WO2012161393A1 - 권선형 유도 전동기의 전력 회생 장치 - Google Patents

권선형 유도 전동기의 전력 회생 장치 Download PDF

Info

Publication number
WO2012161393A1
WO2012161393A1 PCT/KR2011/009255 KR2011009255W WO2012161393A1 WO 2012161393 A1 WO2012161393 A1 WO 2012161393A1 KR 2011009255 W KR2011009255 W KR 2011009255W WO 2012161393 A1 WO2012161393 A1 WO 2012161393A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
induction motor
rotor
power regenerative
power
Prior art date
Application number
PCT/KR2011/009255
Other languages
English (en)
French (fr)
Inventor
박시우
김부광
김성완
Original Assignee
주식회사 자이벡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 자이벡 filed Critical 주식회사 자이벡
Priority to PCT/KR2012/004155 priority Critical patent/WO2012161547A2/ko
Priority to CN201280022263.1A priority patent/CN103582999A/zh
Publication of WO2012161393A1 publication Critical patent/WO2012161393A1/ko

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/07Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings
    • H02P2207/073Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings wherein only one converter is used, the other windings being supplied without converter, e.g. doubly-fed induction machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a power regenerative apparatus that regenerates electrical energy induced by a rotor of a wound induction motor to a power supply side, thereby achieving energy saving.
  • a winding type induction motor is a secondary winding by winding a three-phase winding around the rotor iron core, and a slip ring is provided at the tip of each phase winding to guide the secondary current to the outside through a brush.
  • a wound induction motor can realize a large starting torque by connecting an external resistance to the rotor winding and adjusting the resistance value. Therefore, it is still widely used for the purpose of starting a large inertial load such as a crane, a rolling mill, or a compressor that requires a large starting torque.
  • the conventional winding type induction motor controls torque and speed by connecting an external resistor to each phase of the rotor winding output and gradually short circuiting (adjusting the resistance value). Therefore, while there is an advantage that can choose any maximum, minimum torque, there is a disadvantage that a large loss occurs in the external resistance connected to the rotor winding.
  • An object of the present invention is to provide an electric power regenerative device for energy saving by regenerating electric energy induced by a rotor of a wound induction motor to a power supply side.
  • a wound induction motor including a rotor winding driven by a grid power supply;
  • a voltage boosting unit for boosting the voltage induced by the rotor by using the rotor winding of the wound induction motor as an inductor
  • a power regeneration device for a wound induction motor including a power regeneration unit for transferring a voltage boosted by the voltage boosting unit to a system power source.
  • the said voltage boosting part is
  • a rotor current controller including switching elements having one end connected to each phase of the rotor winding to control a current of the rotor winding
  • An anode may be connected to each phase of the rotor winding to include a boost diode unit including diodes for transferring current from the rotor to the power regenerative unit.
  • the said power regenerative apparatus is
  • a surge filter may be further connected to the other end of the switching elements and the cathode of the diodes to absorb a surge voltage generated during switching of the switching elements, thereby preventing burnout of the switching elements.
  • the said power regenerative part is
  • It may include a grid-associated regenerative inverter for converting the voltage boosted by the voltage boosting unit into an alternating voltage to supply to the grid voltage, the grid-linked regenerative inverter, a pulse width modulation (PWM) inverter and 120 degrees through It may be any one selected from the typical inverters.
  • PWM pulse width modulation
  • a backflow prevention diode may be further included between the voltage boosting unit and the power regenerative unit to prevent current from flowing back from the power regenerative unit to the voltage boosting unit.
  • the switching elements may include an insulated gate bipolar transistor (IGBT), a field-effect transistor (FET), and a gate turn-off thyristor.
  • IGBT insulated gate bipolar transistor
  • FET field-effect transistor
  • BJT bipolar junction transistor
  • IM wound induction motor
  • FIG. 1 is an overall configuration diagram of a power regenerative device of a wound induction motor according to an exemplary embodiment of the present invention.
  • FIG. 1 is an overall configuration diagram of a power regenerative device of a wound induction motor according to an exemplary embodiment of the present invention.
  • the power regenerative device uses a wound induction motor IM including the rotor winding 111 and a voltage induced in the rotor winding 111 by using the rotor winding 111 of the wound induction motor IM as an inductor.
  • the voltage boosting unit 110 may boost the voltage boosting unit 110, and the power regenerative unit 120 may transfer the voltage boosted by the voltage boosting unit 110 to the system power supply 100.
  • the voltage boosting unit 110 includes switching elements Q1 to Q3 having one end connected to each phase A, B, and C of the rotor winding 111 to control the current of the rotor winding 111.
  • An anode is connected to each of the phases A, B, and C of the rotor current control unit 112 and the rotor winding 111 to transfer current from the rotor winding 111 to the power regenerative unit 120.
  • the boost diode unit 113 including the diodes D1 to D3 may be included.
  • the power regenerative device is connected to the other end of the switching elements Q1 to Q3 and the cathode of the diodes D1 to D3 to be generated when switching the switching elements Q1 to Q3.
  • the surge filter 140 for preventing the burning of the switching elements Q1 to Q3 and the current from the power regenerative unit 120 to the voltage boosting unit 110 to prevent the current from flowing back. It may further include a backflow prevention diode (130).
  • the voltage boosting unit 110 may boost the voltage induced in the rotor winding 111 by using the rotor winding 111 of the wound induction motor IM as an inductor.
  • the voltage boosting is performed for each phase A, B, and C, and the boosted voltage may be transmitted to the power regeneration unit 120 through the backflow prevention diode 130.
  • the voltage boosting unit 110 may include a rotor current control unit 112 and a boost diode unit 113.
  • the boost diode unit 111 may include three diodes D1 through D3, and the three diodes D1 through D3 may have anodes connected to respective phases A, B, and C of the rotor winding 111.
  • the cathode may be connected to the power regenerative unit 120 through the backflow prevention diode 130.
  • the rotor current control unit 112 may include three switching elements Q1 to Q3, and the three switching elements Q1 to Q3 may be formed in each phase A, B, of the rotor winding 111. One end is connected to each C) to control the current flowing in the rotor winding 111.
  • each phase (A, B, C) of the rotor winding 111 is used as an inductor, and accordingly, phase A of the rotor winding 111-switching element Q1-
  • the diode D1, the B-phase switching element Q2 of the rotor winding 111-diode D2 and the C-phase switching element Q3-diode D3 of the rotor winding 111 are three in total. You will be configuring a boost converter.
  • the above-described rotor current controller 112 includes an insulated gate bipolar transistor (IGBT), a field-effect transistor (FET), a gate turn-off thyristor (GTO), and It may be at least one semiconductor switch selected from semiconductor switches including a bipolar junction transistor (BJT).
  • IGBT insulated gate bipolar transistor
  • FET field-effect transistor
  • GTO gate turn-off thyristor
  • BJT bipolar junction transistor
  • the voltage boosting unit 110 uses the rotor windings 111 of each phase A, B, and C of the winding type induction motor IM as an inductor. By controlling the current flowing in the winding 111 through the rotor current control unit 112 and the boost diode unit 113, it can function as a boost converter.
  • the voltage boosted by the voltage boosting unit 110 may be transmitted to the power regenerative unit 120 through the backflow prevention diode 130.
  • the voltage generated by the voltage boosting unit 110 is greater than the voltage of the system power supply 100, there is a technical effect that can be regenerated to the system power supply 100 without an additional boosting device such as a transformer.
  • the power regenerative unit 120 converts the voltage boosted by the voltage boosting unit 110 into an AC voltage and supplies the converted voltage to the system power supply 100.
  • the power regenerative unit 120 may be a grid takeover type regenerative inverter, and specifically, may be any one selected from a pulse width modulated (PWM) inverter and a 120 degree energized inverter.
  • PWM pulse width modulated
  • the reverse flow prevention diode 130 may have a configuration in which an anode is commonly connected to the cathodes of the diodes D1 to D3 included in the boost diode unit 113, and the cathode is connected to the power regenerative unit 120. .
  • the reverse flow prevention diode 130 may prevent the current from flowing back from the power regeneration unit 120 to the voltage boosting unit 110.
  • the surge filter 140 is commonly connected to the other ends of the switching elements Q1 to Q3 constituting the rotor current controller 112 and the anodes of the diodes D1 to D3 included in the boost diode unit 113. It can include a configuration.
  • the surge filter 140 may prevent the burnout of the switching elements Q1 to Q3 by absorbing a surge voltage generated when the switching elements Q1 to Q3 are switched.
  • the above-described surge filter 140 is composed of a capacitor, the capacity of which may be determined by the magnitude of the generated surge voltage and the parasitic inductance existing up to the backflow prevention diode 130 and the grid power supply 100.
  • the surge filter 140 shows a capacitor
  • the present invention is not limited thereto, and the surge filter 140 may be configured as a snubber circuit combining a capacitor-diode and a capacitor-diode-resistance.
  • the controller 150 detects the speed 151 of the rotor, the current 152 of the rotor, and the voltage / phase / frequency 153 of the rotor, and based on the detected information, the rotor current controller ( A control signal for controlling the switching elements Q1 to Q3 of 112 and the switching elements Q4 to Q9 of the power regeneration unit 120 is generated.
  • the switching elements Q1 to Q3 of the rotor current controller 112 and the switching elements Q4 to Q9 of the power regenerative unit 120 are turned on by the generated control signal.
  • the generation of the control signal based on the rotor speed 151, the rotor current 152 and the rotor voltage / phase / frequency 153 described above may be implemented by various algorithms, one of the present invention It is not specified as an example.
  • a speed and torque control of a wound induction motor IM are performed by an applied system power supply 100, and thus, a circuit magnetically coupled to a stator winding of a wound induction motor IM. Voltages are induced in each of the phases A, B, and C of the electron winding 111.
  • the controller 150 detects the speed 151 of the rotor, the current 152 flowing through the rotor winding 111, and the voltage / phase / frequency 153 of the rotor, and detects the detected information 151, 152, 153 generates a control signal for controlling the switching elements Q1 to Q3 of the rotor current controller 112 and the switching elements Q4 to Q9 of the power regenerative unit 120.
  • the switching elements Q1 to Q3 of the rotor current controller 112 are repeatedly turned on / off by the control signal generated by the controller 150, and the rotor winding ( 111 functions as an inductor so that the voltage induced in the rotor winding 111 is boosted by the voltage boosting unit 110.
  • each phase (A, B, C) of the rotor winding 111 is used as an inductor, and accordingly, the phase A-switching element of the rotor winding 111 ( Q1) -diode D1, B phase-switching element Q2 -diode D2 of rotor winding 111 and C phase-switching element Q3 -diode D3 of rotor winding 111
  • Q1 phase A-switching element of the rotor winding 111
  • B phase-switching element Q2 -diode D2 of rotor winding 111 Q1 -diode D1
  • B phase-switching element Q2 -diode D2 of rotor winding 111 Q3 phase-diode D3 of rotor winding 111
  • a total of three boost converters will operate independently or in conjunction.
  • the rotor winding 111 serving as an inductor when the switching element Q1 is turned on.
  • the current increases, and when the switching element Q1 is turned off, the current of the rotor winding 111 is boosted by the power regenerative unit 120.
  • the other bush converter module can operate similarly.
  • the surge filter 140 By absorbing the surge voltage generated at the time, it is possible to prevent burnout of the switching elements Q1 to Q3.
  • the voltage boosted by the voltage boosting unit 110 described above may be transmitted to the power regenerative unit 120, and the transferred voltage may be transmitted to the system power supply 100 by the power regenerative unit 120.
  • the power regenerative unit 120 may be a grid takeover type regenerative inverter, and specifically, may be any one selected from a pulse width modulation (PWM) inverter and a 120 degree energized inverter.
  • PWM pulse width modulation
  • a technical effect of regenerating electrical energy induced by the rotor winding 111 of the wound induction motor IM to the system power supply 100 can be achieved to save energy.
  • a technical effect of regenerating electrical energy induced by the rotor winding 111 of the wound induction motor IM to the system power supply 100 can be achieved to save energy.
  • by stepping up the voltage induced by the rotor winding 111 of the wound induction motor IM there is a technical effect that can be regenerated to the system power supply 100 without an additional boosting device such as a transformer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

권선형 유도 전동기의 전력 회생 장치가 제공된다. 전력 회생 장치는 계통전원에 의해 구동되는 회전자 권선을 포함한 권선형 유도 전동기; 권선형 유도 전동기의 회전자 권선을 인덕터로 사용하여 회전자에서 유도된 전압을 승압하는 전압 승압부; 및 전압 승압부에서 승압된 전압을 계통 전원으로 전달하기 위한 전력 회생부를 포함하여 구성된다. 이를 통해 권선형 유도 전동기의 회전자에 의해 유도된 전기 에너지를 전원측으로 회생하여 에너지 절감을 도모할 수 있다.

Description

권선형 유도 전동기의 전력 회생 장치
본 발명은 권선형 유도 전동기의 회전자에 의해 유도된 전기 에너지를 전원측으로 회생하여 에너지 절감을 도모하는 전력 회생 장치에 관한 것이다.
일반적으로 권선형 유도 전동기는 회전자 철심에 3상 권선을 감아 2차 권선으로 하고, 슬립링을 각 상 권선의 선단에 마련하여 브러시를 통해 2차 전류를 외부로 인도할 수 있도록 한 전동기이다. 이러한 권선형 유도 전동기는 회전자 권선에 외부 저항을 연결하고, 그 저항값을 조절함으로써, 큰 기동 토크를 구현할 수 있다. 따라서 큰 기동 토크가 요구되는 크레인이나 압연기, 압축기 등 큰 관성 부하의 기동 목적으로 아직도 많이 사용되고 있다.
이와 같이 기존의 권선형 유도 전동기는 회전자 권선 출력의 각 상에 외부 저항을 연결하고 단계적으로 단락(저항값을 조절)시키면서 토크와 속도를 제어한다. 따라서 임의의 최대, 최소 토크를 선택할 수 있는 장점이 있는 반면, 회전자 권선에 연결되는 외부 저항에서 큰 손실이 발생하는 단점이 있다.
상술한 방법 외에도 PWM(Pulse Width Modulation) 신호에 의해 회전자 권선에 흐르는 전류의 량을 제어함으로써, 토크와 속도를 제어하는 방법도 고안되고 있다. 이와 같은 방법에 의할 경우 상술한 외부 저항을 대체할 수 있어 외부 저항으로 인한 손실을 없앨 수 있는 장점이 있다.
이와 같이, 권선형 유도 전동기의 토크와 속도를 제어하기 위한 다양한 방법들이 연구되고 있으나, 회전자에 의해 유도된 전기 에너지를 전원측으로 회생하여 에너지를 절감하기 위한 방법에 대해서는 연구 개발이 미미한 실정이다.
본 발명은 권선형 유도 전동기의 회전자에 의해 유도된 전기 에너지를 전원측으로 회생하여 에너지 절감을 도모하는 전력 회생 장치를 제공하는 것을 목적으로 한다.
본 발명의 실시 형태에 의하면,
계통전원에 의해 구동되는 회전자 권선을 포함한 권선형 유도 전동기;
상기 권선형 유도 전동기의 회전자 권선을 인덕터로 사용하여 상기 회전자에서 유도된 전압을 승압하는 전압 승압부; 및
상기 전압 승압부에서 승압된 전압을 계통 전원으로 전달하기 위한 전력 회생부를 포함하는 권선형 유도 전동기의 전력 회생 장치를 제공한다.
또한, 본 발명의 실시 형태에 의하면, 상기 전압 승압부는,
상기 회전자 권선의 각상마다 일단이 연결되어 상기 회전자 권선의 전류를 제어하는 스위칭 소자들을 포함하는 회전자 전류 제어부; 및
상기 회전자 권선의 각상마다 애노드가 연결되어 상기 회전자로부터의 전류를 상기 전력 회생부로 전달하기 위한 다이오드들을 포함하는 부스트 다이오드부를 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 전력 회생 장치는,
상기 스위칭 소자들의 타단 및 상기 다이오드들의 캐소드에 연결되어 상기 스위칭 소자들의 스위칭시 발생하는 서지 전압을 흡수함으로써, 상기 스위칭 소자들의 소손을 방지하기 위한 서지 필터를 더 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 전력 회생부는,
상기 전압 승압부에 의해 승압된 전압을 교류 전압으로 변환하여 계통 전압에 공급하는 계통 연계형 회생 인버터를 포함할 수 있으며, 상기 계통 연계형 회생 인버터는, 펄스 폭 변조(PWM) 인버터 및 120도 통전형 인버터 중에서 선택된 어느 하나일 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 전압 승압부와 상기 전력 회생부 사이에는 상기 전력 회생부로부터 상기 전압 승압부로 전류가 역류하는 것을 방지하기 위한 역류 방지용 다이오드를 더 포함할 수 있다.
또한, 본 발명의 실시 형태에 의하면, 상기 스위칭 소자들은, 절연 게이트 양극성 트랜지스터(Insulated gate bipolar transistor, IGBT), 전계 효과 트랜지스터 (Field-effect transistor, FET), 게이트 턴 오프 사이리스터(Gate turn-off thyristor, GTO), 및 접합형 트랜지스터(Bipolar junction transistor, BJT)를 포함하는 반도체 스위치 중에서 선택된 적어도 하나 이상의 반도체 스위치일 수 있다.
본 발명의 일 측면에 따르면, 권선형 유도 전동기(IM)의 회전자 권선(111)에 의해 유도된 전기 에너지를 계통 전원(100)으로 회생하여 에너지 절감을 도모할 수 있는 기술적 효과가 있다.
본 발명의 다른 측면에 따르면, 권선형 유도 전동기(IM)의 회전자 권선(111)에 의해 유도된 전압을 승압하도록 함으로써, 변압기와 같은 추가적인 승압 장치 없이도 계통 전원(100)으로 회생시킬 수 있는 기술적 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 권선형 유도 전동기의 전력 회생 장치의 전체 구성도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러 가지의 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로만 한정되는 것은 아니다. 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.
도 1은 본 발명의 일 실시예에 따른 권선형 유도 전동기의 전력 회생 장치의 전체 구성도이다. 전력 회생 장치는 회전자 권선(111)을 포함한 권선형 유도 전동기(IM)와, 권선형 유도 전동기(IM)의 회전자 권선(111)을 인덕터로 사용하여 회전자 권선(111)에서 유도된 전압을 승압하는 전압 승압부(110)와, 전압 승압부(110)에서 승압된 전압을 계통 전원(100)으로 전달하기 위한 전력 회생부(120)를 포함할 수 있다.
한편, 전압 승압부(110)는 회전자 권선(111)의 각상(A, B, C)마다 일단이 연결되어 회전자 권선(111)의 전류를 제어하는 스위칭 소자들(Q1 내지 Q3)을 포함하는 회전자 전류 제어부(112)와, 회전자 권선(111)의 각상(A, B, C)마다 애노드가 연결되어 회전자 권선(111)로부터의 전류를 전력 회생부(120)로 전달하기 위한 다이오드들(D1 내지 D3)을 포함하는 부스트 다이오드부(113)를 포함할 수 있다.
또한, 본 발명의 일 실시예에 의하면, 전력 회생 장치는 스위칭 소자들(Q1 내지 Q3)의 타단 및 다이오드들(D1 내지 D3)의 캐소드에 연결되어 스위칭 소자들(Q1 내지 Q3)의 스위칭시 발생하는 서지 전압을 흡수함으로써, 스위칭 소자들(Q1 내지 Q3)의 소손을 방지하기 위한 서지 필터(140)와, 전력 회생부(120)로부터 전압 승압부(110)로 전류가 역류하는 것을 방지하기 위한 역류 방지용 다이오드(130)를 더 포함할 수 있다.
이하 본 발명의 일 실시예에 따른 권선형 유도 전동기의 전력 회생 장치의 구체적인 구성을 상세하게 설명한다.
우선 전압 승압부(110)는 권선형 유도 전동기(IM)의 회전자 권선(111)을 인덕터로 사용하여 회전자 권선(111)에 유도된 전압을 승압할 수 있다. 전압의 승압은 각상(A, B, C)마다 이루어지며, 승압된 전압은 역류 방지용 다이오드(130)를 통해 전력 회생부(120)로 전달될 수 있다.
구체적으로, 전압 승압부(110)는 회전자 전류 제어부(112)와 부스트 다이오드부(113)를 포함할 수 있다. 부스트 다이오드부(111)는 3개의 다이오드(D1 내지 D3)를 포함할 수 있으며, 3개의 다이오드(D1 내지 D3)는 회전자 권선(111)의 각상(A, B, C)에 애노드가 연결되며, 캐소드는 역류 방지용 다이오드(130)를 통해 전력 회생부(120)로 연결될 수 있다.
또한, 회전자 전류 제어부(112)는 3개의 스위칭 소자들(Q1 내지 Q3)을 포함할 수 있으며, 3개의 스위칭 소자들(Q1 내지 Q3)은 회전자 권선(111)의 각상(A, B, C)마다 일단이 연결되어 회전자 권선(111)에 흐르는 전류를 제어한다. 즉, 상술한 구성에 의할 때, 회전자 권선(111)의 각상(A, B, C)을 인덕터로 사용하게 되며, 이에 따라 회전자 권선(111)의 A상 - 스위칭 소자(Q1)-다이오드(D1), 회전자 권선(111)의 B상-스위칭 소자(Q2)-다이오드(D2) 및 회전자 권선(111)의 C상-스위칭 소자(Q3)-다이오드(D3)은 총 3개의 부스트 컨버터를 구성하게 되는 것이다.
상술한 회전자 전류 제어부(112)는 절연 게이트 양극성 트랜지스터(Insulated gate bipolar transistor, IGBT), 전계 효과 트랜지스터 (Field-effect transistor, FET), 게이트 턴 오프 사이리스터(Gate turn-off thyristor, GTO), 및 접합형 트랜지스터(Bipolar junction transistor, BJT)를 포함하는 반도체 스위치 중에서 선택된 적어도 하나 이상의 반도체 스위치일 수 있다.
이와 같이, 본 발명의 일 실시예에 의하면, 전압 승압부(110)는 권선형 유도 전동기(IM)의 각상(A, B, C)의 회전자 권선(111)을 인덕터로 사용하며, 회전자 권선(111)에 흐르는 전류를 회전자 전류 제어부(112)와 부스트 다이오드부(113)를 통해 제어함으로써, 부스트 컨버터로 기능할 수 있다. 전압 승압부(110)에 의해 승압된 전압은 역류 방지용 다이오드(130)를 통해 전력 회생부(120)로 전달될 수 있다. 한편, 전압 승압부(110)에 의해 생성된 전압은 계통 전원(100)의 전압보다 크게 함으로써, 변압기와 같은 추가적인 승압 장치 없이도 계통 전원(100)으로 회생시킬 수 있는 기술적 효과가 있다.
그리고, 전력 회생부(120)는 전압 승압부(110)에 의해 승압된 전압을 교류 전압으로 변환하여 계통 전원(100)에 공급한다. 전력 회생부(120)는 계통 인계형 회생 인버터일 수 있으며, 구체적으로 펄스 폭 변조(PWM) 인버터 및 120도 통전형 인버터 중에서 선택된 어느 하나일 수 있다.
한편, 역류 방지용 다이오드(130)는 애노드가 부스트 다이오드부(113)에 포함된 다이오드들(D1 내지 D3)의 캐소드에 공통 연결되며, 캐소드는 전력 회생부(120)에 연결된 구성을 포함할 수 있다. 이러한 역류 방지용 다이오드(130)를 통해 전력 회생부(120)로부터 전압 승압부(110)로 전류가 역류하는 것을 방지할 수 있다.
또한, 서지 필터(140)는 회전자 전류 제어부(112)를 구성하는 스위칭 소자들(Q1 내지 Q3)의 타단 및 부스트 다이오드부(113)에 포함된 다이오드들(D1 내지 D3)의 애노드에 공통 연결된 구성을 포함할 수 있다. 이러한 서지 필터(140)는 스위칭 소자들(Q1 내지 Q3)의 스위칭시 발생하는 서지 전압을 흡수함으로써, 스위칭 소자들(Q1 내지 Q3)의 소손을 방지할 수 있다. 상술한 서지 필터(140)는 커패시터로 구성되며, 그 용량은 발생하는 서지 전압의 크기와 역류 방지용 다이오드(130와 계통 전원(100)까지 존재하는 기생 인덕턴스의 크기에 의해 결정될 수 있다. 또한, 본 발명의 일 실시예에 따른 서지 필터(140)는 커패시터를 도시하고 있으나, 반드시 이에 한정되는 것은 아니며, 커패시터-다이오드, 커패시터-다이오드-저항을 결합한 스너버 회로로 구성될 수도 있음은 물론이다.
한편, 제어부(150)는 회전자의 속도(151), 회전자의 전류(152) 및 회전자의 전압/위상/주파수(153)를 검출하고, 검출된 정보들에 기초하여 회전자 전류 제어부(112)의 스위칭 소자들(Q1 내지 Q3) 및 전력 회생부(120)의 스위칭 소자들(Q4 내지 Q9)를 제어하기 위한 제어신호를 생성한다. 생성된 제어신호에 의해 회전자 전류 제어부(112)의 각 스위칭 소자들(Q1 내지 Q3)과 전력 회생부(120)의 스위칭 소자들(Q4 내지 Q9)이 온오프된다. 상술한 회전자의 속도(151), 회전자의 전류(152) 및 회전자의 전압/위상/주파수(153)에 기초한 제어 신호의 생성은 다양한 알고리즘에 의해 구현될 수 있을 것이며, 본 발명의 일 실시예로서 구체화하지는 않았다.
이하, 본 발명의 일 실시예에 따른 전력 회생 장치의 동작 원리를 설명한다.
도 1을 참조하면, 인가된 계통 전원(100)에 의해 권선형 유도 전동기(IM)의 속도 및 토크 제어가 수행되며, 이에 따라 권선형 유도 전동기(IM)의 고정자 권선에 자기적으로 결합된 회전자 권선(111)의 각상(A, B, C)에는 전압이 유도된다.
제어부(150)는 회전자의 속도(151), 회전자 권선(111)을 흐르는 전류(152) 및 회전자의 전압/위상/주파수(153)를 검출하고, 검출된 정보들(151, 152, 153)에 기초하여 회전자 전류 제어부(112)의 스위칭 소자들(Q1 내지 Q3) 및 전력 회생부(120)의 스위칭 소자들(Q4 내지 Q9)를 제어하기 위한 제어신호를 생성한다.
본 발명의 일 실시예에 의하면, 제어부(150)에 의해 생성된 제어 신호에 의해 회전자 전류 제어부(112)의 스위칭 소자들(Q1 내지 Q3)이 턴온/턴오프를 반복하며, 회전자 권선(111)은 인덕터로 기능하여, 회전자 권선(111)에 유도되는 전압은 전압 승압부(110)에 의해 승압되게 된다. 구체적으로, 본 발명의 일 실시예에 의하면, 회전자 권선(111)의 각 상(A, B, C)을 인덕터로 사용하게 되며, 이에 따라 회전자 권선(111)의 A상 - 스위칭 소자(Q1)-다이오드(D1), 회전자 권선(111)의 B상-스위칭 소자(Q2)-다이오드(D2) 및 회전자 권선(111)의 C상-스위칭 소자(Q3)-다이오드(D3)은 총 3개의 부스트 컨버터가 독립적으로 또는 상호 연계하여 동작하게 된다. 예컨대, 회전자 권선(111)의 A상 - 스위칭 소자(Q1) - 다이오드(D1)를 포함하는 부스트 컨버터 모듈의 경우 스위칭 소자(Q1)가 턴온될 경우 인덕터로 기능하는 회전자 권선(111)에는 전류가 증가하게 되며, 스위칭 소자(Q1)가 턴오프되면 회전자 권선(111)의 전류는 전력 회생부(120)로 부스팅되게 된다. 나머지 부스크 컨버터 모듈의 경우도 유사하게 동작할 수 있다.
한편, 본 발명의 일 실시예에 의하면, 스위칭 소자들(Q1 내지 Q3)의 타단 및 다이오드들(D1 내지 D3)의 캐소드에 연결된 서지 필터(140)를 통해 스위칭 소자들(Q1 내지 Q3)의 스위칭시 발생하는 서지 전압을 흡수함으로써, 스위칭 소자들(Q1 내지 Q3)의 소손을 방지할 수 있다.
상술한 전압 승압부(110)에 의해 승압된 전압은 전력 회생부(120)로 전달되며, 전달된 전압은 전력 회생부(120)에 의해 계통 전원(100)으로 전달할 수 있다. 본 발명의 일 실시예에 따른 전력 회생부(120)는 계통 인계형 회생 인버터일 수 있으며, 구체적으로 펄스 폭 변조(PWM) 인버터 및 120도 통전형 인버터 중에서 선택된 어느 하나일 수 있다.
이와 같이, 본 발명의 실시 형태에 의하면, 권선형 유도 전동기(IM)의 회전자 권선(111)에 의해 유도된 전기 에너지를 계통 전원(100)으로 회생하여 에너지 절감을 도모할 수 있는 기술적 효과가 있다. 또한, 권선형 유도 전동기(IM)의 회전자 권선(111)에 의해 유도된 전압을 승압하도록 함으로써, 변압기와 같은 추가적인 승압 장치 없이도 계통 전원(100)으로 회생시킬 수 있는 기술적 효과가 있다.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되지 아니한다. 첨부된 청구범위에 의해 권리범위를 한정하고자 하며, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게 자명할 것이다.

Claims (7)

  1. 계통전원에 의해 구동되는 회전자 권선을 포함한 권선형 유도 전동기;
    상기 권선형 유도 전동기의 회전자 권선을 인덕터로 사용하여 상기 회전자에서 유도된 전압을 승압하는 전압 승압부; 및
    상기 전압 승압부에서 승압된 전압을 상기 계통 전원으로 전달하기 위한 전력 회생부
    를 포함하는 권선형 유도 전동기의 전력 회생 장치.
  2. 제1항에 있어서,
    상기 전압 승압부는,
    상기 회전자 권선의 각상마다 일단이 연결되어 상기 회전자 권선의 전류를 제어하는 스위칭 소자들을 포함하는 회전자 전류 제어부; 및
    상기 회전자 권선의 각상마다 애노드가 연결되어 상기 회전자로부터의 전류를 상기 전력 회생부로 전달하기 위한 다이오드들을 포함하는 부스트 다이오드부
    를 포함하는 권선형 유동 전동기의 전력 회생 장치.
  3. 제2항에 있어서,
    상기 전력 회생 장치는,
    상기 스위칭 소자들의 타단 및 상기 다이오드들의 캐소드에 연결되어 상기 스위칭 소자들의 스위칭시 발생하는 서지 전압을 흡수함으로써, 상기 스위칭 소자들의 소손을 방지하기 위한 서지 필터
    를 더 포함하는 권선형 유도 전동기의 전력 회생 장치.
  4. 제1항에 있어서,
    상기 전력 회생부는,
    상기 전압 승압부에 의해 승압된 전압을 교류 전압으로 변환하여 계통 전압에 공급하는 계통 연계형 회생 인버터
    를 포함하는 권선형 유도 전동기의 전력 회생 장치.
  5. 제4항에 있어서,
    상기 계통 연계형 회생 인버터는,
    펄스 폭 변조(PWM) 인버터 및 120도 통전형 인버터 중에서 선택된 어느 하나인 권선형 유도 전동기의 전력 회생 장치.
  6. 제1항에 있어서,
    상기 전압 승압부와 상기 전력 회생부 사이에는
    상기 전력 회생부로부터 상기 전압 승압부로 전류가 역류하는 것을 방지하기 위한 역류 방지용 다이오드
    를 더 포함하는 권선형 유도 전동기의 전력 회생 장치.
  7. 제2항에 있어서,
    상기 스위칭 소자들은,
    절연 게이트 양극성 트랜지스터(Insulated gate bipolar transistor, IGBT), 전계 효과 트랜지스터 (Field-effect transistor, FET), 게이트 턴 오프 사이리스터(Gate turn-off thyristor, GTO), 및 접합형 트랜지스터(Bipolar junction transistor, BJT)를 포함하는 반도체 스위치 중에서 선택된 적어도 하나 이상의 반도체 스위치인 권선형 유도 전동기의 전력 회생 장치.
PCT/KR2011/009255 2011-05-26 2011-12-01 권선형 유도 전동기의 전력 회생 장치 WO2012161393A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2012/004155 WO2012161547A2 (ko) 2011-05-26 2012-05-25 권선형 유도 전동기의 회전자 전류 제어 장치
CN201280022263.1A CN103582999A (zh) 2011-05-26 2012-05-25 用于控制绕线转子式感应电机中的转子电流的设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110050069A KR101069140B1 (ko) 2011-05-26 2011-05-26 권선형 유도 전동기의 전력 회생 장치
KR10-2011-0050069 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012161393A1 true WO2012161393A1 (ko) 2012-11-29

Family

ID=44958118

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2011/009255 WO2012161393A1 (ko) 2011-05-26 2011-12-01 권선형 유도 전동기의 전력 회생 장치
PCT/KR2012/004155 WO2012161547A2 (ko) 2011-05-26 2012-05-25 권선형 유도 전동기의 회전자 전류 제어 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004155 WO2012161547A2 (ko) 2011-05-26 2012-05-25 권선형 유도 전동기의 회전자 전류 제어 장치

Country Status (3)

Country Link
KR (1) KR101069140B1 (ko)
CN (1) CN103582999A (ko)
WO (2) WO2012161393A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104798284B (zh) 2012-10-30 2017-07-18 裵莲秀 负载电流再生电路及具有负载电流再生电路的电气装置
CN106505609A (zh) * 2015-09-08 2017-03-15 通用电气公司 风力涡轮机及风力涡轮机的保护系统
LT6435B (lt) 2015-11-18 2017-08-10 Vanagas Jonas Indukcinio trifazio variklio su faziniu rotoriumi reguliavimo būdas
CN110572096A (zh) * 2019-07-22 2019-12-13 中国船舶重工集团公司第七0七研究所 高速大惯量负载用无铁芯无刷直流电机控制系统及方法
KR102495535B1 (ko) * 2020-12-17 2023-02-07 동성계전 주식회사 권선형 유도 전동기의 출력 제어 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025291A (ja) * 1999-07-06 2001-01-26 Fuji Electric Co Ltd 巻線形誘導電動機の制御装置
JP2001251883A (ja) * 2000-03-03 2001-09-14 Hitachi Engineering & Services Co Ltd 巻線型誘導電動機の制御装置
JP2005229725A (ja) * 2004-02-13 2005-08-25 Fuji Electric Systems Co Ltd 巻線形誘導電動機の制御装置
JP2008054467A (ja) * 2006-08-28 2008-03-06 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152282A (ja) * 1984-01-20 1985-08-10 Fuji Electric Co Ltd 巻線形誘導電動機の2次抵抗制御装置
JPH08205584A (ja) * 1995-01-24 1996-08-09 Okuma Mach Works Ltd 電動機の制御装置
JPH08237998A (ja) * 1995-02-23 1996-09-13 Isuzu Ceramics Kenkyusho:Kk 交流発電機の電圧制御装置
CN2237902Y (zh) * 1995-04-03 1996-10-16 王秀田 带电子联锁器的定转子全无触点交流开关柜
DE19709264A1 (de) * 1997-03-06 1998-09-10 Hilti Ag Verfahren zur Reduzierung von Rückwirkungen auf den Verlauf des einem Netz entnommenen Stroms bei induktiven Lasten und Vorrichtung zum Antreiben von Motoren nach diesem Verfahren
JP2001157497A (ja) * 1999-11-19 2001-06-08 Mitsuba Corp 同期発電機の発電制御装置
JP4133434B2 (ja) * 2003-02-26 2008-08-13 三菱電機エンジニアリング株式会社 巻線形電動機の制御装置
CN201656905U (zh) * 2010-04-16 2010-11-24 西安新兴自动控制电器有限公司 转差功率回馈式大功率中高压异步电机调速系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025291A (ja) * 1999-07-06 2001-01-26 Fuji Electric Co Ltd 巻線形誘導電動機の制御装置
JP2001251883A (ja) * 2000-03-03 2001-09-14 Hitachi Engineering & Services Co Ltd 巻線型誘導電動機の制御装置
JP2005229725A (ja) * 2004-02-13 2005-08-25 Fuji Electric Systems Co Ltd 巻線形誘導電動機の制御装置
JP2008054467A (ja) * 2006-08-28 2008-03-06 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置

Also Published As

Publication number Publication date
WO2012161547A2 (ko) 2012-11-29
WO2012161547A3 (ko) 2013-01-17
KR101069140B1 (ko) 2011-09-30
CN103582999A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
CN113261191B (zh) 双向多端口功率转换系统及方法
US11817769B2 (en) Multibridge power converter with multiple outputs
US20190280586A1 (en) Soft switching solid state transformers and converters
EP3790155A1 (en) On-board charging and discharging system
CN103946059A (zh) 基于h桥的功率转换器
WO2012161393A1 (ko) 권선형 유도 전동기의 전력 회생 장치
EP3954029B1 (en) Bidirectional power conversion system and control method
WO2018158453A1 (en) Battery charger for traction vehicle
WO2021010570A1 (ko) 전력변환 시스템의 dc-dc 컨버터
EP2677621B1 (en) AC-DC single phase controlled reversible converter with low loss snubber
WO2013027949A2 (ko) 전력 변환 장치
CN110460229B (zh) 模块化多电平变频器启动电路及其启动与低速运行方法
CN109412469B (zh) 牵引变流系统主电路、控制方法及其系统
CZ343197A3 (cs) Způsob a zapojení pro přeměnu elektrické energie
KR20110063186A (ko) 양방향 전력제어 방식의 배터리 충전장치
WO2021020638A1 (ko) 인버터-충전기 통합 장치 및 이를 제어하는 제어방법
WO2020219857A1 (en) Motor drive topologies for traction and charging in electrified vehicles
WO2023200103A1 (ko) 전력변환 시스템의 dc-dc 컨버터
US11813942B2 (en) Motor control system and vehicle
WO2015190707A1 (ko) 계자 방전 저항 없는 발전기의 출력 전압 제어 장치
JP2002051564A (ja) スナバ回路
CN214707567U (zh) 一种电机转子直流退磁电源
CN218678871U (zh) 一种功率电路和电器设备
KR20130055887A (ko) 권선형 유도 전동기의 전력 회생 장치
WO2017188741A1 (ko) 포워드-플라이백 버스 컨버터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866272

Country of ref document: EP

Kind code of ref document: A1