WO2012157131A1 - 水力発電装置 - Google Patents

水力発電装置 Download PDF

Info

Publication number
WO2012157131A1
WO2012157131A1 PCT/JP2011/069889 JP2011069889W WO2012157131A1 WO 2012157131 A1 WO2012157131 A1 WO 2012157131A1 JP 2011069889 W JP2011069889 W JP 2011069889W WO 2012157131 A1 WO2012157131 A1 WO 2012157131A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
flow
vertical axis
opening
turbine
Prior art date
Application number
PCT/JP2011/069889
Other languages
English (en)
French (fr)
Inventor
海野裕二
Original Assignee
Unno Yuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unno Yuji filed Critical Unno Yuji
Priority to ES11815430.1T priority Critical patent/ES2560434T3/es
Priority to CA2770782A priority patent/CA2770782C/en
Priority to SI201130718T priority patent/SI2711541T1/sl
Priority to EP11815430.1A priority patent/EP2711541B1/en
Priority to CN201180002871.1A priority patent/CN102959232B/zh
Priority to US13/390,363 priority patent/US8616830B2/en
Priority to MX2012003965A priority patent/MX2012003965A/es
Priority to BR112012007068A priority patent/BR112012007068A2/pt
Priority to KR1020127003014A priority patent/KR101200458B1/ko
Priority to PL11815430T priority patent/PL2711541T3/pl
Priority to RU2012113641/06A priority patent/RU2500916C1/ru
Priority to AU2011292911A priority patent/AU2011292911B2/en
Priority to AP2013007296A priority patent/AP2013007296A0/xx
Priority to IN2560DEN2012 priority patent/IN2012DN02560A/en
Publication of WO2012157131A1 publication Critical patent/WO2012157131A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/063Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/14Regulating, i.e. acting automatically by or of water level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/16Stators
    • F03B3/18Stator blades; Guide conduits or vanes, e.g. adjustable
    • F03B3/183Adjustable vanes, e.g. wicket gates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/14Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/33Shrouds which are part of or which are rotating with the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/50Inlet or outlet
    • F05B2250/501Inlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a hydroelectric power generation apparatus that can generate power using a flow of water.
  • Patent Document 1 a hydroelectric power generation device described in Patent Document 1 that is installed in a river or an artificial waterway and generates power using the flow of water, and is currently installed in a small river or a first-class river. I'm starting.
  • This hydroelectric power generation device is a technological unprecedented that can generate hydroelectric power efficiently and at low cost because it uses small hydropower such as river flow.
  • this hydroelectric generator performs hydroelectric power generation by installing it in a flowing waterway, once installed, the water turbine continues to rotate unless the water in the river or the like is dried up.
  • the advantage of this hydroelectric generator is that it uses the flow of water that occurs naturally to generate electricity, but regular maintenance is always necessary to maintain its performance. At this time, the maintenance time has not yet arrived, so there is no equipment that has been maintained, but if maintenance is to be performed, the flow of water is blocked, or this hydroelectric generator is lifted from the waterway with a crane or the like to land There is a problem that it is necessary to work in, and it takes time and labor for maintenance.
  • the other is the problem of water level fluctuation.
  • this hydroelectric generator is installed in a place where there is a flow of water, such as a river or an agricultural waterway, the flow of water is blocked to some extent, and fluctuations in the water level on the upstream side and downstream side also occur.
  • the power generation amount depends on the upstream water level, there is a difference in power generation amount between the rainy season when the water amount increases and the dry season when the water amount decreases, which may cause a problem that stable power generation cannot be performed.
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is hydroelectric power generation that is easy to maintain, can adjust the water level on the upstream side, and can obtain a stable power generation amount. To provide an apparatus.
  • the present invention provides a hydroelectric power generation apparatus that is installed in a flowing water channel and generates power, a water inlet disposed on the upstream side of the water channel, a drain port disposed on the downstream side, And a housing having a flow path communicating from the water inlet to the water outlet, and a water collection device that is provided at an opening edge of the water inlet of the housing and collects water at the water inlet while damming and storing water flowing through the water channel
  • a vertical axis turbine having a plate, a rotor blade rotatably supported in the flow path of the housing, a generator that generates electric power by receiving the rotational force of the vertical axis turbine, and the vertical axis flowing from the water inlet
  • a movable gate capable of adjusting the water level of the water stored on the upstream side of the water channel by increasing or decreasing the water flow cross-sectional area acting on the tip of the rotor blade of the axial water turbine.
  • the movable gate is attached to the rotary shaft of the vertical axis turbine, and has a structure that increases or decreases the water cross-sectional area by opening and closing in a direction orthogonal to the flow path.
  • the structure etc. which increase / decrease a water flow cross-sectional area by opening and closing along the outer periphery of this can be considered.
  • a speed increasing plate is provided that is erected in the housing and accelerates the flow of water in the flow path by gradually decreasing the opening area of the water inlet. Good.
  • the speed increasing plate is a sluice gate that can be pulled up in a vertical direction, a slide gate that can be opened and closed in a horizontal direction, or a rotary gate that can rotate around a vertical axis. You may comprise so that the water in a flow path may be discharged to the exterior of a housing from the discharge hole provided in the said housing.
  • the water collecting plate may be provided with an opening / closing door, and by opening the opening / closing door, overflow water on the upstream side of the water channel may be discharged downstream without passing through the flow channel.
  • the vertical axis turbine a single-axis or two-axis cross-flow turbine arranged oppositely can be adopted.
  • a water collecting plate that collects and stores water flowing through the water channel while collecting and collecting the water, and flows into the water inlet and acts on the tip of the rotary blade of the vertical axis turbine.
  • a movable gate capable of increasing or decreasing the water flow cross-sectional area is provided. For this reason, it becomes possible to adjust the upstream water level and the opening area of the orifice hole by opening and closing the movable gate to increase or decrease the water flow cross-sectional area. Therefore, the flow rate adjusting function can be exhibited without lowering the power generation efficiency, and there is an effect that stable hydroelectric power generation can always be performed without being influenced by fluctuations in the water level of the water channel. Further, since the movable gate is completely closed, the water flow to the vertical axis turbine can be shut off and the operation of the rotor blades can be stopped, so that the maintenance work can be easily performed.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG. It is a perspective view which shows the structure of the vertical axis
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG. It is a perspective view which shows the structure of the vertical axis
  • FIG. 3 is a simplified diagram of the hydroelectric generator of FIG. 2, and is a diagram for explaining the relationship among a flow velocity, an orifice hole opening area, an effective water level difference, and a flow rate.
  • FIG. 3 is a simplified diagram of the hydroelectric generator of FIG. 2 and is a diagram for explaining the relationship between the upstream flow rate, the discharge flow rate from the orifice hole, and the effective water level difference. It is a figure explaining the correlation of the fluctuation
  • FIG. 5 is a plan view of a hydroelectric generator using a single-axis vertical axis water turbine according to another embodiment of the present invention.
  • 4A and 4B show another embodiment of the present invention, in which FIG. 4A is a plan view showing a positional relationship between a gear and a movable gate, and FIG. It is explanatory drawing which shows the example which installed the hydroelectric generator of this invention in the wide water channel. It is explanatory drawing which shows the example which installed the hydroelectric generator of this invention in the narrow water channel.
  • FIG. 1 is a plan view showing an embodiment of a hydroelectric generator according to the present invention. However, in order to make each configuration easy to see, the generator 4, pulleys 32 and 42, belt 43, and drive shaft 41 are partially omitted.
  • 2 is a cross-sectional view taken along the line BB of FIG. However, in order to clarify each configuration, the gear 54, the movable gate 5, and the speed increasing plate 7 are not shown.
  • FIG. 3 is a cross-sectional view illustrating the configuration of the vertical axis turbine 3 included in the hydroelectric generator 1, but is simplified for clarity in order to clarify the positional relationship between the movable gate 5 and the vertical axis turbine 3. .
  • FIG. 4 is a perspective view for explaining the configuration of the vertical axis turbine 3 provided in the hydroelectric generator 1.
  • the hydroelectric generator 1 of the present invention includes a housing 2 having a water inlet 8, a water outlet 9, and a flow path 25 communicating from the water inlet 8 to the water outlet 9, and has a flow. It is installed and used so that the water inlet 8 is arranged on the upstream side of the water channel and the water outlet 9 is arranged on the downstream side.
  • the hydroelectric generator 1 has a plurality of rotary blades 33, 33,... (Hereinafter simply referred to as “rotary blades 33”) rotatably supported in the flow path 25 of the housing 2.
  • the vertical axis turbine 3, the generator 4 that generates power by receiving the rotational force of the vertical axis turbine 3, and the flow interruption of water flow that flows into the inlet 8 and acts on the tip of the rotary blade 33 of the vertical axis turbine 3.
  • a movable gate 5 capable of increasing and decreasing the area A, and a water collecting plate 6 that collects the stored water to the water inlet 8 while damming and storing the water flowing through the water channel when installed in the water channel. And.
  • the housing 2 includes a top plate 21, a bottom plate 22, and two side plates 23, 23, and has a water inlet 8 that opens upstream and a drain port 9 that opens downstream.
  • the top plate 21 is provided with two arc-shaped slide grooves 24.
  • the movable gate 5 is guided by the slide grooves 24 to insert the tooth profile portion 52 (see FIG. 3). In the state, it is configured to be movable in the direction of the arrow in the figure.
  • a flow path 25 communicating from the water inlet 8 to the water outlet 9 is formed in the housing 2, and the vertical axis water turbines 3 and 3 arranged in opposition are accommodated in the flow path 25.
  • the vertical axis turbine 3 of the present embodiment is a cross-flow turbine having a rotary shaft 31 and a plurality of rotary blades 33, and the rotary shaft 31 is rotatably supported by bearings 26 and 26 formed on the top plate 21 and the bottom plate 22. (See FIG. 4).
  • a cross-flow turbine is used for the vertical axis turbines 3 and 3, but other types of vertical axis turbines can be used as long as they are vertical axis turbines.
  • a pulley 32 attached to a rotary shaft 31 and a pulley 42 attached to its own drive shaft 41 are connected by a belt 43, and when the rotary shaft 31 of the vertical axis water turbine 3 rotates, the generator 4 rotates. The force is transmitted to the drive shaft 41 via the belt 43 to generate power.
  • One generator 4 is attached to each of the vertical axis turbines 3 and 3.
  • the movable gate 5 is a sector gate (radial gate) in which two fan-shaped gates rotate about a shaft.
  • the gate is rotatably supported by the rotary shaft 31 of the vertical axis water turbine 3 and is mounted on the rotary shaft 31 via bearings 53, 53, and a circle provided on the main body 51. It comprises an arcuate tooth profile 52.
  • a tooth profile for meshing with the gear 54 is formed on the outer periphery of the upper portion of the tooth profile portion 52.
  • the water collecting plate 6 is provided at the opening edge of the water inlet 8 as a single body or as a separate body, and is used for blocking and storing the upstream water flowing through the water channel.
  • the stored water is passed from the water inlet 8 to the inside of the housing 2 while storing the water blocked by the water collecting plate 6. Therefore, the water flow cross-sectional area A which is an opening adjusted by the movable gate 5 becomes an orifice hole, and the opening area of the orifice hole and the water level H of water collected by the water collecting plate 6 and stored upstream.
  • the flow rate acting on the vertical axis turbine 3 is determined.
  • speed increasing plates 7, 7 arranged to face each other as shown in FIG. 1 are provided, and the opening area of the water inlet 8 is gradually reduced by the speed increasing plates 7, 7.
  • the flow of water in the flow path 25 is increased.
  • the speed-increasing plates 7 and 7 of the present embodiment are configured by pull-up type sluice gates, and a gap is formed with the bottom plate 22 by pulling up in the vertical direction, and water in the flow path 25 is discharged from the gap. can do.
  • FIGS. 5A and 5B are diagrams for explaining the operation of the hydroelectric power generator 1.
  • FIG. 5A shows a state where the movable gates 5 and 5 are opened
  • FIG. 5B shows a state where the movable gates 5 and 5 are closed. ing.
  • illustration of the speed increasing plates 7 and 7 and other configurations is omitted.
  • the water cross-sectional area at this time that is, the opening area of the orifice hole is A.
  • the water flow cross-sectional area A is defined as an orifice hole, and the state of the opening area of the orifice hole is indicated by adding a number to A.
  • the two gears 54, 54 may be rotated in the direction of the arrow shown in FIG. 5 (a). Then, the tooth profile portions 52 and 52 meshed with the gears 54 and 54 in conjunction with this rotation move to the center along the outer periphery of the vertical shaft turbines 3 and 3 in the slide groove 5 and move to the end. The inner ends of the portions 52 and 52 are close to each other.
  • This state is a closed state. In this state, the opening area of the orifice hole becomes substantially zero, the water flow to the vertical axis turbines 3 and 3 is blocked, and the rotating operation of the rotary blade 33 can be stopped. .
  • the movable gates 5 and 5 are moved outward (side plates 23) along the outer periphery of the vertical axis turbines 3 and 3. , 23 side) direction.
  • the form of the movable gate 5 is not limited to this, and may be a structure that moves in a direction orthogonal to the flow path 25 to open and close, and increases or decreases the water flow cross-sectional area by opening and closing.
  • the opening area of the orifice hole can be adjusted using the movable gates 5 and 5 as described above.
  • the opening area of the orifice hole is reduced, the flow rate of water flowing to the vertical axis turbines 3 and 3 is reduced, and as a result, the rotational force of the vertical axis turbines 3 and 3 is likely to be reduced.
  • this is not the case in the present invention. The principle will be described with reference to FIG.
  • FIG. 6 is a schematic diagram for explaining the relationship between the orifice hole of the hydroelectric generator 1 and the vertical axis turbines 3 and 3.
  • FIG. 6A shows that the opening area of the orifice hole is A1
  • FIG. 6B shows that the opening area of the orifice hole is A2.
  • FIGS. 7 to 15 except FIG. 10 are simplified versions of FIG.
  • the upstream side water is stored by the water collecting plate 6, and the relationship between the stored upstream water level, the flow rate flowing from the orifice hole, and the flow velocity is shown.
  • the flow velocity V1 of the water flow discharged from the orifice hole is A1
  • the gravitational acceleration g the flow velocity V1 is It is expressed by a formula.
  • the effective water level can be adjusted by adjusting the opening area of the orifice hole.
  • the effective water level difference can be made constant by adjusting the opening area of the orifice hole.
  • the amount of water is constant throughout the year, and in particular, the amount of water for agricultural use in the irrigation period and the non-irrigation period usually fluctuates about 2 to 5 times.
  • the fluctuation of the water amount affects the flow velocity V and the effective water level difference H of the water flow discharged from the orifice hole.
  • the flow rate from the upstream decreases, if the opening area of the orifice hole cannot be adjusted, the decrease of H4 and V4 occurs.
  • the original channel function determines the channel cross-sectional shape and channel gradient with respect to the planned water volume.
  • the purpose and conditions of the planned channel are set, and a channel cross section that satisfies the condition is designed.
  • the planned flow rate (maximum and minimum) of the target water channel to be designed and the depth Hc of this planned water volume (maximum value) are satisfied.
  • Hb is 80% deeper than Ha.
  • the flow velocity of the water channel is generally set to an average flow velocity of about 1.2 m / sec to 1.5 m / sec.
  • it is common sense to design the channel flow velocity so that it becomes faster as it goes downstream.
  • the combined use of power generation facilities while maintaining the function of this water channel is an important prerequisite for water channel power generation.
  • FIG. 11 is a schematic illustration of the effective water level H, the flow velocity V, and the discharge flow rate Qb from the orifice hole when the flow rate Qa from the upstream, the upstream water level Ha, and the opening area of the orifice hole are A.
  • the upstream water level Ha is the highest priority for maintaining the water channel function. This water level must not exceed the maximum allowable water depth Hb, and if the power generation amount is increased as necessary, the upstream water channel needs to be raised.
  • the state of the hydroelectric generator when it is increased or decreased when the opening area of the orifice hole is not adjusted will be described with reference to FIG.
  • the upstream water level becomes He, but the flow rate + Qc exceeding Hb overflows the water collecting plate 6 and is not used for power generation. Therefore, the upstream water level He at the time of water increase must not exceed Hb.
  • the upstream water level He decreases, and as a result, the effective water level difference H also decreases. Therefore, the power generation amount is doubled by the decrease of Qa and the decrease of H, which lowers the power generation efficiency of the hydroelectric power generation device, and disadvantageously reduces the total amount of power generation itself.
  • the position of the upstream water level can be changed by adjusting the opening area of the orifice hole in the hydraulic power generation apparatus of the present invention at the time of water reduction and water increase.
  • a power generation amount of W1 ⁇ W2 is obtained.
  • the discharge flow rate from the orifice hole may be reduced so as to raise the water surface to a water level at which the water channel function can be maintained. That is, the movable gate 5 may be moved in the closing direction so as to reduce the opening area of the orifice hole. If the opening area A2 of the orifice hole capable of maintaining H2, the power generation amount of W2 can be obtained.
  • the power generation amount will increase.
  • the discharge flow rate from the orifice hole may be increased so that the overflowing flow rate + Qc becomes a water level that does not overflow. That is, the movable gate 5 may be moved in the opening direction so as to increase the opening area of the orifice hole.
  • the opening area of the orifice hole can be adjusted by opening and closing the movable gate, so that the amount of power generation can be increased and the flow rate adjusting function can be achieved without reducing the efficiency of hydroelectric power generation. Can be demonstrated. Furthermore, since the water flowing to the vertical axis turbine can be stopped by completely closing the movable gate, maintenance work can be easily performed.
  • the water collecting plate 6 is provided with a water collecting plate flow rate adjusting opening, and the overflowing water is discharged downstream from this opening.
  • an opening / closing door (not shown) is provided on the water collecting plate 6, the opening degree of the opening / closing door is adjusted according to fluctuations in the water level of the water channel, and the overflow water on the upstream side of the water channel is not passed through the flow channel. It may be configured to be discharged into the water.
  • FIG. 16 illustrates the open state and the closed state of the movable gate 5 in the hydroelectric generator 1 that employs the single-axis vertical-axis turbine 3, but the same functions as the configuration of the hydroelectric generator 1 are illustrated.
  • the components are given the same reference numerals. Since the configuration and operation are substantially the same as described above, detailed description thereof is omitted.
  • the opening / closing structure of the movable gate 5 is not limited to this, and for example, a structure in which a gear is arranged downstream as shown in FIG.
  • the movable gate 5 is different from the above embodiment in that the upper plate 55 of the main body 51 is formed in a semicircular shape, and a tooth shape is formed around the upper plate 55. And as shown to Fig.17 (a), a part of this upper board 55 and the main body have couple
  • the tooth profile portion of the upper plate 55 is meshed with the gear 54, and when the gear 54 is rotated, the upper plate 55 rotates in conjunction with the movable gate 5 to open and close as in the above embodiment.
  • a handle 57 is used as a method for rotating the gear 54. That is, the tip of the handle 57 is fitted to the upper end of the rotation shaft 56 of the gear 54, and the gear 54 is rotated by rotating the grip portion 58 of the handle 57.
  • the form of the water collecting plate 6 can be modified according to the condition of the water channel in which the hydroelectric generator 1 is installed. As shown in FIG. 18, when the hydroelectric generator 1 is installed in a wide water channel, both ends of the water collecting plate 6 are fixed to both walls of the water channel with fixing brackets 61. In this case, the water collecting plate 6 functions not only as a means for blocking and storing water flowing in the water channel, but also as a unit for connecting and fixing the housing 2 to the water channel.
  • both ends of the housing 2 are directly fixed to both walls of the water channel by the fixing fittings 61.
  • the front plate 27 of the housing 2 serves both as a fixing means and a function as the water collecting plate 6.
  • the water collecting plate 6 dams up the water flowing in the channel and stores the water while raising the upstream water level in the channel. Create a head. As a result, the function of causing the potential energy generated by the head to act on the vertical axis turbine 3 in the housing 2 is exhibited.
  • a water intake box 62 is installed at the step portion of the water channel, and the water collecting plate 6 is attached to the water intake port 62a of the water intake box 62, What is necessary is just to attach the housing 2 of the hydroelectric generator 1 to the drain outlet 62b.
  • the water collecting plate 6 is a water collecting plate 6A oriented in a direction orthogonal to the flow of the water channel, or a water collecting plate 6B oriented in a direction inclined at a predetermined angle with respect to the flow of the water channel. To do. Thereby, the water collecting plate 6 not only raises the water level on the upstream side and creates a drop, but also functions to collect the water flowing upstream to the central water intake box 62.
  • the speed increasing plate 7 may have a discharge function as follows.
  • the speed increasing plate 7 is configured by a pull-up type sluice gate, and the discharge holes 28 and 28 through which water passes are formed in the side plates 23 and 23 on both sides of the housing 2. Yes.
  • the speed increasing plates 7 and 7 are pulled up in the vertical direction with the movable gates 5 and 5 closed as shown in the figure, so that the water inside the flow path 25 is discharged from the gap between the bottom plate 22 and the discharge holes 28. And is discharged to the outside of the housing 2. Therefore, even if the hydroelectric generator 1 is still installed in the water channel, maintenance work for parts such as the vertical axis turbine 3 and the generator 4 inside the housing 2 can be performed without stopping the flow of water in the water channel. it can.
  • the speed increasing plate 7 is a rotary gate having a rotary opening / closing door 71, and the opening / closing door 71 is provided at the center of the speed increasing plate 7, and the opening / closing door 71 is centered on a vertical shaft 72. It is supported rotatably in the direction of the arrow. Also in this structure, if the open / close door 71 of the speed increasing plate 7 is rotated and opened while the movable gates 5 and 5 are closed, the water in the flow path 5 is housed in the housing from the discharge hole 28. 2 can be discharged to the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

【課題】メンテナンスが容易でかつ上流側の水位の調整が可能であり、しかも、安定した発電量が得られる水力発電装置を提供する。 【解決手段】本発明の水力発電装置1は、水路を流れる水を堰き止めて貯留しつつ入水口8へと集水する集水板6と、入水口8から流入して垂直軸水車3の回転翼33先端に作用する水流の通水断面積を増減可能な可動式ゲート5とを具備し、可動式ゲート5を開閉して通水断面積を増減させることにより、上流側の水位とオリフィス孔の開口面積を可変させて流量を調整したり、垂直軸水車3への通水を遮断して回転翼33の動作を停止することができるようにした。

Description

水力発電装置
 本発明は、水の流れを利用して発電可能な水力発電装置に関する。
 従来から本発明者は、河川や人工的な水路などに設置して水の流れを利用して発電する特許文献1に記載の水力発電装置を開発し、現在、小河川や一級河川に設置しはじめている。
 この水力発電装置は、川の流れ等の小水力を利用して発電を行うため、効率的かつ低コストで水力発電が行える従来にない画期的なものであった。
 しかしながら、この水力発電装置を実際に設置してみると新たな要改善点も出てきた。その要改善点は主に次の2つである。
 その1つは、メンテナンスの問題である。この水力発電装置は、流れのある水路に設置することにより水力発電を行うため、一度設置をすると河川などの水が干上がらない限り水車は回転し続ける。自然的に発生している水の流れを利用して発電を行う点がこの水力発電装置のメリットであるが、性能を維持し続けるためには必ず定期的なメンテナンスは必要である。現時点ではまだメンテナンス時期が到来していないため、メンテナンスをした装置はないが、仮にメンテナンスを行うのであれば、水の流れを堰き止めるか、あるいはこの水力発電装置をクレーンなどで水路から引き上げて陸地で作業する必要があり、メンテナンスに手間がかかるという問題がある。
 もう1つは、水位変動の問題である。かんがい期、非かんがい期、あるいは雨期や乾期などにより水路自体の流量変動がある。この水力発電装置は、河川、農水路等の水の流れがある場所に設置するので、ある程度水の流れは堰き止められてしまい、上流側と下流側の水位の変動も生じる。また、発電量は上流側の水位に左右されるので、水量が多くなる雨期と水量が少なくなる乾期とでは発電量に差が生じてしまい、安定した発電ができないという問題が生じうる。
特開2007-177797号公報
 本発明は前記問題点を解決するためになされたもので、その目的とするところは、メンテナンスが容易でかつ上流側の水位の調整が可能であり、しかも、安定した発電量が得られる水力発電装置を提供することにある。
 前記目的を達成するため、本発明は、流れのある水路に設置して発電を行う水力発電装置であって、前記水路の上流側に配置される入水口、下流側に配置される排水口、及び入水口から排水口に連通する流路を有するハウジングと、前記ハウジングの入水口の開口縁に設けられ、前記水路を流れる水を堰き止めて貯留しつつ前記入水口へと集水する集水板と、前記ハウジングの流路内に回転可能に支持された回転翼を有する垂直軸水車と、前記垂直軸水車の回転力を受けて発電する発電機と、前記入水口から流入して前記垂直軸水車の回転翼先端に作用する水流の通水断面積を増減することにより、前記水路の上流側に貯留した水の水位を調整可能な可動式ゲートと、を備えたことを特徴とする。
 本発明の水力発電装置において、前記可動式ゲートは、前記流路に直交する方向に開閉することにより通水断面積を増減する構造や、前記垂直軸水車の回転軸に取り付けられ、前記回転翼の外周に沿って開閉することにより通水断面積を増減する構造などが考えられる。
 また、本発明の水力発電装置において、前記ハウジング内に立設され、前記入水口の開口面積を徐々に減少させて前記流路内の水の流れを増速させる増速板が設けられているとよい。
 ここで、前記増速板は、垂直方向に引き上げ可能なスルースゲート、水平方向に開閉可能なスライドゲート、あるいは垂直軸を中心に回転可能な回転ゲートになっており、当該ゲートを開くことにより前記流路内の水を前記ハウジングに設けられた放流孔からハウジング外部に放流させるように構成されていてもよい。
 また、前記集水板に開閉扉が設けられ、当該開閉扉を開くことにより前記水路の上流側の越流水を前記流路に通さずに下流側へと放流させるように構成されていてもよい。なお、前記垂直軸水車は、1軸の、あるいは対向配置された2軸のクロスフロー水車を採用することができる。
 本発明の水力発電装置においては、特に、水路を流れる水を堰き止めて貯留しつつ入水口へと集水する集水板と、入水口から流入して垂直軸水車の回転翼先端に作用する水流の通水断面積を増減可能な可動式ゲートとを具備するようにした。このため、可動式ゲートを開閉して通水断面積を増減させることにより、上流側の水位とオリフィス孔の開口面積を調整することが可能になる。したがって、発電効率を下げずに流量調整機能を発揮することができ、水路の水位変動に左右されることなく、常に安定した水力発電を行えるという効果がある。また、可動式ゲートを完全に閉じることにより垂直軸水車への通水を遮断し、回転翼の動作を停止させることができるので、メンテナンス作業を容易に行えるという効果もある。
本発明に係る水力発電装置の一実施形態を示す平面図である。 図1のB-B断面図である。 図1の水力発電装置が備える垂直軸水車の構成を示す斜視図である。 図1の水力発電装置が備える垂直軸水車の構成を示す断面図である。 図1の水力発電装置の可動式ゲートの動作(開状態と閉状態)を示す平面図である。 図1の水力発電装置のオリフィス孔と垂直軸水車との関係を説明するための模式図である。 図2の水力発電装置を簡略図案化したものであり、流速、オリフィス孔の開口面積、有効水位差、流量の関係を説明するための図である。 図2の水力発電装置を簡略図案化したものであり、上流流量とオリフィス孔からの吐出流量と有効水位差の関係を説明する図である。 上流からの流量の変動が流速及び有効水位差の変動、発電量の変動の相関関係を説明する図である。 一般的な水路の水位について説明する図である。 上流からの流量Qa、上流水位Ha、オリフィス孔の開口面積がAの場合に、有効水位H、流速V、オリフィス孔からの吐出流量Qbであることを説明する図である。 水路が増水したとき及び減水したときの水力発電装置の状態を説明する図である。 減水時において、オリフィス孔の開口面積をA1からA2に変更した場合の上流水位の状態の変化を説明する図である。 増水時において、オリフィス孔の開口面積をA1からA2に変更した場合の上流水位の変化を説明する図である。 他の実施形態の集水板を使用して増水時に上流水位の調整をする際の説明図である。 本発明の他の実施形態を示すもので、1軸の垂直軸水車を使用した水力発電装置の平面図である。 本発明の他の実施形態を示すもので、(a)はギアと可動式ゲートの位置関係を示す平面図、(b)はC-C断面図である。 本発明の水力発電装置を幅の広い水路に設置した例を示す説明図である。 本発明の水力発電装置を幅の狭い水路に設置した例を示す説明図である。 本発明の水力発電装置を段差がなく幅の狭い水路に設置したときの集水板の機能を示す説明図で、(a)は平面図、(b)は断面図である。 本発明の水力発電装置を段差のある幅の広い水路に設置したときの集水板の機能を示す説明図で、(a)は平面図、(b)は断面図である。 本発明の水力発電装置を幅がより広い水路に設置したときの集水板の変形例を示す説明図である。 本発明の水力発電装置における増速板の放流機能を説明する平面図である。 本発明の水力発電装置における増速板の変形例を示す平面図である。
 以下、本発明を実施するための最良の形態について、添付した図面を参照しながら詳細に説明する。
 図1は本発明に係る水力発電装置の一実施形態を示す平面図である。ただし、各構成を見やすくするために、発電機4、プーリー32,42、ベルト43、駆動軸41については一部省略して図示している。図2は、図1のB-B断面図である。ただし、各構成を明確にするために、ギア54、可動式ゲート5、増速板7を省略して図示している。図3は、水力発電装置1が備える垂直軸水車3の構成を説明する断面図であるが、可動式ゲート5と垂直軸水車3の位置関係を明確にするために簡略化して図示している。図4は、水力発電装置1が備える垂直軸水車3の構成を説明するための斜視図である。
 図1に示すように、本発明の水力発電装置1は、入水口8と、排水口9と、入水口8から排水口9に連通する流路25とを有するハウジング2を備え、流れのある水路の上流側に入水口8、下流側に排水口9が配置されるように設置して使用する。
 水力発電装置1は、図2に示すように、ハウジング2の流路25内に回転可能に支持された複数の回転翼33,33、…(以下単に「回転翼33」と表記する)を有する垂直軸水車3と、垂直軸水車3の回転力を受けて発電する発電機4と、入水口8から流入し、かつ、垂直軸水車3の回転翼33の先端に作用する水流の通水断面積Aを増減可能な可動式ゲート5と、水路に沈めて設置した際に、水路を流れる水を堰き止めて貯留しつつ、その貯留した水を入水口8へと集水する集水板6と、を具備している。
 ハウジング2は、天板21、底板22、2枚の側板23,23から構成され、上流側に開口した入水口8と下流側に開口した排水口9とを有している。天板21には、2つの円弧状に形成したスライド溝24が設けられており、このスライド溝24に案内されて、可動式ゲート5が、歯形部52(図3を参照)を挿入させた状態で、図中矢印方向に移動可能となるように構成されている。
 ハウジング2内には入水口8から排水口9に連通する流路25が形成されており、この流路25内には、対向配置された垂直軸水車3,3が収容されている。本実施形態の垂直軸水車3は回転軸31と複数の回転翼33を有するクロスフロー水車であり、天板21と底板22に形成された軸受26,26によって回転軸31が回転可能に支持されている(図4参照)。なお、本実施形態では垂直軸水車3,3にクロスフロー水車を使用しているが、垂直軸型の水車であれば他のものも適用可能である。
 発電機4は、回転軸31に取り付けられたプーリー32と自身の駆動軸41に取り付けられたプーリー42とがベルト43によって接続されており、垂直軸水車3の回転軸31が回転すると、その回転力がベルト43を介して駆動軸41に伝達されて発電を行うようになっている。この発電機4は、各垂直軸水車3、3に1個ずつ取り付けられている。
 可動式ゲート5は、2枚の扇形の門扉が軸を支点に回転する方式のセクターゲート(ラジアルゲート)である。このゲートは、垂直軸水車3の回転軸31に回転可能に支持されるとともに、回転軸31にベアリング53,53を介して取り付けられた扇形の本体部51と、本体部51に設けられた円弧状の歯形部52とからなる。歯形部52の上方部分の外周にはギア54と噛み合わせるための歯形が形成されている。
 集水板6は、入水口8の開口縁に一体又は別体として設けられており、水路を流れる上流側の水を堰き止めて貯留するためのものである。本発明の水力発電装置1においては、この集水板6により堰き止めた水を貯留しながら、貯留した水を入水口8からハウジング2の内部へと通水する。そのため、可動式ゲート5により調整された開口部分である通水断面積Aがオリフィス孔となり、このオリフィス孔の開口面積と、集水板6により集水され上流側に貯水された水の水位Hにより、垂直軸水車3に作用する流量が決定される。
 また、ハウジング2内には、図1に示すように対向配置された増速板7,7が設けられており、この増速板7,7によって入水口8の開口面積を徐々に減少させて流路25内の水の流れを増速させるようになっている。本実施形態の増速板7,7は、引き上げ式のスルースゲートで構成されており、垂直方向に引き上げることにより底板22との間に隙間ができ、この隙間から流路25内の水を放流することができる。
 次に、このように構成された水力発電装置1における可動式ゲート5の動作について図5を参照しながら説明する。図5は、水力発電装置1の動作を説明するための図であり、(a)は可動式ゲート5,5が開いた状態、(b)は可動式ゲート5,5が閉じた状態を示している。なお、可動式ゲート5,5の状態を明確にするために、増速板7,7やその他の構成については図示を省略している。
 図5(a)に示すように、可動式ゲート5,5が全開状態の場合、このときの通水断面積、すなわちオリフィス孔の開口面積はAである。以下、通水断面積Aをオリフィス孔とし、このオリフィス孔の開口面積の状態をAに数字を付記して表示することとする。
 この状態から、図5(b)に示す閉状態に変更するためには、2つのギア54,54を図5(a)に示す矢印方向に回転させればよい。すると、この回転に連動してギア54,54に噛み合わされた歯形部52,52がスライド溝5内で垂直軸水車3,3の外周に沿って中央部へと移動し、最後まで移動すると歯形部52,52の内側先端どうしが近接する。この状態が閉状態であり、この状態にすると、オリフィス孔の開口面積が略ゼロになり、垂直軸水車3,3への通水が遮断され、回転翼33の回転動作を停止させることができる。この状態で垂直軸水車3,3のメンテナンス作業を行えば、水力発電装置1をクレーンなどにより陸に引き上げたりする必要がなくなるので、メンテナンス作業が容易に行えるようになる。メンテナンス作業が終了したら、ギア54,54を図5(a)に示す矢印と反対方向に回転させれば、可動式ゲート5,5を垂直軸水車3,3の外周に沿って外側(側板23,23側)方向へと移動させることができる。なお、可動式ゲート5の形態はこれに限らず、流路25に直交する方向に移動して開閉し、その開閉によって通水断面積を増減する構造であってもよい。
 本発明の水力発電装置1においては、上述したように可動式ゲート5,5を使用してオリフィス孔の開口面積を調整することができる。オリフィスの原理によれば、このオリフィス孔の開口面積が小さくなれば垂直軸水車3,3へ通水する流量が減少し、その結果、垂直軸水車3,3の回転力が低下することとなりそうであるが、本発明においてはそうはならない。その原理を図6に基づいて説明する。
 図6は、水力発電装置1のオリフィス孔と垂直軸水車3,3との関係を説明するための模式図である。図6(a)はオリフィス孔の開口面積がA1、図6(b)はオリフィス孔の開口面積がA2であることを表している。
 図6(a)の状態では、垂直軸水車3,3に通水される水はオリフィス孔の開口面積A1の開口部を通過する。この通過した水流のうち水流aを両垂直軸水車3,3間の中心に導く回転翼は図6(a)に記載の回転翼33aである。他方、両垂直軸水車3,3の回転に最も寄与する回転翼は同図の33bである。つまり、垂直軸水車3,3の回転力を左右するのは、この回転翼33bの先端に直接衝突する水の流量である。
 これに対して、図6(b)の状態、すなわち可動式ゲート5,5を閉方向に移動させオリフィス孔の開口面積をA1よりも小さいA2とした場合には、この開口面積A2の開口部を水流が通過する。この場合においても、オリフィス孔の開口面積が小さくなってはいるが、回転翼33bの先端に直接流水する水の量にはほとんど変化はない。このように、本発明の水力発電装置1においては、オリフィス孔の開口面積を小さくしたとしても、垂直軸水車3,3の回転力にそれほど影響しないようにすることができる。これにより、上流側の水位を調整しながら安定した水力発電が行えるのであるが、その理由について図7~図15を参照しながら以下に説明する。
 図10を除く図7~図15は、いずれも、図2を簡略図案化したものである。集水板6により上流側の水を貯水し、その貯水した上流側の水位とオリフィス孔から流水する流量及び流速の関係を表している。
 図7を例にとって説明すると、上流からの流量をQ1、有効水位差H1、オリフィス孔から吐出される水流の流速V1、オリフィス孔の開口面積をA1、重力加速度gとすると、流速V1は、次式で表される。
Figure JPOXMLDOC01-appb-I000001
 なお、ここでは、ベナコントラクタによる断面収縮は除外して考えている。
 仮に、オリフィス孔から吐出される流量が流量Q1であったならば、この流量Q1は次式で表される。
Figure JPOXMLDOC01-appb-I000002
 したがって、図7に示すように、上流からの流量とオリフィス孔からの吐出流量とがともにQ1であったならば、オリフィス孔の開口面積を調整することにより、有効水位の調整が可能となる。
 一方、上流からの流量に変化が生じた場合には、オリフィス孔の開口面積を調整することにより、有効水位差を一定とすることができる。
 ところで、水路における水力発電において重要なのは、最大発電を求める場合には、上流からの流量とオリフィス孔から吐出される流量を同一流量にする必要があるということである。例えば、図8に示すように、仮に、上流からの流量Q1、Q3がオリフィス孔から吐出される流量Q2、Q4より少ない場合には、有効水位差H1、H2は減少する。一方、Q1、Q3の方が多ければ、有効水位差H1、H2は増加する。
 水路の場合には、通年一定の水量というケースは少なく特に農業用水はかんがい期、非かんがい期の水量は約2~5倍に変動するのが普通である。そして、この水量の変動が、オリフィス孔から吐出される水流の流速V及び有効水位差Hに影響を及ぼす。
 上流からの流量の変動が流速V及び有効水位差Hの変動、そして発電量W=QgHへの変動の相関関係を図9を参照して説明する。
 通常時の発電量W1は、W1=Q5×g×H3となる。一方、上流からの流量が減少すると、オリフィス孔の開口面積を調整できないとすると、H4及びV4の減少が起こる。
 ここで、一般的な水路の水位について図10を参照して説明する。本来の水路機能は、計画水量に対する水路断面形状や水路勾配が決定される。一般的に、計画する水路の目的及び条件を設定し、その条件を満たす水路断面を設計する。設計する目的水路の計画流量(最大、最小)、この計画水量(最大値)の水深Hcを満たす。一般的には、HbはHaの8割水深としている。これは水理公式のマニング式及びクッター式により水路断面、水路勾配を決定していく。その際には、一般的には水路の流速速度は平均流速1.2m/sec~1.5m/sec程度としている。同時に、この水路流速は下流にいくに従って早くなるように設計するのが常識である。この水路の機能を維持しつつ発電設備の併用が水路発電の重要な必須条件となる。
 このことは何を意味するかについて、図11を参照して説明する。この図11は、上流からの流量Qa、上流水位Ha、オリフィス孔の開口面積がAの場合に、有効水位H、流速V、オリフィス孔からの吐出流量Qbであることを図案化したものである。上流水位であるHaは、その水路機能を維持する最優先事項である。この水位が最大許容水深Hbを越えてはならず、必要に応じて発電量を増加させる場合には、上流水路の嵩上げが必要になる。
 次に、オリフィス孔の開口面積を調整しなかった時の水力発電装置の増水時及び減水時の状態について、図12を参照して説明する。増水時においては、上流水位はHeとなるがHbを越える流量+Qcは集水板6を越流してしまい発電には使われないこととなる。したがって、増水時の上流水位HeはHbを越えてはいけないこととなる。一方、減水時においては、上流水位Heは減少し、その結果、有効水位差Hも減少する。従って、発電量がQaの減少とHの減少の二重の減少により水力発電装置の発電効率を下げ、発電量自体の全体量を減少させる不利な状態となる。
 このような減水時及び増水時において、本発明の水力発電装置ではオリフィス孔の開口面積を調整することにより上流水位の位置を変更可能なことを図13及び図14を参照して説明する。まずは、図13に示すように減水時において、オリフィス孔の開口面積をA1からA2に変更した場合、理論発電量はそれぞれW1=Qa×g×H1、W2=Qa×g×H2となり、当然、W1<W2の発電量が得られる。ここで、W2の発電量を得るのを可能にするのが、オリフィス孔の開口面積をA1からA2に変更できるからである。すなわち、この場合には、水路機能の維持可能な水位まで水面を上昇させるように、オリフィス孔からの吐出流量を少なくすればよい。すなわち、オリフィス孔の開口面積を小さくするように可動式ゲート5を閉方向に移動させればよい。H2を保てるオリフィス孔の開口面積A2であれば、W2の発電量が得られる。
 同様に、増水時の越流している流量+Qcを発電に使用できるようにオリフィス孔の開口面積を拡大できれば、発電量がアップする。この場合には、越流している流量+Qcが越流しないような水位になるように、オリフィス孔からの吐出流量を多くすればよい。すなわち、オリフィス孔の開口面積を大きくするように可動式ゲート5を開方向に移動させればよい。この場合の発電量は、W3=Qa×g×H3、W4=(Qa+Qc)×g×H4である。このようにすれば、上流水位の越流も起こさず、最大発電量の向上に繋がる。
 このように本発明の水力発電装置においては、可動式ゲートを開閉することによってオリフィス孔の開口面積を調整することができるので、水力発電の効率を下げずに発電量の増大と、流量調整機能を発揮することができる。さらに、可動式ゲートを完全に閉じることにより垂直軸水車へと流れる水を止水することができるので、メンテナンス作業も容易に行える。
 なお、増水量が多く、オリフィス孔の開口面積を拡大しただけでは越流を止められない場合もある。そのような場合には、図15に示したように集水板6に集水板流量調整開口部を設け、越流している水をこの開口部から下流側へと放流するような形態を採用することもできる。また、集水板6に開閉扉(図示略)を設けておき、水路の水位変動に応じて開閉扉の開き具合を調節し、水路の上流側の越流水を流路に通さずに下流側へと放流させるように構成されていてもよい。
 上述した水力発電装置1では2軸の垂直軸水車3,3を採用したが、図16に示すような構造の1軸の垂直軸水車3を採用することもできる。この図16には、1軸の垂直軸水車3を採用した水力発電装置1において、可動式ゲート5の開状態と閉状態をそれぞれ図示しているが、前記水力発電装置1の構成と同じ機能、構成については同一の符号を付している。なお、構成、動作に関しては前記とほぼ同様であるので詳細な説明を省略する。
 可動式ゲート5の開閉構造はこれに限定されるものではなく、例えば図17のようにギアを下流側に配置する構造であってもよい。
 この水力発電装置1において、可動式ゲート5は、前記実施形態と異なり本体51の上板55を半円形状にし、その周囲に歯形を形成している。そして、図17(a)に示すように、この上板55の一部と本体とが結合している。上板55の歯形部分はギア54と噛み合わされ、ギア54を回転させると、上板55が連動して回転し、前記実施形態と同様に、可動式ゲート5が開閉することとなる。
 ギア54を回転させる方法として、本実施形態では、ハンドル57を使用する。すなわち、ギア54の回転軸56の上端にハンドル57の先端を嵌合し、ハンドル57の把持部58を回転操作することによりギア54を回転させるように構成している。
 なお、本発明は上述した実施形態に限らず、発明の要旨を変更しない範囲内で以下のような各種の実施形態が考えられる。
 例えば、水力発電装置1を設置する水路の状況に適応させて、集水板6の形態を変形することができる。図18に示すように、この水力発電装置1を幅の広い水路に設置する場合には、集水板6の両端部を固定金具61で水路の両壁に固定する。この場合、集水板6は、水路に流れる水を堰き止めて貯水する手段としてだけでなく、ハウジング2を水路に連結、固定する手段としても機能する。
 これに対して、図19に示すように、この水力発電装置1を幅の狭い水路に設置する場合には、ハウジング2の両端部を直接、固定金具61で水路の両壁に固定する。この場合、ハウジング2の前面板27が固定手段としての機能と集水板6としての機能を兼ねることになる。
 また、図20に示すように、段差がなく幅の狭い水路に設置した場合、集水板6は、水路に流れる水を堰き止めて貯水しつつ、上流側の水位を上昇させて水路内に落差を作り出す。これにより、落差によって生じる位置エネルギーをハウジング2内の垂直軸水車3に作用させる機能が発揮される。
 また、図21のような段差のある幅の広い水路の場合には、段差部分の下流側にハウジング2を設置すれば、段差部分を流れ落ちる水の落差を利用して、より大きなエネルギーを垂直軸水車3に作用させることができる。
 さらに、幅がより広い水路に設置する場合には、図22に示すように水路の段差部分に取水ボックス62を設置して、この取水ボックス62の取水口62aに集水板6を取り付けて、排水口62bに水力発電装置1のハウジング2を取り付ければよい。この場合、集水板6は、水路の流れに対して直交する方向に向けた集水板6Aとするか、又は水路の流れに対して所定角度で傾いた方向に向けた集水板6Bとする。これにより、集水板6は、上流側の水位を上昇させて落差を作り出すだけでなく、上流を流れる水を中央の取水ボックス62へと集める機能を果たすことになる。
 また、本発明の水力発電装置1において必須の構成ではないが、追加の機能として、以下のように増速板7に放流機能を持たせてもよい。
 すなわち、図23に示す水力発電装置1では、増速板7が引き上げ式のスルースゲートで構成されており、ハウジング2の両側の側板23,23に水が通り抜ける放流孔28,28が開設されている。これにより、図のように可動式ゲート5,5を閉じた状態で増速板7,7を垂直方向に引き上げることによって、流路25内部の水が底板22との間の隙間から放流孔28を通り抜けてハウジング2の外部へと放流するようなっている。したがって、この水力発電装置1を水路に設置したままであっても、水路の水の流れを止めることなく、ハウジング2内部の垂直軸水車3や発電機4等の部品のメンテナンス作業を行うことができる。
 また、増速板7の変形例として、図24に示すような形態を採用することもできる。この増速板7は、回転式の開閉扉71を備えた回転ゲートであり、増速板7の中央に開閉扉71が設けられており、この開閉扉71は垂直軸72を中心に図の矢印方向に回転可能に支持されている。この構造の場合にも、可動式ゲート5,5を閉じた状態で、増速板7の開閉扉71を回転させて開いた状態にすれば、流路5内部の水を放流孔28からハウジング2の外部へと放流させることができる。なお、放流機能を有する増速板7の形態についてはこれに限らず、水平方向に開閉可能な片開き、又は両開きのスライドゲート(図示略)を採用してもよい。
 1…水力発電装置
 2…ハウジング
   21…天板
   22…底板
   23…側板
   24…スライド溝
   25…流路
   26…軸受
   27…前面板
   28…放流孔
 3…垂直軸水車
   31…回転軸
   32…プーリー
   33…回転翼
 4…発電機
   41…駆動軸
   42…プーリー
   43…ベルト
 5…可動式ゲート
   51…本体
   52…歯形部
   53…ベアリング
   54…ギア
   55…上板
   56…回転軸
   57…ハンドル
   58…把持部
 6…集水板
   61…固定金具
   62…取水ボックス
 7…増速板
   71…開閉扉
   72…垂直軸
 8…入水口
 9…排水口
 A…オリフィス孔(通水断面積)

Claims (6)

  1.  流れのある水路に設置して発電を行う水力発電装置であって、
     前記水路の上流側に配置される入水口、下流側に配置される排水口、及び入水口から排水口に連通する流路を有するハウジングと、
     前記ハウジングの入水口の開口縁に設けられ、前記水路を流れる水を堰き止めて貯留しつつ前記入水口へと集水する集水板と、
     前記ハウジングの流路内に回転可能に支持された回転翼を有する垂直軸水車と、
     前記垂直軸水車の回転力を受けて発電する発電機と、
     前記入水口から流入して前記垂直軸水車の回転翼先端に作用する水流の通水断面積を増減することにより、前記水路の上流側に貯留した水の水位を調整可能な可動式ゲートと、
     を備えたことを特徴とする水力発電装置。
  2.  前記可動式ゲートは、前記流路に直交する方向に開閉することにより通水断面積を増減する構成か、又は前記垂直軸水車の回転軸に取り付けられ、前記回転翼の外周に沿って開閉することにより通水断面積を増減する構成であることを特徴とする請求項1に記載の水力発電装置。
  3.  前記ハウジング内に立設され、前記入水口の開口面積を徐々に減少させて前記流路内の水の流れを増速させる増速板が設けられていることを特徴とする請求項1又は2に記載の水力発電装置。
  4.  前記増速板は、垂直方向に引き上げ可能なスルースゲート、水平方向に開閉可能なスライドゲート、あるいは垂直軸を中心に回転可能な回転ゲートになっており、当該ゲートを開くことにより前記流路内の水を前記ハウジングに設けられた放流孔からハウジング外部に放流可能に構成されていることを特徴とする請求項3に記載の水力発電装置。
  5.  前記集水板に開閉扉が設けられ、当該開閉扉を開くことにより前記水路の上流側の越流水を前記流路に通さずに下流側へと放流可能に構成されていることを特徴とする請求項1~4のいずれか1項に記載の水力発電装置。
  6.  前記垂直軸水車は、1軸の、あるいは対向配置された2軸のクロスフロー水車であることを特徴とする請求項1~5のいずれか1項に記載の水力発電装置。
PCT/JP2011/069889 2011-05-18 2011-09-01 水力発電装置 WO2012157131A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
ES11815430.1T ES2560434T3 (es) 2011-05-18 2011-09-01 Dispositivo generador hidroeléctrico
CA2770782A CA2770782C (en) 2011-05-18 2011-09-01 Hydraulic power generating apparatus
SI201130718T SI2711541T1 (sl) 2011-05-18 2011-09-01 Naprava za generiranje vodne energije
EP11815430.1A EP2711541B1 (en) 2011-05-18 2011-09-01 Hydroelectric generator device
CN201180002871.1A CN102959232B (zh) 2011-05-18 2011-09-01 水力发电装置
US13/390,363 US8616830B2 (en) 2011-05-18 2011-09-01 Hydraulic power generating apparatus
MX2012003965A MX2012003965A (es) 2011-05-18 2011-09-01 Aparato de generacion de energia hidraulica.
BR112012007068A BR112012007068A2 (pt) 2011-05-18 2011-09-01 aparelho para geração de energia hidráulica
KR1020127003014A KR101200458B1 (ko) 2011-05-18 2011-09-01 수력 발전 장치
PL11815430T PL2711541T3 (pl) 2011-05-18 2011-09-01 Hydrauliczny aparat do wytwarzania mocy
RU2012113641/06A RU2500916C1 (ru) 2011-05-18 2011-09-01 Гидравлическая энергогенерирующая установка
AU2011292911A AU2011292911B2 (en) 2011-09-01 2011-09-01 Hydraulic power generating apparatus
AP2013007296A AP2013007296A0 (en) 2011-05-18 2011-09-01 Hydraulic power generating apparatus
IN2560DEN2012 IN2012DN02560A (ja) 2011-05-18 2012-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-111809 2011-05-18
JP2011111809A JP4817471B1 (ja) 2011-05-18 2011-05-18 水力発電装置

Publications (1)

Publication Number Publication Date
WO2012157131A1 true WO2012157131A1 (ja) 2012-11-22

Family

ID=45327032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069889 WO2012157131A1 (ja) 2011-05-18 2011-09-01 水力発電装置

Country Status (15)

Country Link
EP (1) EP2711541B1 (ja)
JP (1) JP4817471B1 (ja)
CN (1) CN102959232B (ja)
AP (1) AP2013007296A0 (ja)
BR (1) BR112012007068A2 (ja)
ES (1) ES2560434T3 (ja)
IN (1) IN2012DN02560A (ja)
MX (1) MX2012003965A (ja)
MY (1) MY168230A (ja)
PE (1) PE20130471A1 (ja)
PL (1) PL2711541T3 (ja)
RU (1) RU2500916C1 (ja)
SI (1) SI2711541T1 (ja)
TW (1) TWI472679B (ja)
WO (1) WO2012157131A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156796A (ja) * 2013-02-14 2014-08-28 Hayami Kohei 発電システム
JP2014231777A (ja) * 2013-05-29 2014-12-11 株式会社中山鉄工所 水力発電装置
RU2619969C1 (ru) * 2015-12-22 2017-05-22 Анистрад Григорьевич Васильев Всесезонная русловая микрогидроэлектростанция
JP2020109233A (ja) * 2019-01-04 2020-07-16 中国電力株式会社 越流量調整装置および越流量調整方法
WO2022099358A1 (en) * 2020-11-10 2022-05-19 Scott Hookey A modular electricity generation system

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031142A (ja) * 1998-07-16 2000-01-28 Fujitsu Ltd 半導体装置及びその製造方法
CN103573529B (zh) * 2012-08-01 2017-06-13 杭州林黄丁新能源研究院有限公司 水轮机
WO2014019266A1 (zh) * 2012-08-01 2014-02-06 Lin Dong 立式收集海洋能发电装置
CN102900589A (zh) * 2012-10-29 2013-01-30 梁孟林 一种转轮水力发电系统
JP5919596B2 (ja) * 2013-03-11 2016-05-18 株式会社中山鉄工所 水力発電装置
WO2014157719A1 (ja) * 2013-03-29 2014-10-02 中央電子システム株式会社 高効率出力安定化発電装置及び流水式小水力発電システム
JP5600789B1 (ja) * 2013-03-29 2014-10-01 中央電子システム株式会社 高効率出力安定化発電装置及び流水式小水力発電システム
JP2014227986A (ja) * 2013-05-27 2014-12-08 英一 猪坂 水力発電装置
JP6631825B2 (ja) * 2013-05-31 2020-01-15 浩平 速水 発電システム
CN104343619B (zh) * 2013-08-06 2017-05-10 杭州林黄丁新能源研究院有限公司 水流调节装置及其应用的海洋能发电装置
CN104763582B (zh) * 2014-01-03 2018-01-02 杭州林东新能源科技股份有限公司 卷帘门式负荷调节装置及其应用的海洋能发电装置
JP2015140662A (ja) * 2014-01-27 2015-08-03 倫文 木原 水力発電装置
KR101653373B1 (ko) * 2014-07-21 2016-09-01 한국해양과학기술원 저수심 수력발전용 듀얼터빈 조립체
CN105525672A (zh) * 2015-01-16 2016-04-27 厦门市政工程公司 一种跌水井处能量收集装置
CN105003380A (zh) * 2015-04-17 2015-10-28 李德生 双水能分流导水旋叶发电系统
CN104976025A (zh) * 2015-04-17 2015-10-14 李德生 双水能分流犁头旋叶发电系统
CN104989581A (zh) * 2015-04-17 2015-10-21 李德生 斜角形旋叶分流水利发电机
CN104976024A (zh) * 2015-04-17 2015-10-14 李德生 水能分流导水旋叶发电系统
CN104976028A (zh) * 2015-04-17 2015-10-14 李德生 双水能分流旋叶发电系统
NO340092B1 (en) * 2015-06-01 2017-03-06 Deep River As Drop and Go Turbine
CN105781856B (zh) * 2016-05-04 2018-01-02 旺苍县科美防震科技有限公司 一种沉浮式河道水能发电站
CN105971806B (zh) * 2016-06-30 2018-08-07 邓路坪 一种定量液压水轮机
TWI624589B (zh) 2016-07-21 2018-05-21 Lai Rong Yi Low head large flow channel turbine
CN106837663B (zh) * 2017-02-25 2018-10-26 郭保田 江河低水位发电装置
RU2688623C2 (ru) * 2017-10-23 2019-05-21 Виктор Иванович Волкович Водоветровой двигатель
KR101922237B1 (ko) * 2018-06-26 2019-02-13 주식회사 오성기계 수차 터빈을 이용한 이동 및 반잠수식 발전기
KR102095038B1 (ko) * 2018-08-08 2020-03-30 공대원 수중발전기
JP2020051267A (ja) * 2018-09-25 2020-04-02 Ntn株式会社 水力発電装置
CN110258462A (zh) * 2019-06-08 2019-09-20 宁波西沃工程科技有限公司 一种水利工程闸门用流速调控装置
CN110777741A (zh) * 2019-10-18 2020-02-11 河海大学 一种兼顾发电的水闸
TWI718916B (zh) * 2020-03-30 2021-02-11 賴融毅 水流量調節裝置及其水輪機
WO2023163252A1 (ko) * 2022-02-25 2023-08-31 주식회사 씨앤에이에너지 수력발전장치
TWI817671B (zh) * 2022-08-24 2023-10-01 崑山科技大學 一種具高效率、低噪音的水輪機系統以及水輪機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138466A (en) * 1980-03-31 1981-10-29 Minoru Yoshimura Fluid energy converter
JP2001153021A (ja) * 1999-11-29 2001-06-05 Tone Corp 低落差用水力発電装置
JP2009114937A (ja) * 2007-11-06 2009-05-28 Michihiro Oe 水力発電装置
JP2010031791A (ja) * 2008-07-30 2010-02-12 Michihiro Oe 水力発電装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1326769A (en) * 1919-12-30 Lockhart mithn
US326718A (en) * 1885-09-22 collins
US1487391A (en) * 1921-03-31 1924-03-18 Firm Of Locher & Company Hydraulic power plant
US4998846A (en) * 1989-01-26 1991-03-12 Evstratov Jury I Concrete dam bottom discharge works
JPH0465965A (ja) * 1990-07-02 1992-03-02 Ricoh Co Ltd 画像読取装置
JPH0465965U (ja) * 1990-10-08 1992-06-09
RU2131993C1 (ru) * 1997-08-08 1999-06-20 Антонюк Олег Борисович Русловая бесплотинная гидроэлектростанция
RU2360141C1 (ru) * 2007-10-04 2009-06-27 ФГОУ ВПО Московский государственный университет природообустройства (МГУП) Двигатель для утилизации энергии текущей среды
JP4134277B2 (ja) * 2008-03-31 2008-08-20 シーベルインターナショナル株式会社 小落差水力発電装置
JP2010031797A (ja) * 2008-07-30 2010-02-12 Toyota Motor Corp 内燃機関の排気浄化装置
DE202010010649U1 (de) * 2009-08-08 2010-10-21 Thümmler, Kurt Stationäre Fluss-Wasserkraftanlage mit unterschlächtigem Wasserrad

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138466A (en) * 1980-03-31 1981-10-29 Minoru Yoshimura Fluid energy converter
JP2001153021A (ja) * 1999-11-29 2001-06-05 Tone Corp 低落差用水力発電装置
JP2009114937A (ja) * 2007-11-06 2009-05-28 Michihiro Oe 水力発電装置
JP2010031791A (ja) * 2008-07-30 2010-02-12 Michihiro Oe 水力発電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2711541A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156796A (ja) * 2013-02-14 2014-08-28 Hayami Kohei 発電システム
JP2014231777A (ja) * 2013-05-29 2014-12-11 株式会社中山鉄工所 水力発電装置
RU2619969C1 (ru) * 2015-12-22 2017-05-22 Анистрад Григорьевич Васильев Всесезонная русловая микрогидроэлектростанция
JP2020109233A (ja) * 2019-01-04 2020-07-16 中国電力株式会社 越流量調整装置および越流量調整方法
JP7206916B2 (ja) 2019-01-04 2023-01-18 中国電力株式会社 越流量調整装置および越流量調整方法
WO2022099358A1 (en) * 2020-11-10 2022-05-19 Scott Hookey A modular electricity generation system

Also Published As

Publication number Publication date
JP2012241602A (ja) 2012-12-10
EP2711541A4 (en) 2014-03-26
SI2711541T1 (sl) 2016-02-29
BR112012007068A2 (pt) 2016-04-19
RU2500916C1 (ru) 2013-12-10
PE20130471A1 (es) 2013-04-27
TW201221761A (en) 2012-06-01
CN102959232B (zh) 2014-01-22
IN2012DN02560A (ja) 2015-08-28
PL2711541T3 (pl) 2016-04-29
JP4817471B1 (ja) 2011-11-16
AP2013007296A0 (en) 2013-12-31
ES2560434T3 (es) 2016-02-19
MX2012003965A (es) 2013-01-10
EP2711541B1 (en) 2015-11-04
MY168230A (en) 2018-10-15
TWI472679B (zh) 2015-02-11
CN102959232A (zh) 2013-03-06
EP2711541A1 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP4817471B1 (ja) 水力発電装置
CA2770782C (en) Hydraulic power generating apparatus
CA2683450C (en) Hydroelectric power device
TWI624589B (zh) Low head large flow channel turbine
JP5924993B2 (ja) 水車発電ユニット
KR101747119B1 (ko) 양방향 수력 터빈
KR101200458B1 (ko) 수력 발전 장치
JP5649187B2 (ja) 水力発電装置
KR20170129791A (ko) 간이 수력 발전 장치
JP2003120499A5 (ja)
EA008133B1 (ru) Водяное колесо
KR101208613B1 (ko) 하이브리드형 마이크로 소수력 발전장치
KR101493005B1 (ko) 배수로 적응형 유동 발전장치
RU2162914C2 (ru) Бесплотинная гидроэлектростанция с промежуточным резервуаром
CN114856895B (zh) 一种被动调节式双向潮流能发电装置
KR102206476B1 (ko) 조력 발전 장치
JP7335845B2 (ja) 水力発電装置
KR102337145B1 (ko) 소수력 발전장치
KR100284644B1 (ko) 저 낙차용 수차
JP2024151934A (ja) 翼車装置
JP2006052691A (ja) オープンクロスフロー型水車及びこれを用いた発電機並びにこの発電機からなる発電システム
SK972011U1 (sk) Horizontal water turbine
PL227143B1 (pl) Turbina wodna
UA80343U (uk) Низькошвидкісна гідродинамічна турбіна з саморегулюючою системою рухомих лопатей

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002871.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127003014

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011815430

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13390363

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011292911

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2770782

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12012500539

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2560/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12054353

Country of ref document: CO

Ref document number: 000416-2012

Country of ref document: PE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/003965

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2012113641

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012007068

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11815430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112012007068

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120329