WO2012161310A1 - 加速度センサ - Google Patents

加速度センサ Download PDF

Info

Publication number
WO2012161310A1
WO2012161310A1 PCT/JP2012/063470 JP2012063470W WO2012161310A1 WO 2012161310 A1 WO2012161310 A1 WO 2012161310A1 JP 2012063470 W JP2012063470 W JP 2012063470W WO 2012161310 A1 WO2012161310 A1 WO 2012161310A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrator
circuit board
acceleration sensor
sensor housing
region
Prior art date
Application number
PCT/JP2012/063470
Other languages
English (en)
French (fr)
Inventor
茂樹 篠田
佐々木 康弘
茂 葛西
宗一朗 高田
尚武 高橋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013516455A priority Critical patent/JP5967086B2/ja
Priority to EP12789085.3A priority patent/EP2717059B1/en
Priority to CN201280025887.9A priority patent/CN103562731B/zh
Priority to US14/119,283 priority patent/US20140116137A1/en
Publication of WO2012161310A1 publication Critical patent/WO2012161310A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • G01P15/0922Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up of the bending or flexing mode type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2011-117567 (filed on May 26, 2011), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to an acceleration sensor for measuring or detecting vibration of an electronic device having a mechanical drive source.
  • an HDD having a high capacity cost performance is used as an information storage device.
  • HDD is composed of mechanical operating parts
  • loss of information due to mechanical failure becomes a problem. Therefore, the vibration generated during the operation of the mechanically operating component is measured, and the vibration stored in the HDD before the failure of the HDD is protected by detecting the vibration characteristic of the failure sign.
  • an acceleration sensor is generally used to detect vibration.
  • the acceleration sensor used in such a system for information protection can withstand use in an environment with a lot of electrical noise, such as inside an electronic device, and has an impact resistance that exceeds the specifications of the device to be measured. A long-life and highly reliable acceleration sensor is required.
  • a piezoelectric acceleration sensor converts a distortion of a piezoelectric body caused by external mechanical vibration into a voltage by the piezoelectric effect and outputs the voltage.
  • a piezoelectric acceleration sensor there is a method in which electric charges are generated by bending vibration of a vibrator having a laminated structure of a piezoelectric ceramic plate and a metal support plate.
  • This bending type piezoelectric acceleration sensor is divided into a cantilever type and a doubly supported beam type depending on the method of supporting the vibrator. Both ends of the vibrator are attached to the sensor housing serving as a support base with an adhesive or the like. Realized by fixing.
  • Patent Document 1 a metal material is widely used in order to improve the electrical shielding effect of the electronic circuit housed in the sensor casing and the vibration propagation efficiency to the vibrator.
  • the structure in which the vibrator is formed on the circuit board can electrically insulate the sensor housing from the vibrator (Patent Document 3). Furthermore, there is a structure in which the vibrator has a hollow circular diaphragm structure and is insulated from the metal casing by supporting the hollow portion with an insulating annular protrusion (Patent Document 4).
  • the entire disclosures of Patent Documents 1 to 4 are incorporated herein by reference.
  • the following analysis is given by the present invention.
  • the conventional acceleration sensor has the following problems. First, if the thickness of the formed adhesive layer is thin, the surface of the support portion formed on the sensor casing and the unevenness of the adhesive surface of the vibrator are in partial contact with each other and have conductivity, making it impossible to ensure insulation. There's a problem. Furthermore, there is a problem that the vibration characteristics of the vibrator vary due to variations in the thickness of the adhesive layer.
  • a conductive adhesive is generally used for bonding the substrate and the vibrator, but the joint part peels off due to the stress repeatedly generated in the support part due to the bending vibration of the vibrator and the impact acceleration applied from the outside, resulting in a long service life. There is a problem that it is difficult.
  • the sensor output electrode is provided on the outer peripheral portion having a large vibration amplitude, and therefore the vibrator is caused by the variation of the solder amount or the solder position.
  • the vibration characteristics of the slab changes and individual differences increase.
  • the thickness of the insulating layer provided between the vibrator and the support base can be easily controlled, and the bonding strength between the circuit board and the joint between the vibrator and the support base for taking out an electric signal can be reduced.
  • a highly reliable acceleration sensor having an increased support structure and realizing stable sensor characteristics and high durability against electrical noise and mechanical shock from outside is expected.
  • an acceleration sensor includes a vibrator including a piezoelectric body, a circuit board that amplifies output charges of the piezoelectric body generated by bending vibration of the vibrator, and the vibrator.
  • a piezoelectric acceleration sensor including a sensor housing made of a highly conductive material and containing the circuit board.
  • the circuit board includes one or two extending regions formed so as to protrude from one side of the circuit board, which mechanically and electrically connects the circuit board and the vibrator.
  • the sensor casing includes a support base that supports the vibrator, and the support base is formed with a recess. The recess is covered with the extension region of the circuit board, and the vibrator is fixedly supported by an insulating adhesive filled in a space formed by the recess and the extension region.
  • FIG. 1 It is the top view and sectional view of an acceleration sensor concerning Example 1 of the present invention. It is a top view of the sensor housing
  • the sensor housing further includes a step-shaped guide portion for positioning the circuit board.
  • one or two or more through holes are provided in a contact portion between the extending region and the insulating adhesive filled in the space and the extending region.
  • one or two or more depressions are formed in a contact portion between the extending region and the insulating adhesive filled in the space and the extending region.
  • the vibrator has a laminated structure of the piezoelectric body and a metal support plate.
  • the depth of the concave portion is three times or more of the larger value of the average central roughness of the surface of the metal support plate of the vibrator and the average central roughness of the bottom surface of the concave portion.
  • the height of the guide portion from the bottom surface of the sensor housing is the same as the height of the support base from the bottom surface of the sensor housing.
  • the insulating adhesive layer interposed between the vibrator and the support base can ensure insulation from the sensor housing, and insulation is provided by the gap (interval) between the support base surface on which the circuit board is installed and the bottom surface of the recess. Since the layer can be controlled to have a constant thickness, it is possible to realize an acceleration sensor having highly stable sensor characteristics that are highly resistant to external electric noise and have small variations in sensor characteristics.
  • the insulating adhesive can integrally join the end of the vibrator and the circuit board through the gap between the opening of the concave portion formed in the support base and the vibrator, and the concave adhesive is filled with the insulating adhesive. Since the adhesion surface area formed by the two surfaces of the bottom surface and the wall surface of the recess is wider than that of the flat surface having no recess, the adhesive strength between the vibrator and the support base is also increased. Therefore, it is possible to prevent the vibrator, the circuit board, and the support base from being separated from each other due to impact acceleration applied from the outside, and it is possible to realize a long-life acceleration sensor by realizing high mechanical shock resistance.
  • the first embodiment is a sensor housing 11 using a highly conductive material, a vibrator 100 having a laminated structure of a piezoelectric body 101 and a metal support plate 102, and a piezoelectric body generated by bending vibration of the vibrator 100.
  • 101 is an acceleration sensor including a circuit board 10 that amplifies the output charge of 101.
  • 1A is an overall plan view
  • FIG. 1B is a cross-sectional view along BB ′ in FIG. 1A
  • FIG. 1C is a cross-sectional view along CC ′ in FIG. Same in each figure).
  • FIG. 2 is a plan view of the sensor housing excluding the circuit board 10 and the vibrator 100.
  • the circuit board 10 has one side of the circuit board 10 that mechanically and electrically connects the circuit board 10 and the support portion of the vibrator 100 (FIG. 1A). Then, there are two extending regions 12 formed so as to protrude from both ends of the right side). In this embodiment, there are two, but one on one side may be used.
  • the extension region 12 is configured to cover a later-described recess 15.
  • An electronic component 17 is disposed on the circuit board 10.
  • the sensor housing 11 includes a guide portion 13 for positioning and mounting the circuit board 10 and a support base 14 for supporting and fixing the vibrator 100.
  • the guide portion 13 is a stepped portion provided inside the sensor housing 11. Positioning is possible by arranging the circuit board 10 at the stepped portion.
  • the circuit board 10 is disposed on the guide portion 13 and the support base 14. Therefore, it is preferable that the guide portion 13 and the support base 14 have the same height from the bottom surface of the sensor housing 11.
  • the support base 14 has a recess 15 that forms a predetermined space for filling the insulating adhesive around the vibrator 100 and the support base 14.
  • the insulating adhesive 16 is filled in a space surrounded by the extended region 12 formed on the circuit board 10 and the recess 15 (and the vibrator 100) of the support base 14.
  • the space is filled with the insulating adhesive 16, but other fixing materials may be used as long as they are insulating and fixable.
  • the outer shape of the sensor casing 11 was 8.5 mm in length, 8.5 mm in width, and 3 mm in height.
  • the guide portion 13 provided at the illustrated position has a width of 0.5 mm and a height of 1 mm.
  • the support base 14 provided at the position shown in the figure has a width of 2 mm, a length of 1 mm, and a height of 1 mm, and a recess 15 having a width of 1.8 mm, a length of 0.8 mm, and a depth of 105 ⁇ m is formed on the support base.
  • the external shape of the circuit board 10 is 7.5 mm long and 7.5 mm wide.
  • two extending regions 12 having a length of 2 mm and a width of 1 mm are provided at two positions on the side of the circuit board.
  • the external shape of the metal support plate 102 of the vibrator was 1.5 mm in width, 6.5 mm in length, and 100 ⁇ m in thickness.
  • Table 1 shows the electrical noise resistance in a normalized charge amount obtained by normalizing the charge amount applied to the sensor housing from the outside with the charge amount that does not superimpose the electric noise due to the externally applied charge on the signal output of the acceleration sensor.
  • Example 1 of the invention A comparison between Example 1 of the invention and a conventional acceleration sensor in which a vibrator and a sensor housing are electrically connected is shown.
  • Example 1 of the present invention and the conventional sensor machine in the standardized impact acceleration in which the impact acceleration applied from the outside is standardized by the acceleration that caused the separation between the vibrator and the sensor housing in the conventional sensor Impact resistance.
  • Destruction occurrence rate 0% to less than 5%, ⁇ : 5% to less than 30%, ⁇ : 30% or more
  • the acceleration sensor of Example 1 showed high electrical noise resistance and mechanical shock resistance.
  • the extending region 12 formed on the circuit board 10 has a diameter of 0.1 mm in the illustrated position. Hole 20 was formed. In this embodiment, two are formed in each extended region, but the number is not limited to this. As a result, the insulating adhesive 16 is also filled into the through-holes 20, and the adhesive surface area of the circuit board 10 is increased to increase the adhesive strength.
  • Table 3 shows the mechanical acceleration of the second embodiment of the present invention in the standardized impact acceleration in which the impact acceleration applied from the outside is normalized by the acceleration at which the transducer and the sensor housing are separated in the sensor of the first embodiment. Shows impact resistance.
  • Destruction occurrence rate 0% to less than 5%, ⁇ : 5% to less than 30%, ⁇ : 30% or more
  • the acceleration sensor of Example 2 showed high mechanical impact resistance.
  • a notch 30 is formed at the illustrated position of the extension region 12 formed in the circuit board 10. did. Since the rigidity of the base of the extended region 12 in which the notch 30 is formed is locally reduced, the circuit board 10 is deformed due to vibrations propagated from the signal cable and stress generated due to the deflection of the signal cable. Can be absorbed. This improves the resistance to mechanical noise such as vibration mixed from the outside.
  • Example 4 the vibration acceleration propagated from the signal cable is normalized by the vibration acceleration propagated from the sensor cable when mechanical noise is superimposed on the sensor output in the acceleration sensor of the first embodiment.
  • the mechanical noise tolerance of Example 3 is shown.
  • the acceleration sensor of Example 4 exhibited high mechanical noise resistance.
  • FIGS. 5A, 5B, and 5C the average center roughness X of the surface of the metal support plate 102 of the vibrator 100 in the structure of the first embodiment is used. Then, the larger value of the average center roughness Y of the bottom surface of the recess 15 is adopted, and the depth of the recess 15 is set such that the thickness of the insulating adhesive 16 is three times or more of the adopted value.
  • FIG. 5C is a detailed schematic diagram of the enlarged portion indicated by a dotted line in FIG.
  • FIG. 6 shows a case where the normalized thickness when the thickness of the insulating adhesive is normalized with the larger value of the average center roughness of the surface of the metal support plate and the bottom surface of the recess of the vibrator is changed.
  • the change in impedance is shown.
  • the normalized thickness is 3 or more, the impedance increases rapidly, indicating that good insulation can be secured.
  • Such a configuration improves electrical noise resistance.
  • the average center roughness is defined by JIS B 0601-1982.
  • the acceleration sensor 1 according to the first embodiment for detecting a HDD failure sign is mounted on the target HDD 60, and the HDD 60 reaches a mechanical failure in an actual use environment.
  • the vibration response was measured with the signal processing board 61.
  • Table 5 shows the rate of occurrence of acceleration sensors that had electrical and mechanical problems before the measurement target HDD failed. 100 samples were prepared as the number of tests. For comparison, the same number of conventional acceleration sensors were evaluated.
  • the failure occurrence rate of the acceleration sensor of this example is 1%, which is lower than the failure occurrence rate of 10% of the conventional acceleration sensor, and it can be seen that high reliability can be secured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

 機械的駆動源を有する電子機器の振動を計測または検知するために必要な、高信頼性を有する加速度センサを提供する。圧電体を含む振動子と、該振動子の屈曲振動により発生する該圧電体の出力電荷を増幅する回路基板と、該振動子及び該回路基板を収納する、良導性材料からなるセンサ筐体とを含む圧電型加速度センサである。該回路基板は、該回路基板と該振動子とを機械的且つ電気的に接続する、該回路基板の一辺から突出するように形成された1つ又は2つの延在領域を含む。該センサ筐体は、該振動子を支持する支持台を含み、該支持台には凹部が形成されている。そして該凹部を該回路基板の該延在領域が覆うように構成され、該凹部と該延在領域とから形成される空間に充填した絶縁性接着剤により該振動子を固定支持している。

Description

加速度センサ
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2011-117567号(2011年5月26日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は機械的駆動源を有する電子機器の振動を計測または検知するための加速度センサに関する。
 近年、情報電子機器の普及が進みHDDなどの情報保存装置に保存される情報量とその情報価値が増加している。一般に情報保存装置として容量のコストパフォーマンスが高いHDDが用いられる。
 しかし、HDDは機械的動作部品で構成されるため、その機械的故障に伴う情報の紛失が問題となる。そこで、機械的動作部品が動作時に発生する振動を計測し、故障予兆に特徴的な振動を検出することで、HDDの故障到達前にHDDに保存されている情報の保護を行う。ここで、振動の検出には一般に加速度センサが使用される。
 このような情報保護を目的としたシステムに使用される加速度センサにおいて、電子機器内部などの電気的ノイズの多い環境下での使用に耐え、且つ、計測対象となる装置仕様以上の衝撃耐性を備えた長寿命且つ高信頼な加速度センサが必要とされる。
 従来、加速度センサとしては、圧電セラミック等の圧電体を用いたものが知られており、圧電体の機械-電気変換特性を利用する。圧電型の加速度センサは、外部からの機械的振動を受けて生じた圧電体の歪みをその圧電効果により電圧に変換し出力する。圧電型加速度センサには、圧電セラミック板と金属支持板との積層構造からなる振動子が屈曲振動することで電荷を発生させる方式がある。
 この屈曲方式の圧電型加速度センサは振動子の支持方法により、片持ち梁型と両持ち梁型の構造に分かれるが、共に振動子の端部を支持台となるセンサ筐体に接着剤などにより固定することで実現する。
 また、センサ筐体には収納された電子回路の電気的なシールド効果や振動子への振動伝搬効率を向上させるために金属材料が広く用いられる(特許文献1)。
 しかし金属性のセンサ筐体と振動子が直接電気的に接続されていると、外部からセンサ筐体を介して振動子に伝達した電荷が、本来、振動子の出力電荷を増幅する増幅回路に混入することでセンサ出力信号に外部混入電荷に起因した電気的ノイズが重畳する問題がある。この問題を解決できる構造として、振動子とセンサ筐体支持部の間に絶縁層を設けた構造がある(特許文献2)。
 また、回路基板上に振動子を形成した構造もセンサ筐体と振動子を電気的に絶縁可能である(特許文献3)。さらに、振動子に中空円形ダイアフラム構造を有し中空部を絶縁性の環状突起で支持することで金属筐体から絶縁する構造がある(特許文献4)。
特開2008-134167号公報 特開2007-333397号公報 特開2004-077255号公報 特開平05-157762号公報
 上記特許文献1~4の全開示内容はその引用をもって本書に繰込み記載する。以下の分析は、本発明によって与えられたものである。
従来の加速度センサにおいて以下に示す問題がある。第1に、形成された接着層の厚みが薄いとセンサ筐体に形成された支持部表面および振動子の接着面の凹凸が部分的に接触し導電性を有し、絶縁性を確保できなくなる問題がある。さらに、接着層の厚みばらつきにより振動子の振動特性がばらつく問題がある。
 第2に、一般に基板と振動子の接着に導電性接着剤が使用されるが振動子の屈曲振動により支持部に繰り返し発生する応力や外部から印加される衝撃加速度により接合部が剥離し長寿命化が難しいという問題がある。
 第3に、絶縁性の環状突起で中空円形ダイアフラム振動子を支持する構造において振動振幅の大きい外周部にセンサ出力用の電極が設けられているため半田量のばらつきや半田位置のばらつきにより振動子の振動特性が変化し個体差が大きくなる問題がある。
 したがって、振動子と支持台との間に設けられた絶縁層の厚さを容易に制御可能で、且つ、電気信号を取り出すための回路基板と振動子の接合部及び支持台との接着強度が増加する支持部構造を有し、外部から混入する電気的ノイズ耐性、機械的衝撃耐性が高い安定したセンサ特性と長寿命を実現する高信頼性加速度センサが期待されている。
 本発明の第1の視点において、本発明に係る加速度センサは、圧電体を含む振動子と、該振動子の屈曲振動により発生する該圧電体の出力電荷を増幅する回路基板と、該振動子及び該回路基板を収納する、良導性材料からなるセンサ筐体とを含む圧電型加速度センサである。該回路基板は、該回路基板と該振動子とを機械的且つ電気的に接続する、該回路基板の一辺から突出するように形成された1つ又は2つの延在領域を含む。該センサ筐体は、該振動子を支持する支持台を含み、該支持台には凹部が形成されている。そして該凹部を該回路基板の該延在領域が覆うように構成され、該凹部と該延在領域とから形成される空間に充填した絶縁性接着剤により該振動子を固定支持している。
 このような構成により、機械的駆動源を有する電子機器の振動を計測または検知するために必要な高信頼性を有する加速度センサを実現することができる。
本発明の実施例1に係る加速度センサの平面図および断面図である。 図1に係る加速度センサから回路基板と振動子を除いたセンサ筐体の平面図である。 本発明の実施例2に係る加速度センサの平面図および断面図である。 本発明の実施例3に係る加速度センサの平面図および断面図である。 本発明の実施例4に係る加速度センサの平面図および断面図である。 絶縁性接着剤の厚みを、振動子の金属支持板の表面と凹部の底面の平均中心粗さのうち大きい方の値で規格化した際の、規格化した厚みを変化させたときのインピーダンス変化を示す図である。 本発明の実施例5に係るHDD振動計測システム構成を示す斜視図である。
 第1の視点において、前記センサ筐体は、前記回路基板を位置決めする段差状のガイド部をさらに含むことが好ましい。
 また、前記延在領域の、前記空間に充填した前記絶縁性接着剤と該延在領域との接触部に1つ又は2つ以上の貫通孔を有することが好ましい。
 また、前記延在領域の、前記空間に充填した前記絶縁性接着剤と該延在領域との接触部に1つ又は2つ以上の窪みを有することが好ましい。
 また、前記延在領域の根元部分に切り欠き部を形成することが好ましい。
 また、前記振動子は、前記圧電体と金属支持板との積層構造であることが好ましい。
 また、前記振動子の前記金属支持板の表面の平均中心粗さと、前記凹部の底面の平均中心粗さのいずれか大きい方の値の3倍以上の前記凹部の深さを有することが好ましい。
 また、前記ガイド部の前記センサ筐体の底面からの高さは前記支持台の前記センサ筐体の底面からの高さと同じであることが好ましい。
 このような構成により、振動子と支持台に介在する絶縁性接着層によりセンサ筐体との絶縁性を確保でき、また、回路基板を設置する支持台表面と凹部底面のギャップ(間隔)により絶縁層を一定の厚みに制御できるため、外部から混入する電気的ノイズ耐性が高く、センサ特性のばらつきが小さい安定性の高いセンサ特性を有した加速度センサを実現できる。
 さらに支持台に形成された凹部の開口部と振動子との間隙を通して絶縁性接着剤が振動子の端部と回路基板を一体に接合でき、且つ、凹部に絶縁性接着剤が充填することで凹部の底面と壁面の2面で形成される接着表面積が凹部を持たない平面と比較し広がるため振動子と支持台との接着強度も増加する。従って、外部から印加される衝撃加速度に伴う振動子と回路基板及び支持台との剥離を防止でき、高い機械的衝撃耐性の実現による高寿命な加速度センサを実現できる。
 以下に本発明の実施例について図面を参照して説明する。尚、以下に説明する各実施例の構成において、同一の構造については同一の符号を付して示し、重複する説明は省略する。図面参照符号は発明の理解のために付記しているものであり、図示の態様に限定することを意図するものではない。
(第1の実施例)
 第1の実施例は、良導性材料を用いたセンサ筐体11と、圧電体101と金属支持板102との積層構造を有する振動子100と、振動子100の屈曲振動により発生する圧電体101の出力電荷を増幅する回路基板10と、を含む加速度センサである。図1(A)はその全体平面図、図1(B)は図1(A)のB-B’断面図、図(C)は図1(A)のC-C’断面図である(各図において同様)。図2は、回路基板10と振動子100を除いたセンサ筐体の平面図である。
 図1(A)の平面図に示すように、回路基板10には、回路基板10と振動子100の支持部を機械的且つ電気的に接続する、回路基板10の一辺(図1(A)では右側の辺)の両端部からそれぞれ突出するように形成された2つの延在領域12を有する。なお、本実施例では2つであるが、片側の1つでもよい。この延在領域12が後述の凹部15を覆うように構成される。回路基板10には電子部品17が配されている。
 センサ筐体11には、回路基板10を位置決めして実装するガイド部13と、振動子100を支持固定する支持台14とを有する。図1(B)、(C)に示すように、ガイド部13は、センサ筐体11の内側に設けた段差状の部分となっている。この段差部に回路基板10を配置することにより位置決めが可能となる。回路基板10はこのガイド部13と支持台14の上に配置される。したがってガイド部13と支持台14はセンサ筐体11の底面からの高さが同じであることが好ましい。
 図1(B)、(C)に示すように、支持台14には、振動子100と支持台14との周囲に絶縁性接着剤を充填するための所定の空間を形成する凹部15を有し、回路基板10に形成された延在領域12と支持台14の凹部15(及び振動子100)とから囲まれ形成される空間に絶縁性接着剤16を充填した構造を有する。本実施例では空間に絶縁性接着剤16を充填したが、絶縁性で固定可能なものであれば他の固定材料を用いても良い。
 センサ筐体11の外形は長さ8.5mm、幅8.5mm、高さ3mmとした。回路基板を実装するため図示位置に設けたガイド部13は幅0.5mm、高さ1mmとした。振動子を実装するため図示位置に設けた支持台14は幅2mm、長さ1mm、高さ1mmとし、支持台に幅1.8mm、長さ0.8mm、深さ105μmの凹部15を形成した。回路基板10の外形は長さ7.5mm、幅7.5mmとし、振動子を実装するため、回路基板の一辺に長さ2mm、幅1mmの延在領域12を図示位置に2箇所設けた。振動子の金属支持板102の外形は幅1.5mm、長さ6.5mm、厚み100umとした。
 表1に、外部からセンサ筐体に印加する電荷量を、加速度センサの信号出力に外部印加電荷による電気的ノイズが重畳しない電荷量で規格化した規格化電荷量における電気的ノイズ耐性の、本発明の実施例1と、振動子とセンサ筐体とを電気的に接続した従来型の加速度センサとの比較を示す。
Figure JPOXMLDOC01-appb-T000001
○:S/N悪化率0%以上~5%未満、△:5%以上~30%未満、×:30%以上
 表2に外部から印加する衝撃加速度を、従来のセンサにおいて振動子とセンサ筐体との剥離を生じた加速度で規格化した規格化衝撃加速度における、本発明の実施例1及び従来型センサの機械的衝撃耐性を示す。
Figure JPOXMLDOC01-appb-T000002
○:破壊発生率0%以上~5%未満、△:5%以上~30%未満、×:30%以上
 表1、表2から明らかなように、本実施例1の加速度センサは高い電気的ノイズ耐性と機械的衝撃耐性を示した。
(第2の実施例)
 第2の実施例は、図3(A)、(B)に示すように第1の実施例の構造に加え回路基板10に形成された延在領域12の図示位置に直径0.1mmの貫通孔20を形成した。本実施例では各延在領域に2つずつ形成したが、この個数に限定するわけではない。これにより、絶縁性接着剤16が該貫通孔20にも充填され、該回路基板10の接着表面積が増加することで接着強度が増加する。
 表3に外部から印加する衝撃加速度を、第1の実施例のセンサにおいて振動子とセンサ筐体との剥離を生じた加速度で規格化した規格化衝撃加速度における本発明の実施例2の機械的衝撃耐性を示す。
Figure JPOXMLDOC01-appb-T000003
○:破壊発生率0%以上~5%未満、△:5%以上~30%未満、×:30%以上
 表3から明らかなように、本実施例2の加速度センサは高い機械的衝撃耐性を示した。
 尚、延在領域に形成した貫通穴の代わりに窪みを形成してもよい(図示せず)。該延在領域の接着表面積の増加による同様の効果を実現できる。
(第3の実施例)
 第3の実施例は、図4(A)、(B)に示すように第1の実施例の構造に加え回路基板10に形成された延在領域12の図示位置に切り欠き部30を形成した。該切り欠き部30が形成された該延在領域12の根元の剛性が局所的に低下することで、信号ケーブルから伝播した振動や信号ケーブルの撓みに伴い発生する応力による回路基板10の変形を吸収することができる。これにより外部から混入する振動などの機械的ノイズ耐性が向上する。
 表4に信号ケーブルから伝播する振動加速度を、第1の実施例の加速度センサにおいてセンサ出力に機械的ノイズが重畳したときのセンサケーブルから伝播した振動加速度で規格化した規格化加速度における本発明の実施例3の機械的ノイズ耐性を示す。表4から明らかなように、本実施例4の加速度センサは高い機械的ノイズ耐性を示した。
Figure JPOXMLDOC01-appb-T000004
○:S/N悪化率0%以上~5%未満、△:5%以上~30%未満、×:30%以上
(第4の実施例)
 第4の実施例は、図5(A)、(B)、(C)に示すように、第1の実施例の構造において、振動子100の金属支持板102の表面の平均中心粗さXと、凹部15の底面の平均中心粗さYのうちの大きい方の値を採用し、その採用値の3倍以上の厚みを絶縁性接着剤16の厚みとするような凹部15の深さを有する。図5(C)は、図5(B)に点線で示した拡大部の詳細模式図である。
 図6に該絶縁性接着剤の厚みを該振動子の該金属支持板の表面と該凹部の底面の平均中心粗さにおいて大きい方の値で規格化した際の規格化厚みを変化させたときのインピーダンス変化を示す。図6に明らかなように規格化厚みが3以上のとなるとインピーダンスが急増し良好な絶縁性を確保できることを示す。このような構成により電気的ノイズ耐性が向上する。なお、平均中心粗さはJIS B 0601-1982により規定されるものとする。
(第5の実施例)
 第5の実施例は、図7に示すようにHDDの故障予兆を検知する第1の実施例の加速度センサ1を対象HDD60に搭載し、実使用環境下で該HDD60が機械的故障に至るまで振動応答を信号処理基板61により計測した。
 表5に計測対象であるHDDが故障に至るより先に電気的及び機械的不具合を発生した加速度センサの発生率を示す。試験数として100台のサンプルを用意した。比較として従来構造の加速度センサを同数評価した。
Figure JPOXMLDOC01-appb-T000005
 表5に明らかなように本実施例の加速度センサの不具合発生率は1%であり、従来の加速度センサの不具合発生率10%より低く、高い信頼性を確保できることがわかる。
 以上、本発明を上記実施形態に即して説明したが、本発明の全開示(請求の範囲及び図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施例ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施形態の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲及び図面を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
1 加速度センサ
10 回路基板
11 センサ筐体
12 延在領域
13 ガイド部
14 支持台
15 凹部
16 絶縁性接着剤
17 電子部品
20 貫通孔
30 切り欠き部
60 HDD
61 信号処理基板
100 振動子
101 圧電体
102 金属支持板

Claims (8)

  1.  圧電体を含む振動子と、該振動子の屈曲振動により発生する該圧電体の出力電荷を増幅する回路基板と、該振動子及び該回路基板を収納する、良導性材料からなるセンサ筐体とを含む圧電型加速度センサであって、
     該回路基板は、該回路基板と該振動子とを機械的且つ電気的に接続する、該回路基板の一辺から突出するように形成された1つ又は2つの延在領域を含み、
     該センサ筐体は、該振動子を支持する支持台を含み、
     該支持台は凹部を含み、該凹部を該回路基板の該延在領域が覆うように構成され、
     該凹部と該延在領域とから形成される空間に充填した絶縁性接着剤により該振動子を固定支持したことを特徴とする、加速度センサ。
  2.  前記センサ筐体は、前記回路基板を位置決めする段差状のガイド部をさらに含む、請求項1に記載の加速度センサ。
  3.  前記延在領域の、前記空間に充填した前記絶縁性接着剤と該延在領域との接触部に1つ又は2つ以上の貫通孔を有する、請求項1又は2に記載の加速度センサ。
  4.  前記延在領域の、前記空間に充填した前記絶縁性接着剤と該延在領域との接触部に1つ又は2つ以上の窪みを有する、請求項1又は2に記載の加速度センサ。
  5.  前記延在領域の根元部分に切り欠き部を形成した、請求項1~4のいずれか一に記載の加速度センサ。
  6.  前記振動子は、前記圧電体と金属支持板との積層構造であることを特徴とする、請求項1~5のいずれか一に記載の加速度センサ。
  7.  前記振動子の前記金属支持板の表面の平均中心粗さと、前記凹部の底面の平均中心粗さのいずれか大きい方の値の3倍以上の前記凹部の深さを有する、請求項6に記載の加速度センサ。
  8.  前記ガイド部の前記センサ筐体の底面からの高さは前記支持台の前記センサ筐体の底面からの高さと同じである、請求項2~7のいずれか一に記載の加速度センサ。
PCT/JP2012/063470 2011-05-26 2012-05-25 加速度センサ WO2012161310A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013516455A JP5967086B2 (ja) 2011-05-26 2012-05-25 加速度センサ
EP12789085.3A EP2717059B1 (en) 2011-05-26 2012-05-25 Acceleration sensor
CN201280025887.9A CN103562731B (zh) 2011-05-26 2012-05-25 加速度传感器
US14/119,283 US20140116137A1 (en) 2011-05-26 2012-05-25 Acceleration sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-117567 2011-05-26
JP2011117567 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012161310A1 true WO2012161310A1 (ja) 2012-11-29

Family

ID=47217375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063470 WO2012161310A1 (ja) 2011-05-26 2012-05-25 加速度センサ

Country Status (5)

Country Link
US (1) US20140116137A1 (ja)
EP (1) EP2717059B1 (ja)
JP (1) JP5967086B2 (ja)
CN (1) CN103562731B (ja)
WO (1) WO2012161310A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6793107B2 (ja) * 2017-11-27 2020-12-02 日立オートモティブシステムズ株式会社 流量計
US10732195B2 (en) 2018-01-26 2020-08-04 Honeywell International Inc. Vibrating beam accelerometer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157762A (ja) 1991-12-09 1993-06-25 Matsushita Electric Ind Co Ltd 加速度センサ
JP2000146997A (ja) * 1998-11-06 2000-05-26 Tokin Corp 圧電型加速度センサ及びその製造方法
JP2002238094A (ja) * 2001-02-08 2002-08-23 Murata Mfg Co Ltd 圧電音響部品およびその製造方法
JP2003287549A (ja) * 2002-03-28 2003-10-10 Sanken Microphone Kk 加速度センサ
JP2004077255A (ja) 2002-08-15 2004-03-11 Fujitsu Media Device Kk 加速度センサ
JP2005055305A (ja) * 2003-08-05 2005-03-03 Hitachi Maxell Ltd 振動センサー
JP2007333397A (ja) 2006-06-12 2007-12-27 Murata Mfg Co Ltd 加速度センサ
JP2008134167A (ja) 2006-11-29 2008-06-12 Kurashiki Kako Co Ltd 加速度センサ
WO2011043219A1 (ja) * 2009-10-07 2011-04-14 Necトーキン株式会社 圧電式加速度センサ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130600A (en) * 1989-06-02 1992-07-14 Mitsubishi Petrochemical Co., Ltd. Acceleration sensor
EP1162468A3 (en) * 2000-06-05 2002-05-29 Matsushita Electric Industrial Co., Ltd. Acceleration sensor
US6629462B2 (en) * 2000-07-24 2003-10-07 Matsushita Electric Industrial Co., Ltd. Acceleration sensor, an acceleration detection apparatus, and a positioning device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157762A (ja) 1991-12-09 1993-06-25 Matsushita Electric Ind Co Ltd 加速度センサ
JP2000146997A (ja) * 1998-11-06 2000-05-26 Tokin Corp 圧電型加速度センサ及びその製造方法
JP2002238094A (ja) * 2001-02-08 2002-08-23 Murata Mfg Co Ltd 圧電音響部品およびその製造方法
JP2003287549A (ja) * 2002-03-28 2003-10-10 Sanken Microphone Kk 加速度センサ
JP2004077255A (ja) 2002-08-15 2004-03-11 Fujitsu Media Device Kk 加速度センサ
JP2005055305A (ja) * 2003-08-05 2005-03-03 Hitachi Maxell Ltd 振動センサー
JP2007333397A (ja) 2006-06-12 2007-12-27 Murata Mfg Co Ltd 加速度センサ
JP2008134167A (ja) 2006-11-29 2008-06-12 Kurashiki Kako Co Ltd 加速度センサ
WO2011043219A1 (ja) * 2009-10-07 2011-04-14 Necトーキン株式会社 圧電式加速度センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717059A4 *

Also Published As

Publication number Publication date
EP2717059B1 (en) 2015-11-18
JPWO2012161310A1 (ja) 2014-07-31
EP2717059A1 (en) 2014-04-09
US20140116137A1 (en) 2014-05-01
CN103562731A (zh) 2014-02-05
CN103562731B (zh) 2016-01-06
JP5967086B2 (ja) 2016-08-10
EP2717059A4 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
US6958899B2 (en) Electronic device
JP5458821B2 (ja) 積層セラミックコンデンサ
JP4407767B2 (ja) 超音波センサおよびその製造方法
JP5862567B2 (ja) 振動センサ
JP5579190B2 (ja) 圧電式加速度センサ
CN109686565B (zh) 多层电子组件和具有该多层电子组件的板
JP4822769B2 (ja) 加速度センサ
JP5967086B2 (ja) 加速度センサ
JPWO2014097681A1 (ja) 圧電トランス装置
JP2013137330A (ja) 圧電式加速度センサ
US11255872B2 (en) Piezoelectric acceleration sensor
JP5786373B2 (ja) 振動センサ
US20130049535A1 (en) Ultrasonic sensor
JP6320064B2 (ja) 加速度センサ
WO2013042601A1 (ja) 振動子、振動センサ、及び振動センサを備える電子機器
WO2021229932A1 (ja) 加速度検出装置
WO2023079896A1 (ja) 加速度検出装置
JP5270622B2 (ja) 圧電式加速度センサ
JP2024068576A (ja) 振動センサ及び振動検出システム
US11114995B2 (en) Piezoelectric component
JP5036013B1 (ja) 圧電デバイス
JP5937338B2 (ja) 圧力検出装置用基体および圧力検出装置
CN116507191A (zh) 一种柔性压电传感器
JP2010078465A (ja) 加速度センサ装置
WO2013008632A1 (ja) 圧電振動センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012789085

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14119283

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013516455

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE