WO2012161141A1 - 伝動用ベルト - Google Patents

伝動用ベルト Download PDF

Info

Publication number
WO2012161141A1
WO2012161141A1 PCT/JP2012/062872 JP2012062872W WO2012161141A1 WO 2012161141 A1 WO2012161141 A1 WO 2012161141A1 JP 2012062872 W JP2012062872 W JP 2012062872W WO 2012161141 A1 WO2012161141 A1 WO 2012161141A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
rubber layer
fatty acid
acid amide
belt
Prior art date
Application number
PCT/JP2012/062872
Other languages
English (en)
French (fr)
Inventor
西山 健
高場 晋
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to EP12788938.4A priority Critical patent/EP2711587B1/en
Priority to BR112013029776-0A priority patent/BR112013029776B1/pt
Priority to CN201280024561.4A priority patent/CN103547829B/zh
Publication of WO2012161141A1 publication Critical patent/WO2012161141A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/02Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/042Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/16Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • F16G1/10Driving-belts made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/28Driving-belts with a contact surface of special shape, e.g. toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2413/00Belts

Definitions

  • the present invention relates to a transmission belt such as a V-belt or a V-ribbed belt, and more particularly to a transmission belt excellent in durability performance and transmission efficiency.
  • Patent Document 1 discloses a holding elastic body layer in a belt including an adhesive elastic body layer in which a cord is embedded and a holding elastic body layer (compression rubber layer) positioned above and below the adhesive elastic body layer.
  • a rubber V-belt containing chloroprene rubber, reinforcing filler, metal oxidative vulcanizing agent, bismaleimide and aramid short fibers in which the aramid short fibers are arranged in the width direction of the belt.
  • the extension rubber layer has a rubber hardness (JIS-A) of 85 to 92, compression Cogged V-belt in which the rubber hardness (JIS-A) of the rubber layer is in the range of 90 to 98, and the rubber hardness of the compression rubber layer is set 3 to 10 (JIS-A) higher than that of the stretched rubber layer Is disclosed, and it is described that carbon black and aramid short fibers are contained in the stretched rubber layer and the compressed rubber layer.
  • JIS-A rubber hardness of 85 to 92
  • compression Cogged V-belt in which the rubber hardness (JIS-A) of the rubber layer is in the range of 90 to 98, and the rubber hardness of the compression rubber layer is set 3 to 10 (JIS-A) higher than that of the stretched rubber layer Is disclosed, and it is described that carbon black and aramid short fibers are contained in the stretched rubber layer and the compressed rubber layer.
  • the rubber hardness of at least one of the stretched and compressed rubber layers is set to 90 to 96 °, and the rubber hardness of the adhesive rubber layer is set to 83 to 89 °.
  • a transmission V-belt in which the belts are arranged in the belt width direction is disclosed.
  • a series of characteristics of lateral pressure resistance and durability and a series of characteristics of bending fatigue and fuel saving are in a trade-off relationship.
  • by providing cogs on the inner peripheral side of the V-belt or on both the inner peripheral side and the outer peripheral side it is possible to improve the bending fatigue property and the fuel saving property.
  • the rubber hardness is increased in order to maintain the lateral pressure resistance and durability, the fuel saving performance is not yet sufficient. Therefore, a preferable rubber composition (particularly a rubber composition of a compressed rubber layer) is desired.
  • Japanese Patent Publication No. 5-63656 Japanese Unexamined Patent Publication No. 2009-150538 Japanese Unexamined Patent Publication No. 10-238596
  • an object of the present invention is to provide a transmission belt that can reduce transmission loss.
  • Another object of the present invention is to maintain side pressure resistance and durability without excessively increasing the rubber hardness, and to improve bending fatigue and fuel saving (both bending rigidity and sliding properties). It is to provide a transmission belt.
  • the present inventors have found that when the compression rubber layer of the transmission belt is formed of a rubber composition containing a rubber component, a fatty acid amide, and a short fiber, the fatty acid amide is a short fiber. Improve dispersibility and orientation and improve the adhesion between the rubber component and the short fiber, the fatty acid amide blooms (precipitates) or bleeds out on the surface of the compressed rubber layer (friction transmission surface in contact with the pulley), It has been found that the coefficient of friction on the rubber layer surface is reduced and the transmission performance (transmission efficiency) is improved, and the present invention has been completed.
  • the power transmission belt of the present invention includes an adhesive rubber layer in which a core wire is embedded in the longitudinal direction of the belt, a compressed rubber layer formed on one surface of the adhesive rubber layer, and the other surface of the adhesive rubber layer. And a stretched rubber layer formed on the surface.
  • the compressed rubber layer contains a fatty acid amide and a short fiber.
  • fatty acid amide acts as a dispersant for short fibers, and can improve the dispersibility of short fibers in the rubber composition and the orientation of the short fibers (a direction parallel to the belt width direction).
  • the side pressure resistance and wear resistance of the compressed rubber layer can be improved.
  • the adhesiveness with the rubber composition matrix rubber: rubber composition except a short fiber which comprises a short fiber and a compression rubber layer with a fatty acid amide can be improved.
  • the adhesion component on the surface chemically interacts with fatty acid amide, and adhesion between the short fibers and the rubber composition (matrix rubber) constituting the compressed rubber layer Can increase the sex. Therefore, a compressed rubber layer having excellent modulus, tensile strength, and tear strength can be formed.
  • the fatty acid amide also acts as an internal lubricant that lowers (or softens) the modulus of the matrix rubber, but the use of the short fiber can suppress the decrease in the modulus.
  • the matrix component of the compressed rubber layer can be made flexible, and a compressed rubber layer having excellent mechanical properties can be formed, and the bending fatigue of the belt can be achieved without increasing the hardness of the compressed rubber layer. And fuel economy can be improved.
  • the fatty acid amide acts as an external lubricant by blooming (precipitating) or bleeding out on the surface of the compressed rubber layer (friction transmission surface in contact with the pulley), reducing the friction coefficient of the rubber layer surface, Smooth friction with pulleys, improving belt durability and fuel economy (especially fuel economy with transmission belts). Therefore, in the present invention, it is possible to achieve both the side pressure resistance and durability characteristics and the bending fatigue resistance and fuel saving characteristics.
  • the fatty acid amide may contain at least one selected from a saturated or unsaturated long chain fatty acid amide and a saturated or unsaturated long chain fatty acid ester amide. Moreover, it is preferable that a short fiber contains the short fiber by which the adhesion process was carried out at least, and the short fiber may contain the aramid fiber at least.
  • the rubber component of the compressed rubber layer may include chloroprene rubber
  • the fatty acid amide may include at least a saturated or unsaturated fatty acid monoamide having 10 to 26 carbon atoms, and short fibers (for example, around short fibers)
  • An adhesive component containing at least an initial condensate of resorcin and formalin and latex may be attached to (at least a part of (outer layer or surface)).
  • an adhesive component containing a styrene-butadiene-vinylpyridine terpolymer may be attached to the short fiber.
  • the amount of fatty acid amides and short fibers used can increase the mechanical properties of the compressed rubber layer while reducing the coefficient of friction of its surface moderately, without excessively increasing the hardness of the compressed rubber layer, and reducing bending stress. Further, it can be selected from a range that can improve bending fatigue and fuel saving.
  • the ratio of fatty acid amide may be, for example, about 0.5 to 10 parts by mass with respect to 100 parts by mass of the raw rubber component
  • the ratio of short fibers is, for example, The amount may be about 10 to 40 parts by mass with respect to 100 parts by mass of the raw rubber component.
  • the present invention relates to a rubber composition for forming at least one rubber layer selected from a compressed rubber layer and a stretched rubber layer of a transmission belt, comprising a rubber component, a fatty acid amide, and a short fiber. Is also included.
  • the short fiber includes at least an adhesive-treated short fiber.
  • the present invention also includes a method of reducing the transmission loss (a method of improving transmission or transmission efficiency) by forming a compression rubber layer of a transmission belt with the rubber composition.
  • the compressed rubber layer contains fatty acid amide and short fibers
  • transmission loss due to the transmission belt can be reduced, and transmission efficiency can be improved.
  • the lateral pressure resistance and durability can be maintained without excessively increasing the rubber hardness, and the bending fatigue resistance and fuel economy (both bending rigidity and slidability) can be improved.
  • contradictory characteristics that is, side pressure resistance and durability characteristics, and bending fatigue characteristics and fuel saving characteristics can be achieved at the same time.
  • FIG. 1 is a schematic sectional view showing an example of a transmission belt.
  • FIG. 2 is a schematic diagram for explaining a method for measuring transmission efficiency.
  • FIG. 3 is a schematic diagram for explaining a method of measuring a bending stress in the embodiment.
  • FIG. 4 is a schematic diagram for explaining a method of measuring a friction coefficient in the embodiment.
  • FIG. 5 is a schematic diagram for explaining a high-load running test in the embodiment.
  • FIG. 6 is a schematic diagram for explaining a high-speed running test in the embodiment.
  • FIG. 7 is a schematic view for explaining a durability running test in the embodiment.
  • the rubber composition of the present invention is useful for increasing the transmission efficiency, and is useful for forming at least one rubber layer selected from the compressed rubber layer and the stretched rubber layer of the belt (particularly, at least the compressed rubber layer). is there.
  • This rubber composition contains a rubber component, a fatty acid amide, and short fibers.
  • rubber component examples include vulcanizable or crosslinkable rubbers such as diene rubbers (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), And hydrogenated nitrile rubber), ethylene- ⁇ -olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, urethane rubber, fluorine rubber, and the like. These rubber components can be used alone or in combination of two or more.
  • diene rubbers natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), And hydrogenated nitrile rubber
  • SBR styrene butadiene
  • Preferred rubber components are ethylene- ⁇ -olefin elastomers (ethylene- ⁇ -olefin rubbers such as ethylene-propylene rubber (EPR) and ethylene-propylene-diene monomers (EPDM, etc.)), and chloroprene rubber.
  • EPR ethylene-propylene rubber
  • EPDM ethylene-propylene-diene monomers
  • a particularly preferred rubber component is chloroprene rubber.
  • the chloroprene rubber may be a sulfur-modified type or a non-sulfur-modified type.
  • Fatty acid amide has a long chain fatty acid group (for example, a fatty acid group having about 10 to 40 carbon atoms) and an amide group in the molecule, and is a thermally and chemically stable solid surfactant.
  • Fatty acid amides include saturated or unsaturated higher fatty acid monoamides such as behenic acid amide, arachidic acid amide, stearic acid amide, hydroxystearic acid amide, palmitic acid amide, myristic acid amide, lauric acid amide, erucic acid amide, oleic acid Saturated or unsaturated higher fatty acid amides such as amides, ricinoleic acid amides; and saturated or unsaturated higher fatty acid bisamides such as alkylene bis saturated or unsaturated higher fatty acid amides (eg methylene bis stearic acid amide, methylene bis lauric acid amide, Methylene bishydroxystearic acid amide, methylene bisoleic acid amide, ethylene bisbehenic acid amide, ethylene bisstearic acid amide, ethylene biscaprylic acid amide Ethylene biscapric acid amide, ethylene bislauric acid amide, isostearic acid amide,
  • Fatty acid amides include aromatic bisamides (bisamides of aromatic diamines such as xylylene bisstearic acid amide and saturated or unsaturated higher fatty acids, aromatic dicarboxylic acids such as N, N′-distearyl phthalic acid amide, and the like.
  • substituted amides N-lauryl lauric acid amide, N-palmityl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearin
  • Higher fatty acid amides in which saturated or unsaturated higher fatty acid residues are amide-bonded to nitrogen atoms of amide groups such as acid amides, N-stearyl erucic acid amides, N-stearyl hydroxystearic acid amides, and ester amides (ethanolamine dibenate)
  • Etano Alkanolamine hydroxyl groups and higher fatty acids such as allamine amine stearate, ethanolamine dipalmitate, propanolamine distearate, and propanolamine dipalmitate are ester-bonded, and the alkanolamine amino group and higher fatty acid are amides.
  • Conjugated ester amide alkanol amide (methylol stearic acid amide, methylol behenic acid amide and other methylol amides such as methylol higher fatty acid monoamides; stearic acid monoethanol amide, erucic acid monoethanol amide and other N-hydroxy C 2-4 Alkyl higher fatty acid monoamide), substituted urea (N-butyl-N′-stearyl urea, N-phenyl-N′-stearyl urea, N-stearyl-N′-stearyl urea, xyl Examples thereof include substituted ureas in which higher fatty acids are amide-bonded to nitrogen atoms of urea such as rylene bisstearyl urea, toluylene bisstearyl urea, hexamethylene bisstearyl urea, and diphenylmethane bisstearyl urea.
  • the fatty acid amide preferably contains at least one selected from a saturated or unsaturated long chain fatty acid amide and a saturated or unsaturated long chain fatty acid ester amide.
  • the number of carbon atoms of the higher fatty acid and the higher amine is about 10 to 34 (eg, 10 to 30, preferably 10 to 28, more preferably 10 to 26, more preferably 12 to 24). There may be.
  • These fatty acid amides can be used alone or in combination of two or more.
  • the melting point of the fatty acid amide can be selected from the range of about 50 to 200 ° C., usually 65 to 150 ° C., preferably 75 to 130 ° C. (eg 80 to 120 ° C.), more preferably 90 to 110 ° C. (eg 95 (About 105 ° C.).
  • Fatty acid amide functions as a dispersant for short fibers, improves the dispersibility and orientation of the short fibers in the rubber composition (orientation in the belt width direction), and improves the side pressure resistance and wear resistance of the compressed rubber layer Is advantageous. Furthermore, fatty acid amide functions as an internal lubricant in the rubber composition in addition to the function as a dispersant, and tends to lower the modulus of the matrix rubber component and soften the matrix component. By the combination, the decrease in the modulus can be suppressed. That is, the combination of the fatty acid amide and the short fiber makes it possible to form a compressed rubber layer having excellent mechanical properties while making the matrix component of the compressed rubber layer flexible.
  • the combination of fatty acid amide and short fibers eliminates the need to increase the hardness of the compression rubber layer by blending a large amount of reinforcing agents such as short fibers and carbon black, so that the bending fatigue and fuel efficiency of the belt (particularly, Fuel saving performance when the belt is run around a small pulley can be improved.
  • the fatty acid amide functions as an external lubricant by blooming (bleeding out) or bleeding out from the inside of the compressed rubber layer to the surface (friction transmission surface in contact with the pulley), thereby reducing the friction coefficient of the rubber layer surface.
  • the fatty acid amide blooms or bleeds out on the surface of the compressed rubber layer for a long time, a low friction coefficient can be maintained for a long time. Therefore, the surface of the rubber layer and the pulley are smoothly rubbed, and excessive shearing force is prevented from acting on the rubber layer by the pulley when the belt is running, so that the durability of the belt can be improved.
  • the fuel efficiency can be further effectively improved.
  • the friction coefficient is high, the shearing force received from the pulley increases, and peeling or cracking occurs due to large deformation of the compressed rubber layer, leading to an early life of the belt.
  • the friction reducing effect by the lubricant is recognized at the beginning of the belt running, but when the belt is run for a long time, the lubricant is scattered or worn and the friction reducing effect is obtained. Is lost.
  • fatty acid amides compared to alkylene bisamides, the number of carbon atoms constituting fatty acid monoamides, for example, long-chain fatty acid residues is as low as about 10 to 26 (particularly 12 to 24), for example, and an amide group is formed at the terminal. Saturated or unsaturated fatty acid monoamide having is preferable.
  • the ratio of the fatty acid amide is 0.5 to 10 parts by weight, preferably 1 to 8 parts by weight, more preferably 1.5 to 7.5 parts by weight (for example, 2 to 7 parts by weight) with respect to 100 parts by weight of the rubber component. Part), usually about 1 to 6 parts by mass. If the amount of fatty acid amide used is too small, the amount of bloom on the rubber layer surface will be small, and the effect of reducing the coefficient of friction will be small. If too much, too much will not participate in the interaction with short fibers (bonded short fibers).
  • the fatty acid amide functions as an internal lubricant, and the modulus of the matrix component (particularly the modulus in the compression direction) may be greatly reduced. In addition, even if there is too much usage-amount of fatty acid amide, the friction reduction effect corresponding to it is not acquired, but it is economically disadvantageous.
  • Short fiber types include polyolefin fiber (polyethylene fiber, polypropylene fiber, etc.), polyamide fiber (polyamide 6 fiber, polyamide 66 fiber, polyamide 46 fiber, aramid fiber, etc.), polyalkylene arylate fiber (polyethylene terephthalate (PET)) Fiber, C 2-4 alkylene C 6-14 arylate fiber such as polyethylene naphthalate (PEN) fiber), vinylon fiber, polyvinyl alcohol fiber, synthetic fiber such as polyparaphenylene benzobisoxazole (PBO) fiber; cotton Natural fibers such as hemp and wool; inorganic fibers such as carbon fibers are widely used. These short fibers can be used alone or in combination of two or more.
  • synthetic fibers and natural fibers particularly synthetic fibers (polyamide fibers, polyalkylene arylate fibers, etc.), among them short fibers containing at least aramid fibers are preferable from the viewpoint of rigidity, high strength, and modulus.
  • Aramid short fibers also have high wear resistance.
  • Aramid fibers are commercially available, for example, under the trade names “Conex”, “Nomex”, “Kevlar”, “Technola”, “Twaron”, and the like.
  • the short fibers are preferably oriented in the belt width direction and embedded in the compressed rubber layer. Further, by causing the short fibers to protrude from the surface of the compressed rubber layer, it is possible to reduce the friction coefficient of the surface to suppress noise (sound generation) and to reduce wear due to rubbing with the pulley.
  • the average length of the short fibers is, for example, 1 to 20 mm, preferably 2 to 15 mm, more preferably 3 to 10 mm, and may be about 1 to 5 mm (for example, 2 to 4 mm). If the average length of the short fibers is less than 1 mm, the mechanical properties (for example, the modulus) in the cutting direction cannot be sufficiently improved. On the other hand, if the average length exceeds 20 mm, poor dispersion of the short fibers in the rubber composition occurs. There is a risk that the belt will be damaged early due to cracks in the rubber.
  • the proportion of the short fibers can be selected from the range of about 5 to 50 parts by mass with respect to 100 parts by mass of the rubber component, and is usually 10 to 40 parts by mass, preferably 15 to 35 parts by mass, and more preferably 20 to 30 parts by mass. About 15 to 30 parts by mass (15 to 25 parts by mass). If the amount of short fibers used is too small, the mechanical properties of the compressed rubber layer will be insufficient, and if it is too large, the bending fatigue property of the compressed rubber layer will decrease (the compressed rubber layer will become hard and the bending stress will increase). For this reason, when the belt winding diameter is small, there is a problem that the loss due to bending becomes large and the fuel efficiency is reduced. Also, if the amount of short fibers used is too large, the dispersibility of the short fibers in the rubber composition is lowered, resulting in poor dispersion, and cracks may occur in the compressed rubber layer at the early stage starting from that location. .
  • the adhesion between the short fiber and the rubber composition constituting the compressed rubber layer is improved. it can.
  • a rubber composition in which the adhesive component on the surface (outer layer) chemically interacts with fatty acid amide to constitute the short fibers and the compressed rubber layer.
  • the modulus, tensile strength, and tear strength of the compressed rubber layer can be further improved.
  • the short fibers in the rubber composition it is preferable that at least a part of the short fibers is subjected to adhesion treatment (or surface treatment).
  • adhesion treatment or surface treatment
  • various adhesion treatments for example, treatment solutions containing an initial condensate of phenols and formalin (such as a prepolymer of a novolak or resol type phenol resin), treatment solutions containing a rubber component (or latex).
  • treatment solutions containing an initial condensate of phenols and formalin such as a prepolymer of a novolak or resol type phenol resin
  • treatment solutions containing a rubber component or latex
  • Treatment with a treatment liquid containing the initial condensate and a rubber component (latex), a silane coupling agent, an epoxy compound (epoxy resin, etc.), a treatment liquid containing a reactive compound (adhesive compound) such as an isocyanate compound, etc. be able to.
  • the short fibers are treated with a treatment solution containing the precondensate and a rubber component (latex), particularly at least a resorcin-formalin-latex (RFL) solution.
  • a treatment solution containing the precondensate and a rubber component (latex), particularly at least a resorcin-formalin-latex (RFL) solution may be used in combination.
  • short fibers may be pre-treated with a conventional adhesive component such as an epoxy compound (epoxy resin or the like) or a reactive compound (adhesive compound) such as an isocyanate compound. After processing, you may process with RFL liquid.
  • the RFL liquid is a mixture of an initial condensate of resorcin and formaldehyde and a rubber latex.
  • the type of latex is not particularly limited, and can be appropriately selected from the rubber components according to the type of rubber component to be bonded.
  • the rubber composition to be bonded is mainly composed of chloroprene rubber
  • the latex is diene rubber (natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), styrene-butadiene-vinyl.
  • Pyridine terpolymer acrylonitrile butadiene rubber (nitrile rubber), hydrogenated nitrile rubber, etc.), ethylene- ⁇ -olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber and the like may be used.
  • These latexes may be used alone or in combination of two or more.
  • Preferred latexes are diene rubbers (styrene-butadiene-vinylpyridine terpolymers, chloroprene rubber, butadiene rubber, etc.), chlorosulfonated polyethylene rubbers, and styrene-butadiene-vinylpyridine for further improving the adhesion.
  • Ternary copolymers are preferred.
  • Adhesion treatment of short fibers with a treatment liquid (RFL liquid etc.) containing at least a styrene-butadiene-vinylpyridine terpolymer can improve the adhesion between the rubber composition (chloroprene rubber composition etc.) and the short fibers.
  • RTL liquid etc. treatment liquid containing at least a styrene-butadiene-vinylpyridine terpolymer
  • the adhesion between the rubber composition and the short fibers can be further enhanced.
  • the ratio of the initial condensate of resorcin and formalin may be about 10 to 100 parts by mass (for example, 12 to 50 parts by mass, preferably 15 to 30 parts by mass) with respect to 100 parts by mass of the rubber content of the latex. .
  • the total solid content concentration of the RFL liquid can be adjusted in the range of 5 to 40% by mass.
  • the adhesion rate of the adhesive component (solid content) to the short fibers is, for example, 1 to 25% by mass, preferably 3 to 20% by mass, more preferably 5 to 15% by mass, and 3 to 10% by mass (for example, 4% About 8% by mass). If the adhesion rate of the adhesive component is less than 1% by mass, the dispersibility of the short fibers in the rubber composition and the adhesiveness between the short fibers and the rubber composition are insufficient, while on the other hand, if it exceeds 25% by mass, The adhesive component firmly bonds the fiber filaments to each other, and there is a possibility that the dispersibility is lowered.
  • the method for preparing the bonded short fibers is not particularly limited.
  • a method in which multifilament long fibers are impregnated in a bonding treatment liquid and dried to be cut to a predetermined length, or an untreated short fiber is bonded to a bonding processing solution For example, a method of immersing the substrate in a predetermined time, and then removing the excess bonding treatment liquid by a method such as centrifugation, followed by drying can be used.
  • the rubber composition may include a vulcanizing agent or a crosslinking agent (or a crosslinking agent system), a co-crosslinking agent, a vulcanization aid, a vulcanization accelerator, a vulcanization retarder, a metal oxide (for example, zinc oxide, Magnesium oxide, calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), reinforcing agents (silicon oxide such as carbon black and hydrous silica), fillers (clay, calcium carbonate, talc, mica, etc.) ), Softeners (paraffin oils, oils such as naphthenic oils), processing agents or processing aids (stearic acid, metal stearate, wax, paraffin, etc.), anti-aging agents (antioxidants, heat aging prevention) Agents, flex cracking prevention materials, ozone deterioration prevention agents, etc.), coloring agents, tackifiers, plasticizers, coupling agents (
  • the vulcanizing agent or the crosslinking agent conventional components can be used depending on the type of rubber component.
  • the metal oxide magnesium oxide, zinc oxide, etc.
  • organic peroxide diacyl peroxide, peroxyester
  • dialkyl peroxide sulfur vulcanizing agents
  • sulfur-based vulcanizing agent examples include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, sulfur chloride (sulfur monochloride, sulfur dichloride, etc.), and the like.
  • These crosslinking agents or vulcanizing agents may be used alone or in combination of two or more.
  • a metal oxide magnesium oxide, zinc oxide, etc.
  • the metal oxide may be used in combination with other vulcanizing agents (such as sulfur-based vulcanizing agents), and the metal oxide and / or sulfur-based vulcanizing agent may be used alone or in combination with a vulcanization accelerator. May be used.
  • the amount of the vulcanizing agent used can be selected from a range of about 1 to 20 parts by mass with respect to 100 parts by mass of the rubber component depending on the type of the vulcanizing agent and the rubber component.
  • the amount of the organic peroxide used as the vulcanizing agent is 1 to 8 parts by weight, preferably 1.5 to 5 parts by weight, more preferably 2 to 4.5 parts by weight with respect to 100 parts by weight of the rubber component.
  • the metal oxide is used in an amount of 1 to 20 parts by weight, preferably 3 to 17 parts by weight, more preferably 5 to 15 parts by weight (for example, based on 100 parts by weight of the rubber component). 7 to 13 parts by mass).
  • co-crosslinking agent crosslinking aid or co-vulcanizing agent co-agent
  • crosslinking aids such as polyfunctional (iso) cyanurates (for example, triallyl isocyanurate (TAIC), triallyl cyanurate ( TAC)), polydienes (eg, 1,2-polybutadiene, etc.), metal salts of unsaturated carboxylic acids (eg, zinc (meth) acrylate, magnesium (meth) acrylate), oximes (eg, quinonedi) Oximes), guanidines (eg, diphenylguanidine), polyfunctional (meth) acrylates (eg, ethylene glycol di (meth) acrylate, butanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, etc.), Bismaleimides (aliphatic bismaleimides such as N, N′-1,2 Ethylene bismaleimide, 1,6′-bis
  • crosslinking aids can be used alone or in combination of two or more.
  • bismaleimides arene bismaleimides such as N, N'-m-phenylene dimaleimide or aromatic bismaleimides
  • the addition of bismaleimides can increase the degree of crosslinking and prevent adhesive wear and the like.
  • the ratio of the co-crosslinking agent can be selected, for example, from the range of about 0.01 to 10 parts by mass with respect to 100 parts by mass of the rubber component in terms of solid content, and 0.1 to 5 parts by mass ( For example, it may be about 0.3 to 4 parts by mass), preferably about 0.5 to 3 parts by mass (for example, 0.5 to 2 parts by mass).
  • vulcanization accelerator examples include thiuram accelerators (for example, tetramethylthiuram monosulfide (TMTM), tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide (TETD), tetrabutylthiuram disulfide (TBTD).
  • TMTM tetramethylthiuram monosulfide
  • TMTD tetramethylthiuram disulfide
  • TETD tetraethylthiuram disulfide
  • TBTD tetrabutylthiuram disulfide
  • thiazol accelerators for example, 2-mercaptobenzothiazol, 2 -Zinc salts of mercaptobenzothiazol, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2- (4'-morpholinodithio) benzothiazole, etc.
  • sulfenamide accelerators for example, N-cyclohexyl) -2-Benzothiazils Phenamide (CBS), N, N′-dicyclohexyl-2-benzothiazylsulfenamide, etc.
  • bismaleimide accelerators for example, N, N′-m-phenylenebismaleimide, N, N′-1,2) -Ethylene bismaleimide
  • guanidines diphenyl guanidine
  • the proportion of the vulcanization accelerator is, for example, 0.1 to 15 parts by mass, preferably 0.3 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass in terms of solid content with respect to 100 parts by mass of the rubber component. It may be about part by mass.
  • the amount of the reinforcing agent (carbon black, silica, etc.) used is about 10 to 100 parts by weight (preferably 20 to 80 parts by weight, more preferably 30 to 70 parts by weight) with respect to 100 parts by weight of the total amount of rubber components. There may be.
  • the amount of the softener (oils such as naphthenic oil) used is, for example, 1 to 30 parts by mass, preferably 3 to 20 parts by mass (eg 5 to 10 parts) with respect to 100 parts by mass of the total amount of rubber components. Part by mass).
  • the amount of the anti-aging agent used is, for example, 0.5 to 15 parts by weight, preferably 1 to 10 parts by weight, more preferably 2.5 to 7.5 parts by weight with respect to 100 parts by weight of the total amount of rubber components ( For example, it may be about 3 to 7 parts by mass.
  • the structure of the transmission belt is not particularly limited as long as the belt has the compressed rubber layer that can come into contact with the pulley.
  • the transmission belt includes an adhesive rubber layer in which a core wire is embedded in the longitudinal direction of the belt, and a compression rubber layer formed on one surface of the adhesive rubber layer. And a stretched rubber layer formed on the other surface.
  • the compressed rubber layer and the stretched rubber layer may be formed of the rubber composition.
  • FIG. 1 is a schematic sectional view showing an example of a transmission belt.
  • the core wire 2 is embedded in the adhesive rubber layer 1
  • the compressed rubber layer 3 is laminated on one surface of the adhesive rubber layer 1
  • the stretched rubber layer is formed on the other surface of the adhesive rubber layer 1. 4 are stacked.
  • the core wire 2 is integrally embedded in a form sandwiched between a pair of adhesive rubber sheets.
  • a reinforcing cloth 5 is laminated on the compressed rubber layer 3, and a cog portion 6 is formed by a cogging mold.
  • the laminated body of the compressed rubber layer 3 and the reinforcing cloth 5 is integrally formed by vulcanizing the laminated body of the reinforcing cloth and the compressed rubber layer sheet (unvulcanized rubber sheet).
  • the rubber composition for forming the adhesive rubber layer includes a rubber component (chloroprene rubber, etc.), a vulcanizing agent or a crosslinking agent (metal oxide such as magnesium oxide and zinc oxide, sulfur, etc.).
  • Sulfur-based vulcanizing agents such as maleimide-based crosslinking agents such as N, N'-m-phenylene dimaleimide), vulcanization accelerators (such as TMTD, DPTT, CBS), enhancers (Carbon black, silica, etc.), softeners (oils such as naphthenic oils), processing agents or processing aids (stearic acid, metal stearate, wax, paraffin, etc.), anti-aging agents, adhesion improvers ( Resorcin-formaldehyde co-condensate, amino resin (condensate of nitrogen-containing cyclic compound and formaldehyde, eg hexamethylolmelamine, hexaalkoxymethyl Melamine resins such as melamine (hexamethoxymethyl melamine, hexabutoxymethyl melamine, etc.), urea resins such as methylol urea, benzoguanamine resin
  • the resorcin-formaldehyde cocondensate and amino resin may be an initial condensate (prepolymer) of a nitrogen-containing cyclic compound such as resorcin and / or melamine and formaldehyde.
  • the rubber component a rubber of the same type (diene rubber or the like) or the same type (chloroprene rubber or the like) as the rubber component of the rubber composition of the compressed rubber layer is often used. Further, the amounts of the vulcanizing agent or crosslinking agent, co-crosslinking agent or crosslinking aid, vulcanization accelerator, enhancer, softener and anti-aging agent are each in the same range as the rubber composition of the compressed rubber layer. You can choose from.
  • the amount of the processing agent or processing aid (such as stearic acid) used is 0.1 to 10 parts by mass, preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
  • the amount of the adhesion improver (resorcin-formaldehyde cocondensate, hexamethoxymethylmelamine, etc.) used is 0.1 to 20 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the rubber component. More preferably, it may be about 2 to 8 parts by mass.
  • polyester fibers polyalkylene arylate fibers
  • C 2-4 alkylene arylates such as ethylene terephthalate and ethylene-2,6-naphthalate, aramid fibers, etc.
  • Inorganic fibers such as fibers and carbon fibers are widely used, and polyester fibers (polyethylene terephthalate fibers, ethylene naphthalate fibers) and polyamide fibers are preferable.
  • the fiber may be a multifilament yarn.
  • the fineness of the multifilament yarn may be, for example, about 2000 to 10000 denier (particularly 4000 to 8000 denier).
  • the core wire usually a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used.
  • the average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, about 0.5 to 3 mm, preferably about 0.6 to 2 mm, and more preferably about 0.7 to 1.5 mm.
  • the core wire may be embedded in the longitudinal direction of the belt, and may be embedded in parallel at a predetermined pitch parallel to the longitudinal direction of the belt.
  • the core wire may be subjected to various adhesion treatments similar to those of the short fibers, for example, an adhesion treatment with resorcin-formalin-latex liquid (RFL liquid).
  • RFL liquid resorcin-formalin-latex liquid
  • the adhesion treatment can be performed by immersing the fiber in an RFL solution and then drying by heating to form a uniform adhesion layer on the surface.
  • the latex of the RFL liquid include the same rubber components as the latex of the RFL liquid, and chloroprene, styrene-butadiene-vinylpyridine terpolymer, and the like are preferable.
  • the core wire is embedded in a rubber layer after pretreatment with a reactive compound such as an epoxy compound or an isocyanate compound (pre-dip) before RFL treatment, or after adhesive treatment such as rubber paste treatment (overcoating) after RFL treatment. Also good.
  • a reinforcing cloth may be laminated on the surface of the compressed rubber layer and / or the stretched rubber layer.
  • the reinforcing cloth can be formed, for example, by laminating a cloth material (preferably a woven cloth) such as a woven cloth, a wide angle sail cloth, a knitted cloth, and a non-woven cloth on the surface of the compression rubber layer and / or the stretch rubber layer.
  • a cloth material preferably a woven cloth
  • a wide angle sail cloth such as a woven cloth, a wide angle sail cloth, a knitted cloth, and a non-woven cloth
  • the adhesive treatment for example, treatment with RFL liquid (immersion treatment, etc.
  • friction for rubbing adhesive rubber into the cloth material for example, treatment with RFL liquid (immersion treatment, etc.
  • lamination (coating) of the adhesive rubber and the cloth material a compressed rubber layer And / or may be laminated on the surface of the stretch rubber layer.
  • Transmission efficiency If a transmission belt provided with the compressed rubber layer is used, the transmission efficiency can be greatly improved.
  • the transmission efficiency is an index for the belt to transmit the rotational torque from the drive pulley to the driven pulley. The higher the transmission efficiency, the smaller the belt transmission loss and the better the fuel efficiency.
  • the transmission efficiency can be obtained as follows.
  • the rotational torque T 1 of the driving pulley can be expressed by ⁇ 1 ⁇ Te ⁇ r 1 .
  • Te is an effective tension obtained by subtracting the loose side tension (tension Tb on the side where the belt faces the driven pulley) from the tension side tension (tension Ta on the side where the belt faces the driving pulley).
  • the rotational torque T 2 of the driven pulley is represented by ⁇ 2 ⁇ Te ⁇ r 2 .
  • the transmission efficiency T 2 / T 1 is calculated by dividing the rotational torque T 2 of the driven pulley by the rotational torque T 1 of the drive pulley, and can be expressed by the following equation (1).
  • the transmission efficiency never becomes a value of 1 or more, but the closer to 1, the smaller the belt transmission loss and the better the fuel economy.
  • the belt manufacturing method is not particularly limited, and a conventional method can be adopted.
  • the belt shown in FIG. 1 has a core wire embedded therein, and a laminated body of the unvulcanized rubber layer having the above-described configuration is formed with a molding die, vulcanized to form a belt sleeve, and this vulcanized belt sleeve. Can be formed by cutting to a predetermined size.
  • Examples 1-7 and Comparative Examples 1-2 (Formation of rubber layer)
  • the rubber compositions in Table 1 (compressed rubber layer, stretched rubber layer) and Table 2 (adhesive rubber layer) were each kneaded using a known method such as a Banbury mixer, and the kneaded rubber was passed through a calender roll.
  • Rolled rubber sheets (compressed rubber layer sheet, stretch rubber layer sheet, adhesive rubber layer sheet) were prepared.
  • Examples 1 and 3 show examples in which the content of aramid short fibers is different.
  • Examples 2 to 6 show examples in which the content of fatty acid amide is different (0.5 to 10 parts by mass).
  • 7 and Example 4 show examples in which the content of short aramid fibers and carbon black are different.
  • Comparative Example 1 was an example using stearic acid instead of fatty acid amide in the formulation of Example 3, and Comparative Example 2 was using half the amount of stearic acid instead of fatty acid amide of Example 7. An example is shown.
  • stearic acid amide structural formula C 18 H 37 NO
  • Amide AP-1 structural formula C 18 H 37 NO
  • aramid short fiber is used as the short fiber.
  • Amide AP-1 structural formula C 18 H 37 NO
  • Amide AP-1 structural formula C 18 H 37 NO
  • aramid short fiber is used as the short fiber.
  • the short fibers were bonded with an RFL solution (containing resorcin and formaldehyde and styrene-butadiene-vinylpyridine rubber latex as a latex), and short fibers having a solid content of 6 mass% were used.
  • RFL liquid As the RFL liquid, 2.6 parts by mass of resorcin, 1.4 parts by mass of 37% formalin, 17.2 parts by mass of styrene-butadiene-vinylpyridine copolymer latex (manufactured by Nippon Zeon Co., Ltd.), 78.8 parts by mass of water was used. Furthermore, DOS (manufactured by DIC Corporation), which is a sebacate-based oil, is used as a plasticizer, Seast 3 (manufactured by Tokai Carbon Co., Ltd.) as carbon black, and non-flex OD3 (manufactured by Seiko Chemical Co., Ltd.) as an anti-aging agent. It was. Further, Nipsil VN3 (manufactured by Tosoh Silica Co., Ltd.) was used as silica.
  • DOS manufactured by DIC Corporation
  • Seast 3 manufactured by Tokai Carbon Co., Ltd.
  • non-flex OD3 manufactured by
  • the laminate of the reinforcing fabric and the compressed rubber layer sheet (unvulcanized rubber) is placed on a flat cogging die with the teeth and grooves alternately arranged with the reinforcing fabric down, and press-pressed at 75 ° C.
  • a cog pad (not completely vulcanized but in a semi-vulcanized state) with a cog part formed by pressing was produced. Next, both ends of the cog pad were cut vertically from the top of the cog crest.
  • the tensile test is performed in accordance with JIS K6251 (2010), a vulcanized rubber sheet is punched into a dumbbell shape, a sample is prepared, and the sample is stretched by a tensile tester and stress when it is stretched 100% (100% stretch) Stress), strength at break (breaking strength) and elongation (breaking elongation) were measured.
  • a tensile test was performed on a sample in which short fibers were aligned in parallel to the tensile direction and a sample in which short fibers were aligned vertically. With respect to the sample in which short fibers were oriented, 100% elongation stress, breaking strength and breaking elongation were measured.
  • the tear test was performed according to JIS K6252 (2007), and after vulcanized rubber sheet was punched into an angled shape, the tensile strength of the obtained sample was measured with a tensile tester. In this measurement, measurement was performed in a state where the short fibers were oriented in a direction perpendicular to the tensile direction (that is, a direction parallel to the tearing direction).
  • the compressed rubber layer sheet was press vulcanized at a temperature of 160 ° C. for 20 minutes to produce a vulcanized rubber molded body (length 25 mm, width 25 mm, thickness 12.5 mm).
  • the short fibers were oriented in the direction perpendicular to the compression surface (thickness direction).
  • This vulcanized rubber molded body is sandwiched between two metal compression plates up and down (in the state where the vulcanized molded body is not pressed by the compression plate, the position of the upper compression plate is the initial position), the upper side
  • the compression plate was pressed against the vulcanized rubber molded body at a speed of 10 mm / min (pressing surface 25 mm ⁇ 25 mm) to distort the vulcanized rubber molded body by 20%, held in this state for 1 second, To the initial position (preliminary compression).
  • the compression rubber layer sheet was press vulcanized at a temperature of 160 ° C. for 20 minutes to prepare a vulcanized rubber molded body (length 60 mm, width 25 mm, thickness 6.5 mm).
  • the short fibers were oriented in a direction parallel to the width of the vulcanized rubber molding.
  • this vulcanized rubber molded body 21 is placed on and supported by a pair of rolls (6 mm diameter) 22a, 22b that can be rotated with an interval of 20 mm, and the center of the upper surface of the vulcanized rubber molded body.
  • the metal pressing member 23 was placed in the width direction (the orientation direction of the short fibers) in the part.
  • the front end portion of the pressing member 23 has a semicircular shape with a diameter of 10 mm, and the vulcanized rubber molded body 21 can be smoothly pressed by the front end portion. Further, at the time of pressing, a frictional force acts between the lower surface of the vulcanized rubber molded body 21 and the rolls 22a and 22b along with the compression deformation of the vulcanized rubber molded body 21, but the rolls 22a and 22b can be rotated. This reduces the influence of friction.
  • the state in which the tip of the pressing member 23 is in contact with the upper surface of the vulcanized rubber molded body 21 and is not pressed is set to “0”. From this state, the pressing member 23 is molded downward at a speed of 100 mm / min. The upper surface of the body 21 was pressed, and the stress when the strain in the thickness direction of the vulcanized rubber molded body 21 became 10% was measured as a bending stress.
  • the high-load running test was performed using a two-axis running test machine including a driving (Dr.) pulley 42 having a diameter of 50 mm and a driven (Dn.) Pulley 43 having a diameter of 125 mm.
  • a low-edge cogged V-belt 41 is hung on each pulley 42, 43, a load of 3 N ⁇ m is applied to the driven pulley 43 at a rotation speed of 3000 rpm of the driving pulley 42, and the belt 41 is run in a room temperature atmosphere.
  • the rotational speed of the driven pulley 43 was read from the detector, and the transmission efficiency was obtained from the above formula.
  • the transmission efficiency of Comparative Example 1 is set to “1”, and the transmission efficiency of each Example and Comparative Example is shown as a relative value. If this value is larger than 1, the transmission efficiency of the belt 41, that is, the fuel saving performance. was judged to be high.
  • the high-speed running test was performed using a two-axis running test machine including a driving (Dr.) pulley 52 having a diameter of 95 mm and a driven (Dn.) Pulley 53 having a diameter of 85 mm.
  • the low-edge cogged V-belt 51 is hung on each pulley 52, 53, the rotational speed of the driving pulley 52 is 5000 rpm, a load of 3 N ⁇ m is applied to the driven pulley 53, and the belt 51 is run in a room temperature atmosphere.
  • the rotational speed of the driven pulley 52 was read from the detector, and the transmission efficiency was obtained from the above formula.
  • Table 3 the transmission efficiency of Comparative Example 1 is set to “1”, and the transmission efficiency of each Example and Comparative Example is shown as a relative value. If this value is larger than 1, the transmission efficiency, that is, the fuel efficiency is high. It was judged.
  • the endurance running test was performed using a two-axis running tester comprising a driving (Dr.) pulley 62 having a diameter of 50 mm and a driven (Dn.) Pulley 63 having a diameter of 125 mm, as shown in FIG. I did it.
  • a low-edge cogged V-belt 61 is hung on each pulley 62, 63, a rotational speed of the drive pulley 62 is 5000 rpm, a load of 10 N ⁇ m is applied to the driven pulley 63, and the belt 61 is attached at an ambient temperature of 80 ° C.
  • the vehicle was run for a maximum of 60 hours. If the belt 61 traveled for 60 hours, it was determined that there was no problem with durability. Further, the side of the compressed rubber after running (the surface in contact with the pulley) was visually observed to check for cracks.
  • Results Table 3 shows the physical properties of the vulcanized rubber and the physical properties of the belt.
  • Example 7 Physical properties of vulcanized rubber From Examples 2 to 6, as the content of fatty acid amide increased, a slight decrease in hardness was observed, but this was not a significant difference.
  • Example 7 and Comparative Example 2 having a high content of short fibers and carbon black, the hardness was as extremely high as 94 °. From the comparison between Example 3 and Comparative Example 1, even when the fatty acid amide was changed to stearic acid, the hardness was not changed.
  • Example 7 Comparative Example 2 having a high content of short fibers and carbon black, the compressive stress and bending stress were very high.
  • Examples 1 to 6 Compared with Comparative Example 1, Examples 1 to 6 had higher transmission efficiency (high load traveling, high speed traveling) and excellent fuel economy. Also, the greater the amount of fatty acid amide blended, the higher the transmission efficiency.
  • Example 7 In Example 7 and Comparative Example 2 with a high content of short fibers and carbon black, both showed very high bending stress, but in Comparative Example 2, the transmission efficiency was the lowest, whereas in Example 7, High transmission efficiency was shown.
  • Examples 1 to 7 were run for 60 hours, and the compressed rubber layer did not crack and showed high durability.
  • Comparative Example 1 peeling occurred between the compressed rubber layer and the adhesive rubber layer, and the service life was 25 hours.
  • Comparative Example 2 the material traveled for 60 hours. In many cases, the compression rubber layer cracked because of its high hardness and low tearing force.
  • Example 8 and Comparative Example 3 In order to examine the relationship between fatty acid amide and stearic acid and the type of short fiber, physical properties of vulcanized rubber were evaluated.
  • An untreated denim product (short fibers of about 6 mm in length) is immersed in the RFL solution used in Example 1 for 10 minutes (latex is a styrene-butadiene-vinylpyridine terpolymer), and then the excess RFL solution was removed by centrifugation and dried in a drying oven at 160 ° C. for 1 hour to prepare a denim-treated product.
  • the adhesion rate of the RFL component of the obtained denim-treated product was 13% by mass.
  • Example 8 Using the above-mentioned denim-treated product (hereinafter, treated denim), fatty acid amide was used in Example 8, stearic acid was used instead of fatty acid amide in Comparative Example 3, and a rolled rubber sheet was produced in the same manner as in Example 3. did.
  • This rolled rubber sheet was press vulcanized at a temperature of 160 ° C. for 20 minutes to produce a vulcanized rubber sheet (length 100 mm, width 100 mm, thickness 2 mm).
  • Examples 9-10 As fatty acid amides, bisamide (ethylene bisoleic acid amide (structural formula C 38 H 72 N 2 O 2 ), “Sripacs O” manufactured by Nippon Kasei Co., Ltd., melting point 119 ° C.), ester amide (ethanolamine distearate, Japan
  • a vulcanized rubber sheet was prepared in the same manner as in Example 3 except that “Slideid S” manufactured by Kasei Chemical Co., Ltd. was used. The results of physical properties of vulcanized rubber are shown in Table 5. For reference, the data of Example 3 and Comparative Example 1 are also shown.
  • the power transmission belt of the present invention can be used as various belts that require a reduction in power transmission loss, and is preferably a friction power transmission belt.
  • the friction transmission belt include a low-edge belt having a V-shaped cross section, a low-edge cogged V belt having cogs provided on the inner peripheral side of the low-edge belt or both the inner peripheral side and the outer peripheral side, and a V-ribbed belt.
  • the present invention is preferably applied to a belt (transmission belt) used in a transmission in which the gear ratio changes steplessly during belt travel.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Harvester Elements (AREA)

Abstract

 本発明は、ベルトの長手方向に心線を埋設した接着ゴム層と、この接着ゴム層の一方の面に形成された圧縮ゴム層と、前記接着ゴム層の他方の面に形成された伸張ゴム層とを備えた伝動用ベルトであって、少なくとも前記圧縮ゴム層が、脂肪酸アマイドと短繊維とを含む伝動用ベルトに関する。

Description

伝動用ベルト
 本発明は、Vベルト、Vリブドベルトなどの伝動用ベルトに関し、詳しくは耐久性能と伝達効率に優れた伝動用ベルトに関する。
 従来、Vベルト、Vリブドベルトなどの伝動用ベルトの耐側圧性を向上させるため、圧縮ゴム層に補強剤として短繊維が配合されている。例えば、特許文献1には、コードが埋設された接着弾性体層と、この接着弾性体層の上下側に位置する保持弾性体層(圧縮ゴム層)とを備えたベルトにおいて、保持弾性体層が、クロロプレンゴム、補強性充填剤、金属酸化加硫剤、ビスマレイミド及びアラミド短繊維を含み、アラミド短繊維がベルトの幅方向に配列したゴムVベルトが開示されている。この文献には、アラミド繊維の配列により、列理方向(短繊維の配向方向)の弾性率を高くして、耐側圧性を維持し、耐久性を向上させている。
 特許文献2には、圧縮ゴム層および伸張ゴム層を有し、かつ長手方向に沿って心線を埋設したコグドVベルトにおいて、伸張ゴム層のゴム硬度(JIS-A)が85~92、圧縮ゴム層のゴム硬度(JIS-A)が90~98の範囲内であり、圧縮ゴム層のゴム硬度を伸張ゴム層のゴム硬度よりも3~10(JIS-A)以上高く設定したコグドVベルトが開示され、伸張ゴム層及び圧縮ゴム層にカーボンブラック及びアラミド短繊維を含有させることが記載されている。
 特許文献3には、伸張及び圧縮ゴム層の少なくとも一方のゴム硬度を90~96°、接着ゴム層のゴム硬度を83~89°の範囲に設定し、伸張及び圧縮ゴム層にはアラミド短繊維をベルト幅方向に配列させた伝動用Vベルトが開示されている。この文献では、早期にクラックや各ゴム層及びコードのセパレーション(剥離)の発生を防止し、耐側圧性を向上させて高負荷伝動能力を向上させている。
 ところで、近年、伝動用ベルトには上記耐側圧性や耐久性以外に、ベルトの伝動ロスを低減して、燃費性を改善するため、省燃費性を向上させることが求められている。例えば、特許文献3の段落[0005]には、ベルトのゴム硬度を上げると曲げ剛性が高くなり、小プーリ径では伝動ロスが生じることが記載されている。このため、Vベルトの内周側または内周側と外周側(背面側)の両方にコグを設け、ベルトの曲げ剛性を低くして伝動ロスを抑える試みがなされている。この種のベルトとして、一般的にコグドVベルトが知られている。
 耐側圧性や耐久性の向上に対しては、前記特許文献1~3に記載のように、アラミド繊維などの高弾性率の短繊維やカーボンブラックなどの補強剤を増量してゴム硬度を高めることが有効な手段である。しかし、ゴム硬度を高めるとベルトの曲げ剛性の上昇に繋がり、屈曲疲労性の低下や、小プーリ径においてはベルトの伝動ロスが大きくなり、省燃費性を低下させる。一方、屈曲疲労性や省燃費性を向上させるため、ゴム硬度を下げると、耐側圧性が低下してベルトが早期に寿命となる虞がある。すなわち、耐側圧性、耐久性の一連の特性と、屈曲疲労性、省燃費性の一連の特性とは二律背反の関係にある。なお、Vベルトの内周側または内周側と外周側の両方にコグを設けることにより屈曲疲労性、省燃費性を向上させることができる。しかし、耐側圧性、耐久性を維持すべくゴム硬度を高くしているため、省燃費性は未だ十分ではないのが現状である。そのため、好ましいゴム組成物(特に圧縮ゴム層のゴム組成物)が望まれている。
 なお、この種のVベルトとして無段変速機に用いられる変速ベルトがある。この変速ベルトにおいて、変速比(駆動プーリと従動プーリとの回転比)を変えるためには、ベルトがそのプーリ上をプーリ半径方向に上下動(又は進退動)する。この移動がスムーズに行なわれないと、プーリからの剪断力が強く作用してゴム層間(接着ゴム層と圧縮ゴム層)や接着ゴム層と心線間とで剥離が生じたり、省燃費性(曲げ剛性に起因する省燃費性ではなく、摺動性の低下に基づく省燃費性)が低下する。この点、短繊維やカーボンブラックなどの補強剤を多く配合してゴム硬度を高めたり、短繊維を摩擦伝動面から突出させることにより、摩擦係数を低減させることが可能であるが、補強剤を多く配合すると上記の問題が発生する。
日本国特公平5-63656号公報 日本国特開2009-150538号公報 日本国特開平10-238596号公報
 従って、本発明の目的は、伝動ロスを低減できる伝動用ベルトを提供することにある。
 本発明の他の目的は、ゴム硬度を過度に高くしなくても、耐側圧性、耐久性を維持するとともに、屈曲疲労性、省燃費性(曲げ剛性と摺動性の両方)を向上できる伝動用ベルトを提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、伝動用ベルトの圧縮ゴム層を、ゴム成分と脂肪酸アマイドと短繊維とを含むゴム組成物で形成すると、脂肪酸アマイドが短繊維の分散性及び配向性を向上させるとともにゴム成分と短繊維との密着性を改善すること、脂肪酸アマイドが圧縮ゴム層の表面(プーリと接触する摩擦伝動面)にブルーム(析出)又はブリードアウトし、ゴム層表面の摩擦係数を低下させ、伝動性(伝達効率)を向上させることを見いだし、本発明を完成した。
 すなわち、本発明の伝動用ベルトは、ベルトの長手方向に心線を埋設した接着ゴム層と、この接着ゴム層の一方の面に形成された圧縮ゴム層と、前記接着ゴム層の他方の面に形成された伸張ゴム層とを備えている。このような構造の伝動用ベルトにおいて、少なくとも前記圧縮ゴム層が、脂肪酸アマイドと短繊維とを含んでいる。
 このような伝動用ベルトでは、脂肪酸アマイドが短繊維の分散剤として作用し、ゴム組成物中の短繊維の分散性及び短繊維の配向性(ベルト幅方向に対して平行な方向)を向上でき、圧縮ゴム層の耐側圧性や耐摩耗性を向上できる。また、脂肪酸アマイドにより短繊維と圧縮ゴム層を構成するゴム組成物(マトリックスゴム:短繊維を除くゴム組成物)との接着性を向上できる。特に、接着処理された短繊維を用いると、その表面(外層)の接着成分が脂肪酸アマイドと化学的に相互作用し、短繊維と圧縮ゴム層を構成するゴム組成物(マトリックスゴム)との接着性を高めることができる。そのため、モジュラスや引張強さ、引裂強さに優れた圧縮ゴム層を形成できる。さらに、脂肪酸アマイドは、マトリックスゴムのモジュラスを低下させる(又は柔軟にする)内部潤滑剤としても作用するが、前記短繊維との併用により、このモジュラスの低下を抑制できる。すなわち、脂肪酸アマイドと短繊維とを併用すると、圧縮ゴム層のマトリックス成分を柔軟にするとともに、力学特性に優れた圧縮ゴム層を形成でき、圧縮ゴム層の硬度を高めることなく、ベルトの屈曲疲労性や省燃費性を向上できる。さらに、脂肪酸アマイドは圧縮ゴム層の表面(プーリと接触する摩擦伝動面)にブルーム(析出)又はブリードアウトして外部潤滑剤として作用し、ゴム層表面の摩擦係数を低減し、ゴム層表面とプーリとの摩擦を円滑にし、ベルトの耐久性、省燃費性(特に、変速ベルトでの省燃費性)を向上する。そのため、本発明では、耐側圧性及び耐久性の特性と、屈曲疲労性及び省燃費性の特性とを両立できる。
 脂肪酸アマイドは、飽和又は不飽和長鎖脂肪酸アマイド及び飽和又は不飽和長鎖脂肪酸エステルアマイドから選択された少なくとも一種を含んでいてもよい。また、短繊維は、少なくとも接着処理された短繊維を含むことが好ましく、短繊維は、少なくともアラミド繊維を含んでいてもよい。より具体的には、圧縮ゴム層のゴム成分はクロロプレンゴムを含んでもよく、脂肪酸アマイドは少なくとも炭素数10~26の飽和又は不飽和脂肪酸モノアマイドを含んでもよく、短繊維(例えば、短繊維の周り(外層又は表面)の少なくとも一部)には、少なくともレゾルシンとホルマリンとの初期縮合物及びラテックスを含む接着成分が付着していてもよい。さらに、短繊維には、スチレン-ブタジエン-ビニルピリジン三元共重合体を含む接着成分が付着していてもよい。
 脂肪酸アマイド及び短繊維の使用量は、圧縮ゴム層の力学特性を高めつつ、その表面の摩擦係数を適度に低下できるとともに、圧縮ゴム層の硬度を過度に高めることがなく、曲げ応力を低減でき、屈曲疲労性や省燃費性を向上できる範囲から選択できる。圧縮ゴム層を構成するゴム組成物において、脂肪酸アマイドの割合は、例えば、原料ゴム成分100質量部に対して、0.5~10質量部程度であってもよく、短繊維の割合は、例えば、原料ゴム成分100質量部に対して、10~40質量部程度であってもよい。
 本発明は、伝動用ベルトの圧縮ゴム層及び伸張ゴム層から選択された少なくとも1つのゴム層を形成するためのゴム組成物であって、ゴム成分と脂肪酸アマイドと短繊維とを含むゴム組成物も包含する。この組成物において、短繊維は、少なくとも接着処理された短繊維を含むことが好ましい。さらには、本発明は、伝動用ベルトの圧縮ゴム層を、前記ゴム組成物で形成し、伝動ロスを低減する方法(伝動性又は伝達効率を向上させる方法)も包含する。
 本発明では、圧縮ゴム層が脂肪酸アマイドと短繊維とを含むため、伝動用ベルトによる伝動ロスを低減でき、伝達効率を向上できる。また、ゴム硬度を過度に高くしなくても、耐側圧性、耐久性を維持できるとともに、屈曲疲労性、省燃費性(曲げ剛性と摺動性の両方)を向上できる。特に、相反する特性、すなわち、耐側圧性及び耐久性の特性と、屈曲疲労性及び省燃費性の特性とを両立できる。
図1は伝動用ベルトの一例を示す概略断面図である。 図2は伝達効率の測定方法を説明するための概略図である。 図3は実施例での曲げ応力の測定方法を説明するための概略図である。 図4は実施例での摩擦係数の測定方法を説明するための概略図である。 図5は実施例での高負荷走行試験を説明するための概略図である。 図6は実施例での高速走行試験を説明するための概略図である。 図7は実施例での耐久走行試験を説明するための概略図である。
 本発明のゴム組成物は伝達効率を高めるのに有用であり、ベルトの圧縮ゴム層及び伸張ゴム層から選択された少なくとも1つのゴム層(特に、少なくとも圧縮ゴム層)を形成するのに有用である。このゴム組成物は、ゴム成分と、脂肪酸アマイドと、短繊維とを含んでいる。
 (ゴム成分)
 ゴム組成物のゴム成分としては、加硫又は架橋可能なゴム、例えば、ジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴムなど)、エチレン-α-オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが例示できる。これらのゴム成分は単独で又は二種以上組み合わせて使用できる。
 好ましいゴム成分は、エチレン-α-オレフィンエラストマー(エチレン-プロピレンゴム(EPR)、エチレン-プロピレン-ジエンモノマー(EPDMなど)などのエチレン-α-オレフィン系ゴム)、クロロプレンゴムである。特に好ましいゴム成分は、クロロプレンゴムである。クロロプレンゴムは、硫黄変性タイプであってもよく、非硫黄変性タイプであってもよい。
 (脂肪酸アマイド)
 脂肪酸アマイドは、その分子内に長鎖脂肪酸基(例えば、炭素数が10~40程度の脂肪酸基)とアミド基とを有し、熱・化学的に安定な固体界面活性剤である。脂肪酸アマイドとしては、飽和又は不飽和高級脂肪酸モノアマイド、例えば、ベヘン酸アマイド、アラキン酸アマイド、ステアリン酸アマイド、ヒドロキシステアリン酸アマイド、パルミチン酸アマイド、ミリスチン酸アマイド、ラウリン酸アマイド、エルカ酸アマイド、オレイン酸アマイド、リシノール酸アマイドなどの飽和又は不飽和高級脂肪酸アマイド;及び飽和又は不飽和高級脂肪酸ビスアマイド、例えば、アルキレンビス飽和又は不飽和高級脂肪酸アマイド(例えば、メチレンビスステアリン酸アマイド、メチレンビスラウリン酸アマイド、メチレンビスヒドロキシステアリン酸アマイド、メチレンビスオレイン酸アマイド、エチレンビスベヘン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスカプリル酸アマイド、エチレンビスカプリン酸アマイド、エチレンビスラウリン酸アマイド、イソステアリン酸アマイド、エチレンビスエルカ酸アマイド、エチレンビスオレイン酸アマイド、テトラメチレンビスステアリン酸アマイド、ヘキサメチレンビスベヘン酸アマイド、ヘキサメチレンビスステアリン酸アマイド、へキサメチレンビスヒドロキシステアリン酸アマイド、ヘキサメチレンビスオレイン酸アマイドなどのC1-10アルキレンビス飽和又は不飽和高級脂肪酸アマイドなど)、ジカルボン酸と飽和又は不飽和高級アミンとのビスアマイド(例えば、N,N’-ジステアリルアジピン酸アマイド、N,N’-ジステアリルセバシン酸アマイド、N,N’-ジオレイルアジピン酸アマイド、N,N’-ジオレイルセバシン酸アマイドなどのC6-12アルカンジカルボン酸と飽和又は不飽和高級アミンとの反応により生成するビスアマイドなど)などが例示できる。
 また、脂肪酸アマイドには、芳香族ビスアマイド(キシリレンビスステアリン酸アマイドなどの芳香族ジアミンと飽和又は不飽和高級脂肪酸とのビスアマイド、N,N’-ジステアリルフタル酸アマイドなどの芳香族ジカルボン酸と飽和又は不飽和高級アミンとのビスアマイドなど)の他、置換アマイド(N-ラウリルラウリン酸アマイド、N-パルミチルパルミチン酸アマイド、N-ステアリルステアリン酸アマイド、N-ステアリルオレイン酸アマイド、N-オレイルステアリン酸アマイド、N-ステアリルエルカ酸アマイド、N-ステアリルヒドロキシステアリン酸アマイドなどのアミド基の窒素原子に飽和又は不飽和高級脂肪酸残基がアミド結合した高級脂肪酸アマイド)、エステルアマイド(エタノールアミンジベへネート、エタノールアミンジステアレート、エタノールアミンジパルミテート、プロパノールアミンジステアレート、プロパノールアミンジパルミテートなどのアルカノールアミンのヒドロキシル基と高級脂肪酸とがエステル結合し、アルカノールアミンのアミノ基と高級脂肪酸とがアミド結合したエステルアマイド)、アルカノールアマイド(メチロールステアリン酸アマイド、メチロールベヘン酸アマイドなどのメチロール高級脂肪酸モノアマイドなどのメチロールアマイド類;ステアリン酸モノエタノールアマイド、エルカ酸モノエタノールアマイドなどのN-ヒドロキシC2-4アルキル高級脂肪酸モノアマイド)、置換尿素(N-ブチル-N’-ステアリル尿素、N-フェニル-N’-ステアリル尿素、N-ステアリル-N’-ステアリル尿素、キシリレンビスステアリル尿素、トルイレンビスステアリル尿素、ヘキサメチレンビスステアリル尿素、ジフェニルメタンビスステアリル尿素などの尿素の窒素原子に高級脂肪酸がアミド結合した置換尿素)などが例示できる。脂肪酸アマイドとしては、飽和又は不飽和長鎖脂肪酸アマイド及び飽和又は不飽和長鎖脂肪酸エステルアマイドから選択された少なくとも一種を含むことが好ましい。なお、これらの脂肪酸アマイドにおいて、高級脂肪酸及び高級アミンの炭素数は、10~34(例えば、10~30、好ましくは10~28、より好ましくは10~26、さらに好ましくは12~24)程度であってもよい。これらの脂肪酸アマイドは単独で又は二種以上組み合わせて使用できる。
 脂肪酸アマイドの融点は、50~200℃程度の範囲から選択でき、通常、65~150℃、好ましくは75~130℃(例えば、80~120℃)、さらに好ましくは90~110℃(例えば、95~105℃)程度であってもよい。
 脂肪酸アマイドは短繊維の分散剤として機能し、ゴム組成物中の短繊維の分散性及び配向性(ベルト幅方向の配向性)を高め、圧縮ゴム層の耐側圧性や耐摩耗性を向上させるのに有利である。さらに、脂肪酸アマイドは、分散剤としての機能に加えて、ゴム組成物中では内部潤滑剤としても機能し、マトリックスゴム成分のモジュラスを低下させマトリックス成分を柔軟にする傾向にあるが、短繊維との組合せにより、前記モジュラスの低下を抑制できる。すなわち、脂肪酸アマイドと短繊維との組合せにより、圧縮ゴム層のマトリックス成分を柔軟にするとともに、力学特性に優れた圧縮ゴム層を形成できる。特に、脂肪酸アマイドと短繊維との組合せにより、短繊維やカーボンブラックなどの補強剤を多量に配合して圧縮ゴム層の硬度を高める必要がなく、ベルトの屈曲疲労性や省燃費性(特に、ベルトが小プーリに巻き付いて走行した場合の省燃費性)を向上できる。
 さらに、脂肪酸アマイドは圧縮ゴム層の内部からその表面(プーリと接触する摩擦伝動面)にブルーム(析出)又はブリードアウトして外部潤滑剤として機能し、ゴム層表面の摩擦係数を低下させる。しかも、脂肪酸アマイドが圧縮ゴム層の表面に長期間に亘りブルーム又はブリードアウトするため、低い摩擦係数を長期に亘って維持できる。そのため、ゴム層表面とプーリとが円滑に摩擦し、ベルト走行時にプーリにより過剰な剪断力がゴム層に作用するのを防止し、ベルトの耐久性を向上できる。さらに、プーリ半径方向にベルトがプーリ上を上下に移動する変速ベルトとして使用すると、省燃費性をさらに有効に向上できる。なお、摩擦係数が高いと、プーリから受ける剪断力が高まり、圧縮ゴム層の大きな変形などにより、剥離や亀裂が生じ、ベルトの早期寿命に繋がる。また、例えば、ゴム層表面に潤滑剤を塗布した形態では、ベルト走行初期は潤滑剤による摩擦低減効果が認められるが、ベルトを長時間走行させると、潤滑剤は飛散又は摩損して摩擦低減効果が失われる。
 脂肪酸アマイドの中でも、アルキレンビスアマイドに比べて、脂肪酸モノアマイド、例えば、長鎖脂肪酸残基を構成する炭素数が、例えば、10~26(特に、12~24)程度と少なく、末端にアミド基を有する飽和又は不飽和脂肪酸モノアマイドが好ましい。その理由は明確ではないが、長鎖脂肪酸残基が長い構造、すなわち炭素数が多くなると分子内のアミド基の濃度が相対的に低減し、脂肪酸アマイドのアミド基と短繊維の接着成分との化学的な相互作用が小さくなること、また、アルキレンビスアマイドのように両側に長鎖脂肪酸基(例えば、合計の炭素数が40を超えて多い)が存在すると、脂肪酸アマイドのアミド基と短繊維の接着成分との化学的相互作用が小さくなり、短繊維とゴム組成物との接着性が低減するためであると推測される。なお、脂肪酸アマイドのうち、エステルアマイドも好ましい。この点から、短繊維とゴム組成物との接着性などには脂肪酸アマイドの融点や熱的特性も関係している可能性がある。
 脂肪酸アマイドの割合は、ゴム成分100質量部に対して、0.5~10質量部、好ましくは1~8質量部、さらに好ましくは1.5~7.5質量部(例えば、2~7質量部)程度であり、通常、1~6質量部程度である。脂肪酸アマイドの使用量が少なすぎると、ゴム層表面へのブルームが少なくなり、摩擦係数の低減効果が小さく、多すぎると、短繊維(接着処理された短繊維)との相互作用に関与しない余剰の脂肪酸アマイドが内部潤滑剤として機能し、マトリックス成分のモジュラス(特に圧縮方向のモジュラス)が大きく低下する虞がある。なお、脂肪酸アマイドの使用量が多すぎても、それに見合う摩擦低減効果が得られず、経済的に不利である。
 (短繊維)
 短繊維の種類としては、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維など)、ポリアミド繊維(ポリアミド6繊維、ポリアミド66繊維、ポリアミド46繊維、アラミド繊維など)、ポリアルキレンアリレート系繊維(ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維などのC2-4アルキレンC6-14アリレート系繊維など)、ビニロン繊維、ポリビニルアルコール系繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維などの合成繊維;綿、麻、羊毛などの天然繊維;炭素繊維などの無機繊維が汎用される。これらの短繊維は、単独でまたは二種以上組み合わせて使用できる。これらの短繊維のうち、合成繊維や天然繊維、特に合成繊維(ポリアミド繊維、ポリアルキレンアリレート系繊維など)、中でも剛直で高い強度、モジュラスを有する点から、少なくともアラミド繊維を含む短繊維が好ましい。アラミド短繊維は、高い耐摩耗性をも有している。アラミド繊維は、例えば、商品名「コーネックス」、「ノーメックス」、「ケブラー」、「テクノーラ」、「トワロン」などとして市販されている。
 短繊維は、プーリからの押圧に対するベルトの圧縮変形を抑制するため、ベルト幅方向に配向して圧縮ゴム層中に埋設されることが好ましい。また、圧縮ゴム層の表面より短繊維を突出させることにより、表面の摩擦係数を低下させてノイズ(発音)を抑制したり、プーリとの擦れによる摩耗を低減できる。短繊維の平均長さは、例えば、1~20mm、好ましくは2~15mm、より好ましくは3~10mmであり、1~5mm(例えば、2~4mm)程度であってもよい。短繊維の平均長さが1mm未満では、列理方向の力学特性(例えばモジュラスなど)を十分に高めることができず、一方、20mmを越えると、ゴム組成物中の短繊維の分散不良が生じ、ゴムに亀裂が発生してベルトが早期に損傷する虞がある。
 短繊維の割合は、ゴム成分100質量部に対して、5~50質量部程度の範囲から選択でき、通常、10~40質量部、好ましくは15~35質量部、さらに好ましくは20~30質量部程度、特に15~30質量部(15~25質量部)程度であってもよい。短繊維の使用量が少なすぎると、圧縮ゴム層の力学特性が不十分であり、多すぎると、圧縮ゴム層の屈曲疲労性が低下(圧縮ゴム層が硬くなり、曲げ応力が大きくなる)するため、ベルト巻き付き径の小さい状態では屈曲による損失が大きくなり、省燃費性が低下する問題がある。また、短繊維の使用量が多すぎると、短繊維のゴム組成物中の分散性が低下して分散不良が生じ、その箇所を起点にして圧縮ゴム層に亀裂が早期に発生する虞がある。
 なお、前記脂肪酸アマイドがアミド結合と長鎖脂肪酸残基とを有するためか、短繊維と圧縮ゴム層を構成するゴム組成物(マトリックスゴム:短繊維を除くゴム組成物)との接着性を向上できる。特に、短繊維として、接着処理された短繊維を用いると、その表面(外層)の接着成分が脂肪酸アマイドと化学的に相互作用し、短繊維と圧縮ゴム層を構成するゴム組成物(マトリックスゴム)との接着性を高めることができる。そのため、圧縮ゴム層のモジュラスや引張強さ、引裂強さをさらに向上できる。
 ゴム組成物中の短繊維の分散性や接着性の観点から、少なくとも短繊維の一部は接着処理(又は表面処理)されていることが好ましい。なお、全ての短繊維が接着処理されている必要はなく、接着処理した短繊維と、接着処理されていない短繊維(未処理短繊維)とが混在し又は併用されていてもよい。
 短繊維の接着処理では、種々の接着処理、例えば、フェノール類とホルマリンとの初期縮合物(ノボラック又はレゾール型フェノール樹脂のプレポリマーなど)を含む処理液、ゴム成分(又はラテックス)を含む処理液、前記初期縮合物とゴム成分(ラテックス)とを含む処理液、シランカップリング剤、エポキシ化合物(エポキシ樹脂など)、イソシアネート化合物などの反応性化合物(接着性化合物)を含む処理液などで処理することができる。好ましい接着処理では、短繊維は、前記初期縮合物とゴム成分(ラテックス)とを含む処理液、特に少なくともレゾルシン-ホルマリン-ラテックス(RFL)液で処理する。このような処理液は組み合わせて使用してもよく、例えば、短繊維を、慣用の接着性成分、例えば、エポキシ化合物(エポキシ樹脂など)、イソシアネート化合物などの反応性化合物(接着性化合物)で前処理した後、RFL液で処理してもよい。
 このような処理液、特にRFL液で処理すると、短繊維とゴム組成物とを強く接着できる。RFL液は、レゾルシンとホルムアルデヒドとの初期縮合物と、ゴムラテックスとの混合物である。レゾルシンとホルムアルデヒドとのモル比は、ゴムと短繊維との接着性を向上できる範囲、例えば、前者/後者=1/0.5~1/3、好ましくは1/0.6~1/2.5、さらに好ましくは1/0.7~1/1.5程度に設定でき、1/0.5~1/1(例えば、1/0.6~1/0.8)程度であってもよい。ラテックスの種類は特に限定されず、接着対象となるゴム成分の種類に応じて、前記ゴム成分から適宜選択できる。例えば、接着対象となるゴム組成物がクロロプレンゴムを主成分とする場合、ラテックスは、ジエン系ゴム(天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、スチレン-ブタジエン-ビニルピリジン三元共重合体、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴムなど)、エチレン-α-オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴムなどであってもよい。これらのラテックスは単独で又は2種以上組み合わせてもよい。好ましいラテックスは、ジエン系ゴム(スチレン-ブタジエン-ビニルピリジン三元共重合体、クロロプレンゴム、ブタジエンゴムなど)、クロロスルホン化ポリエチレンゴムであり、接着性を一層向上させる上ではスチレン-ブタジエン-ビニルピリジン三元共重合体が好ましい。短繊維を少なくともスチレン-ブタジエン-ビニルピリジン三元共重合体を含む処理液(RFL液など)で接着処理すると、ゴム組成物(クロロプレンゴム組成物など)と短繊維との接着性を向上できるとともに、脂肪酸アマイドと組み合わせることにより、ゴム組成物と短繊維との接着性をさらに高めることができる。
 レゾルシンとホルマリンとの初期縮合物の割合は、ラテックスのゴム分100質量部に対して10~100質量部(例えば、12~50質量部、好ましくは15~30質量部)程度であってもよい。なお、RFL液の全固形分濃度は、5~40質量%の範囲で調整できる。
 短繊維に対する接着成分(固形分)の付着率は、例えば、1~25質量%、好ましくは3~20質量%、より好ましくは5~15質量%であり、3~10質量%(例えば、4~8質量%)程度であってもよい。接着成分の付着率が1質量%未満では、短繊維のゴム組成物中の分散性や、短繊維とゴム組成物との接着性が不十分であり、一方、25質量%を越えて高いと、接着成分が繊維フィラメント同士を強固に固着し、却って分散性が低下する虞がある。
 接着処理された短繊維の調製方法は特に限定されず、例えば、マルチフィラメントの長繊維を接着処理液に含浸し、乾燥させた後に所定長さにカットする方法、未処理短繊維を接着処理液に所定時間浸漬し、次いで、遠心分離などの方法で余剰の接着処理液を除去した後、乾燥させる方法などが利用できる。
 (加硫剤などの添加剤)
 ゴム組成物には、必要により、加硫剤又は架橋剤(又は架橋剤系)、共架橋剤、加硫助剤、加硫促進剤、加硫遅延剤、金属酸化物(例えば、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなど)、増強剤(カーボンブラック、含水シリカなどの酸化ケイ素など)、充填剤(クレー、炭酸カルシウム、タルク、マイカなど)、軟化剤(パラフィンオイル、ナフテン系オイルなどのオイル類など)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィンなど)、老化防止剤(酸化防止剤、熱老化防止剤、屈曲き裂防止材、オゾン劣化防止剤など)、着色剤、粘着付与剤、可塑剤、カップリング剤(シランカップリング剤など)、安定剤(紫外線吸収剤、熱安定剤など)、難燃剤、帯電防止剤などを含んでいてもよい。なお、金属酸化物は架橋剤として作用してもよい。
 加硫剤又は架橋剤としては、ゴム成分の種類に応じて慣用の成分が使用でき、例えば、前記金属酸化物(酸化マグネシウム、酸化亜鉛など)、有機過酸化物(ジアシルパーオキサイド、パーオキシエステル、ジアルキルパーオキサイドなど)、硫黄系加硫剤などが例示できる。硫黄系加硫剤としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、塩化硫黄(一塩化硫黄、二塩化硫黄など)などが挙げられる。これらの架橋剤又は加硫剤は単独で又は二種以上組み合わせて使用してもよい。ゴム成分がクロロプレンゴムである場合、加硫剤又は架橋剤として金属酸化物(酸化マグネシウム、酸化亜鉛など)を使用してもよい。なお、金属酸化物は他の加硫剤(硫黄系加硫剤など)と組合せて使用してもよく、金属酸化物及び/又は硫黄系加硫剤は単独で又は加硫促進剤と組み合わせて使用してもよい。
 加硫剤の使用量は、加硫剤及びゴム成分の種類に応じて、ゴム成分100質量部に対して、1~20質量部程度の範囲から選択できる。例えば、加硫剤としての有機過酸化物の使用量は、ゴム成分100質量部に対して、1~8質量部、好ましくは1.5~5質量部、さらに好ましくは2~4.5質量部程度の範囲から選択でき、金属酸化物の使用量は、ゴム成分100質量部に対して、1~20質量部、好ましくは3~17質量部、さらに好ましくは5~15質量部(例えば、7~13質量部)程度の範囲から選択できる。
 共架橋剤(架橋助剤、又は共加硫剤co-agent)としては、公知の架橋助剤、例えば、多官能(イソ)シアヌレート(例えば、トリアリルイソシアヌレート(TAIC)、トリアリルシアヌレート(TAC)など)、ポリジエン(例えば、1,2-ポリブタジエンなど)、不飽和カルボン酸の金属塩(例えば、(メタ)アクリル酸亜鉛、(メタ)アクリル酸マグネシウムなど)、オキシム類(例えば、キノンジオキシムなど)、グアニジン類(例えば、ジフェニルグアニジンなど)、多官能(メタ)アクリレート(例えば、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなど)、ビスマレイミド類(脂肪族ビスマレイミド、例えば、N,N’-1,2-エチレンビスマレイミド、1,6’-ビスマレイミド-(2,2,4-トリメチル)シクロヘキサンなど;アレーンビスマレイミド又は芳香族ビスマレイミド、例えば、N-N’-m-フェニレンビスマレイミド、4-メチル-1,3-フェニレビスマレイミド、4,4’-ジフェニルメタンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼンなど)などが挙げられる。これらの架橋助剤は、単独で又は二種以上組み合わせて使用できる。これらの架橋助剤のうち、ビスマレイミド類(N,N’-m-フェニレンジマレイミドなどのアレーンビスマレイミド又は芳香族ビスマレイミド)が好ましい。ビスマレイミド類の添加により架橋度を高め、粘着摩耗などを防止できる。
 共架橋剤(架橋助剤)の割合は、固形分換算で、ゴム成分100質量部に対して、例えば、0.01~10質量部程度の範囲から選択でき、0.1~5質量部(例えば、0.3~4質量部)、好ましくは0.5~3質量部(例えば、0.5~2質量部)程度であってもよい。
 加硫促進剤としては、例えば、チウラム系促進剤(例えば、テトラメチルチウラム・モノスルフィド(TMTM)、テトラメチルチウラム・ジスルフィド(TMTD)、テトラエチルチウラム・ジスルフィド(TETD)、テトラブチルチウラム・ジスルフィド(TBTD)、ジペンタメチレンチウラムテトラスルフィド(DPTT)、N,N’-ジメチル-N,N’-ジフェニルチウラム・ジスルフィドなど)、チアゾ-ル系促進剤(例えば、2-メルカプトベンゾチアゾ-ル、2-メルカプトベンゾチアゾ-ルの亜鉛塩、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(4’-モルホリノジチオ)ベンゾチアゾールなど)など)、スルフェンアミド系促進剤(例えば、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド(CBS)、N,N’-ジシクロヘキシル-2-ベンゾチアジルスルフェンアミドなど)、ビスマレイミド系促進剤(例えば、N,N’-m-フェニレンビスマレイミド、N,N’-1,2-エチレンビスマレイミドなど)、グアニジン類(ジフェニルグアニジン、ジo-トリルグアニジンなど)、ウレア系又はチオウレア系促進剤(例えば、エチレンチオウレアなど)、ジチオカルバミン酸塩類、キサントゲン酸塩類などが挙げられる。これらの加硫促進剤は、単独で又は二種以上組み合わせて使用できる。これらの加硫促進剤のうち、TMTD、DPTT、CBSなどが汎用される。
 加硫促進剤の割合は、固形分換算で、ゴム成分100質量部に対して、例えば、0.1~15質量部、好ましくは0.3~10質量部、さらに好ましくは0.5~5質量部程度であってもよい。
 増強剤(カーボンブラック、シリカなど)の使用量は、ゴム成分の総量100質量部に対して、10~100質量部(好ましくは20~80質量部、さらに好ましくは30~70質量部)程度であってもよい。また、軟化剤(ナフテン系オイルなどのオイル類)の使用量は、ゴム成分の総量100質量部に対して、例えば、1~30質量部、好ましくは3~20質量部(例えば、5~10質量部)程度であってもよい。老化防止剤の使用量は、ゴム成分の総量100質量部に対して、例えば、0.5~15質量部、好ましくは1~10質量部、さらに好ましくは2.5~7.5質量部(例えば、3~7質量部)程度であってもよい。
 (ベルトの構造)
 伝動用ベルトの構造は特に制限されず、プーリと接触可能な前記圧縮ゴム層を有するベルトであればよい。伝動用ベルトは、ベルトの長手方向に心線を埋設した接着ゴム層と、この接着ゴム層の一方の面に形成された圧縮ゴム層とを備えている場合が多く、さらに、前記接着ゴム層の他方の面に形成された伸張ゴム層とを備えていてもよい。なお、前記圧縮ゴム層及び伸張ゴム層は、前記ゴム組成物で形成してもよい。
 図1は伝動用ベルトの一例を示す概略断面図である。この例では、接着ゴム層1内に心線2が埋設されており、接着ゴム層1の一方の表面には圧縮ゴム層3が積層され、接着ゴム層1の他方の表面には伸張ゴム層4が積層されている。なお、心線2は一対の接着ゴムシートに挟持された形態で一体に埋設されている。さらに、圧縮ゴム層3には補強布5が積層され、コグ付き成形型によりコグ部6が形成されている。圧縮ゴム層3と補強布5との積層体は、補強布と圧縮ゴム層用シート(未加硫ゴムシート)との積層体を加硫することにより一体に形成されている。
 なお、前記の例では、コグドVベルトの例が図示されているが、前記構造に限らず、前記圧縮ゴム層を有する種々のベルト(例えば、ローエッジベルト、Vリブドベルトなど)に適用できる。
 (接着ゴム層)
 接着ゴム層を形成するためのゴム組成物は、前記ゴム組成物と同様に、ゴム成分(クロロプレンゴムなど)、加硫剤又は架橋剤(酸化マグネシウム、酸化亜鉛などの金属酸化物、硫黄などの硫黄系加硫剤など)、共架橋剤又は架橋助剤(N,N’-m-フェニレンジマレイミドなどのマレイミド系架橋剤など)、加硫促進剤(TMTD、DPTT、CBSなど)、増強剤(カーボンブラック、シリカなど)、軟化剤(ナフテン系オイルなどのオイル類)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィンなど)、老化防止剤、接着性改善剤(レゾルシン-ホルムアルデヒド共縮合物、アミノ樹脂(窒素含有環状化合物とホルムアルデヒドとの縮合物、例えば、ヘキサメチロールメラミン、ヘキサアルコキシメチルメラミン(ヘキサメトキシメチルメラミン、ヘキサブトキシメチルメラミンなど)などのメラミン樹脂、メチロール尿素などの尿素樹脂、メチロールベンゾグアナミン樹脂などのベンゾグアナミン樹脂など)、これらの共縮合物(レゾルシン-メラミン-ホルムアルデヒド共縮合物など)など)、充填剤(クレー、炭酸カルシウム、タルク、マイカなど)、着色剤、粘着付与剤、可塑剤、カップリング剤(シランカップリング剤など)、安定剤(紫外線吸収剤、熱安定剤など)、難燃剤、帯電防止剤などを含んでいてもよい。なお、接着性改善剤において、レゾルシン-ホルムアルデヒド共縮合物及びアミノ樹脂は、レゾルシン及び/又はメラミンなどの窒素含有環状化合物とホルムアルデヒドとの初期縮合物(プレポリマー)であってもよい。
 なお、このゴム組成物において、ゴム成分としては、前記圧縮ゴム層のゴム組成物のゴム成分と同系統(ジエン系ゴムなど)又は同種(クロロプレンゴムなど)のゴムを使用する場合が多い。また、加硫剤又は架橋剤、共架橋剤又は架橋助剤、加硫促進剤、増強剤、軟化剤及び老化防止剤の使用量は、それぞれ、前記圧縮ゴム層のゴム組成物と同様の範囲から選択できる。また、接着ゴム層のゴム組成物において、加工剤又は加工助剤(ステアリン酸など)の使用量は、ゴム成分100質量部に対して、0.1~10質量部、好ましくは0.5~5質量部、さらに好ましくは1~3質量部程度であってもよい。また、接着性改善剤(レゾルシン-ホルムアルデヒド共縮合物、ヘキサメトキシメチルメラミンなど)の使用量は、ゴム成分100質量部に対して、0.1~20質量部、好ましくは1~10質量部、さらに好ましくは2~8質量部程度であってもよい。
 心線を構成する繊維としては、前記短繊維として例示した繊維と同様の繊維が例示できる。前記繊維のうち、高モジュラスの点から、エチレンテレフタレート、エチレン-2,6-ナフタレートなどのC2-4アルキレンアリレートを主たる構成単位とするポリエステル繊維(ポリアルキレンアリレート系繊維)、アラミド繊維などの合成繊維、炭素繊維などの無機繊維などが汎用され、ポリエステル繊維(ポリエチレンテレフタレート系繊維、エチレンナフタレート系繊維)、ポリアミド繊維が好ましい。繊維はマルチフィラメント糸であってもよい。マルチフィラメント糸の繊度は、例えば、2000~10000デニール(特に4000~8000デニール)程度であってもよい。
 心線としては、通常、マルチフィラメント糸を使用した撚りコード(例えば、諸撚り、片撚り、ラング撚りなど)を使用できる。心線の平均線径(撚りコードの繊維径)は、例えば、0.5~3mm、好ましくは0.6~2mm、さらに好ましくは0.7~1.5mm程度であってもよい。心線はベルトの長手方向に埋設され、ベルトの長手方向に平行に所定のピッチで並列的に埋設してもよい。
 ゴム成分との接着性を改善するため、心線は、前記短繊維と同様の種々の接着処理、例えば、レゾルシン-ホルマリン-ラテックス液(RFL液)による接着処理に供してもよい。接着処理では、一般的に、繊維をRFL液に浸漬後、加熱乾燥して表面に均一に接着層を形成することで行うことができる。RFL液のラテックスとしては、例えば、前記RFL液のラテックスと同様のゴム成分が例示でき、クロロプレン、スチレン-ブタジエン-ビニルピリジン三元共重合体などが好ましい。心線は、RFL処理前にエポキシ化合物、イソシアネート化合物などの反応性化合物による前処理(プレディップ)や、RFL処理後にゴム糊処理(オーバーコーティング)などの接着処理した後に、ゴム層に埋設してもよい。
 なお、伝動用ベルトにおいて、前記圧縮ゴム層及び/又は前記伸張ゴム層の表面には、補強布を積層してもよい。補強布は、例えば、織布、広角度帆布、編布、不織布などの布材(好ましくは織布)を圧縮ゴム層及び/又は伸張ゴム層の表面に積層することにより形成でき、必要であれば、前記接着処理、例えば、RFL液で処理(浸漬処理など)したり、接着ゴムを前記布材にすり込むフリクションや、前記接着ゴムと前記布材とを積層(コーティング)した後、圧縮ゴム層及び/又は伸張ゴム層の表面に積層してもよい。
 (伝達効率)
 前記圧縮ゴム層を備えた伝動用ベルトを用いると、伝達効率を大きく向上できる。伝達効率とは、ベルトが駆動プーリからの回転トルクを従動プーリに伝える指標であり、この伝達効率が高いほどベルトの伝動ロスが小さく、省燃費性に優れることを意味する。図2に示す駆動プーリ(Dr.)12と従動プーリ(Dn.)13との二つのプーリにベルト11を掛架した二軸レイアウトにおいて、伝達効率は以下のようにして求めることができる。
 駆動プーリの回転数をρ、プーリ半径をrとしたとき、駆動プーリの回転トルクTは、ρ×Te×rで表すことができる。Teは張り側張力(ベルトが駆動プーリに向かう側の張力Ta)から緩み側張力(ベルトが従動プーリに向かう側の張力Tb)を差し引いた有効張力である。同様に、従動プーリの回転数をρ、プーリ半径をrとしたとき、従動プーリの回転トルクTは、ρ×Te×rで示される。そして、伝達効率T/Tは、従動プーリの回転トルクTを駆動プーリの回転トルクTで除して算出され、次式(1)で表すことができる。
 [式1]
 T/T=(ρ×Te×r)/(ρ×Te×r)=(ρ×r)/(ρ×r)            (1)
 なお、実際は伝達効率が1以上の値になることはないが、1に近いほどベルトの伝動ロスが小さく、省燃費性に優れていることを表す。
 ベルトの製造方法は特に制限されず、慣用の方法が採用できる。例えば、前記図1に示すベルトは、心線が埋設され、かつ前記形態の未加硫ゴム層の積層体を成形型で形成し、加硫してベルトスリーブを成形し、この加硫ベルトスリーブを所定サイズにカッティングすることにより形成できる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
 実施例1~7及び比較例1~2
 (ゴム層の形成)
 表1(圧縮ゴム層、伸張ゴム層)及び表2(接着ゴム層)のゴム組成物は、それぞれ、バンバリーミキサーなど公知の方法を用いてゴム練りを行い、この練りゴムをカレンダーロールに通して圧延ゴムシート(圧縮ゴム層用シート、伸張ゴム層用シート、接着ゴム層用シート)を作製した。実施例1と実施例3は、アラミド短繊維の含有量の異なる例を示し、実施例2~6は、脂肪酸アマイドの含有量が異なる例(0.5~10質量部)を示し、実施例7と実施例4はアラミド短繊維とカーボンブラックの含有量が異なる例を示している。また、比較例1は、実施例3の処方において、脂肪酸アマイドに代えてステアリン酸を用いた例、比較例2は、実施例7の脂肪酸アマイドに代えて、半分の量のステアリン酸を用いた例を示している。
 なお、実施例及び比較例では、脂肪酸アマイドとして、ステアリン酸アマイド(構造式C1837NO)(日本化成(株)製「アマイドAP-1」、融点101℃)、短繊維としてアラミド短繊維(平均繊維長3mm、帝人テクノプロダクツ(株)製「コーネックス短繊維」)を用いた。なお、短繊維は、RFL液(レゾルシン及びホルムアルデヒドと、ラテックスとしてのスチレン-ブタジエン-ビニルピリジンゴムラテックスとを含有)で接着処理し、固形分の付着率6質量%の短繊維を用いた。RFL液として、レゾルシン2.6質量部、37%ホルマリン1.4質量部、スチレン-ブタジエン-ビニルピリジン共重合体ラテックス(日本ゼオン(株)製)17.2質量部、水78.8質量部を用いた。さらに、可塑剤としてセバケート系オイルであるDOS(DIC(株)製)、カーボンブラックとしてシースト3(東海カーボン(株)製)、老化防止剤としてノンフレックスOD3(精工化学(株)製)を用いた。また、シリカとしてNipsil VN3(東ソー・シリカ(株)製)を用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (ベルトの製造)
 補強布と圧縮ゴム層用シート(未加硫ゴム)との積層体を、補強布を下にして歯部と溝部とを交互に配した平坦なコグ付き型に設置し、75℃でプレス加圧することによってコグ部を型付けしたコグパッド(完全には加硫しておらず、半加硫状態にある)を作製した。次に、このコグパッドの両端をコグ山部の頂部から垂直に切断した。
 円筒状の金型に歯部と溝部とを交互に配した内母型を被せ、この歯部と溝部に係合させてコグパッドを巻き付けてコグ山部の頂部でジョイントし、この巻き付けたコグパッドの上に接着ゴム層用シート(未加硫ゴム)を積層した後、心線を螺旋状にスピニングし、この上に接着ゴム層用シート(上記接着ゴム層用シートと同じ)と伸張ゴム層用シート(未加硫ゴム)を順次巻き付けて成形体を作製した。その後、ジャケットを被せて金型を加硫缶に設置し、温度160℃、時間20分で加硫してベルトスリーブを得た。このスリーブをカッターでV状に切断して、図1に示す構造のベルト、すなわち、ベルト内周側にコグを有する変速ベルトであるローエッジコグドVベルト(サイズ:上幅22.0mm、厚み11.0mm、外周長800mm)を作製した。
 (加硫ゴム物性の測定)
 1)硬度、引張試験、引裂試験
 圧縮ゴム層用シートを温度160℃、時間20分でプレス加硫し、加硫ゴムシート(長さ100mm、幅100mm、厚み2mm)を作製した。硬度はJIS K6253(2006年)に準じ、加硫ゴムシートを3枚重ね合わせた積層物を試料とし、デュロメータA形硬さ試験機を用いて硬度を測定した。
 引張試験はJIS K6251(2010年)に準じて行い、加硫ゴムシートをダンベル形に打ち抜いて試料を調製し、試料を引張試験機にて引張り、100%伸張させたときの応力(100%伸張応力)と、破断時の強力(破断強度)及び伸び(破断伸度)を測定した。この測定において、引張方向に対して、短繊維が平行に配向した試料と、短繊維が垂直に配向した試料について引張試験を行い、平行方向に短繊維が配向した試料ついては破断強度、垂直方向に短繊維が配向した試料ついては100%伸張応力、破断強度並びに破断伸度を測定した。
 引裂試験はJIS K6252(2007年)に準じて行い、加硫ゴムシートをアングル形に打ち抜いた後、得られた試料を引張試験機で引張り引裂力を測定した。この測定において、引張方向に対して垂直方向(すなわち、引裂方向に対して平行方向)に短繊維が配向した状態で測定した。
 2)圧縮応力
 圧縮ゴム層用シートを温度160℃、時間20分でプレス加硫し、加硫ゴム成形体(長さ25mm、幅25mm、厚み12.5mm)を作製した。短繊維は圧縮面に対して垂直方向(厚み方向)に配向させた。この加硫ゴム成形体を2枚の金属製の圧縮板で上下に挟み込み(加硫成形体が圧縮板で押圧されていない挟み込み状態で、上側の圧縮板の位置を初期位置とする)、上側の圧縮板を10mm/分の速度で加硫ゴム成形体に押圧(押圧面25mm×25mm)して加硫ゴム成形体を20%歪ませ、この状態で1秒間保持した後、圧縮板を上方に初期位置まで戻した(予備圧縮)。この予備圧縮を3回繰り返した後、4回目の圧縮試験(条件は予備圧縮と同じ)で測定される応力-歪み曲線より、加硫ゴム成形体の厚み方向の歪が10%となったときの応力を圧縮応力として測定した。なお、測定データのバラツキを小さくするため予備圧縮を3回行なった。
 3)曲げ応力
 圧縮ゴム層用シートを温度160℃、時間20分でプレス加硫し、加硫ゴム成形体(長さ60mm、幅25mm、厚み6.5mm)を作製した。短繊維は加硫ゴム成形体の幅と平行方向に配向させた。図3に示すように、この加硫ゴム成形体21を、20mmの間隔を空けて回転可能な一対のロール(6mm径)22a,22b上に置いて支持し、加硫ゴム成形体の上面中央部において幅方向(短繊維の配向方向)に金属製の押さえ部材23を載せた。押さえ部材23の先端部は、10mm径の半円状の形状を有しており、その先端部で加硫ゴム成形体21をスムーズに押圧可能である。また、押圧時には加硫ゴム成形体21の圧縮変形に伴って、加硫ゴム成形体21の下面とロール22a,22bとの間に摩擦力が作用するが、ロール22a,22bを回転可能とすることにより、摩擦による影響を小さくしている。押さえ部材23の先端部が加硫ゴム成形体21の上面に接触し、かつ押圧していない状態を「0」とし、この状態から押さえ部材23を下方に100mm/分の速度で加硫ゴム成形体21の上面を押圧し、加硫ゴム成形体21の厚み方向の歪が10%となったときの応力を曲げ応力として測定した。
 (ベルト物性の測定)
 1)摩擦係数測定
 ベルトの摩擦係数は、図4に示すように、切断したベルト31の一方の端部をロードセル32に固定し、他方の端部に3kgfの荷重33を載せ、プーリ34へのベルトの巻き付け角度を45°にしてベルト31をプーリ34に巻き付けた。そして、ロードセル32側のベルト31を30mm/分の速度で15秒程度引張り、摩擦伝動面の平均摩擦係数を測定した。なお、測定に際して、プーリ34は回転しないように固定した。
 2)高負荷走行試験
 この走行試験では、ベルトが大きく曲げられた状態(小プーリに巻き付いた状態)で走行させたときのベルトの伝達効率を評価した。
 高負荷走行試験は、図5に示すように、直径50mmの駆動(Dr.)プーリ42と、直径125mmの従動(Dn.)プーリ43とからなる2軸走行試験機を用いて行なった。各プーリ42,43にローエッジコグドVベルト41を掛架し、駆動プーリ42の回転数3000rpmで、従動プーリ43に3N・mの負荷を付与し、室温雰囲気下にてベルト41を走行させた。そして、走行させて直ちに従動プーリ43の回転数を検出器より読取り、前記計算式より伝達効率を求めた。表3では、比較例1の伝達効率を「1」とし、各実施例及び比較例の伝達効率を相対値で示しており、この値が1より大きければベルト41の伝達効率、すなわち省燃費性が高いと判断した。
 3)高速走行試験
 この走行試験では、ベルトがプーリ上をプーリ半径方向外側に摺動させた状態で走行させたときのベルトの伝達効率を評価した。特に、駆動プーリの回転数が大きくなると、ベルトに遠心力が強く作用する。また、駆動プーリの緩み側(図6中の領域X付近)の位置ではベルト張力が低く作用しており、上記遠心力との複合作用により、この位置でベルトはプーリ半径方向外側に飛び出そうとする。この飛び出しがスムーズに行なわれない、すなわちベルトの摩擦伝動面とプーリとの間に摩擦力が強く作用すると、その摩擦力によりベルトの伝動ロスが生じ、伝達効率が低下することになる。
 高速走行試験は、図6に示すように、直径95mmの駆動(Dr.)プーリ52と、直径85mmの従動(Dn.)プーリ53とからなる2軸走行試験機を用いて行なった。各プーリ52,53にローエッジコグドVベルト51を掛架し、駆動プーリ52の回転数5000rpm、従動プーリ53に3N・mの負荷を付与し、室温雰囲気下にてベルト51を走行させた。そして、走行させて直ちに従動プーリ52の回転数を検出器より読取り、前記計算式より伝達効率を求めた。表3では、比較例1の伝達効率を「1」とし、各実施例及び比較例の伝達効率を相対値で示しており、この値が1より大きければ伝達効率、すなわち省燃費性が高いと判断した。
 4)耐久走行試験
 耐久走行試験は、図7に示すように、直径50mmの駆動(Dr.)プーリ62と、直径125mmの従動(Dn.)プーリ63とからなる2軸走行試験機を用いて行なった。次に、各プーリ62,63にローエッジコグドVベルト61を掛架し、駆動プーリ62の回転数5000rpm、従動プーリ63に10N・mの負荷を付与し、雰囲気温度80℃にてベルト61を最大60時間走行させた。ベルト61が60時間走行すれば耐久性は問題ないと判断した。また、走行後の圧縮ゴム側面(プーリと接する面)を目視観察して亀裂の有無を調べた。
 結果
 加硫ゴム物性とベルト物性を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、実施例では、硬度を大きくしなくても、破断強度(短繊維平行方向)、100%伸張応力、引裂力及び破断伸度が高く、伝達効率(高負荷走行、高速走行)及び耐久性が高く、省燃費性に優れていた。また、硬度が高くても、破断強度、引裂力が高く、伝達効率(高負荷走行、高速走行)及び耐久性が高い。より詳細には、以下の通りである。
 1)加硫ゴム物性
 実施例2~6から、脂肪酸アマイドの含有量が多くなると、硬度の低下が若干認められたが顕著な差ではなかった。短繊維及びカーボンブラックの含有量の多い実施例7及び比較例2では、硬度が94°と非常に高くなった。実施例3と比較例1との対比から、脂肪酸アマイドをステアリン酸に変更しても硬度は変わらなかった。
 実施例2~6から、脂肪酸アマイドの増量に伴って破断強度(短繊維平行方向)、100%伸張応力、引裂力が高くなる傾向にある。この理由は、脂肪酸アマイドと短繊維の接着成分とが化学的に相互作用し、短繊維とゴム組成物との接着性が向上したためと考えられる。特に、短繊維の弾性率が反映されにくい短繊維垂直方向の100%伸張応力が増大していることから、前記相互作用を裏付けていると思われる。また、実施例3と比較例1との対比から、脂肪酸アマイドは、ステアリン酸に比べて、破断強度(短繊維平行、垂直方向)、100%伸張応力、引裂力の何れも高い値を示した。破断伸度は脂肪酸アマイドの配合量が増えるに伴い低下傾向にある。この理由は、短繊維とゴム組成物との接着性が向上してモジュラスが高くなったためと考えられる。
 脂肪酸アマイドが内部潤滑剤として作用し、マトリックスゴムが柔軟になったためか、圧縮応力と曲げ応力は、脂肪酸アマイドの増量に伴って、低下する傾向が認められた。短繊維及びカーボンブラックの含有量の多い実施例7及び比較例2では、圧縮応力と曲げ応力が非常に高くなった。
 2)ベルト物性
 圧縮ゴム層の表面に脂肪酸アマイドがブルームしたため、脂肪酸アマイドの増量に伴って摩擦係数が低下する傾向にあるが、所定量(実施例4の4質量部程度)を超えると、摩擦係数に大きな差異がみられなかった。
 比較例1に比べて実施例1~6では、伝達効率(高負荷走行、高速走行)が高く、省燃費性に優れていた。また、脂肪酸アマイドの配合量が多いほど、伝達効率が高い。
 短繊維及びカーボンブラックの含有量の多い実施例7及び比較例2では、いずれも非常に高い曲げ応力を示しているものの、比較例2では伝達効率が最も低いのに対して、実施例7では高い伝達効率を示した。
 実施例1~7では脂肪酸アマイドが圧縮ゴム層の表面にブルームするためか、高速走行性が向上し、ベルトのプーリ半径方向外側への飛び出しがスムーズとなり、ベルトの伝動ロスが小さくなった。
 耐久走行については、実施例1~7は60時間走行し、圧縮ゴム層には亀裂が生じておらず、高い耐久性を示した。これに対して、比較例1では、圧縮ゴム層と接着ゴム層との間に剥離が生じ、25時間で寿命となり、比較例2では60時間走行したが、短繊維及びカーボンブラックの含有量が多く、硬度が大きく、引裂力が低いため、圧縮ゴム層に亀裂が生じた。
 実施例8及び比較例3
 脂肪酸アマイド及びステアリン酸と短繊維の種類との関係について検討するため、加硫ゴム物性を評価した。デニム未処理品(長さ6mm程の短繊維)を前記実施例1で用いたRFL液に10分間浸漬処理(ラテックスはスチレン-ブタジエン-ビニルピリジン三元共重合体)した後、余剰のRFL液を遠心分離して除去し、160℃、1時間の条件で乾燥オーブンにて乾燥させてデニム処理品を作製した。得られたデニム処理品のRFL成分の付着率は13質量%であった。
 上記デニム処理品(以下、処理デニム)を用いるとともに、実施例8では脂肪酸アマイドを用い、比較例3では脂肪酸アマイドに変えてステアリン酸を用い、実施例3と同様にして、圧延ゴムシートを作製した。この圧延ゴムシートを温度160℃、時間20分でプレス加硫を行い、加硫ゴムシート(長さ100mm、幅100mm、厚み2mm)を作製した。
 上記と同様にして、加硫ゴム物性として、硬度、100%伸張応力、破断強度、破断伸度、引裂力を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表から、処理デニム(実施例8)を用いると、短繊維平行方向の破断強度、短繊維垂直方向の100%伸張応力、破断強度、引裂力が何れも高い値を示し、破断伸度は低下した。また、ステアリン酸(比較例3)に比べて、脂肪酸アマイド(実施例8)では、短繊維平行方向の破断強度、短繊維垂直方向の100%伸張応力、破断強度、引裂力が何れも高く、破断伸度は低かった。なお、このような傾向は、前記アラミド短繊維(実施例3と比較例1との比較)でも確認されており、繊維種には無関係であることが判明した。
 実施例9~10
 脂肪酸アマイドとして、ビスアマイド(エチレンビスオレイン酸アマイド(構造式C3872)、日本化成(株)製「スリパックスO」、融点119℃)、エステルアマイド(エタノールアミンジステアレート、日本化成(株)製「スリエイドS」、融点100℃)を用いる以外、実施例3と同様にして、加硫ゴムシートを作製した。加硫ゴム物性の結果を表5に示す。なお、参考までに実施例3及び比較例1のデータも併記する。
Figure JPOXMLDOC01-appb-T000005
 脂肪酸アマイドを用いた実施例3、9、10では、ステアリン酸を用いた比較例1に比べて、短繊維平行方向の破断強度、短繊維垂直方向の100%伸張応力、破断強度、引裂力が何れも高い値を示し、破断伸度は低下した。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2011年5月20日出願の日本特許出願2011-113777に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の伝動用ベルトは、伝動ロスの低減が求められる種々のベルトとして利用でき、摩擦伝動用ベルトであるのが好ましい。摩擦伝動用ベルトとしては、例えば、断面がV字形状のローエッジベルト、ローエッジベルトの内周側又は内周側及び外周側の両方にコグを設けたローエッジコグドVベルト、Vリブドベルトなどが例示できる。特に、ベルト走行中に変速比が無段階で変わる変速機に使用されるベルト(変速ベルト)に適用するのが好ましい。
 1…接着ゴム層
 2…心線
 3…圧縮ゴム層
 4…伸張ゴム層

Claims (10)

  1.  ベルトの長手方向に心線を埋設した接着ゴム層と、この接着ゴム層の一方の面に形成された圧縮ゴム層と、前記接着ゴム層の他方の面に形成された伸張ゴム層とを備えた伝動用ベルトであって、少なくとも前記圧縮ゴム層が、脂肪酸アマイドと短繊維とを含む伝動用ベルト。
  2.  短繊維が、少なくとも接着処理された短繊維を含む、請求項1に記載の伝動用ベルト。
  3.  脂肪酸アマイドが、飽和又は不飽和長鎖脂肪酸アマイド及び飽和又は不飽和長鎖脂肪酸エステルアマイドから選択された少なくとも一種を含む、請求項1又は2に記載の伝動用ベルト。
  4.  短繊維が、少なくともアラミド繊維を含む、請求項1~3のいずれか一項に記載の伝動用ベルト。
  5.  圧縮ゴム層のゴム成分がクロロプレンゴムを含み、脂肪酸アマイドが少なくとも炭素数10~26の飽和又は不飽和脂肪酸モノアマイドを含み、短繊維に少なくともレゾルシンとホルマリンとの初期縮合物及びラテックスを含む接着成分が付着している、請求項1~4のいずれか一項に記載の伝動用ベルト。
  6.  短繊維に、スチレン-ブタジエン-ビニルピリジン三元共重合体を含む接着成分が付着している、請求項1~5のいずれか一項に記載の伝動用ベルト。
  7.  圧縮ゴム層を構成するゴム組成物が、原料ゴム成分100質量部に対して、脂肪酸アマイド0.5~10質量部、短繊維10~40質量部の割合で含む、請求項1~6のいずれか一項に記載の伝動用ベルト。
  8.  伝動用ベルトの圧縮ゴム層及び伸張ゴム層から選択された少なくとも1つのゴム層を形成するためのゴム組成物であって、ゴム成分と脂肪酸アマイドと短繊維とを含むゴム組成物。
  9.  短繊維が、少なくとも接着処理された短繊維を含む、請求項8に記載のゴム組成物。
  10.  伝動用ベルトの圧縮ゴム層を、請求項8又は9に記載のゴム組成物で形成し、伝動ロスを低減する方法。
PCT/JP2012/062872 2011-05-20 2012-05-18 伝動用ベルト WO2012161141A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12788938.4A EP2711587B1 (en) 2011-05-20 2012-05-18 Power transmission belt
BR112013029776-0A BR112013029776B1 (pt) 2011-05-20 2012-05-18 Correia de transmissão de energia, composição de borracha e método para reduzir a perda de transmissão de energia
CN201280024561.4A CN103547829B (zh) 2011-05-20 2012-05-18 传动用带

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011113777A JP5813996B2 (ja) 2011-05-20 2011-05-20 伝動用ベルト
JP2011-113777 2011-05-20

Publications (1)

Publication Number Publication Date
WO2012161141A1 true WO2012161141A1 (ja) 2012-11-29

Family

ID=47217218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062872 WO2012161141A1 (ja) 2011-05-20 2012-05-18 伝動用ベルト

Country Status (6)

Country Link
EP (1) EP2711587B1 (ja)
JP (1) JP5813996B2 (ja)
CN (1) CN103547829B (ja)
BR (1) BR112013029776B1 (ja)
MY (1) MY166728A (ja)
WO (1) WO2012161141A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5465346B1 (ja) * 2013-01-22 2014-04-09 株式会社椿本チエイン 歯付ベルト
WO2015106735A1 (de) * 2014-01-16 2015-07-23 Forbo Siegling Gmbh Transportband sowie eine mit diesem transportband ausgestattete transportvorrichtung
CN105579740A (zh) * 2013-08-30 2016-05-11 三之星机带株式会社 齿形皮带
WO2017110790A1 (ja) * 2015-12-22 2017-06-29 三ツ星ベルト株式会社 摩擦伝動ベルト及びその製造方法
JP2017116101A (ja) * 2015-12-22 2017-06-29 三ツ星ベルト株式会社 摩擦伝動ベルト及びその製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727442B2 (ja) * 2012-04-25 2015-06-03 三ツ星ベルト株式会社 伝動用ベルト
JP2014134210A (ja) * 2013-01-08 2014-07-24 Nitta Ind Corp シャフト用構造体、雄型部材、及び、雌型部材
JP5945562B2 (ja) 2013-03-28 2016-07-05 三ツ星ベルト株式会社 伝動用ベルト及びベルト変速装置
JP6055430B2 (ja) * 2013-03-29 2016-12-27 三ツ星ベルト株式会社 伝動用ベルト
JP2015160317A (ja) * 2014-02-26 2015-09-07 ニッタ株式会社 ゴム成型体又は樹脂成型体
JP5865544B1 (ja) * 2014-10-01 2016-02-17 株式会社ブリヂストン タイヤ用ゴム組成物
CN104963998B (zh) * 2015-06-26 2017-10-10 广东元星工业新材料有限公司 一体式聚氨酯同步带及其制备方法
US11300178B2 (en) 2015-12-21 2022-04-12 Mitsuboshi Belting Ltd. Friction drive belt
JP6890370B2 (ja) * 2017-01-13 2021-06-18 東レ・デュポン株式会社 ゴム補強用アラミド短繊維集束体
JP6904001B2 (ja) * 2017-03-30 2021-07-14 横浜ゴム株式会社 コンベヤベルト用コートゴム組成物、積層体およびコンベヤベルト
CN107501581B (zh) * 2017-07-26 2022-08-12 浙江吉利控股集团有限公司 一种改性橡胶的制备方法、改性橡胶和防弹防刺穿轮胎
CN111923529A (zh) * 2020-09-23 2020-11-13 歌尔股份有限公司 一种复合振膜及其制备方法、以及发声装置
EP4296537A1 (en) 2021-02-16 2023-12-27 Mitsuboshi Belting Ltd. Transmission v-belt
JP7189381B2 (ja) * 2021-02-16 2022-12-13 三ツ星ベルト株式会社 伝動用vベルト

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563656B2 (ja) 1985-06-18 1993-09-13 Bando Chemical Ind
JPH10238596A (ja) 1997-02-26 1998-09-08 Bando Chem Ind Ltd 伝動用vベルト
JP2001343049A (ja) * 2000-06-01 2001-12-14 Denki Kagaku Kogyo Kk 水素化クロロプレン系ゴムベルト
JP2009008254A (ja) * 2007-05-31 2009-01-15 Mitsuboshi Belting Ltd 伝動用ベルト
JP2009150538A (ja) 2007-11-30 2009-07-09 Mitsuboshi Belting Ltd コグドvベルト
JP2009250293A (ja) * 2008-04-03 2009-10-29 Mitsuboshi Belting Ltd Vリブドベルト
JP2009299026A (ja) * 2008-05-15 2009-12-24 Dainichiseika Color & Chem Mfg Co Ltd 熱可塑性ポリウレタン樹脂組成物
JP2010230146A (ja) * 2009-03-30 2010-10-14 Mitsuboshi Belting Ltd 伝動用ベルト

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737083B2 (ja) * 1990-12-28 1995-04-26 住友ゴム工業株式会社 歯付ベルト
JP3602946B2 (ja) * 1997-09-05 2004-12-15 株式会社ブリヂストン ゴム組成物及びタイヤ
JP4772292B2 (ja) * 2003-05-30 2011-09-14 三ツ星ベルト株式会社 伝動ベルト
JP4774392B2 (ja) * 2006-08-31 2011-09-14 錦湖タイヤ株式会社 タイヤ用ゴム組成物
JP2008304053A (ja) * 2007-05-08 2008-12-18 Mitsuboshi Belting Ltd 摩擦伝動ベルト
JP2009275781A (ja) * 2008-05-13 2009-11-26 Bando Chem Ind Ltd 伝動ベルト
JP2010053935A (ja) * 2008-08-27 2010-03-11 Bando Chem Ind Ltd Vリブドベルト
JP5302074B2 (ja) * 2009-04-03 2013-10-02 バンドー化学株式会社 Vリブドベルト及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563656B2 (ja) 1985-06-18 1993-09-13 Bando Chemical Ind
JPH10238596A (ja) 1997-02-26 1998-09-08 Bando Chem Ind Ltd 伝動用vベルト
JP2001343049A (ja) * 2000-06-01 2001-12-14 Denki Kagaku Kogyo Kk 水素化クロロプレン系ゴムベルト
JP2009008254A (ja) * 2007-05-31 2009-01-15 Mitsuboshi Belting Ltd 伝動用ベルト
JP2009150538A (ja) 2007-11-30 2009-07-09 Mitsuboshi Belting Ltd コグドvベルト
JP2009250293A (ja) * 2008-04-03 2009-10-29 Mitsuboshi Belting Ltd Vリブドベルト
JP2009299026A (ja) * 2008-05-15 2009-12-24 Dainichiseika Color & Chem Mfg Co Ltd 熱可塑性ポリウレタン樹脂組成物
JP2010230146A (ja) * 2009-03-30 2010-10-14 Mitsuboshi Belting Ltd 伝動用ベルト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2711587A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5465346B1 (ja) * 2013-01-22 2014-04-09 株式会社椿本チエイン 歯付ベルト
US9243683B2 (en) 2013-01-22 2016-01-26 Tsubakimoto Chain Co. Toothed belt
US10359095B2 (en) 2013-08-30 2019-07-23 Mitsuboshi Belting Ltd. Toothed belt
CN105579740A (zh) * 2013-08-30 2016-05-11 三之星机带株式会社 齿形皮带
EP3040579A1 (en) * 2013-08-30 2016-07-06 Mitsuboshi Belting Ltd. Toothed belt
EP3040579A4 (en) * 2013-08-30 2017-05-03 Mitsuboshi Belting Ltd. Toothed belt
JP2017503736A (ja) * 2014-01-16 2017-02-02 フォルボ・ジークリング・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 搬送ベルト及びこの搬送ベルト装備した搬送装置
KR20160104704A (ko) * 2014-01-16 2016-09-05 포르보 지글링 게엠베하 컨베이어 벨트 및 상기 컨베이어 벨트가 장착된 이송 디바이스
US9708127B2 (en) 2014-01-16 2017-07-18 Forbo Siegling Gmbh Conveyor belt and conveying device equipped with said conveyor belt
KR101884105B1 (ko) * 2014-01-16 2018-07-31 포르보 지글링 게엠베하 컨베이어 벨트 및 상기 컨베이어 벨트가 장착된 이송 디바이스
WO2015106735A1 (de) * 2014-01-16 2015-07-23 Forbo Siegling Gmbh Transportband sowie eine mit diesem transportband ausgestattete transportvorrichtung
WO2017110790A1 (ja) * 2015-12-22 2017-06-29 三ツ星ベルト株式会社 摩擦伝動ベルト及びその製造方法
JP2017116101A (ja) * 2015-12-22 2017-06-29 三ツ星ベルト株式会社 摩擦伝動ベルト及びその製造方法

Also Published As

Publication number Publication date
JP5813996B2 (ja) 2015-11-17
BR112013029776B1 (pt) 2021-10-05
EP2711587B1 (en) 2016-02-10
EP2711587A1 (en) 2014-03-26
JP2012241831A (ja) 2012-12-10
BR112013029776A2 (pt) 2017-01-17
CN103547829B (zh) 2016-04-13
CN103547829A (zh) 2014-01-29
MY166728A (en) 2018-07-18
EP2711587A4 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5813996B2 (ja) 伝動用ベルト
JP5727442B2 (ja) 伝動用ベルト
JP6055430B2 (ja) 伝動用ベルト
CN109477548B (zh) 传动用v带
CN108431450B (zh) 摩擦传动带及其制造方法
US11300178B2 (en) Friction drive belt
WO2017110790A1 (ja) 摩擦伝動ベルト及びその製造方法
CN109073040B (zh) 摩擦传动带
JP2018004080A (ja) 摩擦伝動ベルト
EP3489544B1 (en) Transmission v-belt
JP6650388B2 (ja) 摩擦伝動ベルト
CN108884907B (zh) 摩擦传动带
JP6747924B2 (ja) 摩擦伝動ベルト及びその製造方法
CN112166262B (zh) 包布v带
JP7500829B2 (ja) 伝動ベルト用ゴム組成物、伝動ベルトおよび伝動ベルトの製造方法
WO2017179688A1 (ja) 摩擦伝動ベルト
EP4296537A1 (en) Transmission v-belt
WO2024004769A1 (ja) 伝動ベルト用ゴム組成物、伝動ベルトおよび伝動ベルトの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12788938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012788938

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013029776

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013029776

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131119