WO2012160875A1 - スイッチング素子 - Google Patents

スイッチング素子 Download PDF

Info

Publication number
WO2012160875A1
WO2012160875A1 PCT/JP2012/058859 JP2012058859W WO2012160875A1 WO 2012160875 A1 WO2012160875 A1 WO 2012160875A1 JP 2012058859 W JP2012058859 W JP 2012058859W WO 2012160875 A1 WO2012160875 A1 WO 2012160875A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
switching element
layer
electrode
electron
Prior art date
Application number
PCT/JP2012/058859
Other languages
English (en)
French (fr)
Inventor
雅之 田尻
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/119,934 priority Critical patent/US9171945B2/en
Priority to CN201280025227.0A priority patent/CN103563060B/zh
Publication of WO2012160875A1 publication Critical patent/WO2012160875A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Definitions

  • the present invention relates to a switching element represented by HEMT (High Electron Mobility Transistor) and the like.
  • HEMT High Electron Mobility Transistor
  • nitride semiconductors which are III-V compound semiconductors typified by GaN, are expected to be applied to switching elements.
  • nitride semiconductors have characteristics such as a band gap as large as about 3.4 eV, a dielectric breakdown electric field as high as 10 times, and an electron saturation rate as large as 2.5 times that of silicon.
  • a switching element in which a GaN / AlGaN heterostructure is provided on a substrate such as sapphire has been proposed (see, for example, Patent Document 1).
  • this switching element 1 ⁇ 10 13 cm ⁇ due to spontaneous polarization derived from asymmetry in the C-axis direction of the crystal structure of GaN (wurtzite type) and polarization due to the piezoelectric effect derived from lattice mismatch of AlGaN and GaN.
  • 2DEG two two-dimensional electron gases
  • the switching element switches conduction / non-conduction between predetermined electrodes by controlling the two-dimensional electron gas.
  • FIG. 6 is a cross-sectional view showing the structure of a conventional switching element.
  • FIG. 7 is a cross-sectional view showing the OFF state of the conventional switching element shown in FIG.
  • FIG. 8 is a cross-sectional view showing an on state of the conventional switching element shown in FIG.
  • the switching element 100 includes a substrate 101, a buffer layer 102 formed on the upper surface of the substrate 101, an electron transit layer 103 made of undoped GaN formed on the upper surface of the buffer layer 102, and an electron An electron supply layer 104 made of AlGaN formed on the upper surface of the traveling layer 103, a source electrode 105 formed on the upper surface of the electron supply layer 104, a drain electrode 106 formed on the upper surface of the electron supply layer 104, and an electron supply A gate electrode 107 formed on the upper surface of the layer 104 and disposed between the source electrode 105 and the drain electrode 106.
  • the switching element 100 is a normally-on type.
  • the switching element 100 has an interface at the interface with the electron supply layer 104 of the electron transit layer 103.
  • the two-dimensional electron gas 108 is generated (on state).
  • the potential of the drain electrode 106 is higher than the potential of the source electrode 105 (if the potential is positive), a current flows between the drain electrode 106 and the source electrode 105.
  • the switching element 100 when the potential of the gate electrode 107 is lower than the potential of the source electrode 105 (assumed to be 0V) by a predetermined value or more (a negative potential), the electron supply layer 104 is directly below the gate electrode 107.
  • the two-dimensional electron gas 108 is not generated at the interface bonded to the electron transit layer 103 (off state). In this state, no current flows between the drain electrode 106 and the source electrode 105.
  • a depletion region 109 is formed immediately below the gate electrode 107.
  • a high potential difference for example, about several hundred volts corresponding to the power supply voltage
  • a high electric field is generated on the drain electrode 106 side in the vicinity of the gate electrode 107, and electrons and holes are generated by impact ionization.
  • the generated electrons 110 are trapped in a level caused by nitrogen defects on the surface (upper surface) of the electron supply layer 104.
  • the electrons 110 trapped on the surface of the electron supply layer 104 have a predetermined time (for example, several seconds to several minutes). For a long time).
  • the electron 110 impedes a current flowing between the drain electrode 106 and the source electrode 105 by exerting a repulsive force (Coulomb force) on the electrons in the two-dimensional electron gas 108.
  • This is a phenomenon called “collapse phenomenon”, which causes a problem because the on-resistance of the switching element 100 increases due to this phenomenon, and high-speed switching becomes difficult.
  • Patent Document 2 A structure for suppressing the collapse phenomenon is proposed in Patent Document 2. This structure will be described with reference to FIG. FIG. 9 is a cross-sectional view showing the structure of a conventional switching element.
  • the switching element 200 includes a substrate 201, a buffer layer 202 formed on the upper surface of the substrate 201, an electron transit layer 203 made of undoped GaN formed on the upper surface of the buffer layer 202, and an electron An electron supply layer 204 made of AlGaN formed on the upper surface of the traveling layer 203, a source electrode 205 partially formed on the upper surface of the electron traveling layer 203, and a drain partially formed on the upper surface of the electron traveling layer 203.
  • a passivation layer 211 formed between the gate electrode 207 and the drain electrode 206.
  • the passivation layer 211 made of nitride is provided on the upper surface of the electron supply layer 204, thereby reducing nitrogen defects on the surface (upper surface) of the electron supply layer 204.
  • the gate electrode 207 has a structure (field plate structure) protruding at least on the drain electrode 206 side, so that the electric field generated on the drain electrode 206 side in the vicinity of the gate electrode 207 is relaxed, The occurrence of the above-mentioned impact ionization is suppressed.
  • the passivation layer 211 is adopted, the number of nitrogen defects to be compensated is only one digit. Further, when a voltage as high as several hundred volts is applied as in a switching element for a power device, it is difficult to sufficiently suppress impact ionization only by adopting the gate electrode 207 having a field plate structure. Therefore, the switching element 200 shown in FIG. 9 is problematic because the collapse phenomenon cannot be sufficiently suppressed. Specifically, for example, when the switching element 200 shifts from the off state to the on state, the on-resistance in the time from just after the transition to several microseconds is several times that in the initial state, and sufficient improvement cannot be obtained. It becomes.
  • an object of the present invention is to provide a switching element that can effectively suppress the collapse phenomenon.
  • the present invention includes a first semiconductor layer, A second semiconductor layer formed on an upper surface of the first semiconductor layer and having a band gap larger than that of the first semiconductor layer and heterojunction with the first semiconductor layer; A third semiconductor layer formed on an upper surface of the second semiconductor layer and having a band gap smaller than the second semiconductor layer; A first electrode formed on at least a part of the upper surface of the first semiconductor layer; A second electrode at least partially formed on the upper surface of the first semiconductor layer; A control electrode formed on the upper surface of the second semiconductor layer and disposed between the first electrode and the second electrode, and Depending on the potential of the control electrode, An ON state in which the first electrode and the second electrode are electrically connected by a two-dimensional carrier gas generated at an interface of the first semiconductor layer joined to the second semiconductor layer; An off state in which the first electrode and the second electrode are not electrically connected by the fact that no two-dimensional carrier gas is generated at the interface at least immediately below the control electrode; Is switched, Provided is a switching element in which electrons and holes re
  • the third semiconductor layer is formed between at least one of the control electrode and the first electrode and between the control electrode and the second electrode. ,preferable.
  • the switching element having the above characteristics is configured such that electrons and holes are radiatively recombined in the third semiconductor layer in the off state.
  • each of the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer is made of a nitride semiconductor
  • the two-dimensional carrier gas is a two-dimensional electron gas
  • the third semiconductor layer preferably includes indium.
  • the third semiconductor layer is made of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1).
  • the third semiconductor layer has a multiple quantum well structure in which at least two nitride semiconductor layers having different indium compositions are periodically stacked.
  • the third semiconductor layer is formed by ion-implanting indium after forming a layer made of a predetermined nitride semiconductor on the upper surface of the second semiconductor layer. It is preferable.
  • the switching element having the above characteristics is formed on an upper surface of the third semiconductor layer, and a fourth semiconductor layer having a band gap larger than the third semiconductor layer is provided. Further provision is preferable.
  • the fourth semiconductor layer is made of Al z Ga 1-z N (0 ⁇ z ⁇ 1).
  • the switching element having the above characteristics is formed on an upper surface of the fourth semiconductor layer, and an insulating layer having a band gap larger than that of the fourth semiconductor layer. Further provision is preferable.
  • the insulating layer is made of AlN or SiN.
  • each of the control electrode, the first electrode, and the second electrode is separated from the third semiconductor layer and the fourth semiconductor layer, and the insulating layer is formed therebetween. It is preferable.
  • the switching element having the above characteristics, by providing the third semiconductor layer, it is possible to suppress trapping of charges (particularly carriers) generated by impact ionization on the surface (upper surface) of the second semiconductor layer. It becomes possible. That is, the collapse phenomenon can be effectively suppressed.
  • Sectional drawing which shows the structural example of the switching element which concerns on 1st Embodiment of this invention.
  • the energy band figure in the gate electrode vicinity when the switching element shown in FIG. 1 is an ON state.
  • the energy band figure in the gate electrode vicinity when the switching element shown in FIG. 1 is an OFF state.
  • Sectional drawing which shows the structural example of the switching element which concerns on 2nd Embodiment of this invention.
  • Sectional drawing which shows the structural example of the switching element which concerns on 3rd Embodiment of this invention.
  • Sectional drawing which shows the structure of the conventional switching element.
  • switching elements according to first to third embodiments of the present invention will be described with reference to the drawings.
  • Each of the switching elements according to the first to third embodiments described below is only one embodiment of the present invention, and the present invention is not limited to these.
  • the switching elements according to the first to third embodiments can be implemented by combining a part or all of them as long as no contradiction arises.
  • FIG. 1 is a cross-sectional view showing a structural example of a switching element according to the first embodiment of the present invention.
  • the switching element 1a includes a substrate 10, a buffer layer 11 formed on the upper surface of the substrate 10, an electron transit layer (first semiconductor layer) 12 formed on the upper surface of the buffer layer 11, An electron supply layer (second semiconductor layer) 13 formed on the upper surface of the electron transit layer 12, and a source electrode (first electrode or second electrode) 14 at least partially formed on the upper surface of the electron transit layer 12, A drain electrode (first electrode or second electrode) 15 at least partly formed on the upper surface of the electron transit layer 12, and at least partly formed on the upper surface of the electron supply layer 13 and the source electrode 14 and the drain electrode 15. Formed between the gate electrode 16 and the source electrode 14 and between the gate electrode 16 and the drain electrode 15, which is the upper surface of the electron supply layer 13.
  • the switching element is a normally-on type.
  • the substrate 10 is made of, for example, silicon, silicon carbide (SiC), sapphire, or the like.
  • the electron transit layer 12 is made of, for example, undoped GaN having a thickness of 1 ⁇ m to 5 ⁇ m.
  • the electron supply layer 13 is made of, for example, Al b Ga 1-b N (0 ⁇ b ⁇ 1) having a thickness of 10 nm to 100 nm.
  • the band gap of the electron supply layer 13 is larger than the band gap of the electron transit layer 12, and the electron transit layer 12 and the electron supply layer 13 are heterojunctioned. Thereby, the two-dimensional electron gas 20 can be generated at the interface of the electron transit layer 12 connected to the electron supply layer 13. In the switching element 1a of this embodiment, the two-dimensional electron gas 20 becomes a channel.
  • Each of the source electrode 14, the drain electrode 15, and the gate electrode 16 is made of a metal element such as Ti, Al, Cu, Au, Pt, W, Ta, Ru, Ir, and Pd, or at least two of these metal elements. It consists of an alloy or a nitride containing at least one of these metal elements.
  • the source electrode 14 and the drain electrode 15 are in ohmic contact with the electron transit layer 12, and the gate electrode 16 is in a Schottky junction with the electron supply layer 13.
  • each of the source electrode 14, the drain electrode 15, and the gate electrode 16 may be formed of a single layer or may be formed of a stacked structure (composition of each layer may be different).
  • each of the source electrode 14, the drain electrode 15, and the gate electrode 16 has a field plate structure in which a part thereof extends over the passivation layer 19.
  • the source electrode 14 extends to the gate electrode 15 side and the opposite side
  • the drain electrode 15 extends to the gate electrode 15 side and the opposite side
  • the gate electrode 16 extends to the source electrode 14 side and the drain electrode 15 side. And overhang each.
  • the band gap of the recombination layer 17 is smaller than that of the electron supply layer 13.
  • the passivation layer 19 is made of, for example, AlN or SiN having a thickness of 50 nm to 250 nm.
  • the band gap of the passivation layer 19 is larger than the band gap of the cladding layer 18.
  • oxide, oxynitride, etc. are applicable to the passivation layer 19, it is more preferable to apply nitrides, such as AlN mentioned above and SiN. This is because, when the switching element 1a is used for a power device, the electron transit layer 12 is electrochemically oxidized due to the potential difference of several hundred volts as described above (for example, Appl. Phys. ⁇ Lett. 96). , 233509, see (2010)).
  • FIG. 2 is an energy band diagram in the vicinity of the gate electrode when the switching element shown in FIG. 1 is in an on state.
  • FIG. 3 is an energy band diagram in the vicinity of the gate electrode when the switching element shown in FIG. 1 is in the OFF state. 2 and 3 correspond to the upper side of FIG. 1, and the right sides of FIGS. 2 and 3 correspond to the lower side of FIG. 2 and 3 show energy band diagrams in the vicinity of the gate electrode 16.
  • FIG. 2 illustrates a case where the switching element 1a is turned on when the potential of the gate electrode 16 becomes equal to the potential of the source electrode 14 (0 V).
  • the switching element 1a when the switching element 1a is turned on, the energy level Ec at the bottom of the conduction band at the interface immediately below the gate electrode 16 where the electron transit layer 12 is joined to the electron supply layer 13 is Fermi It becomes lower than the level Ef. Therefore, the source electrode 14 and the drain electrode 15 are electrically connected by the two-dimensional electron gas 20 generated at the interface.
  • FIG. 3 shows that the switching element 1a is turned off when the potential of the gate electrode 16 is lower than the potential of the source electrode 14 (assumed to be 0V) by a predetermined value or more (a negative potential of ⁇ 10V).
  • the switching element 1a when the switching element 1a is turned off, the energy level Ec at the bottom of the conduction band at the interface immediately below the gate electrode 16 where the electron transit layer 12 is joined to the electron supply layer 13 is Fermi. It becomes higher than the level Ef. Therefore, the two-dimensional electron gas 20 is not generated at least at the interface immediately below the gate electrode 16. Therefore, the source electrode 14 and the drain electrode 15 are not electrically connected.
  • a high potential difference for example, about several hundred volts
  • a high electric field is generated on the drain electrode 15 side in the vicinity of the gate electrode 16, and electrons 21 and holes 22 can be generated by impact ionization.
  • the passivation layer 19 is provided or the gate electrode 16 or the like has a field plate structure, it is difficult to sufficiently suppress the generation of electrons 21 and holes 22 due to impact ionization.
  • the switching element 1a of the present embodiment by providing the recombination layer 17, charges (particularly carriers, electrons in this example) generated by impact ionization are transferred to the surface (upper surface) of the electron supply layer 13. It is possible to suppress trapping by the. Therefore, the collapse phenomenon can be effectively suppressed.
  • the recombination layer 17 is preferably one that can radiatively recombine the collected electrons 21 and holes 22.
  • the energy generated by the recombination becomes light or the like and is radiated to the outside. Can be prevented from deteriorating.
  • a nitride containing indium has a property of collecting holes in the vicinity of the In—N bond, and can efficiently radiatively recombine electrons and holes. Therefore, by constituting the recombination layer 17 with a nitride semiconductor containing indium, it is possible to effectively suppress the deterioration of the characteristics of the switching element 1a.
  • the buffer layer 11 For the buffer layer 11, the electron transit layer 12, the electron supply layer 13, the recombination layer 17, and the cladding layer 18, various methods such as MOCVD (Metal-Organic-Chemical-Vapor-Deposition) and MBE (Molecular-Beam Epitaxy) are applied. Can be formed.
  • MOCVD Metal-Organic-Chemical-Vapor-Deposition
  • MBE Molecular-Beam Epitaxy
  • FIG. 4 is a cross-sectional view showing a structural example of a switching element according to the second embodiment of the present invention.
  • FIG. 4 parts that are the same as those of the switching element 1a according to the first embodiment shown in FIG.
  • the switching element 1b according to the second embodiment will be described with a focus on the parts that are different from the switching element 1a according to the first embodiment, and the similar parts will be described with respect to the switching element 1a according to the first embodiment. The description will be omitted as appropriate in consideration of the description.
  • the switching element 1 b includes a substrate 10, a buffer layer 11, an electron transit layer 12, an electron supply layer 13, a source electrode 14, a drain electrode 15, a gate electrode 16, and a recombination.
  • a layer 17b, a clad layer 18b, and a passivation layer 19b are provided.
  • the switching element 1b of the present embodiment is the same as the switching element 1a of the first embodiment shown in FIG.
  • an insulating material is formed between the recombination layer 17b having a relatively small band gap and weak insulating properties, and the source electrode 14, the drain electrode 15, and the gate electrode 16.
  • a passivation layer 19b is formed. Therefore, it is possible to suppress current leakage between each of the source electrode 14, the drain electrode 15, and the gate electrode 16 through the recombination layer 17b.
  • FIG. 5 is a cross-sectional view showing a structural example of a switching element according to the third embodiment of the present invention.
  • the same reference numerals are given to the same parts as those of the switching element 1 a according to the first embodiment shown in FIG. 1.
  • the switching element 1c according to the third embodiment will be described with a focus on the parts that are different from the switching element 1a according to the first embodiment, and the similar parts will be described with respect to the switching element 1a according to the first embodiment. The description will be omitted as appropriate in consideration of the description.
  • the switching element 1 c includes a substrate 10, a buffer layer 11, an electron transit layer 12, an electron supply layer 13, a source electrode 14, a drain electrode 15, a gate electrode 16, and a recombination.
  • a layer 17c, a cladding layer 18c, and a passivation layer 19c are provided.
  • a structure in which the recombination layer 17c and the cladding layer 18c are separated from the source electrode 14, the drain electrode 15, and the gate electrode 16 and a passivation layer 19c is formed therebetween. These are the same as those of the switching element 1b according to the second embodiment. For this reason, the description of the structure is omitted with reference to the description of the switching element 1b according to the second embodiment.
  • the recombination layer 17c has a multiple quantum well structure.
  • a barrier layer having a relatively small indium composition and a relatively wide band gap and a well layer having a relatively large indium composition and a relatively small band gap are periodically and alternately stacked. Structure.
  • electrons and holes are confined two-dimensionally in the well layer, and the energy that the electrons and holes can take becomes discrete (subbands are formed), so that the electrons and holes can be efficiently collected. Hole recombination takes place.
  • wavelengths of emitted light and the like are aligned.
  • the recombination layer 17c has a multiple quantum well structure. Therefore, it becomes possible to efficiently recombine electrons and holes and collect electrons and holes to the recombination layer 17c more effectively. Therefore, the collapse phenomenon can be more effectively suppressed.
  • the recombination layer 17c when the thickness of the well layer is 1 nm to 5 nm and the thickness of the barrier layer is 3 nm to 30 nm, the efficiency of electron and hole recombination can be effectively increased. Therefore, it is preferable.
  • the switching element 1c has a structure in which the recombination layer 17c and the cladding layer 18c are in contact with the source electrode 14, the drain electrode 15, and the gate electrode 16, respectively (that is, the first structure).
  • the structure of the switching element 1a may be used.
  • the switching elements 1a to 1c after the nitride semiconductor forming the cladding layers 18, 18b, 18c is formed on the upper surface of the electron supply layer 13, indium is ionized into the nitride semiconductor.
  • the recombination layers 17, 17b, and 17c may be formed by the implantation method. With this method, the recombination layers 17, 17b, and 17c can be easily formed.
  • the recombination layers 17, 17b, and 17c are formed on the upper surface of the electron supply layer 13, the recombination layers 17, 17b, and 17c are not limited to the locations shown in FIGS. good. However, from the viewpoint of effectively suppressing the collapse phenomenon, it is preferably formed on a path through which current flows. That is, it is preferable to form the recombination layer 17 between at least one of the gate electrode 16 and the source electrode 14 and between the gate electrode 16 and the drain electrode 15 (particularly the latter).
  • normally-on type switching elements 1a to 1c have been exemplified as embodiments of the present invention, the present invention is also applicable to normally-off type switching elements.
  • the switching elements 1a to 1c in which the carrier (two-dimensional carrier gas) is an electron (two-dimensional electron gas) are exemplified.
  • the carrier (two-dimensional carrier gas) is a hole.
  • the present invention can also be applied to a switching element that is (two-dimensional hole gas, 2DHG).
  • the present invention can be used for switching elements, and is particularly suitable for use in switching elements applied to power devices.
  • Switching element 10 Substrate 11: Buffer layer 12: Electron transit layer 13: Electron supply layer 14: Source electrode 15: Drain electrode 16: Gate electrodes 17, 17b, 17c: Recombination layers 18, 18b, 18c: Clad layer 19, 19b, 19c: Passivation layer 20: Two-dimensional electron gas 21: Electron 22: Hole

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

 コラプス現象を効果的に抑制することを可能にしたスイッチング素子を提供する。スイッチング素子1aは、電子走行層12と、電子走行層12の上面に形成されてバンドギャップが電子走行層12より大きく電子走行層12とヘテロ接合する電子供給層13と、電子供給層13の上面に形成されてバンドギャップが電子供給層13より小さい再結合層17と、少なくとも一部が電子走行層12の上面に形成されるソース電極14及びドレイン電極15と、少なくとも一部が電子供給層13の上面に形成されて前ソース電極14及びドレイン電極15の間に配置されるゲート電極16と、を備える。スイッチング素子1aがオフ状態のとき、再結合層17で電子及び正孔が再結合する。

Description

スイッチング素子
 本発明は、HEMT(High Electron Mobility Transistor)などに代表されるスイッチング素子に関する。
 近年、GaNに代表されるIII-V族化合物半導体である窒化物半導体の、スイッチング素子への適用が期待されている。特に、窒化物半導体は、シリコンなどと比べて、バンドギャップが3.4eV程度と大きく、絶縁破壊電界が10倍と高く、電子飽和速度が2.5倍と大きいなど、パワーデバイスに最適な特性を有する。
 具体的に例えば、サファイアなどの基板上に、GaN/AlGaNのヘテロ構造を設けたスイッチング素子が提案されている(例えば、特許文献1参照)。このスイッチング素子では、GaNの結晶構造(ウルツ鉱型)のC軸方向における非対称性に由来する自発分極や、AlGaN及びGaNの格子不整合に由来するピエゾ効果による分極によって、1×1013cm-2もの二次元電子ガス(2DEG)が生じ得る。当該スイッチング素子は、この二次元電子ガスを制御することで、所定の電極間の導通/非導通を切り替える。
 上記の構造のスイッチング素子について、図6~図8を参照して具体的に説明する。図6は、従来のスイッチング素子の構造を示す断面図である。図7は、図6に示す従来のスイッチング素子のオフ状態を示す断面図である。図8は、図6に示す従来のスイッチング素子のオン状態を示す断面図である。
 図6に示すように、スイッチング素子100は、基板101と、基板101の上面に形成されるバッファ層102と、バッファ層102の上面に形成されるアンドープのGaNから成る電子走行層103と、電子走行層103の上面に形成されるAlGaNから成る電子供給層104と、電子供給層104の上面に形成されるソース電極105と、電子供給層104の上面に形成されるドレイン電極106と、電子供給層104の上面に形成されるとともにソース電極105及びドレイン電極106の間に配置されるゲート電極107と、を備える。なお、当該スイッチング素子100は、ノーマリーオン型である。
 スイッチング素子100は、ゲート電極107の電位がソース電極105の電位(0Vとする)と等しくても、ゲート電極107がオープンであっても、電子走行層103の電子供給層104と接合する界面に二次元電子ガス108が生じる状態(オン状態)になる。このとき、ソース電極105の電位よりもドレイン電極106の電位が高ければ(正の電位であれば)、ドレイン電極106及びソース電極105間に、電流が流れる。
 一方、スイッチング素子100は、ゲート電極107の電位が、ソース電極105の電位(0Vとする)よりも所定値以上低いと(負電位であると)、ゲート電極107の直下において、電子供給層104の電子走行層103に接合する界面に二次元電子ガス108が生じない状態(オフ状態)になる。この状態では、ドレイン電極106及びソース電極105間に、電流が流れない。
 図7に示すように、スイッチング素子100がオフ状態になると、ゲート電極107の直下に空乏領域109が形成される。このとき、パワーデバイス用のスイッチング素子100では、ドレイン電極106及びソース電極105間に高い電位差(例えば、電源電圧に相当する数100V程度)が生じる。すると、ゲート電極107近傍のドレイン電極106側に高い電界が生じ、衝突電離によって電子及び正孔が発生する。そして、発生した電子110は、電子供給層104の表面(上面)における窒素欠陥に起因する準位などにトラップされる。
 スイッチング素子100が、図7に示すオフ状態からオン状態に移行すると、図8に示すように、電子供給層104の表面でトラップされた電子110が、所定の時間(例えば、数秒~数分という長時間)保持される。当該電子110は、二次元電子ガス108中の電子に対して斥力(クーロン力)を及ぼすことで、ドレイン電極106及びソース電極105間を流れる電流を妨げる。これは「コラプス現象」とよばれる現象であり、当該現象によりスイッチング素子100のオン抵抗が大きくなり、高速スイッチングが困難になるため、問題となる。
 このコラプス現象を抑制するための構造が、特許文献2で提案されている。この構造について、図9を参照して説明する。図9は、従来のスイッチング素子の構造を示す断面図である。
 図9に示すように、スイッチング素子200は、基板201と、基板201の上面に形成されるバッファ層202と、バッファ層202の上面に形成されるアンドープのGaNから成る電子走行層203と、電子走行層203の上面に形成されるAlGaNから成る電子供給層204と、一部が電子走行層203の上面に形成されるソース電極205と、一部が電子走行層203の上面に形成されるドレイン電極206と、電子供給層204の上面に形成されるとともにソース電極205及びドレイン電極206の間に配置されるゲート電極207と、電子供給層204の上面でありゲート電極207及びソース電極205間とゲート電極207及びドレイン電極206間とに形成されるパッシベーション層211と、を備える。
 このスイッチング素子200では、窒化物から成るパッシベーション層211を電子供給層204の上面に設けることで、電子供給層204の表面(上面)の窒素欠陥を低減している。また、このスイッチング素子200では、ゲート電極207を、少なくともドレイン電極206側に張り出した構造(フィールドプレート構造)にすることで、ゲート電極207近傍のドレイン電極206側に発生する電界を緩和して、上述の衝突電離の発生を抑制している。
特開2007-251144号公報 特開2004-200248号公報
 しかしながら、パッシベーション層211を採用したとしても、補償される窒素欠陥の数は1桁に留まる。また、パワーデバイス用のスイッチング素子のように、数100V程度もの高い電圧が印加される場合、フィールドプレート構造のゲート電極207を採用するだけでは、衝突電離を十分に抑制することが困難である。したがって、図9に示すスイッチング素子200では、コラプス現象を十分に抑制することができないため、問題となる。具体的に例えば、スイッチング素子200がオフ状態からオン状態に移行したとき、移行直後から数μ秒までの時間におけるオン抵抗が初期状態の数倍になり、十分な改善が得られないため、問題となる。
 本発明は、上記の問題点に鑑み、コラプス現象を効果的に抑制することを可能にしたスイッチング素子を提供することを目的とする。
 上記目的を達成するため、本発明は、第1半導体層と、
 前記第1半導体層の上面に形成され、バンドギャップが前記第1半導体層より大きく当該第1半導体層とヘテロ接合する第2半導体層と、
 前記第2半導体層の上面に形成され、バンドギャップが前記第2半導体層より小さい第3半導体層と、
 少なくとも一部が前記第1半導体層の上面に形成される第1電極と、
 少なくとも一部が前記第1半導体層の上面に形成される第2電極と、
 少なくとも一部が前記第2半導体層の上面に形成され、前記第1電極及び前記第2電極の間に配置される制御電極と、を備え、
 前記制御電極の電位に応じて、
 前記第1半導体層の前記第2半導体層と接合する界面に生じる二次元キャリアガスにより、前記第1電極及び前記第2電極間が電気的に接続されるオン状態と、
 少なくとも前記制御電極の直下で、前記界面に二次元キャリアガスが生じないことにより、前記第1電極及び前記第2電極間が電気的に接続されないオフ状態と、
 が切り替えられ、
 前記オフ状態であるとき、前記第3半導体層で電子及び正孔が再結合することを特徴とするスイッチング素子を提供する。
 さらに、上記特徴のスイッチング素子は、前記第3半導体層が、前記制御電極及び前記第1電極の間と、前記制御電極及び前記第2電極の間と、の少なくともいずれか一方に形成されると、好ましい。
 さらに、上記特徴のスイッチング素子は、前記オフ状態のとき、前記第3半導体層で、電子及び正孔が輻射再結合すると、好ましい。
 さらに、上記特徴のスイッチング素子は、前記第1半導体層、前記第2半導体層及び前記第3半導体層のそれぞれが、窒化物半導体から成り、
 前記二次元キャリアガスが二次元電子ガスであり、
 前記第3半導体層が、インジウムを含むと、好ましい。
 さらに、上記特徴のスイッチング素子は、前記第3半導体層が、InAlGa1-x-yN(0<x≦1、0≦y≦1)から成ると、好ましい。
 さらに、上記特徴のスイッチング素子は、前記第3半導体層が、インジウムの組成が異なる少なくとも二つの窒化物半導体層を周期的に積層して成る多重量子井戸構造を備えると、好ましい。
 さらに、上記特徴のスイッチング素子は、前記第3半導体層が、前記第2半導体層の上面に所定の窒化物半導体から成る層を形成した後、インジウムをイオン注入することで形成されたものであると、好ましい。
 さらに、上記特徴のスイッチング素子は、前記第3半導体層の上面に形成され、バンドギャップが前記第3半導体層より大きい第4半導体層を、
 さらに備えると、好ましい。
 さらに、上記特徴のスイッチング素子は、前記第4半導体層が、AlGa1-zN(0≦z<1)から成ると、好ましい。
 さらに、上記特徴のスイッチング素子は、前記第4半導体層の上面に形成され、バンドギャップが前記第4半導体層より大きい絶縁層を、
 さらに備えると、好ましい。
 さらに、上記特徴のスイッチング素子は、前記絶縁層が、AlNまたはSiNから成ると、好ましい。
 さらに、上記特徴のスイッチング素子は、前記制御電極、前記第1電極及び前記第2電極のそれぞれと、前記第3半導体層及び前記第4半導体層とが離間し、その間に前記絶縁層が形成されると、好ましい。
 上記特徴のスイッチング素子によれば、第3半導体層を設けることで、衝突電離によって生じた電荷(特に、キャリア)が第2半導体層の表面(上面)にトラップされることを、抑制することが可能になる。即ち、コラプス現象を効果的に抑制することが可能になる。
本発明の第1実施形態に係るスイッチング素子の構造例を示す断面図。 図1に示すスイッチング素子がオン状態であるときの、ゲート電極近傍におけるエネルギーバンド図。 図1に示すスイッチング素子がオフ状態であるときの、ゲート電極近傍におけるエネルギーバンド図。 本発明の第2実施形態に係るスイッチング素子の構造例を示す断面図。 本発明の第3実施形態に係るスイッチング素子の構造例を示す断面図。 従来のスイッチング素子の構造を示す断面図。 図6に示す従来のスイッチング素子のオフ状態を示す断面図。 図6に示す従来のスイッチング素子のオン状態を示す断面図。 従来のスイッチング素子の構造を示す断面図。
 以下、本発明の第1~第3実施形態に係るスイッチング素子について、図面を参照して説明する。なお、以下説明する第1~第3実施形態に係るスイッチング素子のそれぞれは、本発明の一つの実施形態に過ぎないものであり、本発明はこれらに限定されるものではない。また、第1~第3実施形態に係るスイッチング素子は、その一部または全部を、矛盾無き限り組み合わせて実施することが可能である。
<第1実施形態>
 最初に、本発明の第1実施形態に係るスイッチング素子の構造例について、図1を参照して説明する。図1は、本発明の第1実施形態に係るスイッチング素子の構造例を示す断面図である。
 図1に示すように、スイッチング素子1aは、基板10と、基板10の上面に形成されるバッファ層11と、バッファ層11の上面に形成される電子走行層(第1半導体層)12と、電子走行層12の上面に形成される電子供給層(第2半導体層)13と、少なくとも一部が電子走行層12の上面に形成されるソース電極(第1電極または第2電極)14と、少なくとも一部が電子走行層12の上面に形成されるドレイン電極(第1電極または第2電極)15と、少なくとも一部が電子供給層13の上面に形成されるとともにソース電極14及びドレイン電極15の間に配置されるゲート電極(制御電極)16と、電子供給層13の上面でありゲート電極16及びソース電極14間とゲート電極16及びドレイン電極15間とに形成される再結合層(第3半導体層)17と、再結合層の上面に形成されるクラッド層(第4半導体層)18と、クラッド層18の上面に形成されるパッシベーション層(絶縁層)19と、を備える。なお、当該スイッチング素子は、ノーマリーオン型である。
 基板10は、例えば、シリコンや炭化珪素(SiC)、サファイアなどから成る。バッファ層11は、例えば、AlGa1-aN(0≦a≦1。即ち、a=1の場合のAlNや、a=0の場合のGaNを含み得る)の単層または積層構造(各層のaの値は異なり得る)から成る。基板10及びバッファ層11は、後述するスイッチング素子1aが好適に動作する限り、どのようなものを適用しても良い。
 電子走行層12は、例えば、厚さが1μm以上5μm以下のアンドープのGaNから成る。電子供給層13は、例えば、厚さが10nm以上100nm以下のAlGa1-bN(0<b<1)から成る。また、電子供給層13のバンドギャップは、電子走行層12のバンドギャップよりも大きく、電子走行層12及び電子供給層13はヘテロ接合する。これにより、電子走行層12の電子供給層13と接続する界面に、二次元電子ガス20が発生し得る。本実施形態のスイッチング素子1aにおいては、この二次元電子ガス20がチャネルになる。
 ソース電極14、ドレイン電極15及びゲート電極16のそれぞれは、Ti、Al、Cu、Au、Pt、W、Ta、Ru、Ir、Pdなどの金属元素や、これらの金属元素の少なくとも2つから成る合金、またはこれらの金属元素の少なくとも1つを含む窒化物などから成る。ただし、ソース電極14及びドレイン電極15は、電子走行層12に対してオーミック接合し、ゲート電極16は、電子供給層13に対してショットキー接合する。なお、ソース電極14、ドレイン電極15及びゲート電極16のそれぞれは、単層から成るものであっても良いし、積層構造(各層の組成は異なり得る)から成るものであっても良い。
 また、ソース電極14、ドレイン電極15及びゲート電極16のそれぞれは、一部がパッシベーション層19上に張り出すフィールドプレート構造になっている。ソース電極14は、ゲート電極15側とその反対側とにそれぞれ張り出し、ドレイン電極15は、ゲート電極15側とその反対側とにそれぞれ張り出し、ゲート電極16は、ソース電極14側とドレイン電極15側とにそれぞれ張り出している。
 再結合層17は、例えば、厚さが1nm以上20nm以下のInAlGa1-c-dN(0<c≦1、0≦d≦1。即ち、c=1,d=0の場合のInNや、c≠1,d=0の場合のInGa1-cNも含み得る)から成る。また、再結合層17のバンドギャップは、電子供給層13のバンドギャップより小さい。
 クラッド層18は、例えば、厚さが5nm以上30nm以下のAlGa1-eN(0≦e<1。即ち、e=0の場合のGaNを含み得る)から成る。また、クラッド層18のバンドギャップは、再結合層17のバンドギャップよりも大きい。さらに、電子供給層13、再結合層17及びクラッド層18は、発光ダイオードと同様のダブルヘテロ構造を成す。
 パッシベーション層19は、例えば、厚さが50nm以上250nm以下のAlNやSiNから成る。パッシベーション層19のバンドギャップは、クラッド層18のバンドギャップよりも大きい。なお、パッシベーション層19には、酸化物や酸窒化物なども適用可能であるが、上述したAlNやSiNなどの窒化物を適用する方が好ましい。これは、スイッチング素子1aをパワーデバイスに用いる場合に、上述のように数100Vもの電位差が生じることで、電子走行層12が電気化学的に酸化されること(例えば、Appl. Phys. Lett. 96, 233509, (2010)を参照)を、抑制するためである。
 スイッチング素子1aは、ゲート電極16の電位に応じて、オン状態及びオフ状態が切り替えられる。以下、図2及び図3を参照して、スイッチング素子1aのオン状態及びオフ状態についてそれぞれ説明する。図2は、図1に示すスイッチング素子がオン状態であるときの、ゲート電極近傍におけるエネルギーバンド図である。図3は、図1に示すスイッチング素子がオフ状態であるときの、ゲート電極近傍におけるエネルギーバンド図である。なお、図2及び図3の左側が図1の上側に相当し、図2及び図3の右側が図1の下側に相当する。また、図2及び図3は、ゲート電極16の近傍におけるエネルギーバンド図を示したものである。
 図2は、ゲート電極16の電位が、ソース電極14の電位(0Vとする)と等しくなることで、スイッチング素子1aがオン状態になる場合を例示したものである。図2に示すように、スイッチング素子1aがオン状態になると、ゲート電極16の直下における、電子走行層12の電子供給層13と接合する界面の、伝導帯の底のエネルギー準位Ecが、フェルミ準位Efよりも低くなる。そのため、当該界面に生じる二次元電子ガス20によって、ソース電極14及びドレイン電極15間が、電気的に接続される。
 一方、図3は、ゲート電極16の電位が、ソース電極14の電位(0Vとする)よりも所定値以上低い(負電位である-10Vとする)ことで、スイッチング素子1aがオフ状態になる場合を例示したものである。図3に示すように、スイッチング素子1aがオフ状態になると、ゲート電極16の直下における、電子走行層12の電子供給層13と接合する界面の、伝導帯の底のエネルギー準位Ecが、フェルミ準位Efよりも高くなる。そのため、少なくともゲート電極16の直下の当該界面には、二次元電子ガス20が生じない。したがって、ソース電極14及びドレイン電極15間が、電気的に接続されなくなる。
 スイッチング素子1aがオフ状態になると、ドレイン電極15及びソース電極14間に高い電位差(例えば、数100V程度)が生じる。すると、ゲート電極16近傍のドレイン電極15側に高い電界が生じ、衝突電離によって電子21及び正孔22が発生し得る。上述のように、パッシベーション層19を設けたり、ゲート電極16などをフィールドプレート構造にしたりしても、衝突電離による電子21及び正孔22の発生を十分に抑制することは困難である。
 しかしながら、本実施形態のスイッチング素子1aでは、衝突電離によって発生した電子及び正孔が、再結合層17に集められる。そのため、電子供給層13の表面(上面)における窒素欠陥に起因する準位Dなどに、衝突電離によって発生した電子がトラップされる可能性が、大幅に下がる。また、再結合層17に集められた電子21及び正孔22は、再結合により消費される。そのため、再結合層17には、効率良くかつ継続的に電子21及び正孔22が集められる。
 以上のように、本実施形態のスイッチング素子1aでは、再結合層17を設けたことで、衝突電離によって生じた電荷(特にキャリア、本例では電子)が、電子供給層13の表面(上面)にトラップされることを、抑制することが可能になる。したがって、コラプス現象を効果的に抑制することが可能になる。
 再結合層17は、集まった電子21及び正孔22を輻射再結合し得るものであると、好ましい。電子21及び正孔22が輻射再結合する場合、再結合により生じるエネルギーが光などになって外部に輻射されるため、非輻射再結合により熱などになる場合と比べて、スイッチング素子1aの特性が劣化することを抑制することが可能になる。
 また、インジウムを含む窒化物は、In-N結合付近に正孔を集める性質があり、電子及び正孔を効率よく輻射再結合させ得る。そのため、再結合層17を、インジウムを含む窒化物半導体により構成することで、スイッチング素子1aの特性が劣化することを、効果的に抑制することが可能になる。
 なお、バッファ層11、電子走行層12、電子供給層13、再結合層17、クラッド層18は、例えばMOCVD(Metal Organic Chemical Vapor Deposition)やMBE(Molecular Beam Epitaxy)などの各種方法を適用することで、形成することができる。
<第2実施形態>
 次に、本発明の第2実施形態に係るスイッチング素子の構造例について、図4を参照して説明する。図4は、本発明の第2実施形態に係るスイッチング素子の構造例を示す断面図である。なお、図4において、図1に示した第1実施形態に係るスイッチング素子1aと同様となる部分には、同じ符号を付している。さらに、以下では、第2実施形態に係るスイッチング素子1bについて、第1実施形態に係るスイッチング素子1aと異なる部分を中心に説明し、同様となる部分については、第1実施形態に係るスイッチング素子1aの説明を適宜参酌するものとして説明を省略する。
 図4に示すように、スイッチング素子1bは、基板10と、バッファ層11と、電子走行層12と、電子供給層13と、ソース電極14と、ドレイン電極15と、ゲート電極16と、再結合層17bと、クラッド層18bと、パッシベーション層19bと、を備える。
 ただし、本実施形態のスイッチング素子1bでは、再結合層17b及びクラッド層18bが、ソース電極14、ドレイン電極15及びゲート電極16のそれぞれから離間し、その間にパッシベーション層19bが形成される。なお、この点を除き、本実施形態のスイッチング素子1bは、図1に示した第1実施形態のスイッチング素子1aと同様である。
 以上のように、本実施形態のスイッチング素子1bでは、バンドギャップが比較的小さく絶縁性が弱い再結合層17bと、ソース電極14、ドレイン電極15及びゲート電極16との間に、絶縁体から成るパッシベーション層19bが形成される。そのため、再結合層17bを介して、ソース電極14、ドレイン電極15及びゲート電極16のそれぞれの間で電流がリークすることを、抑制することが可能になる。
<第3実施形態>
 次に、本発明の第3実施形態に係るスイッチング素子の構造例について、図5を参照して説明する。図5は、本発明の第3実施形態に係るスイッチング素子の構造例を示す断面図である。なお、図5において、図1に示した第1実施形態に係るスイッチング素子1aと同様となる部分には、同じ符号を付している。さらに、以下では、第3実施形態に係るスイッチング素子1cについて、第1実施形態に係るスイッチング素子1aと異なる部分を中心に説明し、同様となる部分については、第1実施形態に係るスイッチング素子1aの説明を適宜参酌するものとして説明を省略する。
 図5に示すように、スイッチング素子1cは、基板10と、バッファ層11と、電子走行層12と、電子供給層13と、ソース電極14と、ドレイン電極15と、ゲート電極16と、再結合層17cと、クラッド層18cと、パッシベーション層19cと、を備える。なお、第3実施形態のスイッチング素子1cにおいて、再結合層17c及びクラッド層18cが、ソース電極14、ドレイン電極15及びゲート電極16のそれぞれから離間し、その間にパッシベーション層19cが形成される構造については、第2実施形態に係るスイッチング素子1bと同様である。そのため、当該構造については、第2実施形態に係るスイッチング素子1bの説明を参酌するものとして、説明を省略する。
 本実施形態のスイッチング素子1cでは、再結合層17cが、多重量子井戸構造を備える。当該多重量子井戸構造は、インジウムの組成が比較的小さくバンドギャップが比較的大きい障壁層と、インジウムの組成が比較的大きくバンドギャップが比較的小さい井戸層と、を周期的(交互)に積層した構造である。多重量子井戸構造では、電子及び正孔が井戸層内で二次元的に閉じ込められ、電子及び正孔が取り得るエネルギーが離散的になる(サブバンドが形成される)ことで、効率よく電子及び正孔の再結合が行われる。また、電子及び正孔が輻射再結合する際に、輻射される光などの波長が揃う。
 以上のように、本実施形態のスイッチング素子1cでは、再結合層17cが多重量子井戸構造を備える。そのため、電子及び正孔を効率よく再結合させて、さらに効果的に再結合層17cへ電子及び正孔を集めることが可能になる。したがって、コラプス現象を、さらに効果的に抑制することが可能になる。
 なお、再結合層17cにおいて、井戸層の厚さを1nm以上5nm以下、障壁層の厚さを3nm以上30nm以下にすると、電子及び正孔の再結合の効率を効果的に高くすることができるため、好ましい。
 また、再結合層17c及びクラッド層18cが、ソース電極14、ドレイン電極15及びゲート電極16のそれぞれから離間し、その間にパッシベーション層19cが形成される構造(即ち、第2実施形態に係るスイッチング素子1bの構造)のスイッチング素子1cについて例示したが、当該スイッチング素子1cは、再結合層17c及びクラッド層18cが、ソース電極14、ドレイン電極15及びゲート電極16のそれぞれに接触する構造(即ち、第1実施形態に係るスイッチング素子1aの構造)であっても良い。
 なお、第1~第3実施形態に係るスイッチング素子1a~1cにおいて、クラッド層18,18b,18cを成す窒化物半導体を電子供給層13の上面に形成した後、当該窒化物半導体にインジウムをイオン注入する方法によって、再結合層17,17b,17c(特に、17,17b)を形成しても良い。この方法であれば、再結合層17,17b,17cを、容易に形成することができる。
 また、再結合層17,17b,17cは、電子供給層13の上面に形成される限り、上述した図1や図4、図5に示す場所に限られず、どのような場所に形成しても良い。ただし、コラプス現象を効果的に抑制する観点から、電流が流れる経路上に形成すると、好ましい。即ち、ゲート電極16及びソース電極14の間と、ゲート電極16及びドレイン電極15の間と、の少なくともいずれか一方(特に後者)に、再結合層17を形成すると、好ましい。
 また、本発明の実施形態として、ノーマリーオン型のスイッチング素子1a~1cを例示したが、本発明は、ノーマリーオフ型のスイッチング素子にも適用可能である。また、本発明の実施形態として、キャリア(二次元キャリアガス)が電子(二次元電子ガス)であるスイッチング素子1a~1cを例示したが、本発明は、キャリア(二次元キャリアガス)が正孔(二次元正孔ガス、2DHG)であるスイッチング素子にも適用可能である。
 本発明は、スイッチング素子に利用可能であり、特にパワーデバイスに適用されるスイッチング素子に利用すると、好適である。
 1a~1c : スイッチング素子
 10 : 基板
 11 : バッファ層
 12 : 電子走行層
 13 : 電子供給層
 14 : ソース電極
 15 : ドレイン電極
 16 : ゲート電極
 17,17b,17c : 再結合層
 18,18b,18c : クラッド層
 19,19b,19c : パッシベーション層
 20 : 二次元電子ガス
 21 : 電子
 22 : 正孔

Claims (12)

  1.  第1半導体層と、
     前記第1半導体層の上面に形成され、バンドギャップが前記第1半導体層より大きく当該第1半導体層とヘテロ接合する第2半導体層と、
     前記第2半導体層の上面に形成され、バンドギャップが前記第2半導体層より小さい第3半導体層と、
     少なくとも一部が前記第1半導体層の上面に形成される第1電極と、
     少なくとも一部が前記第1半導体層の上面に形成される第2電極と、
     少なくとも一部が前記第2半導体層の上面に形成され、前記第1電極及び前記第2電極の間に配置される制御電極と、を備え、
     前記制御電極の電位に応じて、
     前記第1半導体層の前記第2半導体層と接合する界面に生じる二次元キャリアガスにより、前記第1電極及び前記第2電極間が電気的に接続されるオン状態と、
     少なくとも前記制御電極の直下で、前記界面に二次元キャリアガスが生じないことにより、前記第1電極及び前記第2電極間が電気的に接続されないオフ状態と、
     が切り替えられ、
     前記オフ状態であるとき、前記第3半導体層で電子及び正孔が再結合することを特徴とするスイッチング素子。
  2.  前記第3半導体層が、前記制御電極及び前記第1電極の間と、前記制御電極及び前記第2電極の間と、の少なくともいずれか一方に形成されることを特徴とする請求項1に記載のスイッチング素子。
  3.  前記オフ状態のとき、前記第3半導体層で、電子及び正孔が輻射再結合することを特徴とする請求項1または2に記載のスイッチング素子。
  4.  前記第1半導体層、前記第2半導体層及び前記第3半導体層のそれぞれが、窒化物半導体から成り、
     前記二次元キャリアガスが二次元電子ガスであり、
     前記第3半導体層が、インジウムを含むことを特徴とする請求項1~3のいずれか1項に記載のスイッチング素子。
  5.  前記第3半導体層が、InAlGa1-x-yN(0<x≦1、0≦y≦1)から成ることを特徴とする請求項4に記載のスイッチング素子。
  6.  前記第3半導体層が、インジウムの組成が異なる少なくとも二つの窒化物半導体層を周期的に積層して成る多重量子井戸構造を備えることを特徴とする請求項4または5に記載のスイッチング素子。
  7.  前記第3半導体層が、前記第2半導体層の上面に所定の窒化物半導体から成る層を形成した後、インジウムをイオン注入することで形成されたものであることを特徴とする請求項4~6のいずれか1項に記載のスイッチング素子。
  8.  前記第3半導体層の上面に形成され、バンドギャップが前記第3半導体層より大きい第4半導体層を、
     さらに備えることを特徴とする請求項1~7のいずれか1項に記載のスイッチング素子。
  9.  前記第4半導体層が、AlGa1-zN(0≦z<1)から成ることを特徴とする請求項8に記載のスイッチング素子。
  10.  前記第4半導体層の上面に形成され、バンドギャップが前記第4半導体層より大きい絶縁層を、
     さらに備えることを特徴とする請求項8または9に記載のスイッチング素子。
  11.  前記絶縁層が、AlNまたはSiNから成ることを特徴とする請求項10に記載のスイッチング素子。
  12.  前記制御電極、前記第1電極及び前記第2電極のそれぞれと、前記第3半導体層及び前記第4半導体層とが離間し、その間に前記絶縁層が形成されることを特徴とする請求項10または11に記載のスイッチング素子。
PCT/JP2012/058859 2011-05-25 2012-04-02 スイッチング素子 WO2012160875A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/119,934 US9171945B2 (en) 2011-05-25 2012-04-02 Switching element utilizing recombination
CN201280025227.0A CN103563060B (zh) 2011-05-25 2012-04-02 切换元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-116906 2011-05-25
JP2011116906A JP5075264B1 (ja) 2011-05-25 2011-05-25 スイッチング素子

Publications (1)

Publication Number Publication Date
WO2012160875A1 true WO2012160875A1 (ja) 2012-11-29

Family

ID=47216963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058859 WO2012160875A1 (ja) 2011-05-25 2012-04-02 スイッチング素子

Country Status (4)

Country Link
US (1) US9171945B2 (ja)
JP (1) JP5075264B1 (ja)
CN (1) CN103563060B (ja)
WO (1) WO2012160875A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8564321B2 (en) 2008-05-16 2013-10-22 Ngk Spark Plug Co., Ltd. Ceramic substrate, functional ceramic substrate, probe card and method for manufacturing ceramic substrate
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
WO2013155108A1 (en) 2012-04-09 2013-10-17 Transphorm Inc. N-polar iii-nitride transistors
US9184275B2 (en) * 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
JP6339762B2 (ja) * 2013-01-17 2018-06-06 富士通株式会社 半導体装置及びその製造方法、電源装置、高周波増幅器
US9425276B2 (en) * 2013-01-21 2016-08-23 Taiwan Semiconductor Manufacturing Co., Ltd. High electron mobility transistors
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9245993B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
WO2014184995A1 (ja) * 2013-05-16 2014-11-20 パナソニックIpマネジメント株式会社 窒化物半導体装置
WO2015009514A1 (en) 2013-07-19 2015-01-22 Transphorm Inc. Iii-nitride transistor including a p-type depleting layer
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
WO2016157581A1 (ja) * 2015-03-31 2016-10-06 シャープ株式会社 窒化物半導体電界効果トランジスタ
WO2017123999A1 (en) 2016-01-15 2017-07-20 Transphorm Inc. Enhancement mode iii-nitride devices having an al(1-x)sixo gate insulator
TWI762486B (zh) 2016-05-31 2022-05-01 美商創世舫科技有限公司 包含漸變空乏層的三族氮化物裝置
TW201911583A (zh) * 2017-07-26 2019-03-16 新唐科技股份有限公司 異質接面蕭特基二極體元件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359256A (ja) * 2001-05-31 2002-12-13 Fujitsu Ltd 電界効果型化合物半導体装置
JP2007208036A (ja) * 2006-02-02 2007-08-16 Sanken Electric Co Ltd 半導体素子
JP2009032713A (ja) * 2007-07-24 2009-02-12 National Institute Of Advanced Industrial & Technology GaNをチャネル層とする窒化物半導体トランジスタ及びその作製方法
JP2010135641A (ja) * 2008-12-05 2010-06-17 Panasonic Corp 電界効果トランジスタ及びその製造方法
JP2010182854A (ja) * 2009-02-05 2010-08-19 Mitsubishi Electric Corp 半導体装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385205B2 (ja) 2002-12-16 2009-12-16 日本電気株式会社 電界効果トランジスタ
JP5064824B2 (ja) 2006-02-20 2012-10-31 古河電気工業株式会社 半導体素子
CN101232045A (zh) * 2007-01-24 2008-07-30 中国科学院微电子研究所 一种场效应晶体管多层场板器件及其制作方法
US8368050B2 (en) * 2008-01-30 2013-02-05 Hewlett-Packard Development Company, L.P. Plasmon enhanced light-emitting diodes
JP2010135640A (ja) * 2008-12-05 2010-06-17 Panasonic Corp 電界効果トランジスタ
US8742459B2 (en) * 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US9368580B2 (en) * 2009-12-04 2016-06-14 Sensor Electronic Technology, Inc. Semiconductor material doping
JP5618571B2 (ja) * 2010-03-02 2014-11-05 パナソニック株式会社 電界効果トランジスタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359256A (ja) * 2001-05-31 2002-12-13 Fujitsu Ltd 電界効果型化合物半導体装置
JP2007208036A (ja) * 2006-02-02 2007-08-16 Sanken Electric Co Ltd 半導体素子
JP2009032713A (ja) * 2007-07-24 2009-02-12 National Institute Of Advanced Industrial & Technology GaNをチャネル層とする窒化物半導体トランジスタ及びその作製方法
JP2010135641A (ja) * 2008-12-05 2010-06-17 Panasonic Corp 電界効果トランジスタ及びその製造方法
JP2010182854A (ja) * 2009-02-05 2010-08-19 Mitsubishi Electric Corp 半導体装置

Also Published As

Publication number Publication date
JP2012248570A (ja) 2012-12-13
US9171945B2 (en) 2015-10-27
JP5075264B1 (ja) 2012-11-21
CN103563060A (zh) 2014-02-05
CN103563060B (zh) 2016-03-23
US20140084346A1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
JP5075264B1 (ja) スイッチング素子
JP4761319B2 (ja) 窒化物半導体装置とそれを含む電力変換装置
JP5147197B2 (ja) トランジスタ
US8148752B2 (en) Field effect transistor
US8692292B2 (en) Semiconductor device including separated gate electrode and conductive layer
JP5468768B2 (ja) 電界効果トランジスタ及びその製造方法
US8390029B2 (en) Semiconductor device for reducing and/or preventing current collapse
JP4755961B2 (ja) 窒化物半導体装置及びその製造方法
JP4705481B2 (ja) 窒化物半導体装置
JP5056883B2 (ja) 半導体装置
JP5779284B2 (ja) スイッチング素子
JP2008270521A (ja) 電界効果トランジスタ
US9680001B2 (en) Nitride semiconductor device
JP2008034438A (ja) 半導体装置
JP2008288474A (ja) ヘテロ接合電界効果トランジスタ
JP5341345B2 (ja) 窒化物半導体ヘテロ構造電界効果トランジスタ
JP2011142358A (ja) 窒化物半導体装置
JP5721782B2 (ja) 半導体装置
WO2011010419A1 (ja) 窒化物半導体装置
JP2016207890A (ja) ヘテロ接合半導体装置
JP2015056413A (ja) 窒化物半導体装置
JP5329151B2 (ja) 半導体装置
JP2013074128A (ja) スイッチング素子
JP2014090026A (ja) 化合物半導体装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280025227.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14119934

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12789820

Country of ref document: EP

Kind code of ref document: A1