WO2012157598A1 - バイパスバルブ及び過給機 - Google Patents

バイパスバルブ及び過給機 Download PDF

Info

Publication number
WO2012157598A1
WO2012157598A1 PCT/JP2012/062273 JP2012062273W WO2012157598A1 WO 2012157598 A1 WO2012157598 A1 WO 2012157598A1 JP 2012062273 W JP2012062273 W JP 2012062273W WO 2012157598 A1 WO2012157598 A1 WO 2012157598A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
scroll portion
bypass valve
bypass
wall
Prior art date
Application number
PCT/JP2012/062273
Other languages
English (en)
French (fr)
Inventor
村山 友一
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to KR1020137030150A priority Critical patent/KR20140002049A/ko
Priority to EP12786338.9A priority patent/EP2711522B1/en
Priority to CN201280023260.XA priority patent/CN103608561A/zh
Publication of WO2012157598A1 publication Critical patent/WO2012157598A1/ja
Priority to US14/079,876 priority patent/US9476351B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/024Units comprising pumps and their driving means the driving means being assisted by a power recovery turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/023Details or means for fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a bypass valve and a supercharger, and more particularly, to a bypass valve capable of suppressing a reduction in pressure loss and a supercharger using the bypass valve.
  • a turbocharger drives a turbine with the exhaust energy of an engine, drives a compressor coaxially connected to its rotating shaft to compress air, and supplies high-density compressed air to the engine.
  • This is a device that increases the output of the engine.
  • Such a supercharger generally includes a turbine housing that constitutes the outer shell of the turbine, a center housing (or bearing housing) that rotatably supports a rotating shaft (or shaft), and a compressor housing that constitutes the outer shell of the compressor.
  • the compressor housing has a scroll portion formed in a spiral shape around the rotation axis of the compressor impeller. And the compressor compresses the air suck
  • turbocharger mounted on a vehicle such as an automobile scrolls because the engine side shifts to a low rotation state by an accelerator off signal when the vehicle suddenly decelerates from a high speed state. It becomes difficult for the inside compressed air to be transferred to the engine side. Also, the intake air amount decreases due to the compressed air remaining in the scroll. However, since the turbocharger continues to rotate due to inertia, the compressor enters a surge state.
  • some turbochargers include a bypass passage that connects the scroll portion of the compressor housing and the compressor inlet, a bypass valve (bypass valve) that opens and closes the bypass passage, When the vehicle is suddenly decelerated, the bypass valve is opened to return the compressed air in the scroll portion of the compressor housing to the intake port of the compressor (see, for example, Patent Document 1 and Patent Document 2).
  • a valve seat is disposed in a turbocharger casing that can be bypassed via a bypass passage, and when the valve unit is lowered onto the valve seat, the bypass passage is closed by a seal lip.
  • a bypass valve is described in which the discharge side of a turbocharger governed by a high pressure is separated from the suction side governed by a low pressure.
  • bypass valve as described in Patent Document 1 described above is often arranged in the scroll portion of the compressor housing, and forms a flow path penetrating a part of the scroll portion, and on the outside of the casing.
  • the bypass valve is opened and closed. Therefore, in a supercharger having a bypass valve, there is a hollow space in a part of the scroll portion (inside the bypass valve), the flow of compressed air is obstructed and pressure loss occurs, and the operating efficiency of the supercharger is reduced. May be reduced.
  • blow-by gas or EGR is provided in the intake pipe upstream of the compressor.
  • a gas containing foreign substances such as gas is also included.
  • the blow-by gas is a gas that flows into the intake pipe from the engine body through the oil separator, and contains oil mist and metal powder.
  • the EGR gas is a gas that flows from the exhaust pipe through the low-pressure EGR system and flows into the intake pipe, and contains soot and unburned gas.
  • the present invention has been devised in view of the above-described circumstances, and can provide a bypass valve and a supercharger that can reduce pressure loss and prevent foreign matter from being mixed into the bypass flow path, and can improve operating efficiency.
  • the purpose is to provide.
  • a part of the compressed air in the scroll part is diverted to the upstream side of the scroll part via the bypass channel in the open state, and the compressed air in the scroll part is downstream in the closed state.
  • a bypass valve that feeds to the side, a valve body configured to be fitted to a flow dividing hole that communicates the scroll portion and the bypass flow path, and a closed state in which the valve body is fitted to the flow dividing hole And an actuator that moves between an open state spaced from the diversion holes, and the valve body is configured to form an inner surface along the inner wall of the scroll portion in the closed state
  • a valve is provided.
  • a gas turbine that is supplied with exhaust gas from an engine and rotates a moving blade, and a compressor that sucks air by an impeller that is coaxially connected to the moving blade.
  • a compressor housing that constitutes the outer shell of the compressor has a scroll portion formed in a spiral shape around the rotation axis of the impeller, and is a part of the compressed air in the scroll portion in an open state
  • a valve body configured to be able to be fitted to a flow dividing hole communicating with the flow path, and a closed state in which the valve body is fitted to the flow dividing hole and an open state separated from the flow dividing hole.
  • Has an actuator for moving the, the, the valve body, the supercharger is provided that is configured to form the in the closed state along the inner wall of the scroll part inner surface.
  • the inner surface of the valve body in the closed state forms a curved surface together with the inner wall of the scroll portion. Or you may be comprised so that the plane along the inner wall of the said scroll part may be formed. Moreover, the said valve body may have a flange part latched to the outer wall of the said scroll part in the said closed state.
  • the diversion hole may have a conical surface whose diameter is increased from the inner wall to the outer wall of the scroll portion, and the valve body may have an inclined surface corresponding to the conical surface.
  • the diversion hole may have a circular or rectangular columnar surface extending from the inner wall to the outer wall of the scroll portion, and the valve body may have a side surface corresponding to the columnar surface.
  • the valve body may have a tapered portion on the back surface, the diameter of which increases from the drive shaft of the actuator toward the outer edge portion.
  • the valve body in a closed state of the bypass flow path, is fitted in the flow dividing hole so as to form a flow path surface along the inner wall of the scroll portion. It is configured. Therefore, it is possible to embed a recessed space in the scroll portion that causes pressure loss and foreign matter retention, and it is possible to reduce pressure loss and to prevent foreign matter from entering the bypass flow path, thereby improving operating efficiency. Can do.
  • the turbocharger 1 includes a gas turbine 2 that rotates exhaust blades 21 supplied with exhaust gas from an engine 102, And a compressor housing 3a that constitutes an outer shell of the compressor 3, and includes a scroll portion 32 formed in a spiral shape around the rotation axis of the impeller 31. have. Further, in the compressor housing 3a, a part of the compressed air in the scroll portion 32 is diverted to the upstream side of the scroll portion 32 via the bypass flow path 3b in the open state, and the compressed air in the scroll portion 32 is closed in the closed state. A bypass valve 4 is formed to flow downstream.
  • the bypass valve 4 includes a valve body 41 configured to be fitted to a flow dividing hole 3c that communicates the scroll portion 32 and the bypass flow path 3b, a closed state in which the valve body 41 is fitted to the flow dividing hole 3c, and the flow dividing hole 3c.
  • the valve element 41 is configured to form an inner surface 41a along the inner wall 32a of the scroll portion 32 in the closed state.
  • the supercharger 1 shown in FIG. 1 is an example of a fluid machine.
  • the supercharger 1 includes a turbine housing 2 a that constitutes an outer shell of the gas turbine 2, a bearing housing 5 a that rotatably supports the rotor shaft 5, and a compressor housing 3 a that constitutes the outer shell of the compressor 3. ing.
  • the supercharger 1 has the same configuration as that of a conventional vehicle supercharger (so-called turbocharger), for example.
  • the gas turbine 2 is a centrifugal turbine, and includes a scroll portion 23 formed in a spiral shape around the rotation axis of an impeller 22 having a plurality of moving blades 21, and an exhaust gas inlet 24 that supplies exhaust gas to the scroll portion 23. And an exhaust gas outlet 25 for discharging the exhaust gas supplied to the impeller 22 in the extending direction of the rotor shaft 5.
  • the compressor 3 is a so-called centrifugal compressor, and includes a scroll portion 32 formed in a spiral shape around the rotation shaft of the impeller 31, an air inlet 33 that supplies air from the extending direction of the rotor shaft 5, and the impeller 31. And an air outlet 34 for discharging the compressed air from the scroll portion 32 to the outside.
  • a plurality of compressor impellers 35 are integrally formed on the surface of the impeller 31 by precision casting or the like.
  • a bypass valve 4 is attached to a part of the scroll portion 32, and when the bypass valve 4 is opened, a part of the compressed air in the scroll portion 32 is diverted to the air inlet 33. ing.
  • the rotor shaft 5 has a large-diameter portion 51 and a small-diameter portion 52. After finishing, hardening, and outer diameter grinding, the rotor shaft 5 is joined to the impeller 22 at one end. The rotor blade 21 is integrated. Further, a thrust collar 53 or the like is disposed between the large diameter portion 51 and the small diameter portion 52 to constitute a thrust bearing. The impeller 31 is fitted into the small diameter portion 52 of the rotor shaft 5 and is fixed by the shaft end nut 54.
  • the supercharger 1 shown in FIG. 1 is incorporated in the engine drive system 100 shown in FIG.
  • the engine drive system 100 includes an air cleaner 101 that removes minute foreign matters in the intake air, a supercharger 1 that compresses the intake air, and an engine 102 that is driven by compressed air and fuel.
  • a post-processing device 103 that removes harmful components generated and discharged in the combustion chamber of the engine 102, and an electronic control unit (ECU) 104 that controls the supercharger 1 and the engine 102.
  • ECU electronice control unit
  • the supercharger 1 recovers the energy of the exhaust gas by the gas turbine 2 to operate the compressor 3 and supplies compressed air to the engine 102 to increase the output.
  • the bypass valve 4 disposed in the scroll portion 32 of the compressor 3 is controlled to be opened and closed by the electronic control unit 104.
  • the electronic control unit 104 opens the bypass valve 4 to suppress a surge state when a vehicle equipped with the engine drive system 100 is suddenly decelerated from when traveling at a high speed, and a part of the compressed air in the scroll portion 32. Is returned to the air inlet 33 side.
  • the bypass valve 4 is closed, and all the compressed air in the scroll portion 32 is supplied to the engine 102 from the air outlet 34.
  • the engine 102 is, for example, a diesel engine or a gasoline engine mounted on a vehicle.
  • the amount of compressed air and fuel supplied to the engine 102 is controlled in accordance with the operating conditions. Such control is performed by the electronic control unit 104.
  • the engine 102 is controlled by the air-fuel ratio (air mass / fuel mass).
  • the air cleaner 101 is a device that removes fine foreign matters in the air sucked from the outside and supplies clean air to the supercharger 1, and the post-processing device 103 is generated and discharged in the combustion chamber of the engine 102. It is a device that detoxifies the discharged harmful components and discharges them to the outside.
  • the compressor housing 3a is formed with a bypass flow path 3b, and a flow dividing hole 3c is formed so that the bypass flow path 3b and the scroll portion 32 communicate with each other.
  • the bypass valve 4 is connected to the compressor housing 3a so as to face the bypass flow path 3b.
  • the bypass valve 4 is inserted by the actuator 42 so that the valve body 41 is fitted into the flow dividing hole 3c as shown in FIG. 3B, or the valve body 41 is inserted from the flow dividing hole 3c as shown in FIG. 3C. It arrange
  • a state in which the valve body 41 is fitted in the flow dividing hole 3c is referred to as a closed state
  • a state in which the valve body 41 is separated from the flow dividing hole 3c is referred to as an open state.
  • the actuator 42 is configured such that the valve body 41 is supported by the drive shaft 42 a and the valve body 41 can be moved in the longitudinal direction of the drive shaft 42 a based on the control of the electronic control unit 104.
  • the inner surface 41a is comprised so that the valve body 41 (part shown by the oblique line of FIG. 3A-FIG. 3C) may form one curved surface with the inner wall 32a of the scroll part 32 in a closed state, for example. That is, the inner surface 41a of the valve body 41 is formed so as to form a curved surface continuous with the inner wall 32a of the scroll portion 32 in the closed state. In this way, by forming the inner surface 41a along the inner wall 32a of the scroll portion 32 in the closed state, a depressed space in the scroll portion 32 that causes pressure loss and foreign matter retention can be buried, and pressure loss Reduction and contamination of foreign substances into the bypass channel can be suppressed.
  • FIG. 4 is a comparison diagram showing a difference in efficiency between the supercharger 1 according to the first embodiment and the conventional supercharger.
  • the horizontal axis indicates the flow rate of the compressor 3, and the vertical axis indicates the efficiency of the supercharger 1.
  • a solid line indicates the present embodiment, and a broken line indicates the prior art.
  • the efficiency is improved as compared with the supercharger in the prior art regardless of the flow rate.
  • it is more effective when the flow rate is relatively small. This is because when the scroll portion 32 has a depression, the smaller the flow rate, the larger the pressure loss due to the depression. This accurately expresses that the pressure loss is improved by this embodiment.
  • FIGS. 5A to 5D Next, another embodiment of the present invention will be described with reference to FIGS. 5A to 5D.
  • the bypass valve 4 according to the second embodiment of the present invention is configured such that the inner surface 41a of the valve body 41 forms a plane along the inner wall of the scroll portion 32 in the closed state. Yes.
  • This second embodiment also has substantially the same effect as that of the first embodiment, facilitates processing when creating the valve body 41, and can reduce the cost.
  • the bypass valve 4 according to the third embodiment has a flange portion 41b that is engaged with the outer wall 32b of the scroll portion 32 when the valve body 41 is closed.
  • the stroke amount of the drive shaft 42a needs to be set in advance in order to appropriately switch between the open state and the closed state.
  • it can be made into a closed state by making the flange part 41b contact
  • the bypass valve 4 according to the fourth embodiment has a conical surface in which the diversion hole 3c has a diameter increased from the inner wall 32a of the scroll portion 32 toward the outer wall 32b, and the valve body 41 has a conical surface. It has the inclined surface 41c corresponding to.
  • the inclined surface 41c is formed by a similar conical surface so as to conform to the shape of the flow dividing hole 3c.
  • a sufficient gap can be formed between the valve body 41 and the flow dividing hole 3c with a small movement amount of the valve body 41, and the open state and the closed state can be formed.
  • the stroke amount of the drive shaft 42a at the time of switching can be reduced, and the response speed can be improved.
  • valve body 41 does not accidentally protrude into the scroll portion 32 by bringing the conical surface of the flow dividing hole 3c into contact with the inclined surface 41c of the valve body 41.
  • the same effect as the flange part 41b mentioned above can also be exhibited.
  • the bypass valve 4 As shown in FIG. 5D, the bypass valve 4 according to the fifth embodiment has a rectangular columnar surface extending from the inner wall 32a of the scroll portion 32 toward the outer wall 32b, and the valve body 41 corresponds to the columnar surface. It has a side surface 41d. 5D illustrates a state in which the flow dividing hole 3c and the valve body 41 are viewed from the inside of the scroll portion 32.
  • the bypass valve 4 according to the first embodiment shown in FIG. 1 has a circular columnar surface in which the flow dividing holes 3c extend from the inner wall 32a of the scroll portion 32 toward the outer wall 32b, and the valve body 41 corresponds to the columnar surface. It has a curved side.
  • the valve body 41 rotates around the drive shaft 42a, the phase of the inner surface 41a is shifted, and the curved surface continuous with the inner wall 32a of the scroll portion 32 may not be obtained. obtain. Therefore, it is preferable to control the phase of the valve body 41 in order to ensure the continuity of the curved surface or to prevent the valve body 41 from rotating around the drive shaft 42a.
  • the bypass valve 4 since the flow dividing hole 3c has a rectangular cross section, if the valve body 41 is fitted into the flow dividing hole 3c, the phase can be forcibly matched. In addition, a curved surface continuous with the inner wall 32a of the scroll portion 32 can be easily formed. Further, in order to ensure that the valve body 41 is fitted into the flow dividing hole 3c, the tip of the valve body 41 may be formed in a tapered shape, or the flow dividing hole 3c shown in the fourth embodiment. Similarly to the above, a pyramidal surface may be formed in the flow dividing hole 3c, and the valve body 41 may be formed in a shape corresponding to the pyramidal surface. Even if the flow dividing hole 3c has an elliptical cross section instead of a rectangular cross section, the same effect as that of the fifth embodiment is achieved by configuring the bypass valve 4 in the same manner.
  • FIGS. 6A and 6B a sixth embodiment of the present invention will be described with reference to FIGS. 6A and 6B. Note that the same components as those shown in FIGS. 1 to 3C are denoted by the same reference numerals, and redundant description is omitted.
  • the engine drive system 100 including the supercharger 1 according to the sixth embodiment of the present invention is equipped with an EGR system 200, and as shown in FIG. 6A, an air cleaner 101 that removes fine foreign matter in the intake air.
  • a supercharger 1 that compresses the intake air an engine 102 that is driven by compressed air and fuel, a post-processing device 103 that removes harmful components generated and discharged in the combustion chamber of the engine, and a supercharger 1
  • an electronic control unit (ECU) 104 that controls the engine 102 and the EGR system 200.
  • the EGR system 200 includes an EGR cooler 201 that lowers the temperature of the exhaust gas, and an EGR valve 202 that returns a part of the exhaust gas discharged from the engine 102 to the air inlet 33 side of the compressor 3.
  • the EGR valve 202 is opened and closed based on the control of the electronic control unit 104.
  • the configuration and operation of the EGR system 200 are the same as those of the EGR system in the prior art, and thus detailed description thereof is omitted.
  • the valve body 41 has a taper portion 41e whose diameter increases from the drive shaft 42a of the actuator 42 toward the outer edge portion on the back surface.
  • the intake pipe upstream of the compressor 3 contains not only clean air from which dust or the like has been removed by the air cleaner 101 but also foreign matters such as blow-by gas and EGR gas. Gas to do is also included.
  • the blow-by gas is a gas that flows into the intake pipe from the engine body through the oil separator, and contains oil mist and metal powder.
  • the EGR gas is a gas that flows from the exhaust pipe through the EGR system and flows into the intake pipe, and contains soot and unburned gas.
  • the air sucked into the compressor 3 contains various foreign matters and moisture.
  • the bypass valve 4 When the bypass valve 4 is operated, the air containing the foreign matters and moisture is also circulated in the bypass passage 3b. Will be. As a result, foreign matter may adhere to the back surface of the valve body 41, or water may freeze and adhere.
  • the bypass valve 4 When the bypass valve 4 is operated in such a state, the foreign matter may interfere with the valve body 41 and the valve body 41 cannot be opened sufficiently, or the foreign matter may be crushed or dropped when the valve body 41 is opened or closed, thereby bypassing the flow path 3b. Or may flow into If such foreign matter is a relatively large lump, the impeller 31 of the compressor 3 may be damaged.
  • valve body 41 by forming the tapered portion 41e on the flat surface of the valve body 41, foreign matter can be prevented from accumulating or moisture can be prevented from staying, and sticking of foreign matter and ice can be easily suppressed. Further, when the valve body 41 is closed, foreign matter is clogged and stuck in the gap between the valve body 41 and the flow dividing hole 3c and the opening and closing of the valve body 41 is obstructed, and the valve body 41 is driven in the closed state.
  • the valve body 41 may be configured to be rotatable around the shaft 42a, and the valve body 41 may be opened and closed after the valve body 41 is physically released.
  • bypass valve and the supercharger it is possible to embed a recessed space in the scroll portion that causes pressure loss and foreign matter retention, and it is possible to reduce pressure loss and to mix foreign matter into the bypass flow path. It is possible to suppress the driving efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Supercharger (AREA)
  • Rotary Pumps (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

 開状態でスクロール部内の圧縮空気の一部を前記スクロール部の上流側にバイパス流路を介して分流させ、閉状態で前記スクロール部内の圧縮空気を下流側に送流するバイパスバルブであって、前記スクロール部と前記バイパス流路とを連通する分流孔に嵌合可能に構成された弁体と、前記弁体を前記分流孔に嵌合した閉状態と前記分流孔から離隔した開状態との間で移動させるアクチュエータと、を有し、前記弁体は、前記閉状態で前記スクロール部の内壁に沿った内面を形成するように構成されているバイパスバルブ。

Description

バイパスバルブ及び過給機
 本発明は、バイパスバルブ及び過給機に関し、特に、圧力損失の低減を抑制することができるバイパスバルブ及び前記バイパスバルブを使用した過給機に関する。
 過給機(例えば、ターボチャージャ)は、エンジンの排気エネルギーでタービンを駆動し、その回転軸と同軸に連結されたコンプレッサを駆動させて空気を圧縮し、エンジンに高密度の圧縮空気を供給することにより、エンジンの出力を増大させる装置である。かかる過給機は、一般に、タービンの外殻を構成するタービンハウジングと、回転軸(又はシャフト)を回転自在に支持するセンターハウジング(又は軸受ハウジング)と、コンプレッサの外殻を構成するコンプレッサハウジングと、を有する。また、コンプレッサハウジングは、コンプレッサの羽根車の回転軸周りに渦巻き形状に形成されたスクロール部を有する。そして、コンプレッサは、軸方向から吸入した空気を圧縮し、羽根車の周方向端面からスクロール部に圧縮空気を供給し、スクロール部から圧縮空気を外部に排出している。
 ところで、自動車等の車両に搭載された過給機(いわゆるターボチャージャ)は、車両が高速状態から急減速する場合に、エンジン側はアクセルオフの信号で低回転状態に移行しているため、スクロール内の圧縮空気がエンジン側に移送され難くなる。また、吸気量は、スクロール内に残る圧縮空気のために減少する。しかしながら、過給機は慣性により回り続けているため、コンプレッサはサージ状態となる。かかるサージ状態を抑制するために、一部の過給機は、コンプレッサハウジングのスクロール部内とコンプレッサの吸気口を接続するバイパス流路と、バイパス流路の開閉を行うバイパスバルブ(バイパス弁)と、を有し、車両の急減速時には、バイパスバルブを開いて、コンプレッサハウジングのスクロール部内の圧縮空気をコンプレッサの吸気口に戻すように構成されている(例えば、特許文献1及び特許文献2参照)。
 例えば、特許文献1には、バイパス通路を介して迂回可能であるターボチャージャのケーシングに弁座が配置されており、弁ユニットが弁座上に下降されると、バイパス通路はシールリップによって閉じられ、高い圧力が支配しているターボチャージャの吐出側は低い圧力が支配する吸込側から分離されるバイパス弁が記載されている。
 また、特許文献2の背景技術の欄には、過給機のコンプレッサの下流側の吸気管と上流側の吸気管とを接続するバイパス管と、過給機のタービンの下流側の排気管と過給機のコンプレッサの上流側の吸気管とを接続する低圧EGR(Exhaust Gas Recirculation)システムと、が配置された構成が記載されている。バイパス管には、バイパス管の開閉を行うバイパス弁が配置され、低圧EGRシステムには、排気管と吸気管とを接続するEGR管と、その開閉を行うEGR弁と、EGRクーラと、が配置されている。
特開2007-71207号公報 特開2010-265854号公報
 しかしながら、上述した特許文献1に記載されたようなバイパス弁は、コンプレッサハウジングのスクロール部に配置されていることが多く、スクロール部の一部に貫通する流路を形成し、そのケーシングの外側でバイパス弁を開閉させている。したがって、バイパス弁を有する過給機では、スクロール部の一部(バイパス弁の内側)に窪んだ空間が存在し、圧縮空気の流れが阻害されて圧力損失が生じ、過給機の運転効率が低下する可能性がある。
 また、上述した特許文献2に記載されたようなEGRシステムを有する過給機では、コンプレッサの上流の吸気管には、エアクリーナで塵等が除去された清浄な空気だけではなく、ブローバイガスやEGRガスのように異物を含有するガスも含まれている。ブローバイガスは、エンジン本体からオイルセパレータを介して吸気管に流入するガスであり、オイルミストや金属粉を含有する。EGRガスは、排気管から低圧EGRシステムを通過して吸気管に流入するガスであり、煤や未燃ガスを含有する。したがって、バイパス弁を有する過給機では、スクロール部の一部(バイパス弁の内側)に窪んだ空間が存在していることから、上述したガスに含まれる異物が溜まり易く、バイパス流路に異物が混入し易い。
 本発明は、上述の事情に鑑み創案されたものであり、圧力損失の低減及び異物のバイパス流路への混入を抑制することができ、運転効率を改善することができるバイパスバルブ及び過給機を提供することを目的とする。
 本発明の第1の態様によれば、開状態でスクロール部内の圧縮空気の一部を前記スクロール部の上流側にバイパス流路を介して分流させ、閉状態で前記スクロール部内の圧縮空気を下流側に送流するバイパスバルブであって、前記スクロール部と前記バイパス流路とを連通する分流孔に嵌合可能に構成された弁体と、前記弁体を前記分流孔に嵌合した閉状態と前記分流孔から離隔した開状態との間で移動させるアクチュエータと、を有し、前記弁体は、前記閉状態で前記スクロール部の内壁に沿った内面を形成するように構成されているバイパスバルブが提供される。
 また、本発明の第2の態様によれば、エンジンから排気ガスが供給されて動翼を回転させるガスタービンと、前記動翼と同軸に連結された羽根車により空気を吸入するコンプレッサと、を備え、前記コンプレッサの外殻を構成するコンプレッサハウジングが前記羽根車の回転軸周りに渦巻き形状に形成されたスクロール部を有する過給機であって、開状態で前記スクロール部内の圧縮空気の一部を前記スクロール部の上流側にバイパス流路を介して分流させ、閉状態で前記スクロール部内の圧縮空気を下流側に送流するバイパスバルブを有し、前記バイパスバルブは、前記スクロール部と前記バイパス流路とを連通する分流孔に嵌合可能に構成された弁体と、前記弁体を前記分流孔に嵌合した閉状態と前記分流孔から離隔した開状態との間で移動させるアクチュエータと、を有し、前記弁体は、前記閉状態で前記スクロール部の内壁に沿った内面を形成するように構成されている過給機が提供される。
 上述した本発明の第1の態様及び第2の態様に係るバイパスバルブ及び過給機において、前記弁体の内面は、前記閉状態で、前記スクロール部の内壁と共に一曲面を形成するように、又は、前記スクロール部の内壁に沿った平面を形成するように構成されていてもよい。また、前記弁体は、前記閉状態で前記スクロール部の外壁に係止するフランジ部を有していてもよい。
 前記分流孔は、前記スクロール部の内壁から外壁に向かって拡径した円錐面を有し、前記弁体は、前記円錐面に対応した傾斜面を有していてもよい。また、前記分流孔は、前記スクロール部の内壁から外壁に向かって延伸した円形又は矩形の柱状面を有し、前記弁体は、前記柱状面に対応した側面を有していてもよい。
 前記弁体は、前記アクチュエータの駆動軸から外縁部に向かって拡径したテーパ部を背面に有していてもよい。
 上述した本発明に係るバイパスバルブ及び過給機によれば、バイパス流路の閉状態において、弁体が分流孔内に嵌合されており、スクロール部の内壁に沿った流路面を形成するように構成されている。そのため、圧力損失及び異物滞留の原因となるスクロール部内の窪んだ空間を埋設することができ、圧力損失の低減及び異物のバイパス流路への混入を抑制することができ、運転効率を向上させることができる。
本発明の第一実施形態に係る過給機の断面図である。 図1に示した過給機を含むエンジン駆動システムの構成図である。 図1に示したバイパスバルブの斜視図である。 図1に示したバイパスバルブの閉状態の断面図である。 図1に示したバイパスバルブの開状態の断面図である。 図1に示した過給機の流量に対する効率と従来技術の過給機の流量に対する効率との比較図である。 本発明の他の実施形態に係るバイパスバルブの第二実施形態の説明図である。 本発明の他の実施形態に係るバイパスバルブの第三実施形態の説明図である。 本発明の他の実施形態に係るバイパスバルブの第四実施形態の説明図である。 本発明の他の実施形態に係るバイパスバルブの第五実施形態の説明図である。 本発明の第六実施形態に係る過給機を含むエンジン駆動システムの構成図である。 本発明の第六実施形態に係るバイパスバルブの断面図である。
 以下、本発明の実施形態について図1~図6Bを用いて説明する。
 本発明の第一実施形態に係る過給機1は、図1及び図2に示したように、エンジン102から排気ガスが供給されて動翼21を回転させるガスタービン2と、動翼21と同軸に連結された羽根車31により空気を吸入するコンプレッサ3と、を備え、コンプレッサ3の外殻を構成するコンプレッサハウジング3aは、羽根車31の回転軸周りに渦巻き形状に形成されたスクロール部32を有している。また、コンプレッサハウジング3aには、開状態でスクロール部32内の圧縮空気の一部をスクロール部32の上流側にバイパス流路3bを介して分流させ、閉状態でスクロール部32内の圧縮空気を下流側に送流するバイパスバルブ4が形成されている。バイパスバルブ4は、スクロール部32とバイパス流路3bとを連通する分流孔3cに嵌合可能に構成された弁体41と、弁体41を分流孔3cに嵌合した閉状態と分流孔3cから離隔した開状態との間で移動させるアクチュエータ42と、を有し、弁体41は、閉状態でスクロール部32の内壁32aに沿った内面41aを形成するように構成されている。
 図1に示した過給機1は、流体機械の一例である。過給機1は、ガスタービン2の外殻を構成するタービンハウジング2aと、ロータ軸5を回転自在に支持する軸受ハウジング5aと、コンプレッサ3の外殻を構成するコンプレッサハウジング3aと、を有している。なお、過給機1の構成は、例えば、従来の車両用過給機(いわゆるターボチャージャ)と同じ構成を有している。
 ガスタービン2は、遠心式タービンであり、複数の動翼21を有する翼車22の回転軸周りに渦巻き形状に形成されたスクロール部23と、スクロール部23に排気ガスを供給する排気ガス入口24と、翼車22に供給された排気ガスをロータ軸5の延伸方向に排出する排気ガス出口25と、を有している。
 コンプレッサ3は、いわゆる遠心式圧縮機であり、羽根車31の回転軸周りに渦巻き形状に形成されたスクロール部32と、ロータ軸5の延伸方向から空気を供給する空気入口33と、羽根車31により圧縮された空気をスクロール部32から外部に排出する空気出口34と、を有している。また、羽根車31の表面には、複数のコンプレッサインペラ35が精密鋳造等により一体に形成されている。また、スクロール部32の一部には、バイパスバルブ4が付属しており、バイパスバルブ4が開いた時は、スクロール部32内の圧縮空気の一部が空気入口33に分流するように構成されている。
 ロータ軸5は、大径部分51及び小径部分52を有し、従来と同様に、仕上加工、硬化処理及び外径研削が施された後、大径部分51の一端が翼車22に接合され、動翼21と一体化されている。また、大径部分51と小径部分52との間には、スラストカラー53等が配置され、スラスト軸受けが構成されている。そして、ロータ軸5の小径部分52には、羽根車31が嵌合され、軸端ナット54により固定される。
 また、図1に示した過給機1は、図2に示したエンジン駆動システム100に組み込まれている。エンジン駆動システム100は、図2に示したように、吸気した空気中の微細な異物を取り除くエアクリーナ101と、吸気した空気を圧縮する過給機1と、圧縮空気及び燃料によって駆動されるエンジン102と、エンジン102の燃焼室内で生成及び排出された有害成分を取り除く後処理装置103と、過給機1及びエンジン102を制御する電子制御ユニット(ECU)104と、を有する。
 過給機1は、排気ガスのエネルギーをガスタービン2で回収してコンプレッサ3を作動させ、圧縮空気をエンジン102に供給して出力増大を図る。また、コンプレッサ3のスクロール部32に配置されたバイパスバルブ4は、電子制御ユニット104により開閉が制御される。例えば、電子制御ユニット104は、エンジン駆動システム100を搭載した車両が高速走行時から急減速する場合に、サージ状態を抑制するためにバイパスバルブ4を開き、スクロール部32内の圧縮空気の一部を空気入口33側に戻す。通常状態においては、バイパスバルブ4は閉じられており、スクロール部32内の全ての圧縮空気は空気出口34からエンジン102に供給される。
 エンジン102は、例えば、車両に搭載されたディーゼルエンジンやガソリンエンジンである。エンジン102は、運転状況に応じて圧縮空気や燃料の供給量が制御される。かかる制御は、電子制御ユニット104により行われる。エンジン102の制御は、空燃比(空気質量/燃料質量)によって制御される。なお、エアクリーナ101は、外部より吸気された空気中の微細な異物を取り除いて清浄な空気を過給機1に供給する機器であり、後処理装置103は、エンジン102の燃焼室内で生成及び排出された有害成分を無害化して外部に排出する機器である。
 図1及び図3Aに示したように、コンプレッサハウジング3aにはバイパス流路3bが形成されており、バイパス流路3bとスクロール部32とを連通するように分流孔3cが形成されている。バイパスバルブ4は、バイパス流路3bに面するようにコンプレッサハウジング3aに接続されている。
 バイパスバルブ4は、アクチュエータ42により、図3Bに示したように、弁体41を分流孔3cに嵌合させるように挿入したり、図3Cに示したように、弁体41を分流孔3cから離隔させて分流孔3cとバイパス流路3bとを連通させたりすることができるように配置されている。本実施形態において、弁体41を分流孔3cに嵌合させた状態を閉状態、弁体41を分流孔3cから離隔させた状態を開状態と称する。なお、アクチュエータ42は、弁体41を駆動軸42aで支持し、電子制御ユニット104の制御に基づいて弁体41を駆動軸42aの長手方向に移動可能に構成されている。
 そして、弁体41(図3A~図3Cの斜線で示した部品)は、例えば、閉状態でスクロール部32の内壁32aと共に一曲面を形成するように内面41aが構成されている。すなわち、弁体41の内面41aは、閉状態でスクロール部32の内壁32aと連続した曲面を構成するように形成されている。このように、閉状態でスクロール部32の内壁32aに沿った内面41aを形成することにより、圧力損失及び異物滞留の原因となるスクロール部32内の窪んだ空間を埋設することができ、圧力損失の低減及び異物のバイパス流路への混入を抑制することができる。
 ここで、図4は、第一実施形態に係る過給機1と従来技術における過給機との効率の差異を示す比較図である。図4において、横軸はコンプレッサ3の流量、縦軸は過給機1の効率を示している。また、実線は本実施形態、破線は従来技術を示している。図4に示したように、本実施形態に係る過給機1によれば、流量の大小に関わらず、従来技術における過給機よりも効率が向上していることが容易に理解できる。特に、流量が比較的少ない場合に、より効果を発揮する。これは、スクロール部32に窪みを有する場合には、流量が少ない方が窪みによる圧力損失が大きいためであり、本実施形態により圧力損失が改善されていることを的確に表現している。
 次に、本発明の他の実施形態について図5A~5Dを参照して説明する。
 本発明の第二実施形態に係るバイパスバルブ4は、図5Aに示したように、弁体41の内面41aが、閉状態でスクロール部32の内壁に沿った平面を形成するように構成されている。かかる第二実施形態によっても第一実施形態と略同様の効果を有するとともに、弁体41を作成する際の加工が容易になり、コストを低減することができる。
 第三実施形態に係るバイパスバルブ4は、図5Bに示したように、弁体41が閉状態でスクロール部32の外壁32bに係止するフランジ部41bを有する。第一実施形態に係るバイパスバルブ4では、開状態と閉状態を適切に切り替えるために、駆動軸42aのストローク量を予め設定しておく必要がある。それに対し、第三実施形態に係るバイパスバルブ4によれば、フランジ部41bをスクロール部32の外壁32bに当接させて係止させることによって閉状態にすることができる。
 したがって、バイパスバルブ4に圧力センサや荷重センサを配置することにより、弁体41のフランジ部41bがスクロール部32の外壁32bに当接したことを検知してアクチュエータ42を停止させることができ、容易に駆動軸42aのストローク量を制御することができる。
 第四実施形態に係るバイパスバルブ4は、図5Cに示したように、分流孔3cがスクロール部32の内壁32aから外壁32bに向かって拡径した円錐面を有し、弁体41が円錐面に対応した傾斜面41cを有する。傾斜面41cは、分流孔3cの形状に適合するように同様の円錐面により形成される。かかる第四実施形態に係るバイパスバルブ4によれば、弁体41の少ない移動量で弁体41と分流孔3cとの間に十分な隙間を形成することができ、開状態と閉状態との切り替え時における駆動軸42aのストローク量を低減することができ、応答速度を向上させることができる。
 また、第四実施形態に係るバイパスバルブ4によれば、分流孔3cの円錐面と弁体41の傾斜面41cとを当接させることによって、弁体41が誤ってスクロール部32内に突出しないようにすることができ、上述したフランジ部41bと同様の効果も発揮する。
 第五実施形態に係るバイパスバルブ4は、図5Dに示したように、スクロール部32の内壁32aから外壁32bに向かって延伸した矩形の柱状面を有し、弁体41が柱状面に対応した側面41dを有する。なお、図5Dはスクロール部32の内側から分流孔3cと弁体41とを眺めた状態を図示している。
 図1に示した第一実施形態に係るバイパスバルブ4は、分流孔3cがスクロール部32の内壁32aから外壁32bに向かって延伸した円形の柱状面を有し、弁体41が柱状面に対応した側面を有している。かかる第一実施形態では、弁体41が駆動軸42aの回りに回転してしまった場合には、内面41aの位相がずれてしまい、スクロール部32の内壁32aと連続する曲面とならないこともあり得る。したがって、曲面の連続性を担保するために弁体41の位相を制御する又は弁体41が駆動軸42aの回りに回転しないように構成することが好ましい。
 一方、上述した第五実施形態に係るバイパスバルブ4によれば、分流孔3cが矩形断面を有することから、弁体41が分流孔3cに嵌合されれば強制的に位相を一致させることができ、スクロール部32の内壁32aと連続する曲面を容易に形成することができる。また、弁体41が分流孔3cに確実に嵌合されるために、弁体41の先端部を縮径させたテーパ状に形成してもよいし、第四実施形態に示した分流孔3cと同様に分流孔3cに角錐面を形成して弁体41を角錐面に対応した形状に形成するようにしてもよい。なお、分流孔3cは、矩形断面の替わりに楕円形断面の場合であっても、バイパスバルブ4を同様の構成とすることにより、第五実施形態と同様の効果を発揮する。
 次に、本発明の第六実施形態について図6A、図6Bを参照して説明する。なお、図1~図3Cに示した構成部品と同じ構成部品については、同じ符号を付して重複した説明を省略する。
 本発明の第六実施形態に係る過給機1を含むエンジン駆動システム100は、EGRシステム200を搭載したものであり、図6Aに示すように、吸気した空気中の微細な異物を取り除くエアクリーナ101と、吸気した空気を圧縮する過給機1と、圧縮空気及び燃料によって駆動されるエンジン102と、エンジンの燃焼室内で生成及び排出された有害成分を取り除く後処理装置103と、過給機1、エンジン102及びEGRシステム200を制御する電子制御ユニット(ECU)104と、を有する。
 また、EGRシステム200は、排気ガスの温度を下げるEGRクーラ201と、エンジン102から排出される排出ガスの一部をコンプレッサ3の空気入口33側に戻すEGRバルブ202と、を有する。EGRバルブ202は、電子制御ユニット104の制御に基づいて開閉される。なお、EGRシステム200の構成及び作用は、従来技術におけるEGRシステムと同様であるため、詳細な説明を省略する。
 第六施形態に係るバイパスバルブ4は、図6Bに示したように、弁体41が、アクチュエータ42の駆動軸42aから外縁部に向かって拡径したテーパ部41eを背面に有する。上述したように、EGRシステム200等を有する場合、コンプレッサ3の上流の吸気管には、エアクリーナ101で塵等が除去された清浄な空気だけではなく、ブローバイガスやEGRガスのように異物を含有するガスも含まれている。ブローバイガスは、エンジン本体からオイルセパレータを介して吸気管に流入するガスであり、オイルミストや金属粉を含有する。EGRガスは、排気管からEGRシステムを通過して吸気管に流入するガスであり、煤や未燃ガスを含有する。
 このように、コンプレッサ3に吸気される空気には種々の異物や水分が含まれており、バイパスバルブ4を作動させた場合には、バイパス流路3bにも異物や水分を含有する空気が流通することとなる。その結果、弁体41の背面に異物が固着したり、水分が氷結して付着したりすることがあり得る。かかる状態でバイパスバルブ4を作動させた場合には、異物が邪魔をして十分に弁体41を開くことができなかったり、弁体41の開閉時に異物が破砕又は脱落してバイパス流路3bに流入したりする可能性がある。かかる異物が比較的大きな塊になっている場合には、コンプレッサ3の羽根車31を損傷させてしまうおそれもある。
 そこで、弁体41の平面にテーパ部41eを形成することによって、異物が堆積したり、水分が滞留したりしないようにすることができ、異物や氷の固着を容易に抑制することができる。また、弁体41の閉状態において、弁体41と分流孔3cとの隙間に異物が詰まって固着し、弁体41の開閉を阻害するような場合には、閉状態で弁体41を駆動軸42aの周りに回転できるように構成し、弁体41の固着を物理的に解除してから弁体41を開閉させるようにしてもよい。
 本発明は上述した実施形態に限定されず、上述した実施形態を適宜組み合わせてもよい等。本発明の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。
 本発明に係るバイパスバルブ及び過給機によれば、圧力損失及び異物滞留の原因となるスクロール部内の窪んだ空間を埋設することができ、圧力損失の低減及び異物のバイパス流路への混入を抑制することができ、運転効率を向上させることができる。
1 過給機
2 ガスタービン
3 コンプレッサ
3a コンプレッサハウジング
3b バイパス流路
3c 分流孔
4 バイパスバルブ
21 動翼
31 羽根車
32 スクロール部
32a 内壁
32b 外壁
41 弁体
41a 内面
41b フランジ部
41c 傾斜面
41d 側面
41e テーパ部
42 アクチュエータ
42a 駆動軸
102 エンジン

Claims (8)

  1.  開状態でスクロール部内の圧縮空気の一部を前記スクロール部の上流側にバイパス流路を介して分流させ、閉状態で前記スクロール部内の圧縮空気を下流側に送流するバイパスバルブであって、
     前記スクロール部と前記バイパス流路とを連通する分流孔に嵌合可能に構成された弁体と、
     前記弁体を前記分流孔に嵌合した閉状態と前記分流孔から離隔した開状態との間で移動させるアクチュエータと、を有し、
     前記弁体は、前記閉状態で前記スクロール部の内壁に沿った内面を形成するように構成されているバイパスバルブ。
  2.  前記弁体の内面は、前記閉状態で、前記スクロール部の内壁と共に一曲面を形成するように構成されている請求項1に記載のバイパスバルブ。
  3.  前記弁体の内面は、前記閉状態で、前記スクロール部の内壁に沿った平面を形成するように構成されている請求項1に記載のバイパスバルブ。
  4.  前記弁体は、前記閉状態で前記スクロール部の外壁に係止するフランジ部を有する請求項1に記載のバイパスバルブ。
  5.  前記分流孔は、前記スクロール部の内壁から外壁に向かって拡径した円錐面を有し、前記弁体は、前記円錐面に対応した傾斜面を有する請求項1に記載のバイパスバルブ。
  6.  前記分流孔は、前記スクロール部の内壁から外壁に向かって延伸した円形又は矩形の柱状面を有し、前記弁体は、前記柱状面に対応した側面を有する請求項1に記載のバイパスバルブ。
  7.  前記弁体は、前記アクチュエータの駆動軸から外縁部に向かって拡径したテーパ部を背面に有する請求項1に記載のバイパスバルブ。
  8.  エンジンから排気ガスが供給されて動翼を回転させるガスタービンと、前記動翼と同軸に連結された羽根車により空気を吸入するコンプレッサと、を備え、前記コンプレッサの外殻を構成するコンプレッサハウジングが前記羽根車の回転軸周りに渦巻き形状に形成されたスクロール部を有する過給機であって、
     請求項1から請求項7のいずれかに記載のバイパスバルブをさらに備える過給機。
PCT/JP2012/062273 2011-05-17 2012-05-14 バイパスバルブ及び過給機 WO2012157598A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137030150A KR20140002049A (ko) 2011-05-17 2012-05-14 바이패스 밸브 및 과급기
EP12786338.9A EP2711522B1 (en) 2011-05-17 2012-05-14 Bypass valve and supercharger
CN201280023260.XA CN103608561A (zh) 2011-05-17 2012-05-14 旁通阀和增压器
US14/079,876 US9476351B2 (en) 2011-05-17 2013-11-14 Recirculation valve and turbocharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011110296A JP2012241558A (ja) 2011-05-17 2011-05-17 バイパスバルブ及び過給機
JP2011-110296 2011-05-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/079,876 Continuation US9476351B2 (en) 2011-05-17 2013-11-14 Recirculation valve and turbocharger

Publications (1)

Publication Number Publication Date
WO2012157598A1 true WO2012157598A1 (ja) 2012-11-22

Family

ID=47176915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062273 WO2012157598A1 (ja) 2011-05-17 2012-05-14 バイパスバルブ及び過給機

Country Status (6)

Country Link
US (1) US9476351B2 (ja)
EP (1) EP2711522B1 (ja)
JP (1) JP2012241558A (ja)
KR (1) KR20140002049A (ja)
CN (1) CN103608561A (ja)
WO (1) WO2012157598A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264856A1 (ja) * 2021-06-16 2022-12-22 三菱重工エンジン&ターボチャージャ株式会社 配管分岐装置及びコンプレッサ

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5953239B2 (ja) * 2013-01-23 2016-07-20 株式会社オティックス 過給機用のコンプレッサハウジング及びその製造方法
EP3032109B1 (en) 2013-08-06 2018-06-13 IHI Corporation Centrifugal compressor and supercharger
JP5927729B2 (ja) * 2013-11-06 2016-06-01 本田技研工業株式会社 流路部材
US9611857B2 (en) * 2014-04-24 2017-04-04 Control Components, Inc. Dead time reducer for piston actuator
US10155592B2 (en) 2014-05-05 2018-12-18 Hamilton Sundstrand Corporation Environmental control system with air cycle machine bypass shutoff valves
CN106460653B (zh) * 2014-06-02 2019-02-22 株式会社Ihi 轴承构造及增压器
CN105840313B (zh) * 2014-08-13 2019-04-09 安萨尔多能源公司 用于燃气涡轮发电装置的维修方法及套件
CN104131887A (zh) * 2014-08-15 2014-11-05 无锡科博增压器有限公司 增压器减速用防喘振结构
CN104329161B (zh) * 2014-09-18 2017-01-18 北京航空航天大学 航空活塞发动机涡轮增压器高稳定防喘振调节系统及方法
CN104481673B (zh) * 2014-12-29 2017-03-08 无锡康明斯涡轮增压技术有限公司 废气涡轮增压器涡壳旁通装置
JP6330770B2 (ja) * 2015-09-25 2018-05-30 マツダ株式会社 ターボ過給機付エンジンの制御装置
US9829006B2 (en) * 2015-10-14 2017-11-28 Hamilton Sundstrand Corporation Air cycle machine compressor housing
US10344665B2 (en) * 2016-01-22 2019-07-09 Garrett Transportation I Inc. Compressor recirculation system having compressor inlet recirculation duct configured to reduce noise from Rossiter excitation and cavity acoustic resonance
JP2017155664A (ja) * 2016-03-02 2017-09-07 株式会社豊田自動織機 遠心圧縮機
JP7042650B2 (ja) * 2018-02-28 2022-03-28 三菱重工マリンマシナリ株式会社 ターボチャージャ
WO2020008615A1 (ja) 2018-07-06 2020-01-09 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機及びターボチャージャ
US11378095B2 (en) 2018-07-13 2022-07-05 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
DE112019007784T5 (de) 2019-12-17 2022-06-15 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Verdichter und Turbolader beinhaltend den Verdichter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482460U (ja) * 1990-11-28 1992-07-17
JPH11182257A (ja) * 1997-12-19 1999-07-06 Nissan Motor Co Ltd 遠心式過給機
JP2004076787A (ja) * 2002-08-12 2004-03-11 Advance Denki Kogyo Kk ダイヤフラム弁構造
JP2004300965A (ja) * 2003-03-28 2004-10-28 Aisin Seiki Co Ltd 可変容量ターボチャージャ
JP2007071207A (ja) 2005-09-08 2007-03-22 Pierburg Gmbh 内燃機関のためのバイパス弁
JP2008095572A (ja) * 2006-10-10 2008-04-24 Toyota Motor Corp ターボチャージャ
JP2010265854A (ja) 2009-05-18 2010-11-25 Isuzu Motors Ltd ターボ式過給機付き内燃機関およびその制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195805A (en) * 1961-10-25 1965-07-20 Garrett Corp Turbocharger differential pressure control
JPS56167813A (en) * 1980-05-28 1981-12-23 Nissan Motor Co Ltd Surge preventing apparatus for turbocharger
US4517803A (en) * 1983-04-22 1985-05-21 The Garrett Corporation Turbocharger compressor valve
US5137003A (en) * 1989-05-19 1992-08-11 Mitsubishi Denki K.K. Supercharged pressure control valve apparatus
JPH0482460A (ja) 1990-07-25 1992-03-16 Nippon Conlux Co Ltd 電話自動着信応答システム
GB2246395A (en) * 1990-07-26 1992-01-29 Garrett Automotive Limited Noise attenuation in a turbocharger
JPH082460A (ja) 1994-06-17 1996-01-09 Ougi Kogyo:Kk 自転車用ベルの碗部
US5904471A (en) * 1996-12-20 1999-05-18 Turbodyne Systems, Inc. Cooling means for a motor-driven centrifugal air compressor
DE10133669A1 (de) * 2001-07-11 2003-01-30 Daimler Chrysler Ag Abgasturbolader in einer Brennkraftmaschine
CN100547238C (zh) * 2005-07-19 2009-10-07 上海非常化油器有限公司 固定喉管可调微孔喷管燃气混合调节器
DE202009007233U1 (de) * 2009-05-20 2009-09-03 Borgwarner Inc., Auburn Hills Verdichter eines Abgasturboladers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482460U (ja) * 1990-11-28 1992-07-17
JPH11182257A (ja) * 1997-12-19 1999-07-06 Nissan Motor Co Ltd 遠心式過給機
JP2004076787A (ja) * 2002-08-12 2004-03-11 Advance Denki Kogyo Kk ダイヤフラム弁構造
JP2004300965A (ja) * 2003-03-28 2004-10-28 Aisin Seiki Co Ltd 可変容量ターボチャージャ
JP2007071207A (ja) 2005-09-08 2007-03-22 Pierburg Gmbh 内燃機関のためのバイパス弁
JP2008095572A (ja) * 2006-10-10 2008-04-24 Toyota Motor Corp ターボチャージャ
JP2010265854A (ja) 2009-05-18 2010-11-25 Isuzu Motors Ltd ターボ式過給機付き内燃機関およびその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2711522A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264856A1 (ja) * 2021-06-16 2022-12-22 三菱重工エンジン&ターボチャージャ株式会社 配管分岐装置及びコンプレッサ
DE112022001863T5 (de) 2021-06-16 2024-01-25 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Rohrverzweigungsvorrichtung und Kompressor

Also Published As

Publication number Publication date
EP2711522B1 (en) 2017-06-28
EP2711522A1 (en) 2014-03-26
EP2711522A4 (en) 2014-11-12
JP2012241558A (ja) 2012-12-10
CN103608561A (zh) 2014-02-26
KR20140002049A (ko) 2014-01-07
US20140069096A1 (en) 2014-03-13
US9476351B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
WO2012157598A1 (ja) バイパスバルブ及び過給機
JP5179568B2 (ja) 排ガスターボチャージャを具えた内燃機関
KR20100117060A (ko) 과급기
JP5369723B2 (ja) 遠心圧縮機
US20140366531A1 (en) Variable flow valve mechanism and vehicle turbocharger
JP2013185552A (ja) 流量可変バルブ機構及び車両用過給機
JP2011021561A (ja) 内燃機関の排気還流装置
CA2653904A1 (en) Axial flow fluid device
JP6361735B2 (ja) 過給機
JP6128129B2 (ja) 可変容量型過給機及び可変容量型過給機用ハウジングの製造方法
JP6119110B2 (ja) 低圧ループegr装置
JP2012149588A (ja) 内燃機関の制御装置
EP2837791A1 (en) Seal structure and variable displacement supercharger
JP2011106358A (ja) 多段式過給機
JPS5810114A (ja) タ−ボチヤ−ジヤ
CN107592898B (zh) 涡轮增压器的具有空气循环阀的压缩机以及具有这样的压缩机的涡轮增压器和机动车
JP2012002140A (ja) タービン及び過給機
JP6003476B2 (ja) ターボチャージャ
JP5799616B2 (ja) ウェイストゲートバルブ及び過給機
JP4438524B2 (ja) 過給機
JP2011032880A (ja) 内燃機関の排気還流装置
JP5862078B2 (ja) ウェイストゲートバルブ及び過給機
WO2020183703A1 (ja) サージング抑制装置、排気タービン式の過給機およびサージング抑制方法
JP5454460B2 (ja) バルブユニットおよびバルブユニットを備える内燃機関の排気還流装置
CN102155287B (zh) 一种尾气排放的结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137030150

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012786338

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012786338

Country of ref document: EP