WO2012159582A1 - 复合导电电极及其制造方法 - Google Patents

复合导电电极及其制造方法 Download PDF

Info

Publication number
WO2012159582A1
WO2012159582A1 PCT/CN2012/076036 CN2012076036W WO2012159582A1 WO 2012159582 A1 WO2012159582 A1 WO 2012159582A1 CN 2012076036 W CN2012076036 W CN 2012076036W WO 2012159582 A1 WO2012159582 A1 WO 2012159582A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
carbon felt
composite
plastic
mixture
Prior art date
Application number
PCT/CN2012/076036
Other languages
English (en)
French (fr)
Inventor
郑东冬
Original Assignee
深圳市金钒能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45452192&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012159582(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 深圳市金钒能源科技有限公司 filed Critical 深圳市金钒能源科技有限公司
Priority to EP12788715.6A priority Critical patent/EP2717352A4/en
Priority to US14/119,796 priority patent/US20140315082A1/en
Publication of WO2012159582A1 publication Critical patent/WO2012159582A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a conductive electrode for a battery and a method of manufacturing the same, and particularly to a composite conductive electrode and a method of manufacturing the same, and belongs to the field of vanadium battery manufacturing. Background technique
  • the electrode materials currently used in vanadium batteries are mainly non-metal electrode plates such as plastic plates and graphite plates.
  • the non-metal electrode plate has poor conductivity during use and is prone to fracture.
  • the non-metal electrode is used for a long time, its resistance will be at the critical point as the electrode temperature increases.
  • the performance in the plastic electrode plate is poor in mechanical properties and poor electrical properties; the graphite plate is easily peeled and deformed, has a service life of only two years, has a short life span, and is unstable in electrical properties.
  • a composite electrode plate commonly used in a redox flow of a vanadium battery generally requires good electrical conductivity, that is, has a low volume resistivity, and should have good mechanical properties and a stable temperature effect.
  • the electrode plate can maintain a relatively stable structure after long-term use, especially at a higher temperature, that is, the electrode plate has a large deformation limit and is not easily deformed, and can effectively isolate liquids of different properties on both sides of the electrode plate. flow.
  • the Chinese Patent Application Publication No. 2008103034837 discloses a composite electrode for an all-vanadium redox flow battery and a preparation method thereof, the main content of which is to add a plurality of conductive fillers to a high molecular polymer.
  • the thermoplastic conductive plate is further thermocompression-bonded with a thermoplastic conductive plate and a graphite felt (carbon felt), so that part of the conductive carbon fiber in the graphite felt is embedded in the surface of the conductive plate to form an interpenetrating conductive network, thereby improving the overall electrical conductivity of the product. .
  • the main drawbacks of the foregoing composite electrode and its preparation method are:
  • the volume resistivity is actually difficult to reach the standard of ⁇ 0.1 ⁇ ⁇ ⁇ , and the cause of the defect is:
  • the content of conductive filler such as conductive carbon fiber is still small,
  • the mechanical structure of the conductive plate formed by hot pressing is not stable.
  • the conductive carbon fiber is prone to open-chain and fracture, which causes the temperature effect of the composite electrode plate to be poor.
  • Summary of the invention In order to solve the defects that the non-metal type electrode existing in the prior art has poor conductivity during use and is prone to deformation phenomena such as open chain, fracture, etc., the present invention provides a method for manufacturing a composite conductive electrode.
  • the present invention also provides a composite conductive electrode.
  • the technical solution adopted by the present invention to solve the problems of the prior art is to provide a method for manufacturing a composite conductive electrode, wherein the composite conductive electrode manufacturing method uses carbon felt as a conductive substrate, and a conductive medium is used as the carbon felt space. a connecting substance to enhance the conductive properties of the carbon felt.
  • the composite conductive electrode manufacturing method uses a carbon felt as a conductive substrate, and a conductive resin is used as a connecting substance of the carbon felt space, thereby enhancing the conductive property of the carbon felt.
  • the conductive resin includes a conductive plastic or an epoxy resin.
  • the method for manufacturing a composite conductive electrode includes the steps of:
  • A1 mixing plastic and conductive agent to form a conductive plastic plate
  • F1 pressing a second carbon felt from the upper and lower sides of the conductive plastic and the first carbon felt composite into the interior of the conductive plastic and the first carbon felt composite, so that the second carbon felt and the conductive The plastic and the first carbon felt are integrated into one body;
  • the step A is specifically to thoroughly mix the plastic and the conductive agent, wherein the conductive agent accounts for 5 % to 40% by weight in the mixture.
  • the plastic is one or more of PE plastic granules, PP plastic granules or PVC plastic granules, and the ratio of the mixture of the two or three is any ratio;
  • the conductive agent is one or more of conductive carbon black, carbon nanotube, graphite powder or acetylene black, ⁇ Mixing two or three mixtures in any ratio;
  • the conductive plastic plate is made by die casting or injection molding
  • step C1 a first carbon felt having a size corresponding to the conductive plastic plate is placed directly above the conductive plastic plate;
  • the pressure in the step D1 is lmpa ⁇ 4 mpa, and the press is pressed with a press, and the mold containing the conductive plastic plate and the first carbon felt is turned over while maintaining the pressure unchanged.
  • the first carbon felt is sufficiently extruded to the conductive plastic plate, and the conductive plastic is pressed into the first carbon felt and uniformly distributed into the first carbon felt, and the conductive plastic is taken out after cooling and molding.
  • the upper and lower surfaces of the conductive plastic and the first carbon felt composite are flattened by a cutter or an engraving machine, and the thickness is 0.1 mm ⁇ 1 mm;
  • step F1 two second carbon felts having a thickness of 2 mm to 22 mm are respectively pressed from the upper and lower surfaces of the conductive plastic and the first carbon felt composite into the interior of the conductive plastic and the first carbon felt composite. And integrating the second carbon felt and the conductive plastic with the first carbon felt composite body.
  • the present invention also provides a composite conductive electrode produced by the method described in the first aspect of the invention.
  • the composite conductive electrode comprises: a composite of a conductive plastic and a first carbon felt, and two second carbon felts, wherein The second carbon felt is pressed into the integrated body of the conductive plastic and the first carbon felt and integrated with the integrated body of the conductive plastic and the first carbon felt.
  • the method for manufacturing a composite conductive electrode includes the following steps:
  • the method for manufacturing a composite conductive electrode includes the steps of:
  • A2 The two first carbon felts are superimposed, placed in a mold, and heated to 50 ° C ⁇ 250 ° C;
  • C2 mixing the plastic and the conductive agent, and heating the mixture to 50 ° C ⁇ 250 ° C; D2: casting the mixture onto the first carbon felt superposed on each other to make the mixing Uniformly infiltrating into the first carbon felt;
  • the pressure in the step B2 is lmpa ⁇ 4 mpa;
  • the conductive agent in the step C2 occupies a weight ratio of 5% to 40% in the mixture, and the plastic is one or more of PE plastic particles, PP plastic particles or PVC plastic particles, and the two are used. a mixture of three or three kinds, the ratio is an arbitrary ratio;
  • the conductive agent is one or more of conductive carbon black, carbon nanotubes, graphite powder or acetylene black, and the ratio of the mixture of two or three is arbitrary ratio;
  • the six surfaces of the first carbon felt composite impregnated with the mixture are flattened by a cutter or an engraving machine, and the thickness is cut to be 0.1 mm to 1 mm.
  • the present invention also provides a composite conductive electrode produced by the method described in the second aspect of the invention, wherein the composite conductive electrode comprises: a mixture of plastic and a conductive agent, and two first carbon felts stacked on each other, wherein The mixture of the plastic and the conductive agent uniformly penetrates into the two first carbon felts which are superposed on each other, and the mixture of the plastic and the conductive agent and the two first carbon felts which are superposed on each other are an integrated structure. .
  • the method for manufacturing a composite conductive electrode includes the steps of:
  • A3 placing the first carbon felt into the mold
  • a pressure of lmpa ⁇ 4 mpa is applied to the first carbon felt placed in the mold;
  • the first carbon felt composite body impregnated with the mixture is cut by a cutter or an engraving machine.
  • the six surfaces are flattened and the thickness is 0.1mm ⁇ 1 mm.
  • the present invention also provides a composite conductive electrode produced by the method described in the above third aspect, the composite conductive electrode comprising: a mixture of an epoxy resin and a coagulant and a first carbon felt, wherein the ring A mixture of an oxygen resin and a coagulant is uniformly infiltrated into the first carbon felt, and the mixture of the epoxy resin and the coagulant and the first carbon felt are in a unitary structure.
  • the composite conductive electrode prepared by the above scheme has obvious electrical conductivity, dense conductive electrode structure, good thermoplasticity and temperature effect, simple manufacturing process and low manufacturing cost, and the conductivity is still stable and less carbon.
  • the carbon felt in the conductive plate of the conductive electrode has very little porosity and is not easily deformed, which greatly enhances the service life of the conductive electrode under steady state.
  • Figure 1 Flow chart of a method for manufacturing a composite conductive electrode of the present invention
  • FIG. 2 is a flow chart of a technical scheme for manufacturing a composite conductive electrode of the present invention
  • Figure 3 is a flow chart of the second technical scheme of the composite conductive electrode manufacturing method of the present invention.
  • FIG. 1 Please refer to FIG. 1 for a flow chart of a method for manufacturing a composite conductive electrode of the present invention.
  • the composite conductive electrode manufacturing method uses carbon felt as a conductive substrate, and a conductive medium is used as a connecting substance of the carbon felt space, thereby enhancing the conductive property of the carbon felt.
  • the composite conductive electrode manufacturing method uses a carbon felt as a conductive substrate, and a conductive resin as a connecting material of the carbon felt space, thereby enhancing the conductive property of the carbon felt.
  • Conductive resin including conductive plastic or epoxy resin
  • FIG. 2 A flow chart of a technical solution for manufacturing a composite conductive electrode of the present invention.
  • the method for manufacturing a composite conductive electrode according to the first aspect of the present invention includes the following steps: A1: mixing a plastic and a conductive agent to form a conductive plastic plate;
  • B1 The conductive plastic plate is placed in a mold and heated to 50 ° C ⁇ 250 ° C; CI: placing the first carbon felt on the conductive plastic plate and heating to 50 ° C ⁇ 250 ° C;
  • F1 pressing a second carbon felt from the upper and lower sides of the conductive plastic and the first carbon felt composite into the interior of the conductive plastic and the first carbon felt composite, so that the second carbon felt and the conductive The plastic and the first carbon felt are integrated into one body;
  • the step A is specifically to thoroughly mix the plastic and the conductive agent, wherein the conductive agent accounts for 5 % ⁇ 40% by weight in the mixture.
  • the plastic is one or more of PE plastic granules, PP plastic granules or PVC plastic granules, and the ratio of the mixture of the two or three is any ratio;
  • the conductive agent is one or more of conductive carbon black, carbon nanotubes, graphite powder or acetylene black, and the ratio of the mixture of the two or three is any ratio;
  • the conductive plastic plate is made by die casting or injection molding
  • step C1 a first carbon felt having a size corresponding to the conductive plastic plate is placed directly above the conductive plastic plate;
  • the pressure in the step D1 is lmpa ⁇ 4 mpa, and the press is pressed with a press, and the mold containing the conductive plastic plate and the first carbon felt is turned over while maintaining the pressure unchanged.
  • the first carbon felt is sufficiently extruded to the conductive plastic plate, and the conductive plastic is pressed into the first carbon felt and uniformly distributed into the first carbon felt, and the conductive plastic is taken out after cooling and molding.
  • the upper and lower surfaces of the conductive plastic and the first carbon felt composite are flattened by a cutter or an engraving machine, and the thickness is 0.1 mm ⁇ 1 mm;
  • step F1 two second carbon felts having a thickness of 2 mm to 22 mm are respectively pressed from the upper and lower surfaces of the conductive plastic and the first carbon felt composite into the interior of the conductive plastic and the first carbon felt composite. And integrating the second carbon felt and the conductive plastic with the first carbon felt composite body.
  • the invention also provides a composite conductive prepared by the method described in the first technical solution
  • the composite conductive electrode comprises: a composite of conductive plastic and a first carbon felt and two second carbon felts, wherein the second carbon blanket is pressed into the composite body of the conductive plastic and the first carbon felt and It is integrated with the integrated body of the conductive plastic and the first carbon felt.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • A1 The plastic (the plastic is selected from PE plastic particles) and the conductive agent (the conductive agent is selected from conductive carbon black) are thoroughly mixed, wherein the conductive agent accounts for 5% by weight in the mixture, and is made conductive.
  • E1 the upper and lower surfaces of the conductive plastic and the first carbon felt composite are flattened by an engraving machine, and the thickness is 1 mm;
  • the composite conductive electrode parameters are: 10cmxl0cmx3cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the plastic is selected from PP plastic particles
  • the conductive agent is selected from graphite powder
  • E1 the upper and lower surfaces of the conductive plastic and the first carbon felt composite are flattened by an engraving machine, and the thickness is 0.7 mm;
  • the composite conductive electrode parameters are: 10cmxl0cmx2cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are:
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the plastic (the plastic is selected from PVC plastic particles) and the conductive agent (the conductive agent is selected from acetylene black) are thoroughly mixed, wherein the conductive agent accounts for 10% by weight in the mixture, and is made into a conductive plastic. Board
  • E1 the upper and lower surfaces of the conductive plastic and the first carbon felt composite are flattened by an engraving machine, and the thickness is 0.5 mm;
  • the composite conductive electrode parameters are: 10cmxl0cmx3cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are:
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the plastic (the plastic is selected from PE plastic particles, PP plastic particles, mixing ratio of 1:1) and the conductive agent (the conductive agent is selected from carbon nanotubes) are thoroughly mixed, wherein the conductive agent is in the mixture.
  • the weight ratio is 10%, and it is made into a conductive plastic plate;
  • E1 the upper and lower surfaces of the conductive plastic and the first carbon felt composite are flattened by an engraving machine, and the thickness is 0.3 mm;
  • the composite conductive electrode parameters are: 10cmxl0cmx2cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are:
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • plastic the plastic is selected from PE plastic pellet, PP plastic pellet and PVC plastic pellet, mixing ratio is 1:1:1
  • conductive agent the conductive agent is made of conductive carbon black, graphite powder and acetylene black. Mixing, mixing ratio is 1: 1 : 1 ) thorough mixing, wherein the conductive agent accounts for 20% by weight in the mixture, and is made into a conductive plastic plate;
  • E1 the upper and lower surfaces of the conductive plastic and the first carbon felt composite are flattened by an engraving machine, and the thickness is 0.1 mm;
  • the composite conductive electrode parameters are: 10cmxl0cmx3cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are: 1A 0.026V 31. C 0.00085
  • the composite conductive electrode manufacturing method includes the steps of:
  • A2 superimposing two first carbon felts into a mold and heating to 50 ° C ⁇ 250 ° C; B2: pressurizing the first carbon felt superposed on each other;
  • C2 mixing the plastic and the conductive agent, and heating the mixture to 50 ° C ⁇ 250 ° C; D2: casting the mixture onto the first carbon felt superposed on each other to make the mixing Uniformly infiltrating into the first carbon felt;
  • the pressure of the pressurization in the step B2 is lmpa ⁇ 4 mpa; and the weight ratio of the conductive agent in the mixture in the step C2 is 5% to 40 %, the plastic is one or more of PE plastic granules, PP plastic granules or PVC plastic granules, and the ratio of the mixture of the two or three is any ratio; the conductive agent is conductive carbon black, carbon One or more of nanotubes, graphite powder or acetylene black, and the ratio of the mixture of two or three is any ratio;
  • the six surfaces of the first carbon felt composite impregnated with the mixture are flattened by a cutter or an engraving machine, and the thickness is cut to be 0.1 mm to 1 mm.
  • the composite conductive electrode structure prepared according to the second aspect of the invention includes: a mixture of plastic, a conductive agent, and two first carbon felts stacked on each other, wherein the mixture of the plastic and the conductive agent uniformly infiltrates into the two mutual a mixture of the plastic and the conductive agent in the superposed first carbon felt and the The two first carbon felts stacked on each other are of a one-piece structure.
  • A2 The two first carbon felts are superimposed, placed in a mold, and heated to 50 ° C;
  • C2 thoroughly mixing plastic (the plastic is selected from PE plastic particles) and a conductive agent (the conductive agent is selected from a mixture of conductive carbon black and carbon nanotubes, and the mixing ratio is 4:1), wherein the conductive agent is mixed.
  • the weight ratio of the material is 5% and the mixture is heated to 250 ° C;
  • the composite conductive electrode parameters are: 10cmx l0cmx2.5cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are:
  • C2 thoroughly mixing plastic (the plastic is selected from PVC plastic particles) and a conductive agent (the conductive agent is selected from the mixture of acetylene black and carbon nanotubes, and the mixing ratio is 4:1), wherein the conductive The weight ratio of the electric agent in the mixture is 10%, and the mixture is heated to 200 ° C;
  • the composite conductive electrode parameters are: 10cmx l0cmx3cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are:
  • the composite conductive electrode parameters are: 10cmxl0cmx3.5cm (long ⁇ wide ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are:
  • C2 The plastic (the plastic is selected from the mixture of PE plastic particles, PP plastic particles and PVC plastic particles, the mixing ratio is 1:1:1) and the conductive agent (the conductive agent is selected from the mixture of graphite powder and carbon nanotubes, The mixing ratio was 2:1), wherein the conductive agent accounted for 20% by weight in the mixture, and the mixture was heated to 100.
  • C The plastic (the plastic is selected from the mixture of PE plastic particles, PP plastic particles and PVC plastic particles, the mixing ratio is 1:1:1) and the conductive agent (the conductive agent is selected from the mixture of graphite powder and carbon nanotubes, The mixing ratio was 2:1), wherein the conductive agent accounted for 20% by weight in the mixture, and the mixture was heated to 100.
  • C The plastic (the plastic is selected from the mixture of PE plastic particles, PP plastic particles and PVC plastic particles, the mixing ratio is 1:1:1) and the conductive agent (the conductive agent is selected from the mixture of graphite powder and carbon nanotubes, The mixing ratio was 2:1), wherein the conductive agent
  • the composite conductive electrode parameters are: 10cmxl0cmx2.4cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are:
  • A2 The two first carbon felts are superimposed, placed in a mold, and heated to 250 ° C;
  • the plastic (the plastic is selected from the mixture of PE plastic particles, PP plastic particles and PVC plastic particles, the mixing ratio is 1:1:1) and the conductive agent (the conductive agent is made of conductive carbon black, graphite powder, carbon nanometer).
  • the composite conductive electrode parameters are: 10cmx l0cmx2.4cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are:
  • the method for manufacturing a composite conductive electrode includes the following steps: A3: placing a first carbon felt into a mold;
  • a pressure of lmpa ⁇ 4 mpa is applied to the first carbon felt placed in the mold;
  • the coagulant in the step B3 may be selected from the general coagulant on the market, and the coagulant accounts for 5%-50% by weight in the mixture, and is specifically matched according to the coagulant product specification.
  • the six surfaces of the first carbon felt composite impregnated with the mixture are flattened by a cutter or an engraving machine, and the thickness is 0.1 mm to 1 mm.
  • the present invention also provides a composite conductive electrode produced by the method described in the above third aspect, the composite conductive electrode comprising: a mixture of an epoxy resin and a coagulant and a first carbon felt, wherein the ring A mixture of an oxygen resin and a coagulant is uniformly infiltrated into the first carbon felt, and the mixture of the epoxy resin and the coagulant and the first carbon felt are in a unitary structure.
  • A3 placing the first carbon felt into the mold, and applying a pressure of lmpa to the first carbon felt; B3: mixing the epoxy resin with the coagulant, and mixing the formulated epoxy resin containing the coagulant Casting into the mold in which the first carbon felt is located, uniformly infiltrating the mixture into the first carbon felt, the coagulant may be selected from a universal coagulant on the market, and the coagulant is in the The weight ratio in the mixture is 5%-50%, specifically according to the coagulant product specification. In the present embodiment, the coagulant accounts for 5% by weight in the mixture.
  • the composite conductive electrode was obtained.
  • the composite conductive electrode parameters are: 10cmxl0cmx2.5cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are:
  • A3 placing the first carbon felt into the mold and applying a pressure of 2 mpa to the first carbon felt; B3: mixing the epoxy resin with the coagulant, and mixing the formulated epoxy resin containing the coagulant Casting into the mold in which the first carbon felt is located, uniformly infiltrating the mixture into the first carbon felt, the coagulant may be selected from a universal coagulant on the market, and the coagulant is in the The weight ratio in the mixture is 5%-50%, specifically according to the coagulant product specification. In the present embodiment, the coagulant accounts for 10% by weight in the mixture.
  • the composite conductive electrode parameters are: 10cmxl0cmx2.5cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are: Current voltage temperature volume resistivity
  • A3 placing the first carbon felt into the mold, and applying a pressure of 3 mpa to the first carbon felt; B3: mixing the epoxy resin with the coagulant, and mixing the formulated epoxy resin containing the coagulant Casting into the mold in which the first carbon felt is located, uniformly infiltrating the mixture into the first carbon felt, the coagulant may be selected from a universal coagulant on the market, and the coagulant is in the The weight ratio of the mixture is 5%-50%, specifically according to the coagulant product specification. In the present embodiment, the coagulant accounts for 20% by weight in the mixture.
  • the composite conductive electrode parameters are: 10cmxl0cmx2.5cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are:
  • Embodiment 14 is a diagrammatic representation of Embodiment 14:
  • A3 placing the first carbon felt into the mold and applying a pressure of 4 mpa to the first carbon felt; B3: mixing the epoxy resin with the coagulant, and mixing the formulated epoxy resin containing the coagulant Casting into the mold in which the first carbon felt is located, uniformly infiltrating the mixture into the first carbon felt, the coagulant may be selected from a universal coagulant on the market, and the coagulant is in the The weight ratio in the mixture is 5% to 50%, specifically according to the coagulant product specification. In the present embodiment, the coagulant accounts for 30% by weight in the mixture.
  • the composite conductive electrode parameters are: 10cmx l0cmx2.5cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are:
  • the coagulant may be selected from a general-purpose coagulant on the market, and the coagulant accounts for 5%-50% by weight in the mixture, specifically according to the coagulant product specification, in the present In an embodiment, the coagulant accounts for 50% by weight of the mixture.
  • the composite conductive electrode parameters are: 10cmxl0cmx2.5cm (long ⁇ width ⁇ thickness)
  • the performance parameters of the composite conductive electrode prepared by the above method are:
  • the parameters of the Shenyang board are: 10cmxl0cmxl.6cm (length X width X thickness), containing 40% carbon. 5A 0.15V 31.2°C 0.001875
  • the parameters of climbing steel plate are: 10cmx l0cmx l .6cm (long ⁇ width ⁇ thickness), carbon content
  • the parameters of Central South University board are: 10cmx l0cmx4.6cm (length X width X thickness), 40% carbon content.
  • the composite conductive electrode prepared by the above scheme has a remarkable improvement in electrical conductivity, a dense structure of the conductive electrode, a good thermoplasticity and a temperature effect, and a simple manufacturing process and a low manufacturing cost. Under the circumstance, the conductivity is still very stable, and there is less carbon chain rupture. The carbon felt in the conductive plate of the conductive electrode has very little porosity and is not easily deformed, which greatly enhances the service life of the conductive electrode under steady state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Fuel Cell (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

本发明涉及复合导电电极及其制造方法,属于钒电池制造领域。所述复合导电电极制造方法采用碳毡做为导电基体,用导电树脂做为所述碳毡空间的连接物质,以此增强所述碳毡的导电特性,所述导电树脂包括导电塑料或环氧树脂。通过上述方案制备成的复合导电电极,导电性能显著提高,导电电极结构致密,不易变形,大大增强了导电电极在稳定状态下的使用寿命。

Description

复合导电电极及其制造方法 技术领域
本发明涉及电池用导电电极及其制造方法, 具体涉及复合导电电极及 其制造方法, 属于钒电池制造领域。 背景技术
钒电池目前使用的电极材料主要为塑料板和石墨板等非金属电极板。 在实践中发现非金属类电极板在使用过程中导电的稳定性较差, 容易 出现断裂现象, 即当非金属类电极长时间使用时, 随着电极温度的升高, 其电阻会在临界点陡然加大, 导致电极变形, 影响非金属类电极的正常使 用。 具体体现在所述塑料电极板中的表现为机械性能差、 电性能差; 石墨 板容易剥落变形, 使用寿命只有两年, 寿命较短, 而且电性能不稳定。
在钒电池的氧化还原液流中普遍使用的复合电极板, 一般要求应当具 有较好的导电性, 即具有较低的体积电阻率, 同时还应当具有较好的机械 性能和稳定的温度效应, 如电极板能够在长期使用后, 尤其是在较高的温 度之下工作仍能保持较为稳定的结构, 即电极板变形极限较大,不易变形, 仍可以有效隔离电极板两侧不同性质的液流。
专利申请号为 2008103034837的中国发明专利申请公布说明书公开了 一种全钒氧化还原液流电池用的复合电极及其制备方法, 其主要内容是将 多种导电填料添加到高分子聚合物中制得热塑性导电板, 再使用热塑性导 电板与石墨毡(碳毡) 热压复合而成, 使石墨毡中的部分导电碳纤维嵌入 导电板表面, 形成互穿的导电网络, 进而提高了产品整体的导电性能。 前 述复合电极及其制备方法的主要缺陷是: 体积电阻率实际上很难达到≤ 0 . 1 Ω· ο ηι的标准, 产生该缺陷的原因是 : 导电碳纤维等导电填料的含 量仍旧较少, 此外, 热压复合而成的导电板机械结构并不稳定, 在电池长 期使用后, 导电碳纤维容易发生开链、 断裂等现象, 致使复合电极板的温 度效应较差。 发明内容 为了解决现有技术中存在的非金属类电极在使用过程中导电的稳定性 差, 容易出现开链、 断裂等变形现象的缺陷, 本发明提供了一种复合导电 电极制造方法。
为了解决现有技术中存在的非金属类电极在使用过程中导电的稳定性 差, 容易出现开链、 断裂等变形现象的缺陷, 本发明还提供了一种复合导 电电极。
本发明解决现有技术问题所釆用的技术方案为提供了一种复合导电电 极制造方法, 所述复合导电电极制造方法釆用碳毡做为导电基体, 用导电 介质做为所述碳毡空间的连接物质 , 以此增强所述碳毡的导电特性。
根据本发明的一优选技术方案: 所述复合导电电极制造方法釆用碳毡 做为导电基体, 用导电树脂做为所述碳毡空间的连接物质, 以此增强所述 碳毡的导电特性, 所述导电树脂包括导电塑料或环氧树脂。
在本发明的技术方案一中: 所述复合导电电极制造方法包括步骤:
A1 : 将塑料与导电剂进行混合制成导电塑料板;
B1 : 将所述导电塑料板放入模具内, 加热至 50°C ~ 250°C ;
CI : 将所述第一碳毡放在所述导电塑料板上, 并加热至 50°C ~ 250°C ;
D1 : 在温度保持在 50°C ~ 250°C的范围内进行加压, 使所述第一碳毡 充分挤压所述导电塑料板, 并使导电塑料被压入第一碳毡内相融并均匀分 布到所述第一碳毡内, 冷却成型后取出导电塑料与第一碳毡的综合体;
E1 : 将所述导电塑料与第一碳毡综合体的表面削平;
F1 : 将第二碳毡从所述导电塑料与第一碳毡综合体的上下两面分别压 入所述导电塑料与第一碳毡综合体的内部 , 使所述第二碳毡与所述导电塑 料与第一碳毡综合体合为一体;
G1 : 冷却后制得所述复合导电电极。
根据本发明技术方案一中的优选技术方案: 所述步骤 A具体为将塑胶 和导电剂进行充分混合, 其中所述导电剂在混合料中占的重量比为 5 % ~ 40 % ,
所述塑胶为 PE塑胶粒、 PP塑胶粒或 PVC塑胶粒中的一种或几种,釆 用两种或三种的混合物其比例为任意比;
导电剂为导电碳黑、 炭纳米管、 石墨粉或乙炔黑中的一种或几种, 釆 用两种或三种的混合物其比例为任意比;
所述导电塑料板釆用压铸或注塑的方法制成;
所述步骤 C1 中将与所述导电塑料板大小一致的第一碳毡放在所述导 电塑料板的正上方;
所述步骤 D1中加压的压力为 lmpa ~ 4 mpa, 釆用压力机平压, 并在 保持压力不变的情况下, 使装有所述导电塑料板和所述第一碳毡的模具翻 转, 使所述第一碳毡充分挤压所述导电塑料板, 并使导电塑料被压入第一 碳毡内相融并均匀分布到所述第一碳毡内, 冷却成型后取出导电塑料与第 一碳毡的综合体;
所述步骤 E1 中用切割机或雕刻机将所述导电塑料与第一碳毡综合体 的上下表面削平, 所削厚度为 0.1mm ~ 1 mm;
所述步骤 F1中将厚度为 2mm ~ 22 mm的两块第二碳毡从所述导电塑 料与第一碳毡综合体的上下两面分别压入所述导电塑料与第一碳毡综合体 的内部, 使所述第二碳毡与所述导电塑料与第一碳毡综合体合为一体。
本发明还提供了一种应用上述技术方案一中所述方法制成的复合导电 电极, 所述复合导电电极包括: 导电塑料与第一碳毡的综合体和两块第二 碳毡, 其中, 所述第二碳毡压入所述导电塑料与第一碳毡的综合体内并与 所述导电塑料与第一碳毡的综合体合为一体。
在本发明的技术方案二中: 所述复合导电电极制造方法包括步骤: 所 述复合导电电极制造方法包括步骤:
A2: 将两块第一碳毡进行叠加, 放入模具内, 加热至 50°C ~ 250°C ;
B2: 对相互叠加的所述第一碳毡加压;
C2: 将塑料与导电剂进行均勾混合, 并将混合料加热至 50°C ~ 250°C ; D2: 将所述混合料浇铸到相互叠加的所述第一碳毡上, 使所述混合料 均匀渗入到所述第一碳毡内;
E2: 对渗有混合料的第一碳毡进行冷却;
F2: 将冷却后的渗有混合料的第一碳毡综合体的表面削平, 即得到所 述复合导电电极。
根据本发明技术方案二中的优选技术方案:
所述步骤 B2中加压的压力为 lmpa ~ 4 mpa; 所述步骤 C2中所述导电剂在混合料中占的重量比为 5 % - 40 % , 所述塑料为 PE塑胶粒、 PP塑胶粒或 PVC塑胶粒中的一种或几种,釆 用两种或三种的混合物其比例为任意比;
所述导电剂为导电碳黑、炭纳米管、石墨粉或乙炔黑中的一种或几种, 釆用两种或三种的混合物其比例为任意比;
所述步骤 F2 中用切割机或雕刻机将所述渗有混合料的第一碳毡综合 体的六个表面削平, 所削厚度为 0.1mm ~ 1 mm。
本发明还提供了一种应用上述技术方案二中所述方法制成的复合导 电电极, 所述复合导电电极包括: 塑料、 导电剂的混合料和两块相互叠加 的第一碳毡, 其中, 所述塑料、 导电剂的混合料均匀渗入到所述两块相互 叠加的第一碳毡内, 所述塑料、 导电剂的混合料和所述两块相互叠加的第 一碳毡为一体式结构。
在本发明的技术方案三中: 所述复合导电电极制造方法包括步骤:
A3: 将第一碳毡放入模具内;
B3: 将环氧树脂与凝固剂进行混合, 并将调配好的含有凝固剂的环氧 树脂混合料浇铸到所述第一碳毡所在的模具内 , 使所述混合料均匀渗入到 所述第一碳毡内;
C3: 待所述含有凝固剂的环氧树脂混合料与所述第一碳毡凝固成一体 后取出;
D3: 将渗有所述混合料的第一碳毡综合体的表面削平, 即得到所述复 合导电电极。
根据本发明技术方案三中的优选技术方案:
所述步骤 A3中对放入模具内的所述第一碳毡施加 lmpa ~ 4 mpa的压 力;
所述步骤 B3 中所述凝固剂为酸性固化剂, 所述凝固剂在所述混合料 中占的重量比为: 胺类用量=MG/Hn式中: M=胺分子量; Hn=含活泼氢数 目; G=环氧值(每 100克环氧树脂中所含的环氧当量数); 用酸酐类时按 下式计算: 酸酐用量 MG ( 0.6~1 ) /100式中: M=酸酐分子量; G=环氧值 ( 0.6-1 ) 为实验系数;
所述 D3 中用切割机或雕刻机将所述渗有混合料的第一碳毡综合体的 六个表面削平, 所削厚度为 0.1mm ~ 1 mm。
本发明还提供了一种应用上述技术方案三中所述方法制成的复合导电 电极, 所述复合导电电极包括: 环氧树脂与凝固剂的混合料和第一碳毡, 其中, 所述环氧树脂与凝固剂的混合料均匀渗入到所述第一碳毡内, 所述 环氧树脂与凝固剂的混合料和所述第一碳毡为一体式结构。
通过上述方案制备成的复合导电电极, 导电性能显著提高, 导电电极 结构致密, 热塑性以及温度效应较好; 且制作工艺操作简单, 制造成本低, 况下, 导电性能仍十分稳定, 较少有碳链断裂现象的发生, 导电电极的导 电板内碳毡气孔含量极少, 不易变形, 大大增强了导电电极在稳定状态下 的使用寿命。 附图说明
图 1.本发明复合导电电极制造方法流程图;
图 2.本发明复合导电电极制造方法技术方案一流程图;
图 3.本发明复合导电电极制造方法技术方案二流程图;
图 4.本发明复合导电电极制造方法技术方案三流程图。 具体实施方式
以下结合附图和实施例对本发明技术方案进行详细说明:
请参阅图 1以本发明复合导电电极制造方法流程图。
如图 1所示, 所述复合导电电极制造方法釆用碳毡做为导电基体, 用 导电介质做为所述碳毡空间的连接物质 , 以此增强所述碳毡的导电特性。 在本发明的优选技术方案中所述复合导电电极制造方法釆用碳毡做为导电 基体, 用导电树脂做为所述碳毡空间的连接物质, 以此增强所述碳毡的导 电特性, 所述导电树脂包括导电塑料或环氧树脂
请参阅图 2.本发明复合导电电极制造方法技术方案一流程图。 如图 2 所示, 在本发明的技术方案一中所述复合导电电极制造方法包括步骤: A1 : 将塑料与导电剂进行混合制成导电塑料板;
B1 : 将所述导电塑料板放入模具内, 加热至 50°C ~ 250°C ; CI: 将所述第一碳毡放在所述导电塑料板上, 并加热至 50°C ~ 250°C ;
D1: 在温度保持在 50°C ~ 250°C的范围内进行加压, 使所述第一碳毡 充分挤压所述导电塑料板, 并使导电塑料被压入第一碳毡内相融并均匀分 布到所述第一碳毡内, 冷却成型后取出导电塑料与第一碳毡的综合体;
E1 : 将所述导电塑料与第一碳毡综合体的表面削平;
F1 : 将第二碳毡从所述导电塑料与第一碳毡综合体的上下两面分别压 入所述导电塑料与第一碳毡综合体的内部 , 使所述第二碳毡与所述导电塑 料与第一碳毡综合体合为一体;
G1 : 冷却后制得所述复合导电电极。
在本发明技术方案一中的优选技术方案中,所述步骤 A具体为将塑胶 和导电剂进行充分混合, 其中所述导电剂在混合料中占的重量比为 5 % ~ 40 % ,
所述塑料为 PE塑胶粒、 PP塑胶粒或 PVC塑胶粒中的一种或几种,釆 用两种或三种的混合物其比例为任意比;
导电剂为导电碳黑、 炭纳米管、 石墨粉或乙炔黑中的一种或几种, 釆 用两种或三种的混合物其比例为任意比;
所述导电塑料板釆用压铸或注塑的方法制成;
所述步骤 C1 中将与所述导电塑料板大小一致的第一碳毡放在所述导 电塑料板的正上方;
所述步骤 D1中加压的压力为 lmpa ~ 4 mpa, 釆用压力机平压, 并在 保持压力不变的情况下, 使装有所述导电塑料板和所述第一碳毡的模具翻 转, 使所述第一碳毡充分挤压所述导电塑料板, 并使导电塑料被压入第一 碳毡内相融并均匀分布到所述第一碳毡内, 冷却成型后取出导电塑料与第 一碳毡的综合体;
所述步骤 E1 中用切割机或雕刻机将所述导电塑料与第一碳毡综合体 的上下表面削平, 所削厚度为 0.1mm ~ 1 mm;
所述步骤 F1中将厚度为 2mm ~ 22 mm的两块第二碳毡从所述导电塑 料与第一碳毡综合体的上下两面分别压入所述导电塑料与第一碳毡综合体 的内部, 使所述第二碳毡与所述导电塑料与第一碳毡综合体合为一体。
本发明还提供了一种应用上述技术方案一中所述方法制成的复合导电 电极, 所述复合导电电极包括: 导电塑料与第一碳毡的综合体和两块第二 碳毡, 其中, 所述第二碳毡压入所述导电塑料与第一碳毡的综合体内并与 所述导电塑料与第一碳毡的综合体合为一体。
实施例一:
A1 : 将塑料(所述塑料选用 PE塑胶粒)与导电剂 (所述导电剂选用 导电碳黑)进行充分混合, 其中所述导电剂在混合料中占的重量比为 5 %, 制成导电塑料板;
B1 : 将所述导电塑料板放入模具内, 加热至 50°C ;
C1: 将与所述导电塑料板大小一致的第一碳毡放在所述导电塑料板的 正上方, 并加热至 50 °C ;
D1: 在温度保持在 50 °C的范围内进行加压, 压力为 4 mpa, 并在保持 压力不变的情况下, 使装有所述导电塑料板和所述第一碳毡的模具翻转, 使所述第一碳毡充分挤压所述导电塑料板, 并使导电塑料被压入第一碳毡 内相融并均匀分布到所述第一碳毡内, 冷却成型后取出导电塑料与第一碳 毡的综合体;
E1 : 用雕刻机将所述导电塑料与第一碳毡综合体的上下表面削平, 所 削厚度为 1mm;
F1 :将厚度为 2mm的两块第二碳毡从所述导电塑料与第一碳毡综合体 的上下两面分别压入所述导电塑料与第一碳毡综合体的内部 , 使所述第二 碳毡与所述导电塑料与第一碳毡综合体合为一体;
G1 : 冷却后制得所述复合导电电极。
复合导电电极参数为: 10cmxl0cmx3cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为:
电流 电压 温度 体积电阻率
( Α ) ( V ) ( 。C ) ( Ω·πιπι2/πι )
1A 0.065V 31。C 0.0021
2Α 0.12V 31.3。C 0.00197
3Α 0.18V 31.4。C 0.00195
4Α 0.241V 31.8。C 0.00193
5Α 0.298V 32 °C 0.00191 8A 0.464V 32.5 °C 0.00189
10A 0.573V 33.3 °C 0.00188
15A 0.863V 35 °C 0.0019
实施例二:
Al : 将塑料(所述塑料选用 PP塑胶粒)和导电剂 (所述导电剂选用 石墨粉)进行充分混合, 其中所述导电剂在混合料中占的重量比为 10 % , 制成导电塑料板;
B1 : 将所述导电塑料板放入模具内, 加热至 100°C ;
C1: 将与所述导电塑料板大小一致的第一碳毡放在所述导电塑料板的 正上方, 并加热至 100°C ;
D1: 在温度保持在 100°C的范围内进行加压, 压力为 3mpa, 并在保持 压力不变的情况下, 使装有所述导电塑料板和所述第一碳毡的模具翻转, 使所述第一碳毡充分挤压所述导电塑料板, 并使导电塑料被压入第一碳毡 内相融并均匀分布到所述第一碳毡内, 冷却成型后取出导电塑料与第一碳 毡的综合体;
E1 : 用雕刻机将所述导电塑料与第一碳毡综合体的上下表面削平, 所 削厚度为 0.7mm;
F1 :将厚度为 10mm 的两块第二碳毡从所述导电塑料与第一碳毡综合 体的上下两面分别压入所述导电塑料与第一碳毡综合体的内部 , 使所述第 二碳毡与所述导电塑料与第一碳毡综合体合为一体;
G1 : 冷却后制得所述复合导电电极。
复合导电电极参数为: 10cmxl0cmx2cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为:
Figure imgf000009_0001
5A 0.173V 31.3。C 0.001741
8A 0.275V 31.5。C 0.001713
10A 0.343V 31.8。C 0.00171
15A 0.534V 32 °C 0.00172
实施例三:
Al : 将塑料(所述塑料选用 PVC塑胶粒)和导电剂 (所述导电剂选 用乙炔黑)进行充分混合,其中所述导电剂在混合料中占的重量比为 10 % , 制成导电塑料板;
B1 : 将所述导电塑料板放入模具内, 加热至 150°C ;
C1: 将与所述导电塑料板大小一致的第一碳毡放在所述导电塑料板的 正上方, 并加热至 150°C ;
D1: 在温度保持在 150 °C的范围内进行加压, 压力为 2mpa, 并在保持 压力不变的情况下, 使装有所述导电塑料板和所述第一碳毡的模具翻转, 使所述第一碳毡充分挤压所述导电塑料板, 并使导电塑料被压入第一碳毡 内相融并均匀分布到所述第一碳毡内, 冷却成型后取出导电塑料与第一碳 毡的综合体;
E1 : 用雕刻机将所述导电塑料与第一碳毡综合体的上下表面削平, 所 削厚度为 0.5mm;
F1 :将厚度为 15mm 的两块第二碳毡从所述导电塑料与第一碳毡综合 体的上下两面分别压入所述导电塑料与第一碳毡综合体的内部 , 使所述第 二碳毡与所述导电塑料与第一碳毡综合体合为一体;
G1 : 冷却后制得所述复合导电电极。
复合导电电极参数为: 10cmxl0cmx3cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为:
Figure imgf000010_0001
4A 0.154V 31.2°C 0.001925
5A 0.191V 31.3。C 0.00191
8A 0.298V 31.5。C 0.001863
10A 0.368V 31.8。C 0.00184
15A 0.561V 32 °C 0.00187
实施例四:
Al : 将塑料(所述塑料选用 PE塑胶粒、 PP塑胶粒, 混合比例为 1 : 1 ) 和导电剂 (所述导电剂选用碳纳米管)进行充分混合, 其中所述导电剂在 混合料中占的重量比为 10 % , 制成导电塑料板;
B1 : 将所述导电塑料板放入模具内, 加热至 200°C ;
C1: 将与所述导电塑料板大小一致的第一碳毡放在所述导电塑料板的 正上方, 并加热至 200 °C ;
D1: 在温度保持在 200 °C的范围内进行加压, 压力为 2mpa, 并在保持 压力不变的情况下, 使装有所述导电塑料板和所述第一碳毡的模具翻转, 使所述第一碳毡充分挤压所述导电塑料板, 并使导电塑料被压入第一碳毡 内相融并均匀分布到所述第一碳毡内, 冷却成型后取出导电塑料与第一碳 毡的综合体;
E1 : 用雕刻机将所述导电塑料与第一碳毡综合体的上下表面削平, 所 削厚度为 0.3mm;
F1 :将厚度为 20mm 的两块第二碳毡从所述导电塑料与第一碳毡综合 体的上下两面分别压入所述导电塑料与第一碳毡综合体的内部 , 使所述第 二碳毡与所述导电塑料与第一碳毡综合体合为一体;
G1 : 冷却后制得所述复合导电电极。
复合导电电极参数为: 10cmxl0cmx2cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为:
Figure imgf000011_0001
3A 0.055V 31。C 0.00093
4A 0.072V 31.2°C 0.00094
5A 0.091V 31.3。C 0.00093
8A 0.138V 31.5。C 0.000871
10A 0.172V 31.8。C 0.000868
15A 0.263V 32 °C 0.000878
实施例五:
Al : 将塑料(所述塑料选用 PE塑胶粒、 PP塑胶粒和 PVC塑胶粒的 混合, 混合比例为 1 : 1 : 1 )和导电剂 (所述导电剂选用导电碳黑、 石墨 粉和乙炔黑的混合, 混合比例为 1 : 1 : 1 )进行充分混合, 其中所述导电 剂在混合料中占的重量比为 20 %, 制成导电塑料板;
B1 : 将所述导电塑料板放入模具内, 加热至 250°C ;
C1: 将与所述导电塑料板大小一致的第一碳毡放在所述导电塑料板的 正上方, 并加热至 250 °C ;
D1: 在温度保持在 250 °C的范围内进行加压, 压力为 lmpa, 并在保持 压力不变的情况下, 使装有所述导电塑料板和所述第一碳毡的模具翻转, 使所述第一碳毡充分挤压所述导电塑料板, 并使导电塑料被压入第一碳毡 内相融并均匀分布到所述第一碳毡内, 冷却成型后取出导电塑料与第一碳 毡的综合体;
E1 : 用雕刻机将所述导电塑料与第一碳毡综合体的上下表面削平, 所 削厚度为 0.1mm;
F1 :将厚度为 22mm 的两块第二碳毡从所述导电塑料与第一碳毡综合 体的上下两面分别压入所述导电塑料与第一碳毡综合体的内部 , 使所述第 二碳毡与所述导电塑料与第一碳毡综合体合为一体;
G1 : 冷却后制得所述复合导电电极。
复合导电电极参数为: 10cmxl0cmx3cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为:
Figure imgf000012_0001
1A 0.026V 31。C 0.00085
2A 0.045V 31。C 0.000719
3A 0.063V 31。C 0.00068
4A 0.081V 31.2°C 0.00066
5A 0.01V 31.3。C 0.000655
8A 0.154V 31.5。C 0.000649
10A 0.19V 31.8。C 0.000566
15A 0.282V 32 °C 0.000625
请参阅图图 3.本发明复合导电电极制造方法技术方案二流程图。 如图 3所示, 所述复合导电电极制造方法包括步骤:
A2: 将两块第一碳毡进行叠加, 放入模具内, 加热至 50°C ~ 250°C ; B2: 对相互叠加的所述第一碳毡加压;
C2: 将塑料与导电剂进行均勾混合, 并将混合料加热至 50°C ~ 250°C ; D2: 将所述混合料浇铸到相互叠加的所述第一碳毡上, 使所述混合料 均匀渗入到所述第一碳毡内;
E2: 对渗有混合料的第一碳毡进行冷却;
F2: 将冷却后的渗有混合料的第一碳毡综合体的表面削平, 即得到所 述复合导电电极。
在本发明技术方案二中的优选技术方案中, 所述步骤 B2 中加压的压 力为 lmpa ~ 4 mpa;所述步骤 C2中所述导电剂在混合料中占的重量比为 5 % ~ 40 % ,所述塑料为 PE塑胶粒、 PP塑胶粒或 PVC塑胶粒中的一种或几 种, 釆用两种或三种的混合物其比例为任意比; 所述导电剂为导电碳黑、 炭纳米管、 石墨粉或乙炔黑中的一种或几种, 釆用两种或三种的混合物其 比例为任意比;
所述步骤 F2 中用切割机或雕刻机将所述渗有混合料的第一碳毡综合 体的六个表面削平, 所削厚度为 0.1mm ~ 1 mm。
根据技术方案二制成的复合导电电极结构包括: 塑料、 导电剂的混合 料和两块相互叠加的第一碳毡, 其中, 所述塑料、 导电剂的混合料均匀渗 入到所述两块相互叠加的第一碳毡内, 所述塑料、 导电剂的混合料和所述 两块相互叠加的第一碳毡为一体式结构。
实施例六:
A2: 将两块第一碳毡进行叠加, 放入模具内, 加热至 50°C ;
B2: 对相互叠加的所述第一碳毡加压, 压力为 4 mpa;
C2: 将塑料(所述塑料选用 PE塑胶粒)和导电剂 (所述导电剂选用 导电碳黑、 碳纳米管的混合, 混合比例为 4: 1 )进行充分混合, 其中所述 导电剂在混合料中占的重量比为 5 %并将混合料加热至 250°C ;
D2: 将所述混合料浇铸到相互叠加的所述第一碳毡上, 使所述混合料 均匀渗入到所述第一碳毡内;
E2: 对渗有混合料的第一碳毡进行冷却;
F2: 将冷却后的渗有混合料的第一碳毡综合体的表面削平, 所削厚度 为 0.1mm, 即得到所述复合导电电极。
复合导电电极参数为: 10cmx l0cmx2.5cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为:
Figure imgf000014_0001
实施例七:
Α2: 将两块第一碳毡进行叠加, 放入模具内, 加热至 100°C ;
B2: 对相互叠加的所述第一碳毡加压, 压力为 3mpa;
C2: 将塑料 (所述塑料选用 PVC塑胶粒)和导电剂 (所述导电剂选用 乙炔黑与碳纳米管的混合, 混合比例为 4: 1 )进行充分混合, 其中所述导 电剂在混合料中占的重量比为 10 % , 并将混合料加热至 200 °C ;
D2: 将所述混合料浇铸到相互叠加的所述第一碳毡上, 使所述混合料 均匀渗入到所述第一碳毡内;
E2: 对渗有混合料的第一碳毡进行冷却;
F2: 将冷却后的渗有混合料的第一碳毡综合体的表面削平, 所削厚度 为 0.3mm, 即得到所述复合导电电极。
复合导电电极参数为: 10cmx l0cmx3cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为:
Figure imgf000015_0001
实施例八:
Α2: 将两块第一碳毡进行叠加, 放入模具内, 加热至 150°C ;
B2: 对相互叠加的所述第一碳毡加压, 压力为 2mpa;
C2: 将塑料(所述塑料选用 PP塑胶粒)和导电剂 (所述导电剂选用 石墨粉)进行充分混合, 其中所述导电剂在混合料中占的重量比为 15 % , 并将混合料加热至 150°C ;
D2: 将所述混合料浇铸到相互叠加的所述第一碳毡上, 使所述混合料 均匀渗入到所述第一碳毡内;
E2: 对渗有混合料的第一碳毡进行冷却;
F2: 将冷却后的渗有混合料的第一碳毡综合体的表面削平, 所削厚度 为 0.5mm, 即得到所述复合导电电极。 复合导电电极参数为: 10cmxl0cmx3.5cm (长 χ宽 χ厚度) 经上述方法制得的复合导电电极性能参数为:
Figure imgf000016_0001
实施例九:
Α2: 将两块第一碳毡进行叠加, 放入模具内, 加热至 200°C ;
B2: 对相互叠加的所述第一碳毡加压, 压力为 2mpa;
C2: 将塑料 (所述塑料选用 PE塑胶粒、 PP塑胶粒和 PVC塑胶粒的混 合, 混合比例为 1 : 1 : 1 )和导电剂 (所述导电剂选用石墨粉、 碳纳米管 的混合, 混合比例为 2:1 ), 其中所述导电剂在混合料中占的重量比为 20 % , 并将混合料加热至 100。C ;
D2: 将所述混合料浇铸到相互叠加的所述第一碳毡上, 使所述混合料 均匀渗入到所述第一碳毡内;
E2: 对渗有混合料的第一碳毡进行冷却;
F2: 将冷却后的渗有混合料的第一碳毡综合体的表面削平, 所削厚度 为 0.5mm, 即得到所述复合导电电极。
复合导电电极参数为: 10cmxl0cmx2.4cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为:
Figure imgf000016_0002
2A 0.005V 31。C 0.000102
3A 0.007V 31。C 0.000097
4A 0.010V 31。C 0.000102
5A 0.013V 31。C 0.000102
8A 0.020V 31。C 0.000102
10A 0.024V 31。C 0.000102
15A 0.036V 31 °C 0.000101
实施例十:
A2: 将两块第一碳毡进行叠加, 放入模具内, 加热至 250°C ;
B2: 对相互叠加的所述第一碳毡加压, 压力为 lmpa;
C2: 将塑料 (所述塑料选用 PE塑胶粒、 PP塑胶粒和 PVC塑胶粒的混 合, 混合比例为 1 : 1 : 1 )和导电剂 (所述导电剂选用导电碳黑、 石墨粉、 碳纳米管的混合, 混合比例为 1 : 1 : 1 ), 其中所述导电剂在混合料中占的 重量比为 20 % , 并将混合料加热至 50°C;
D2: 将所述混合料浇铸到相互叠加的所述第一碳毡上, 使所述混合料 均匀渗入到所述第一碳毡内;
E2: 对渗有混合料的第一碳毡进行冷却;
F2: 将冷却后的渗有混合料的第一碳毡综合体的表面削平, 所削厚度 为 lmm, 即得到所述复合导电电极。
复合导电电极参数为: 10cmx l0cmx2.4cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为:
Figure imgf000017_0001
10A 0.020V 30。C 0.0009372
15A 0.033V 30。C 0.0009173
请参阅图 4.本发明复合导电电极制造方法技术方案三流程图。 如图 4 所示, 在本发明的技术方案三中: 所述复合导电电极制造方法包括步骤: A3: 将第一碳毡放入模具内;
B3: 将环氧树脂与凝固剂进行混合, 并将调配好的含有凝固剂的环氧 树脂混合料浇铸到所述第一碳毡所在的模具内 , 使所述混合料均匀渗入到 所述第一碳毡内;
C3: 待所述含有凝固剂的环氧树脂混合料与所述第一碳毡凝固成一体 后取出;
D3: 将渗有所述混合料的第一碳毡综合体的表面削平, 即得到所述复 合导电电极。
根据本发明技术方案三中的优选技术方案:
所述步骤 A3中对放入模具内的所述第一碳毡施加 lmpa ~ 4 mpa的压 力;
所述步骤 B3 中所述凝固剂可选用市场上的通用凝固剂, 所述凝固剂 在所述混合料中占的重量比为 5%-50%, 具体按凝固剂产品说明书配比。
所述 D3 中用切割机或雕刻机将所述渗有混合料的第一碳毡综合体的 六个表面削平, 所削厚度为 0.1mm ~ 1 mm。
本发明还提供了一种应用上述技术方案三中所述方法制成的复合导电 电极, 所述复合导电电极包括: 环氧树脂与凝固剂的混合料和第一碳毡, 其中, 所述环氧树脂与凝固剂的混合料均匀渗入到所述第一碳毡内, 所述 环氧树脂与凝固剂的混合料和所述第一碳毡为一体式结构。
实施例十一:
A3: 将第一碳毡放入模具内, 并对所述第一碳毡施加 lmpa的压力; B3: 将环氧树脂与凝固剂进行混合, 并将调配好的含有凝固剂的环氧 树脂混合料浇铸到所述第一碳毡所在的模具内 , 使所述混合料均匀渗入到 所述第一碳毡内, 所述凝固剂可选用市场上的通用凝固剂, 所述凝固剂在 所述混合料中占的重量比为 5%-50%, 具体按凝固剂产品说明书配比, 在 本实施例中, 所述所述凝固剂在所述混合料中占的重量比为 5%。 C3: 待所述含有凝固剂的环氧树脂混合料与所述第一碳毡凝固成一体 后取出;
D3: 将渗有所述混合料的第一碳毡综合体的表面削平,, 所削厚度为
0.1mm, 即得到所述复合导电电极。
复合导电电极参数为: 10cmxl0cmx2.5cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为:
Figure imgf000019_0001
实施例十二:
A3: 将第一碳毡放入模具内, 并对所述第一碳毡施加 2mpa的压力; B3: 将环氧树脂与凝固剂进行混合, 并将调配好的含有凝固剂的环氧 树脂混合料浇铸到所述第一碳毡所在的模具内 , 使所述混合料均匀渗入到 所述第一碳毡内, 所述凝固剂可选用市场上的通用凝固剂, 所述凝固剂在 所述混合料中占的重量比为 5%-50%, 具体按凝固剂产品说明书配比, 在 本实施例中, 所述所述凝固剂在所述混合料中占的重量比为 10%。
C3: 待所述含有凝固剂的环氧树脂混合料与所述第一碳毡凝固成一体 后取出;
D3: 将渗有所述混合料的第一碳毡综合体的表面削平,, 所削厚度为 0.3mm, 即得到所述复合导电电极。
复合导电电极参数为: 10cmxl0cmx2.5cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为: 电流 电压 温度 体积电阻率
( A ) ( V ) (。c ) ( Ω·πιπι2/πι )
1A 0.007V 3i. rc 0.000558
2A 0.016V 3i. rc 0.000555
3A 0.022V 3i. rc 0.00056
4A 0.03V 3i. rc 0.000556
5A 0.038V 3i. rc 0.000558
8A 0.064V 31.2°C 0.000562
10A 0.08V 31.2°C 0.000559
15A 0.114V 31.2°C 0.000558
实施例十三:
A3: 将第一碳毡放入模具内, 并对所述第一碳毡施加 3mpa的压力; B3: 将环氧树脂与凝固剂进行混合, 并将调配好的含有凝固剂的环氧 树脂混合料浇铸到所述第一碳毡所在的模具内 , 使所述混合料均匀渗入到 所述第一碳毡内, 所述凝固剂可选用市场上的通用凝固剂, 所述凝固剂在 所述混合料中占的重量比为 5%-50%, 具体按凝固剂产品说明书配比, 在 本实施例中, 所述所述凝固剂在所述混合料中占的重量比为 20%。
C3: 待所述含有凝固剂的环氧树脂混合料与所述第一碳毡凝固成一体 后取出;
D3: 将渗有所述混合料的第一碳毡综合体的表面削平,, 所削厚度为 0.5mm, 即得到所述复合导电电极。
复合导电电极参数为: 10cmxl0cmx2.5cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为:
Figure imgf000020_0001
5A 0.03V 31.2°C 0.000411
8A 0.05V 31.2°C 0.000401
10A 0.063V 31.2°C 0.000403
15A 0.092V 31.2°C 0.000405
实施例十四:
A3: 将第一碳毡放入模具内, 并对所述第一碳毡施加 4mpa的压力; B3: 将环氧树脂与凝固剂进行混合, 并将调配好的含有凝固剂的环氧 树脂混合料浇铸到所述第一碳毡所在的模具内 , 使所述混合料均匀渗入到 所述第一碳毡内, 所述凝固剂可选用市场上的通用凝固剂, 所述凝固剂在 所述混合料中占的重量比为 5%-50%, 具体按凝固剂产品说明书配比, 在 本实施例中, 所述所述凝固剂在所述混合料中占的重量比为 30%。
C3: 待所述含有凝固剂的环氧树脂混合料与所述第一碳毡凝固成一体 后取出;
D3: 将渗有所述混合料的第一碳毡综合体的表面削平,, 所削厚度为 0.8mm, 即得到所述复合导电电极。
复合导电电极参数为: 10cmx l0cmx2.5cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为:
Figure imgf000021_0001
实施例十五:
A3: 将第一碳毡放入模具内, 并对所述第一碳毡施加 4mpa的压力; B3: 将环氧树脂与凝固剂进行混合, 并将调配好的含有凝固剂的环氧 树脂混合料浇铸到所述第一碳毡所在的模具内 , 使所述混合料均匀渗入到 所述第一碳毡内, 所述凝固剂可选用市场上的通用凝固剂, 所述凝固剂在 所述混合料中占的重量比为 5%-50%, 具体按凝固剂产品说明书配比, 在 本实施例中, 所述所述凝固剂在所述混合料中占的重量比为 50%。
C3: 待所述含有凝固剂的环氧树脂混合料与所述第一碳毡凝固成一体 后取出;
D3: 将渗有所述混合料的第一碳毡综合体的表面削平,, 所削厚度为 lmm, 即得到所述复合导电电极。
复合导电电极参数为: 10cmxl0cmx2.5cm (长 χ宽 χ厚度)
经上述方法制得的复合导电电极性能参数为:
Figure imgf000022_0001
目前, 市场上成熟的导电板参数
1、 沈阳板参数为: 10cmxl0cmxl.6cm (长 X宽 X厚度), 含碳量 40%。
Figure imgf000022_0002
5A 0.15V 31.2°C 0.001875
8A 0.234V 32.4 °C 0.001828
10A 0.291V 33.8。C 0.001818
15A 0.432V 36.4。C 0.0018
攀钢板参数为: 10cmx l0cmx l .6cm (长 χ宽 χ厚度), 含碳量
电流 电压 温度 体积电阻率
( A ) ( V ) ( 。C ) ( Ω·πιπι2/πι )
1A 0.035V 31。C 0.002188
2A 0.061V 31。C 0.001906
3A 0.086V 31。C 0.00179
4A 0.112V 31。C 0.00175
5A 0.138V 31.2°C 0.001725
8A 0.211V 32. rc 0.001648
10A 0.258V 33。C 0.001613
15A 0.381V 36.6。C 0.001588
3、 中南大学板参数为: 10cmx l0cmx4.6cm (长 X宽 X厚度), 含碳量 40%。
Figure imgf000023_0001
经过上述对比可以发现:
通过上述方案制备成的复合导电电极, 导电性能显著提高, 导电电极 结构致密, 热塑性以及温度效应较好; 且制作工艺操作简单, 制造成本低, 况下, 导电性能仍十分稳定, 较少有碳链断裂现象的发生, 导电电极的导 电板内碳毡气孔含量极少, 不易变形, 大大增强了导电电极在稳定状态下 的使用寿命。
以上内容是结合具体的优选技术方案对本发明所作的进一步详细说 明, 不能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术 领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若 干简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求
1.一种复合导电电极制造方法, 其特征在于: 所述复合导电电极制造 方法釆用碳毡做为导电基体, 用导电介质做为所述碳毡空间的连接物质, 以此增强所述碳毡的导电特性。
2.根据权利要求 1所述复合导电电极制造方法, 其特征在于: 所述复 合导电电极制造方法釆用碳毡做为导电基体, 用导电树脂做为所述碳毡空 间的连接物质, 以此增强所述碳毡的导电特性, 所述导电树脂包括导电塑 料或环氧树脂。
3.根据权利要求 2所述复合导电电极制造方法, 其特征在于: 所述复 合导电电极制造方法包括步骤:
A1 : 将塑料与导电剂进行混合制成导电塑料板;
B1 : 将所述导电塑料板放入模具内, 加热至 50°C ~ 250°C ;
CI : 将所述第一碳毡放在所述导电塑料板上, 并加热至 50°C ~ 250°C ;
D1 : 在温度保持在 50°C ~ 250°C的范围内进行加压, 使所述第一碳毡 充分挤压所述导电塑料板, 并使导电塑料被压入第一碳毡内相融并均匀分 布到所述第一碳毡内, 冷却成型后取出导电塑料与第一碳毡的综合体;
E1 : 将所述导电塑料与第一碳毡综合体的表面削平;
F1 : 将第二碳毡从所述导电塑料与第一碳毡综合体的上下两面分别压 入所述导电塑料与第一碳毡综合体的内部 , 使所述第二碳毡与所述导电塑 料与第一碳毡综合体合为一体;
G1 : 冷却后制得所述复合导电电极。
4.根据权利要求 3所述复合导电电极制造方法, 其特征在于: 所述步骤 A具体为将塑胶和导电剂进行充分混合,其中所述导电剂在 混合料中占的重量比为 5 % ~ 40 % ,
所述塑胶为 PE塑胶粒、 PP塑胶粒或 PVC塑胶粒中的一种或几种,釆 用两种或三种的混合物其比例为任意比;
导电剂为导电碳黑、 炭纳米管、 石墨粉或乙炔黑中的一种或几种, 釆 用两种或三种的混合物其比例为任意比;
所述导电塑料板釆用压铸或注塑的方法制成; 所述步骤 CI 中将与所述导电塑料板大小一致的第一碳毡放在所述导 电塑料板的正上方;
所述步骤 D1中加压的压力为 lmpa ~ 4 mpa, 釆用压力机平压, 并在 保持压力不变的情况下, 使装有所述导电塑料板和所述第一碳毡的模具翻 转, 使所述第一碳毡充分挤压所述导电塑料板, 并使导电塑料被压入第一 碳毡内相融并均匀分布到所述第一碳毡内, 冷却成型后取出导电塑料与第 一碳毡的综合体;
所述步骤 E1 中用切割机或雕刻机将所述导电塑料与第一碳毡综合体 的上下表面削平, 所削厚度为 0.1mm ~ 1 mm;
所述步骤 F1中将厚度为 2mm ~ 22 mm的两块第二碳毡从所述导电塑 料与第一碳毡综合体的上下两面分别压入所述导电塑料与第一碳毡综合体 的内部, 使所述第二碳毡与所述导电塑料与第一碳毡综合体合为一体。
5.—种应用如权利要求 3所述方法制成的复合导电电极,其特征在于: 所述复合导电电极包括: 导电塑料与第一碳毡的综合体和两块第二碳毡, 其中 , 所述第二碳毡压入所述导电塑料与第一碳毡的综合体内并与所述导 电塑料与第一碳毡的综合体合为一体。
6.根据权利要求 2所述复合导电电极制造方法, 其特征在于: 所述复 合导电电极制造方法包括步骤:
A2: 将两块第一碳毡进行叠加, 放入模具内, 加热至 50°C ~ 250°C ; B2: 对相互叠加的所述第一碳毡加压;
C2: 将塑料与导电剂进行均勾混合, 并将混合料加热至 50°C ~ 250°C ; D2: 将所述混合料浇铸到相互叠加的所述第一碳毡上, 使所述混合料 均匀渗入到所述第一碳毡内;
E2: 对渗有混合料的第一碳毡进行冷却;
F2: 将冷却后的渗有混合料的第一碳毡综合体的表面削平, 即得到所 述复合导电电极。
7.根据权利要求 6所述复合导电电极制造方法, 其特征在于: 所述步骤 B2中加压的压力为 lmpa ~ 4 mpa;
所述步骤 C2中所述导电剂在混合料中占的重量比为 5 % - 40 % , 所述塑料为 PE塑胶粒、 PP塑胶粒或 PVC塑胶粒中的一种或几种,釆 用两种或三种的混合物其比例为任意比;
所述导电剂为导电碳黑、炭纳米管、石墨粉或乙炔黑中的一种或几种, 釆用两种或三种的混合物其比例为任意比;
所述步骤 F2 中用切割机或雕刻机将所述渗有混合料的第一碳毡综合 体的六个表面削平, 所削厚度为 0.1mm ~ 1 mm。
8. 一种应用如权利要求 6 所述方法制成的复合导电电极, 其特征在 于: 所述复合导电电极包括: 塑料、 导电剂的混合料和两块相互叠加的第 一碳毡, 其中, 所述塑料、 导电剂的混合料均勾渗入到所述两块相互叠加 的第一碳毡内, 所述塑料、 导电剂的混合料和所述两块相互叠加的第一碳 毡为一体式结构。
9.根据权利要求 2所述复合导电电极制造方法, 其特征在于: 所述复 合导电电极制造方法包括步骤:
A3: 将第一碳毡放入模具内;
B3: 将环氧树脂与凝固剂进行混合, 并将调配好的含有凝固剂的环氧 树脂混合料浇铸到所述第一碳毡所在的模具内 , 使所述混合料均匀渗入到 所述第一碳毡内;
C3: 待所述含有凝固剂的环氧树脂混合料与所述第一碳毡凝固成一体 后取出;
D3: 将渗有所述混合料的第一碳毡综合体的表面削平, 即得到所述复 合导电电极。
10.—种应用如权利要求 9所述方法制成的复合导电电极,其特征在于: 所述复合导电电极包括: 环氧树脂与凝固剂的混合料和第一碳毡, 其中, 所述环氧树脂与凝固剂的混合料均勾渗入到所述第一碳毡内, 所述环氧树 脂与凝固剂的混合料和所述第一碳毡为一体式结构。
PCT/CN2012/076036 2011-05-25 2012-05-25 复合导电电极及其制造方法 WO2012159582A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12788715.6A EP2717352A4 (en) 2011-05-25 2012-05-25 CONDUCTIVE COMPOUND ELECTRODE AND MANUFACTURING METHOD THEREFOR
US14/119,796 US20140315082A1 (en) 2011-05-25 2012-05-25 Composite conductive electrode and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110136860.4 2011-05-25
CN2011101368604A CN102324492B (zh) 2011-05-25 2011-05-25 复合导电电极及其制造方法

Publications (1)

Publication Number Publication Date
WO2012159582A1 true WO2012159582A1 (zh) 2012-11-29

Family

ID=45452192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076036 WO2012159582A1 (zh) 2011-05-25 2012-05-25 复合导电电极及其制造方法

Country Status (4)

Country Link
US (1) US20140315082A1 (zh)
EP (1) EP2717352A4 (zh)
CN (2) CN103367761B (zh)
WO (1) WO2012159582A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3045497A4 (en) * 2013-09-10 2017-07-26 Riken Technos Corporation Electrically conductive resin composition, and film produced from same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367761B (zh) * 2011-05-25 2015-07-08 天津滨海储能技术有限公司 复合导电电极及其制造方法
CN103116046B (zh) * 2012-12-12 2015-03-25 上海电气钠硫储能技术有限公司 一种吸附混合熔盐碳毡电极的制备方法
CN103490075B (zh) * 2013-10-15 2016-03-23 攀钢集团攀枝花钢铁研究院有限公司 全钒氧化还原液流电池及其端、双电极以及制备方法
JP6453026B2 (ja) 2014-10-09 2019-01-16 リケンテクノス株式会社 熱可塑性樹脂組成物フィルムの製造方法
CN104409738A (zh) * 2014-11-05 2015-03-11 中国科学院金属研究所 全钒液流电池用导电炭黑/纳米碳纤维复合电极制备方法
CN108808014A (zh) * 2017-05-02 2018-11-13 苏州天裕塑胶有限公司 一种塑料导电塑胶的制备方法
US10946612B2 (en) * 2018-08-27 2021-03-16 Tactotek Oy Integrated multilayer structure for use in sensing applications and method for manufacturing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335349A (zh) * 2008-08-06 2008-12-31 攀钢集团研究院有限公司 全钒氧化还原液流电池用复合电极及其制备方法
CN101853942A (zh) * 2009-04-03 2010-10-06 夏嘉琪 全钒液流储能电池用双电极板及其制备方法
CN101877408A (zh) * 2009-04-30 2010-11-03 比亚迪股份有限公司 一种液流电池集流体和液流电池
CN102324492A (zh) * 2011-05-25 2012-01-18 深圳市金钒能源科技有限公司 复合导电电极及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232601B2 (en) * 2001-05-31 2007-06-19 Advanced Energy Technology Inc. Method for preparing composite flexible graphite material
WO2003087470A1 (fr) * 2002-04-17 2003-10-23 Mitsubishi Rayon Co., Ltd. Papier en fibre de carbone et substrat d'electrode en fibre de carbone poreux, destine aux piles
JP2005294024A (ja) * 2004-03-31 2005-10-20 Ntt Data Ex Techno Corp 蓄電池用被覆集電体、該被覆集電体の製造方法、および該被覆集電体を有する蓄電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335349A (zh) * 2008-08-06 2008-12-31 攀钢集团研究院有限公司 全钒氧化还原液流电池用复合电极及其制备方法
CN101853942A (zh) * 2009-04-03 2010-10-06 夏嘉琪 全钒液流储能电池用双电极板及其制备方法
CN101877408A (zh) * 2009-04-30 2010-11-03 比亚迪股份有限公司 一种液流电池集流体和液流电池
CN102324492A (zh) * 2011-05-25 2012-01-18 深圳市金钒能源科技有限公司 复合导电电极及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717352A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3045497A4 (en) * 2013-09-10 2017-07-26 Riken Technos Corporation Electrically conductive resin composition, and film produced from same
EP3284782A1 (en) * 2013-09-10 2018-02-21 Riken Technos Corporation Electrically conductive resin composition, and film produced from same

Also Published As

Publication number Publication date
US20140315082A1 (en) 2014-10-23
CN103367761B (zh) 2015-07-08
EP2717352A4 (en) 2014-12-17
CN103367761A (zh) 2013-10-23
CN102324492B (zh) 2013-11-27
CN102324492A (zh) 2012-01-18
EP2717352A1 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2012159582A1 (zh) 复合导电电极及其制造方法
CN101335349B (zh) 全钒氧化还原液流电池用复合电极及其制备方法
CN102569825B (zh) 导电塑料复合电极及其制作方法
US9379393B2 (en) Carbon cladded composite flow field plate, bipolar plate and fuel cell
CN103117397A (zh) 一种燃料电池用双极板的制造工艺
CN112290040A (zh) 一种复合石墨双极板的制备方法
CN108511685A (zh) 一种含有导电涂层的锂离子电池负极片及其制备方法
JP4970698B2 (ja) 導電性複合材料ならびにこの導電性複合材料を使用した燃料電池用電極
CN113224339B (zh) 柔性超薄石墨双极板及其制备方法
CN109910259A (zh) 基于膨胀石墨的燃料电池极板成型方法
TWI425705B (zh) Double - material co - forming bipolar plate and its preparation method
CN110620240A (zh) 一种一体化电极的制备方法与一种钒液流电池
CN109732943A (zh) 燃料电池用双极板及其制备方法
TW200845048A (en) High electrical conductive composite material
CN102082276B (zh) 复合塑料导电电极制造方法及用该方法制成的导电电极
WO2016015486A1 (zh) 一种电化学导电功能膜片的制造方法
CN104409740A (zh) 一种新型钒电池用双极板及其制备方法
CN114520357A (zh) 液流电池用三合一电极材料及其制造工艺与装置
CN102064328A (zh) 质子交换膜燃料电池用的复合材料双极板及其制作方法
CN109411779A (zh) 一种钒电池用柔性石墨双极板的制备方法
CN102315458A (zh) 燃料电池石墨双极板的制作方法
CN110854401B (zh) 一体化集流板、其制备方法与应用
CN103367764A (zh) 复合导电电极及其制造方法
CN109546161A (zh) 一种燃料电池用复合双极板及其制备方法与应用
CN108376785A (zh) 一种聚酰亚胺-石墨复合材料双极板的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12788715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012788715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012788715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14119796

Country of ref document: US