr is the rotor voltage
  • Vs is the stator voltage
  • Wr is the number of rotor windings
  • Ws is the number of stator windings
  • S is slip
  • ws is the synchronous speed
  • wr is the rotor speed.
  • the switching elements Q1 to Q3 of the rotor current controller 112 are turned off. Even though excessive charge current may flow to the charging capacitor C by the three-phase bridge rectifier circuit configured by the boost diode unit 110 and the body diode of the switching elements Q1 to Q3.
  • the diodes constituting the three-phase bridge rectifier circuit may be destroyed due to excessive charging current.
  • reverse phase braking 'reverse braking' refers to a method of restraining the rotation of the rotor by torque generated by applying reverse phase power to the stator winding 111a in a direction opposite to the rotation direction of the rotor). Voltage may be induced in the rotor winding 111b.
  • the phase switching unit 150 may limit the magnitude of the current flowing through the rotor winding 111b by controlling the magnitude of the voltage applied to the stator winding 111a.
  • each of the first semiconductor switch unit T1 to the fifth semiconductor switch unit T2 may include at least one semiconductor switch such as a triac element or a thyristor element.
  • a bidirectional thyristor having a form in which a pair of silicon controlled rectifiers (SCRs) are connected in anti-parallel is shown in FIG. 2.
  • the controller 160 May apply the firing angle signal SWt to the phase switching unit 150. Since the first to fifth semiconductor switch units T1 to T5 are controlled according to the applied firing angle signal SWt, the magnitude of the voltage applied to the stator winding 111a may be limited.
  • one of the pair of silicon controlled rectifiers controls the positive voltage and the other one controls the negative voltage in both directions according to the firing angle control signal SWt applied from the controller 160.
  • the firing angle control signal SWt applied from the controller 160.
  • Figure 3 is a diagram showing the relationship between the torque and slip in accordance with the magnitude of the voltage applied to the stator winding (111a) of the wound induction motor (IM).
  • the magnitude of the voltage Vp applied to the stator winding 111a determines the magnitude of the magnetic force, which is an element that generates the rotational force (torque) of the rotor.
  • the rotational speed of the rotor is higher than a certain speed according to the turns ratio, it may not be possible to apply 100% of the rated voltage to the stator may cause a problem that can not generate sufficient torque. That is, as shown in Figure 3, applying 60% of the stator rated voltage, it can be seen that less than half the torque is generated when 100% is applied.
  • an inductor on each of the rotor windings 111b with or without the firing angle control in the phase switching unit 150 described above or without the firing angle control in the phase switching unit 150.
  • the overcurrent of the rotor winding 111b can be limited while generating the desired torque.
  • the overcurrent generated during reverse phase braking may be controlled through an inductance unit 114 including an inductor connected to each phase of the rotor winding 111b of the wound induction motor IM.
  • an inductance unit 114 including an inductor connected to each phase of the rotor winding 111b of the wound induction motor IM.
  • One equivalent circuit may be represented as shown in FIG. 4, wherein the current Ir flowing through the rotor winding 111b may be determined according to Equation 2 below.
  • Vr is the rated voltage of the rotor winding
  • Rr is the winding resistance of the rotor winding
  • Xr is the leakage inductance of the rotor winding
  • Vr is the output terminal voltage of the rotor winding
  • Ir is the current of the rotor winding
  • Vp is the system power supply.
  • V is the forward voltage
  • V FD is the diode forward voltage
  • X L is the inductance of the inductor connected to each phase
  • S is slip
  • w is the rotor speed
  • Lr is the inductor of the rotor winding
  • L L is the inductor connected to each phase. do.
  • the current Ir flowing through the rotor winding 111b can be adjusted according to the size of the inductor connected to each phase.
  • the size of the inductor connected to each phase may be designed such that the current Ir flowing through the rotor winding 111b is within a preset maximum value.
  • reference numeral 501 denotes the speed of the rotor
  • reference numeral 502 denotes the torque
  • the controller 160 may control the phase switching unit 150 and the voltage boosting unit 110 for each of the following sections.
  • section I means an acceleration section. Specifically, in the initial stage of acceleration, the voltage of the stator winding 111a may be gradually increased through phase control of the phase shift unit 150 only. After the desired torque is satisfied, the speed control may be performed through the phase control of the phase switching unit 150 continuously without the current control of the rotor winding 111b by the current control unit 112. However, if the desired torque is not satisfied, the speed is controlled through the current control of the current control unit 112 without phase control of the phase inversion unit 150 (that is, turning on all of T1-T2-T3 or T1-T4-T5). Control will be performed.
  • Section II means a constant velocity section.
  • the control scheme varies depending on the ratio of the winding 111a of the stator to the winding 111b of the rotor. That is, the winding ratio is small (for example, the winding ratio of the stator winding 111a and the rotor winding 111b is 1: 1), and when the voltage of the rotor winding 111b is high and the desired torque is satisfied, the phase of only the phase switching unit 150 is satisfied. Through the control, the current of the rotor winding 111b is controlled.
  • phase switching unit 150 does not have phase control (ie, T1-T2-T3 or T1-T4-T5). Turn-on) can control only the current controller 112 to control the current flowing in the rotor winding (111b).
  • Section III means a deceleration section by reverse braking. Specifically, after the reverse phase voltage is applied (T1-T4-T5 are all turned on) without phase control of the phase switching unit 150, only the current controller 112 is controlled to control the current flowing in the rotor winding 111b. Can be controlled.
  • the frequency of the output voltage of the rotor is at a time of 60 Hz or more when the wound induction motor IM is started from the stop and when the wound induction motor IM is rotating in reverse phase.
  • the inductance of the inductance unit 114 is large, thereby maximizing the voltage drop and the current limiting effect, and the inductance of the inductance unit 114 is very small in the low frequency region where the rotation speed has already reached a certain range or near the rated speed. You lose.
  • the inductor 114 by adding the inductor 114 to each of the rotor windings 111b, the inductance can be varied according to the frequency change of the output voltage of the rotor windings 111b. There is a technical effect to stabilize the whole system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

권선형 유도 전동기의 회전자 전류 제어 장치가 제공된다. 회전자 전류 제어 장치는, 권선형 유도 전동기와, 권선형 유도 전동기의 회전자 권선 자체를 인덕터로 사용하여 회전자에 유도된 전압을 승압하는 전압 승압부를 포함함으로써, 권선형 유도 전동기의 회전자 권선에 흐르는 전류를 계통 전원으로 회생하여 에너지 절감을 도모할 수 있다.

Description

권선형 유도 전동기의 회전자 전류 제어 장치
본 발명은 권선형 유도 전동기의 제어에 관한 것으로, 더욱 상세하게는 권선형 유도 전동기의 회전자 권선에 흐르는 전류를 전원측으로 회생함과 동시에, 역상 제동시 권선형 유도 전동기의 회전자 권선에 흐르는 과전류를 제어하기 위한 장치에 관한 것이다.
일반적으로 권선형 유도 전동기는 회전자 철심에 3상 권선을 감아 2차 권선으로 하고, 슬립링을 각 상 권선의 선단에 마련하여 브러시를 통해 2차 전류를 외부로 인도할 수 있도록 한 전동기이다.
이러한 권선형 유도 전동기는 회전자 권선에 외부 저항을 연결하고, 그 저항값을 조절함으로써, 큰 기동 토크를 구현할 수 있다. 따라서 큰 기동 토크가 요구되는 크레인이나 압연기, 압축기 등 큰 관성 부하의 기동 목적으로 아직도 많이 사용되고 있다.
이와 같이 기존의 권선형 유도 전동기는 회전자 권선 출력의 각 상에 외부 저항을 연결하고 단계적으로 단락(저항값을 조절)시키면서 토크와 속도를 제어한다. 따라서 임의의 최대, 최소 토크를 선택할 수 있는 장점이 있는 반면, 회전자 권선에 연결되는 외부 저항에서 큰 손실이 발생하는 단점이 있다.
상술한 방법 외에도 PWM(Pulse Width Modulation) 신호에 의해 회전자 권선에 흐르는 전류의 량을 제어함으로써, 토크와 속도를 제어하는 방법도 고안되고 있다.
이와 같은 방법에 의할 경우 상술한 외부 저항을 대체할 수 있어 외부 저항으로 인한 손실을 없앨 수 있는 장점이 있다.
이와 같이, 권선형 유도 전동기의 토크와 속도를 제어하기 위한 다양한 방법들이 연구되고 있으나, 회전자에 의해 유도된 전류를 전원측으로 회생하여 에너지를 절감하기 위한 방법에 대해서는 연구 개발이 미미한 실정이다.
또한, 계통 전원의 상순을 역상으로 전환하여 권선형 유도 전동기의 고정자 권선에 공급함으로써 제동시키는 경우('역상 제동'이라 함)에는 회전자 권선에 과전류가 흘러 후단의 다이오드나 스위칭 소자들이 파손되는 문제점이 있다.
본 발명은 권선형 유도 전동기의 회전자 권선에 흐르는 전류를 전원측으로 회생함과 동시에, 특히 역상 제동시 권선형 유도 전동기의 회전자 권선에 흐르는 과전류를 제어하기 위한 장치를 제공한다.
본 발명의 실시 형태에 의하면, 권선형 유도 전동기; 및
상기 권선형 유도 전동기의 회전자 권선 자체를 인덕터로 사용하여 상기 회전자에 유도된 전압을 승압하는 전압 승압부를 포함하는 권선형 유도 전동기의 회전자 전류 제어 장치가 제공된다.
또한, 본 발명의 실시 형태에 의하면, 상기 회전자 전류 제어 장치는,
제동시 계통 전원의 상순을 역상으로 전환하여 상기 권선형 유도 전동기의 고정자 권선에 공급하는 상전환부를 더 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 회전자 전류 제어 장치는,
상기 권선형 유도 전동기의 회전자 권선의 각 상마다 연결되어 상기 제동시 발생되는 과전류를 제어하는 인덕턴스부를 더 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 상전환부는,
상기 고정자 권선의 제1 상에 양단이 연결된 제1 반도체 스위치부;
상기 고정자 권선의 제2 상에 양단이 연결된 제2 반도체 스위치부;
상기 고정자 권선의 제3 상에 양단이 연결된 제3 반도체 스위치부;
상기 제2 상에 일단이 연결되고, 상기 제3 상에 타단이 연결된 제4 반도체 스위치부; 및
상기 제3 상에 일단이 연결되고, 상기 제2 상에 타단이 연결된 제5 반도체 스위치부를 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 제1 내지 제5 반도체 스위치부는 각각 적어도 하나의 반도체 스위치를 포함하고,
상기 반도체 스위치는 양방향 사이리스터 소자를 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 제2 및 제3 반도체 스위치부가 턴-온될 때, 상기 제4 및 제5 반도체 스위치부는 턴-오프되며,
상기 제4 및 제5 반도체 스위치부가 턴-온될 때, 상기 제2 및 제3 반도체 스위치부는 턴-오프될 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 회전자 전류 제어 장치는,
상기 전압 승압부에서 승압된 전압을 계통 전원으로 전달하기 위한 전력 회생부를 더 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 전압 승압부는,
상기 회전자 권선의 각상마다 일단이 연결되어 상기 회전자 권선의 전류를 제어하는 스위칭 소자들을 포함하는 회전자 전류 제어부; 및
상기 회전자 권선의 각상마다 애노드가 연결되어 상기 회전자로부터의 전류를 상기 전력 회생부로 전달하기 위한 다이오드들을 포함하는 부스트 다이오드부를 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 전력 회생부는,
상기 전압 승압부에 의해 승압된 전압을 교류 전압으로 변환하여 계통 전압에 공급하는 계통 연계형 회생 인버터를 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 계통 연계형 회생 인버터는,
펄스 폭 변조(PWM) 인버터 및 120도 통전형 인버터 중에서 선택된 어느 하나일 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 전압 승압부와 상기 전력 회생부 사이에는 상기 전력 회생부로부터 상기 전압 승압부로 전류가 역류하는 것을 방지하기 위한 역류 방지용 다이오드를 더 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 스위칭 소자들은, 절연 게이트 양극성 트랜지스터(Insulated gate bipolar transistor, IGBT), 전계 효과 트랜지스터 (Field-effect transistor, FET), 게이트 턴 오프 사이리스터(Gate turn-off thyristor, GTO), 및 접합형 트랜지스터(Bipolar junction transistor, BJT)를 포함하는 반도체 스위치 중에서 선택된 적어도 하나 이상일 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 회전자 전류 제어 장치는,
상기 스위칭 소자들의 타단 및 상기 다이오드들의 캐소드에 연결되어 상기 스위칭 소자들의 스위칭시 발생하는 서지 전압을 흡수함으로써, 상기 스위칭 소자들의 소손을 방지하기 위한 서지 필터를 더 포함할 수 있다.
본 발명의 일 측면에 따르면, 권선형 유도 전동기의 회전자 권선에 흐르는 전류를 계통 전원으로 회생하여 에너지 절감을 도모할 수 있는 기술적 효과가 있다.
본 발명의 다른 측면에 따르면, 권선형 유도 전동기의 회전자 권선에 의해 유도된 전압을 승압하도록 함으로써, 변압기와 같은 추가적인 승압 장치 없이도 계통 전원으로 회생시킬 수 있는 기술적 효과가 있다.
또한, 본 발명의 다른 측면에 의하면, 회전자 권선의 각 상에 주파수에 따라 인덕턴스 성분의 크기가 변하는 인덕터를 연결함으로써, 역상 제동시 권선형 유도 전동기의 회전자 권선에 흐르는 과전류를 제어하여 시스템을 안정화시킬 수 있는 기술적 효과가 있다.
도 1은 본 발명의 제1 실시 형태에 따른 권선형 유도 전동기의 회전자 전류 제어 장치의 전체 구성도이다.
도 2는 본 발명의 제2 실시 형태에 따른 권선형 유도 전동기의 회전자 전류 제어 장치의 전체 구성도이다.
도 3은 권선형 유도 전동기의 고정자 권선에 인가되는 전압의 크기에 따른 토크 및 슬립과의 관계를 도시한 도면이다.
도 4는 도 2에 도시된 본 발명의 제2 실시 형태의 한 상당 등가 회로를 도시한 도면이다.
도 5는 도 2에 도시된 본 발명의 제2 실시 형태의 제어 모드를 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러 가지의 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로만 한정되는 것은 아니다. 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.
도 1은 본 발명의 제1 실시 형태에 따른 권선형 유도 전동기의 회전자 전류 제어 장치의 전체 구성도이다. 회전자 전류 제어 장치는 고정자 권선(111a) 및 회전자 권선(111b)을 포함한 권선형 유도 전동기(IM)와, 권선형 유도 전동기(IM)의 회전자 권선(111b)을 인덕터로 사용하여 회전자 권선(111b)에 유도된 전압을 승압하는 전압 승압부(110)를 포함할 수 있으며, 추가로 전압 승압부(110)에서 승압된 전압을 계통 전원(100)으로 전달하기 위한 전력 회생부(120)를 더 포함할 수 있다.
한편, 전압 승압부(110)는 회전자 권선(111b)의 각상(A, B, C)마다 일단이 연결되어 회전자 권선(111b)의 전류를 제어하는 스위칭 소자들(Q1 내지 Q3)을 포함하는 회전자 전류 제어부(112)와, 회전자 권선(111b)의 각상(A, B, C)마다 애노드가 연결되어 회전자 권선(111b)로부터의 전류를 전력 회생부(120)로 전달하기 위한 다이오드들(D1 내지 D3)을 포함하는 부스트 다이오드부(113)를 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 전력 회생 장치는 스위칭 소자들(Q1 내지 Q3)의 타단 및 다이오드들(D1 내지 D3)의 캐소드에 연결되어 스위칭 소자들(Q1 내지 Q3)의 스위칭시 발생하는 서지 전압을 흡수함으로써, 스위칭 소자들(Q1 내지 Q3)의 소손을 방지하기 위한 서지 필터(140)와, 전력 회생부(120)로부터 전압 승압부(110)로 전류가 역류하는 것을 방지하기 위한 역류 방지용 다이오드(130)를 더 포함할 수 있다.
이하 본 발명의 제1 실시 형태에 따른 권선형 유도 전동기의 회전자 전류 제어 장치의 구체적인 구성을 상세하게 설명한다.
우선 전압 승압부(110)는 권선형 유도 전동기(IM)의 회전자 권선(111b)을 인덕터로 사용하여 회전자 권선(111b)에 유도된 전압을 승압할 수 있다. 전압의 승압은 각상(A, B, C)마다 이루어지며, 승압된 전압은 역류 방지용 다이오드(130)를 통해 전력 회생부(120)로 전달될 수 있다.
구체적으로, 전압 승압부(110)는 회전자 전류 제어부(112)와 부스트 다이오드부(113)를 포함할 수 있다. 부스트 다이오드부(111)는 3개의 다이오드(D1 내지 D3)를 포함할 수 있으며, 3개의 다이오드(D1 내지 D3)는 회전자 권선(111b)의 각상(A, B, C)에 애노드가 연결되며, 캐소드는 역류 방지용 다이오드(130)를 통해 전력 회생부(120)로 연결될 수 있다.
또한, 회전자 전류 제어부(112)는 3개의 스위칭 소자들(Q1 내지 Q3)을 포함할 수 있으며, 3개의 스위칭 소자들(Q1 내지 Q3)은 회전자 권선(111b)의 각상(A, B, C)마다 일단이 연결되어 회전자 권선(111b)에 흐르는 전류를 제어한다. 즉, 상술한 구성에 의할 때, 회전자 권선(111b)의 각상(A, B, C)을 인덕터로 사용하게 되며, 이에 따라 회전자 권선(111b)의 A상 - 스위칭 소자(Q1)-다이오드(D1), 회전자 권선(111b)의 B상-스위칭 소자(Q2)-다이오드(D2) 및 회전자 권선(111b)의 C상-스위칭 소자(Q3)-다이오드(D3)는 총 3개의 부스트 컨버터를 구성하게 되는 것이다.
상술한 회전자 전류 제어부(112)는 절연 게이트 양극성 트랜지스터(Insulated gate bipolar transistor, IGBT), 전계 효과 트랜지스터 (Field-effect transistor, FET), 게이트 턴 오프 사이리스터(Gate turn-off thyristor, GTO), 및 접합형 트랜지스터(Bipolar junction transistor, BJT)를 포함하는 반도체 스위치 중에서 선택된 적어도 하나 이상의 반도체 스위치일 수 있다.
이와 같이, 본 발명의 제1 실시 형태에 의하면, 전압 승압부(110)는 권선형 유도 전동기(IM)의 각상(A, B, C)의 회전자 권선(111b)을 인덕터로 사용하며, 회전자 권선(111b)에 흐르는 전류를 회전자 전류 제어부(112)와 부스트 다이오드부(113)를 통해 제어함으로써, 부스트 컨버터로 기능할 수 있다. 전압 승압부(110)에 의해 승압된 전압은 역류 방지용 다이오드(130)를 통해 전력 회생부(120)로 전달될 수 있다. 한편, 전압 승압부(110)에 의해 생성된 전압은 계통 전원(100)의 전압보다 크게 함으로써, 변압기와 같은 추가적인 승압 장치 없이도 계통 전원(100)으로 회생시킬 수 있는 기술적 효과가 있다.
그리고, 전력 회생부(120)는 전압 승압부(110)에 의해 승압된 전압을 교류 전압으로 변환하여 계통 전원(100)에 공급한다. 전력 회생부(120)는 충전용 커패시터(C) 및 계통 인계형 회생 인버터를 포함할 수 있으며, 구체적으로 계통 인계형 회생 인버터는 펄스 폭 변조(PWM) 인버터 및 120도 통전형 인버터 중에서 선택된 어느 하나일 수 있다.
한편, 역류 방지용 다이오드(130)는 애노드가 부스트 다이오드부(113)에 포함된 다이오드들(D1 내지 D3)의 캐소드에 공통 연결되며, 캐소드는 전력 회생부(120)에 연결된 구성을 포함할 수 있다. 이러한 역류 방지용 다이오드(130)를 통해 전력 회생부(120)로부터 전압 승압부(110)로 전류가 역류하는 것을 방지할 수 있다.
또한, 서지 필터(140)는 회전자 전류 제어부(112)를 구성하는 스위칭 소자들(Q1 내지 Q3)의 타단 및 부스트 다이오드부(113)에 포함된 다이오드들(D1 내지 D3)의 애노드에 공통 연결된 구성을 포함할 수 있다. 이러한 서지 필터(140)는 스위칭 소자들(Q1 내지 Q3)의 스위칭시 발생하는 서지 전압을 흡수함으로써, 스위칭 소자들(Q1 내지 Q3)의 소손을 방지할 수 있다.
상술한 서지 필터(140)는 커패시터로 구성되며, 그 용량은 발생하는 서지 전압의 크기와 역류 방지용 다이오드(130와 계통 전원(100)까지 존재하는 기생 인덕턴스의 크기에 의해 결정될 수 있다. 또한, 본 발명의 제1 실시 형태에 따른 서지 필터(140)는 커패시터를 도시하고 있으나, 반드시 이에 한정되는 것은 아니며, 커패시터-다이오드, 커패시터-다이오드-저항을 결합한 스너버 회로로 구성될 수도 있음은 물론이다.
한편, 제어부(150)는 회전자의 속도(161), 회전자의 전류(162) 및 회전자의 전압/위상/주파수(163)를 검출하고, 검출된 정보들에 기초하여 회전자 전류 제어부(112)의 스위칭 소자들(Q1 내지 Q3) 및 전력 회생부(120)의 스위칭 소자들(Q4 내지 Q9)를 제어하기 위한 제어신호(SWm, SWr)를 생성한다. 생성된 제어신호(SWm, SWr)에 의해 회전자 전류 제어부(112)의 각 스위칭 소자들(Q1 내지 Q3)과 전력 회생부(120)의 스위칭 소자들(Q4 내지 Q9)이 온오프된다. 상술한 회전자의 속도(161), 회전자의 전류(162) 및 회전자의 전압/위상/주파수(163)에 기초한 제어 신호(SWm, SWr)의 생성은 다양한 알고리즘에 의해 구현될 수 있을 것이며, 본 발명의 실시 형태로서 구체화하지는 않았다.
이하, 본 발명의 제1 실시 형태에 따른 전력 회생 장치의 동작 원리를 설명한다.
도 1을 참조하면, 인가된 계통 전원(100)에 의해 권선형 유도 전동기(IM)의 속도 및 토크 제어가 수행되며, 이에 따라 권선형 유도 전동기(IM)의 고정자 권선에 자기적으로 결합된 회전자 권선(111b)의 각상(A, B, C)에는 전압이 유도된다.
제어부(150)는 회전자의 속도(161), 회전자 권선(111b)을 흐르는 전류(162) 및 회전자의 전압/위상/주파수(163)를 검출하고, 검출된 정보들(161, 162, 163)에 기초하여 회전자 전류 제어부(112)의 스위칭 소자들(Q1 내지 Q3) 및 전력 회생부(120)의 스위칭 소자들(Q4 내지 Q9)를 제어하기 위한 제어신호(SWm, SWr)를 생성한다.
본 발명의 실시 형태에 의하면, 제어부(150)에 의해 생성된 제어 신호(SWm)에 의해 회전자 전류 제어부(112)의 스위칭 소자들(Q1 내지 Q3)이 턴온/턴오프를 반복하며, 회전자 권선(111b)은 인덕터로 기능하여, 회전자 권선(111b)에 유도되는 전압은 전압 승압부(110)에 의해 승압되게 된다.
구체적으로, 본 발명의 제1 실시 형태에 의하면, 회전자 권선(111b)의 각 상(A, B, C)을 인덕터로 사용하게 되며, 이에 따라 회전자 권선(111b)의 A상 - 스위칭 소자(Q1)-다이오드(D1), 회전자 권선(111b)의 B상-스위칭 소자(Q2)-다이오드(D2) 및 회전자 권선(111b)의 C상-스위칭 소자(Q3)-다이오드(D3)의 총 3개의 부스트 컨버터가 독립적으로 또는 상호 연계하여 동작하게 된다.
예컨대, 회전자 권선(111b)의 A상 - 스위칭 소자(Q1) - 다이오드(D1)를 포함하는 부스트 컨버터 모듈의 경우 스위칭 소자(Q1)가 턴온될 경우 인덕터로 기능하는 회전자 권선(111b)에는 전류가 증가하게 되며, 스위칭 소자(Q1)가 턴오프되면 회전자 권선(111b)의 전류는 전력 회생부(120)로 부스팅되게 된다. 나머지 부스트 컨버터 모듈의 경우도 유사하게 동작할 수 있다.
한편, 본 발명의 실시 형태에 의하면, 스위칭 소자들(Q1 내지 Q3)의 타단 및 다이오드들(D1 내지 D3)의 캐소드에 연결된 서지 필터(140)를 통해 스위칭 소자들(Q1 내지 Q3)의 스위칭시 발생하는 서지 전압을 흡수함으로써, 스위칭 소자들(Q1 내지 Q3)의 소손을 방지할 수 있다.
상술한 전압 승압부(110)에 의해 승압된 전압은 전력 회생부(120)로 전달되며, 전달된 전압은 전력 회생부(120)에 의해 계통 전원(100)으로 전달할 수 있다. 본 발명의 실시 형태에 따른 전력 회생부(120)는 계통 인계형 회생 인버터일 수 있으며, 구체적으로 펄스 폭 변조(PWM) 인버터 및 120도 통전형 인버터 중에서 선택된 어느 하나일 수 있다.
이와 같이, 본 발명의 실시 형태에 의하면, 권선형 유도 전동기의 회전자 권선에 의해 유도된 전기 에너지를 계통 전원으로 회생하여 에너지 절감을 도모할 수 있는 기술적 효과가 있다. 또한, 권선형 유도 전동기의 회전자 권선에 의해 유도된 전압을 승압하도록 함으로써, 변압기와 같은 추가적인 승압 장치 없이도 계통 전원으로 회생시킬 수 있는 기술적 효과가 있다.
한편, 도 2는 본 발명의 제2 실시 형태에 따른 권선형 유도 전동기의 회전자 전류 제어 장치의 전체 구성도이다. 도 1과 비교하면, 상전환부(150)와 인덕턴스부(114)가 추가된 것이 특징이다. 도 1에서 도시된 제1 실시 형태에 따른 회전자 전류 제어 장치의 경우 역상 제동시, 즉 계통 전원의 상순을 역상으로 전환하여 권선형 유도 전동기(IM)의 고정자 권선(111a)에 인가하는 경우 회전자 권선(111b)에 과전류가 발생하여 후단의 다이오드(110, 130, 140)나 스위칭 소자들(112, 120)이 파손되는 문제점이 생길 수 있다. 따라서, 이하의 도 2에서 도시된 제2 실시 형태에 따라 상술한 과전류를 제한하기 위한 방안을 설명한다.
이하에서는, 도 2 내지 도 5를 참조하여 본 발명의 제2 실시 형태에 따른 권선형 유도 전동기의 회전자 전류 제어 장치의 구체적인 구성 및 동작 원리를 상세하게 설명한다. 다만, 발명의 간명화를 위해 도 1과 비교하여 추가된 부분, 즉 상전환부(150)와 인덕턴스부(114)를 중심으로 상세하게 설명한다.
우선, 도 2를 참조하면, 상전환부(150)는 제동을 위해 계통 전원(100)의 상순을 역상으로 전환하여 권선형 유도 전동기(IM)의 고정자 권선(111a)에 공급할 수 있다.
이를 위해 상전환부(150)는 고정자 권선(111a)의 제1 상(A)에 양단이 연결된 제1 반도체 스위치부(T1)와, 고정자 권선(111a)의 제2 상(B)에 양단이 연결된 제2 반도체 스위치부(T2)와, 고정자 권선(111a)의 제3 상(C)에 양단이 연결된 제3 반도체 스위치부(T3)와, 제2 상(B)에 일단이 연결되고, 제3 상(C)에 타단이 연결된 제4 반도체 스위치부(T4)와, 제3 상(C)에 일단이 연결되고, 제2 상(B)에 타단이 연결된 제5 반도체 스위치부(T5)를 포함할 수 있다.
또한, 상전환을 위해 제2 및 제3 반도체 스위치부(T2 및 T3)가 턴-온될 때, 제4 및 제5 반도체 스위치부(T4 및 T5)는 턴-오프되며, 제4 및 제5 반도체 스위치부(T4 및 T5)가 턴-온될 때, 제2 및 제3 반도체 스위치부(T2 및 T3)는 턴-오프될 수 있다.
한편, 회전자 권선(111b)에 유도되는 전압의 크기는 다음의 수학식 1에 의해 결정될 수 있다.
[수학식 1]
Vr = Vs×(Wr/Ws)×S = Vs×(Wr/Ws)×((ws-wr)/ws)
여기서, Vr은 회전자 전압, Vs는 고정자 전압, Wr은 회전자 권선수, Ws은 고정자 권선수, S는 슬립(slip), ws는 동기 속도, wr은 회전자 속도를 각각 의미한다.
여기서, 회전자 권선(111b)에 유도되는 전압의 크기가 충전 커패시터(C)에 저장된 전압의 크기보다 크게 되면, 회전자 전류 제어부(112)의 스위칭 소자들(Q1 내지 Q3)가 턴-오프 상태라 하더라도 부스트 다이오드부(110)와 스위칭 소자들(Q1 내지 Q3)의 바디 다이오드에 의해 구성되는 3상 브리지 정류 회로에 의해 과도한 충전 전류가 충전 커패시터(C)로 흐를 수 있다.
또한, 권선형 유도 전동기(IM)의 고정자 권선(111a) 및 회전자 권선(111b)의 권선비가 소정 기준치보다 클 경우 과도한 충전 전류로 인해 3상 브리지 정류 회로를 구성하는 다이오드들이 파괴될 수 있다. 특히, 역상 제동('역상 제동'이란 회전자의 회전 방향과 반대 방향으로 고정자 권선(111a)에 역상의 전원을 인가함으로써 발생하는 토크로 회전자의 회전을 구속하는 방식을 말한다)의 경우 더욱 과도한 전압이 회전자 권선(111b)에 유도될 수 있다.
따라서, 본 발명의 실시 형태에 의하면, 상전환부(150)는 고정자 권선(111a)에 인가되는 전압의 크기를 제어함으로써, 회전자 권선(111b)에 흐르는 전류의 크기를 제한할 수 있다.
이를 위해 제1 반도체 스위치부(T1) 내지 제5 반도체 스위치부(T2)는 각각은, 트라이액 소자 또는 사이리스터 소자와 같은 적어도 하나의 반도체 스위치를 포함할 수 있다. 일 실시 형태로 한 쌍의 실리콘 제어 정류기(SCR: Silicon Controlled Rectifier)가 역병렬로 접속된 형태를 가지는 양방향 사이리스터가 도 2에 도시되어 있다.
즉, 권선형 유도 전동기(IM)를 강제로 제동 또는 감속시키기 위해 역상순의 계통 전원(100)을 고정자 권선(111a)에 인가한 경우에 발생되는 과도한 회전자 전류를 방지하기 위해, 제어부(160)는 점호각 신호(SWt)를 상전환부(150)로 인가할 수 있다. 이후 인가된 점호각 신호(SWt)에 따라 제1 내지 제5 반도체 스위치부(T1 내지 T5)가 제어됨으로써, 고정자 권선(111a)에 인가되는 전압의 크기가 제한될 수 있는 것이다.
이와 같이, 본 발명의 실시 형태에 의하면, 제어부(160)로부터 인가되는 점호각 제어 신호(SWt)에 따라 한 쌍의 실리콘 제어 정류기 중 하나는 양의 전압을 나머지 하나는 음의 전압을 양방향으로 제어함으로써, 회전자 권선(111b)에 연결된 소자들(커패시터, 다이오드 등)로 흐르는 과도한 전류를 방지함과 동시에 소자들(커패시터, 다이오드 등)이 파괴되는 것을 방지할 수 있는 기술적 효과가 있다.
한편, 도 3은 권선형 유도 전동기(IM)의 고정자 권선(111a)에 인가되는 전압의 크기에 따른 토크 및 슬립과의 관계를 도시한 도면이다.
통상 고정자 권선(111a)에 인가되는 전압(Vp)의 크기는 회전자의 회전력(토크)을 발생시키는 요소인 자기력의 크기를 결정한다. 하지만, 회전자의 회전 속도가 권선비에 따라 일정 속도 이상이 되면, 고정자에 정격 전압의 100%를 인가할 수 없게 되어 충분한 토크를 발생시킬 수 없는 문제점이 발생될 수 있다. 즉, 도 3에 도시된 바와 같이, 고정자 정격 전압의 60%를 인가하면, 100%를 인가하였을 때의 절반도 되지 않는 토크가 발생됨을 알 수 있다.
따라서, 본 발명의 다른 실시 형태에 의하면, 상술한 상전환부(150)에서의 점호각 제어와 함께 또는 상전환부(150)에서의 점호각 제어 없이도 회전자 권선(111b)의 각 상에 인덕터(인덕턴스부(114) 참조)를 추가함으로써 원하는 토크를 발생시키면서 회전자 권선(111b)의 과전류를 제한할 수 있다.
구체적으로, 권선형 유도 전동기(IM)의 회전자 권선(111b)의 각 상마다 연결된 인덕터를 포함하는 인덕턴스부(114)를 통해 역상 제동시 발생되는 과전류를 제어할 수 있다. 이하, 도 4를 참조하여 구체적으로 설명한다.
한 상당 등가회로는 도 4에 도시된 바와 같이 나타낼 수 있으며, 이때 회전자 권선(111b)을 흐르는 전류(Ir)는 하기의 수학식 2에 따라 결정될 수 있다.
[수학식 2]
Figure PCTKR2012004155-appb-I000001
여기서, Vr은 회전자 권선의 정격 전압, Rr은 회전자 권선의 권선 저항, Xr은 회전자 권선의 누설 인덕턴스, Vr은 회전자 권선의 출력단 전압, Ir은 회전자 권선의 전류, Vp는 계통 전원인 상전압, VFD는 다이오드 순방향 전압, XL은 각 상에 연결된 인덕터의 인덕턴스, S는 슬립, w는 회전자 속도, Lr은 회전자 권선의 인덕터, LL은 각 상에 연결된 인덕터를 의미한다.
수학식 2에서도 알 수 있듯이, 회전자 권선(111b)을 흐르는 전류(Ir)는 각 상에 연결된 인덕터의 크기에 따라 조절될 수 있음을 알 수 있다. 여기서, 각 상에 연결되는 인덕터의 크기는 회전자 권선(111b)을 흐르는 전류(Ir)가 미리 설정된 최대값 이내가 되도록 설계될 수 있다.
한편, 도 5는 도 2에서 도시된 본 발명의 제2 실시 형태의 제어 모드를 설명하기 위한 도면으로, 도면부호 501은 회전자의 속도를, 도면부호 502는 토크를 의미한다.
본 발명의 제2 실시 형태에 따라 제어할 경우 회전자 권선(111b)을 흐르는 전류에 기여하는 전류는 크게 2가지로, 그 하나는 전압 승압부(110)와 별도록 순전히 회전자 권선(111b)에 유도되는 전압이 높아져 흐르는 전류이며, 나머지는 전압 승압부(110)에 의해 부스팅되는 전류이다. 따라서, 제어부(160)는 하기의 구간별로 상전환부(150), 전압 승압부(110)를 제어할 수 있다.
우선, 도 5에 도시된 바와 같이, 구간 Ⅰ은 가속 구간을 의미한다. 구체적으로, 가속 초기에는 상전환부(150)만의 위상 제어를 통해 고정자 권선(111a)의 전압을 서서히 증가시킬 수 있다. 이후 원하는 토크가 만족되면, 전류 제어부(112)에 의한 회전자 권선(111b)의 전류 제어 없이 연속해서 상전환부(150)만의 위상 제어를 통해 속도 제어를 수행할 수 있다. 하지만, 원하는 토크를 만족시키지 못하는 경우에는 상전환부(150)의 위상 제어 없이(즉, T1 - T2 - T3 또는 T1 - T4 - T5를 모두 턴-온) 전류 제어부(112)의 전류 제어를 통해 속도 제어를 수행하게 된다.
구간 Ⅱ는 등속 구간을 의미한다. 구체적으로 고정자의 권선(111a)과 회전자의 권선(111b) 비에 따라 제어 방식이 달라진다. 즉, 권선비가 작아(예컨대 고정자 권선(111a)과 회전자 권선(111b)의 권선비가 1:1) 회전자 권선(111b)의 전압이 높으며, 원하는 토크가 만족되면, 상전환부(150)만의 위상 제어를 통해 회전자 권선(111b)의 전류를 제어하게 된다. 하지만, 권선비가 커서 회전자 권선(111b)의 전압이 낮으며, 원하는 토크를 만족하지 못하는 경우에는 상전환부(150)의 위상 제어 없이(즉, T1 - T2 - T3 또는 T1 - T4 - T5를 모두 턴-온) 전류 제어부(112)만을 제어하여 회전자 권선(111b)에 흐르는 전류를 제어할 수 있다.
구간 Ⅲ은 역상 제동에 의한 감속 구간을 의미한다. 구체적으로, 상전환부(150)의 위상 제어 없이, 역상 전압을 인가한 후(T1 - T4 - T5를 모두 턴-온), 전류 제어부(112)만을 제어하여 회전자 권선(111b)에 흐르는 전류를 제어할 수 있다.
상술한 바와 같이, 권선형 유도 전동기(IM)가 정지에서 기동될 때와 회전하고 있는 권선형 유도 전동기(IM)가 역상 제동될 때는 회전자의 출력 전압의 주파수는 60Hz 이상인 시점이다. 이 경우 인덕턴스부(114)의 인덕턴스가 크게 작용하여 전압 강하와 전류 제한 효과가 극대화되며, 이미 회전 속도가 일정 범위에 도달하였거나 정격 속도 부근의 낮은 주파수 영역에서는 인덕턴스부(114)의 인덕턴스가 매우 작아지게 된다. 이와 같이, 본 발명의 실시 형태에 의하면, 회전자 권선(111b)의 각상에 인덕터(114 참조)를 추가함으로써, 회전자 권선(111b)의 출력 전압의 주파수 변화에 따라 인턱턴스가 가변될 수 있어 전체 시스템을 안정화시킬 수 있는 기술적 효과가 있다.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되지 아니한다. 첨부된 청구범위에 의해 권리범위를 한정하고자 하며, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게 자명할 것이다.

Claims (13)

  1. 권선형 유도 전동기; 및
    상기 권선형 유도 전동기의 회전자 권선 자체를 인덕터로 사용하여 상기 회전자에 유도된 전압을 승압하는 전압 승압부
    를 포함하는 권선형 유도 전동기의 회전자 전류 제어 장치.
  2. 제1항에 있어서,
    상기 회전자 전류 제어 장치는,
    제동시 계통 전원의 상순을 역상으로 전환하여 상기 권선형 유도 전동기의 고정자 권선에 공급하는 상전환부
    를 더 포함하는 권선형 유도 전동기의 회전자 전류 제어 장치.
  3. 제2항에 있어서,
    상기 회전자 전류 제어 장치는,
    상기 권선형 유도 전동기의 회전자 권선의 각 상마다 연결되어 상기 제동시 발생되는 과전류를 제어하는 인덕턴스부
    를 더 포함하는 권선형 유도 전동기의 회전자 전류 제어 장치.
  4. 제3항에 있어서,
    상기 상전환부는,
    상기 고정자 권선의 제1 상에 양단이 연결된 제1 반도체 스위치부;
    상기 고정자 권선의 제2 상에 양단이 연결된 제2 반도체 스위치부;
    상기 고정자 권선의 제3 상에 양단이 연결된 제3 반도체 스위치부;
    상기 제2 상에 일단이 연결되고, 상기 제3 상에 타단이 연결된 제4 반도체 스위치부; 및
    상기 제3 상에 일단이 연결되고, 상기 제2 상에 타단이 연결된 제5 반도체 스위치부
    를 포함하는 권선형 유도 전동기의 회전자 전류 제어 장치.
  5. 제4항에 있어서,
    상기 제1 내지 제5 반도체 스위치부는 각각 적어도 하나의 반도체 스위치
    를 포함하는 권선형 유도 전동기의 회전자 전류 제어 장치.
  6. 제4항에 있어서,
    상기 제2 및 제3 반도체 스위치부가 턴-온될 때, 상기 제4 및 제5 반도체 스위치부는 턴-오프되며,
    상기 제4 및 제5 반도체 스위치부가 턴-온될 때, 상기 제2 및 제3 반도체 스위치부는 턴-오프되는 권선형 유도 전동기의 회전자 전류 제어 장치.
  7. 제1항에 있어서,
    상기 회전자 전류 제어 장치는,
    상기 전압 승압부에서 승압된 전압을 계통 전원으로 전달하기 위한 전력 회생부
    를 더 포함하는 권선형 유도 전동기의 회전자 전류 제어 장치.
  8. 제7항에 있어서,
    상기 전압 승압부는,
    상기 회전자 권선의 각상마다 일단이 연결되어 상기 회전자 권선의 전류를 제어하는 스위칭 소자들을 포함하는 회전자 전류 제어부; 및
    상기 회전자 권선의 각상마다 애노드가 연결되어 상기 회전자로부터의 전류를 상기 전력 회생부로 전달하기 위한 다이오드들을 포함하는 부스트 다이오드부
    를 포함하는 권선형 유도 전동기의 회전자 전류 제어 장치.
  9. 제7항에 있어서,
    상기 전력 회생부는,
    상기 전압 승압부에 의해 승압된 전압을 교류 전압으로 변환하여 계통 전압에 공급하는 계통 연계형 회생 인버터
    를 포함하는 권선형 유도 전동기의 회전자 전류 제어 장치.
  10. 제9항에 있어서,
    상기 계통 연계형 회생 인버터는,
    펄스 폭 변조(PWM) 인버터 및 120도 통전형 인버터 중에서 선택된 어느 하나인 권선형 유도 전동기의 회전자 전류 제어 장치.
  11. 제7항에 있어서,
    상기 전압 승압부와 상기 전력 회생부 사이에는
    상기 전력 회생부로부터 상기 전압 승압부로 전류가 역류하는 것을 방지하기 위한 역류 방지용 다이오드
    를 더 포함하는 권선형 유도 전동기의 회전자 전류 제어 장치.
  12. 제8항에 있어서,
    상기 스위칭 소자들은,
    절연 게이트 양극성 트랜지스터(Insulated gate bipolar transistor, IGBT), 전계 효과 트랜지스터 (Field-effect transistor, FET), 게이트 턴 오프 사이리스터(Gate turn-off thyristor, GTO), 및 접합형 트랜지스터(Bipolar junction transistor, BJT)를 포함하는 반도체 스위치 중에서 선택된 적어도 하나 이상의 반도체 스위치인 권선형 유도 전동기의 회전자 전류 제어 장치.
  13. 제8항에 있어서,
    상기 회전자 전류 제어 장치는,
    상기 스위칭 소자들의 타단 및 상기 다이오드들의 캐소드에 연결되어 상기 스위칭 소자들의 스위칭시 발생하는 서지 전압을 흡수함으로써, 상기 스위칭 소자들의 소손을 방지하기 위한 서지 필터
    를 더 포함하는 권선형 유도 전동기의 회전자 전류 제어 장치.
PCT/KR2012/004155 2011-05-26 2012-05-25 권선형 유도 전동기의 회전자 전류 제어 장치 WO2012161547A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280022263.1A CN103582999A (zh) 2011-05-26 2012-05-25 用于控制绕线转子式感应电机中的转子电流的设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020110050069A KR101069140B1 (ko) 2011-05-26 2011-05-26 권선형 유도 전동기의 전력 회생 장치
KR10-2011-0050069 2011-05-26
PCT/KR2011/009255 WO2012161393A1 (ko) 2011-05-26 2011-12-01 권선형 유도 전동기의 전력 회생 장치
KRPCT/KR2011/009255 2011-12-01

Publications (2)

Publication Number Publication Date
WO2012161547A2 true WO2012161547A2 (ko) 2012-11-29
WO2012161547A3 WO2012161547A3 (ko) 2013-01-17

Family

ID=44958118

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2011/009255 WO2012161393A1 (ko) 2011-05-26 2011-12-01 권선형 유도 전동기의 전력 회생 장치
PCT/KR2012/004155 WO2012161547A2 (ko) 2011-05-26 2012-05-25 권선형 유도 전동기의 회전자 전류 제어 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009255 WO2012161393A1 (ko) 2011-05-26 2011-12-01 권선형 유도 전동기의 전력 회생 장치

Country Status (3)

Country Link
KR (1) KR101069140B1 (ko)
CN (1) CN103582999A (ko)
WO (2) WO2012161393A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104798284B (zh) 2012-10-30 2017-07-18 裵莲秀 负载电流再生电路及具有负载电流再生电路的电气装置
CN106505609A (zh) * 2015-09-08 2017-03-15 通用电气公司 风力涡轮机及风力涡轮机的保护系统
LT6435B (lt) 2015-11-18 2017-08-10 Vanagas Jonas Indukcinio trifazio variklio su faziniu rotoriumi reguliavimo būdas
CN110572096A (zh) * 2019-07-22 2019-12-13 中国船舶重工集团公司第七0七研究所 高速大惯量负载用无铁芯无刷直流电机控制系统及方法
KR102495535B1 (ko) * 2020-12-17 2023-02-07 동성계전 주식회사 권선형 유도 전동기의 출력 제어 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152282A (ja) * 1984-01-20 1985-08-10 Fuji Electric Co Ltd 巻線形誘導電動機の2次抵抗制御装置
JPH10257772A (ja) * 1997-03-06 1998-09-25 Hilti Ag 誘導負荷を有する回路網に発生した電流の推移に対する反作用を低減する方法及びブースト変換器
JP2004260939A (ja) * 2003-02-26 2004-09-16 Mitsubishi Electric Engineering Co Ltd 巻線形電動機の制御装置
JP2005229725A (ja) * 2004-02-13 2005-08-25 Fuji Electric Systems Co Ltd 巻線形誘導電動機の制御装置
JP2008054467A (ja) * 2006-08-28 2008-03-06 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205584A (ja) * 1995-01-24 1996-08-09 Okuma Mach Works Ltd 電動機の制御装置
JPH08237998A (ja) * 1995-02-23 1996-09-13 Isuzu Ceramics Kenkyusho:Kk 交流発電機の電圧制御装置
CN2237902Y (zh) * 1995-04-03 1996-10-16 王秀田 带电子联锁器的定转子全无触点交流开关柜
JP3770370B2 (ja) * 1999-07-06 2006-04-26 富士電機システムズ株式会社 巻線形誘導電動機の制御装置
JP2001157497A (ja) * 1999-11-19 2001-06-08 Mitsuba Corp 同期発電機の発電制御装置
JP2001251883A (ja) * 2000-03-03 2001-09-14 Hitachi Engineering & Services Co Ltd 巻線型誘導電動機の制御装置
CN201656905U (zh) * 2010-04-16 2010-11-24 西安新兴自动控制电器有限公司 转差功率回馈式大功率中高压异步电机调速系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152282A (ja) * 1984-01-20 1985-08-10 Fuji Electric Co Ltd 巻線形誘導電動機の2次抵抗制御装置
JPH10257772A (ja) * 1997-03-06 1998-09-25 Hilti Ag 誘導負荷を有する回路網に発生した電流の推移に対する反作用を低減する方法及びブースト変換器
JP2004260939A (ja) * 2003-02-26 2004-09-16 Mitsubishi Electric Engineering Co Ltd 巻線形電動機の制御装置
JP2005229725A (ja) * 2004-02-13 2005-08-25 Fuji Electric Systems Co Ltd 巻線形誘導電動機の制御装置
JP2008054467A (ja) * 2006-08-28 2008-03-06 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置

Also Published As

Publication number Publication date
WO2012161393A1 (ko) 2012-11-29
WO2012161547A3 (ko) 2013-01-17
KR101069140B1 (ko) 2011-09-30
CN103582999A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
US11038340B2 (en) Soft-starter AC-AC converter with integrated solid-state circuit breaker and method of operation thereof
US6744644B2 (en) Soft-start of DC link capacitors for power electronics and drive systems
WO2012161547A2 (ko) 권선형 유도 전동기의 회전자 전류 제어 장치
JP7211771B2 (ja) 電力変換装置、電力系統、および電力系統を制御する方法
JP2007252192A (ja) 電気自動車及びハイブリッド自動車のためのy字スイッチインバータ
JP2695458B2 (ja) 個別給電可能な溶接用発電装置
EP0538825B1 (en) Power converting apparatus
EP2677621B1 (en) AC-DC single phase controlled reversible converter with low loss snubber
JP2004153988A (ja) 停止型励磁システム
KR20200100916A (ko) 3상 교류모터 제어 방법 및 장치
WO2021040197A1 (ko) 독립 마이크로그리드 시스템 및 인버터 장치
JP3287020B2 (ja) 2次励磁装置
WO2017204426A1 (ko) 능동 클램프 풀브릿지 컨버터 및 그 구동방법
US11813942B2 (en) Motor control system and vehicle
WO2024117325A1 (ko) 릴레이 장치, 및 이를 구비하는 배터리 충전 장치
WO2022186438A1 (ko) 인버터 회로 및 그 제어 방법
CN218678871U (zh) 一种功率电路和电器设备
JP7460508B2 (ja) 電力変換装置
WO2020204371A2 (ko) 인버터 제어장치
RU2308142C2 (ru) Способ и устройство управления тиристорами реверсивного преобразователя для питания якорной цепи электродвигателя постоянного тока (варианты)
WO2022005206A1 (ko) 전력 변환 장치 및 그 제어 방법
JP4430765B2 (ja) 中間回路の電圧を供給電圧に合わせる方法及び回路装置
JPH06261549A (ja) 電圧形自励式変換システム
JPS6281902A (ja) 電気車の走行制御装置
KR20130055887A (ko) 권선형 유도 전동기의 전력 회생 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789870

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789870

Country of ref document: EP

Kind code of ref document: A2