WO2012155823A1 - 一种利用过硫酸盐催化臭氧的水处理方法 - Google Patents

一种利用过硫酸盐催化臭氧的水处理方法 Download PDF

Info

Publication number
WO2012155823A1
WO2012155823A1 PCT/CN2012/075484 CN2012075484W WO2012155823A1 WO 2012155823 A1 WO2012155823 A1 WO 2012155823A1 CN 2012075484 W CN2012075484 W CN 2012075484W WO 2012155823 A1 WO2012155823 A1 WO 2012155823A1
Authority
WO
WIPO (PCT)
Prior art keywords
persulfate
ozone
water
peroxodisulfate
catalyzed
Prior art date
Application number
PCT/CN2012/075484
Other languages
English (en)
French (fr)
Inventor
马军
江进
庞素艳
杨�一
朱君涛
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to US14/118,660 priority Critical patent/US9169141B2/en
Publication of WO2012155823A1 publication Critical patent/WO2012155823A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Definitions

  • the present invention relates to a method of water treatment using ozone.
  • ozone As a strong oxidant, ozone is widely used in drinking water and wastewater treatment processes, but it has certain selectivity for oxidative degradation of organic matter.
  • Catalytic ozone oxidation technology is an advanced oxidation treatment technology developed in recent years. Ozone produces a strong oxidizing hydroxyl radical ( • OH ) under the action of a catalyst. Compared with ozone alone, the hydroxyl radical generated can be unselected. Oxidizing organic matter, and the reaction is efficient and rapid. Therefore, ozone catalytic oxidation technology has become a hot research topic at home and abroad.
  • Hydrogen peroxide (H 2 O 2) is the use of a catalytic ozone, hydrogen peroxide in an aqueous solution of ionization out of HO 2 - induced decomposition of ozone to generate hydroxyl radicals.
  • the hydrogen peroxide catalytic ozone treatment technology has the following disadvantages in practical application: (1) Hydrogen peroxide itself is not easy to ionize, so the ozone decomposition ability is weak; (2) Hydrogen peroxide residue will lead to liquid chlorine in the subsequent disinfection process. The increase is increased; (3) Hydrogen peroxide itself consumes free radicals (•OH+H 2 O 2 ⁇ H 2 O+H + +O 2 - • ), so multi-point dosing is often used in practical applications. The method brings a lot of inconvenience to the operation and management; (4) The liquid hydrogen peroxide itself is easy to be decomposed, and the storage and transportation are inconvenient.
  • the object of the present invention is to solve the problem that the existing hydrogen peroxide catalytic ozone water treatment method has the problems that hydrogen peroxide itself is not easily ionized, the ozone decomposition ability is weak, the hydrogen peroxide remains, and the transportation and storage are inconvenient.
  • the present invention provides a A water treatment method that utilizes persulfate to catalyze ozone.
  • the water treatment method using persulfate-catalyzed ozone of the present invention is carried out by the following steps: to a water containing water to be treated Ozone is introduced into the ozone contact reactor, and persulfate is added at the same time, so that the initial concentration of ozone is 0.1 ⁇ 40mg/L, and the molar ratio of persulfate to ozone is 1: 0.1 ⁇ 10.
  • a water treatment method using persulfate-catalyzed ozone wherein the residence time of the water to be treated in the ozone contact reactor is controlled to be 5 to 60 min.
  • the water treatment process is maintained in a state of agitation, and the water to be treated is sewage, sewage plant secondary water, water source water and filtered water.
  • the persulfate is added in the form of a solid persulfate or as a persulfate solution.
  • the persulfate salt in the water treatment method using persulfate-catalyzed ozone of the present invention is persulfate and / Or peroxodisulfate, wherein the persulfate is a mixture of one or more of potassium peroxymonosulfate, sodium persulfate and peroxymonosulfate, and the peroxodisulfate is potassium peroxodisulfate or sodium peroxodisulfate. And a mixture of one or more of peroxydisulfate.
  • persulfate is replaced by a composite salt of persulfate and alkali, wherein the molar ratio of persulfate to alkali is 1:1 ⁇ 10, and the addition of alkali can adjust the pH of the water treatment system to 6 ⁇ 9 Conducive to persulfate ionization, which enhances the ability to induce ozone decomposition; among them, persulfate is persulfate and / Or peroxodisulfate, the base is one of or a mixture of potassium hydroxide, sodium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate or potassium hydrogencarbonate; persulfate is a mixture of one or more of potassium monosulfate, sodium persulfate and peroxymonosulfate, one or more of potassium peroxydisulfate, sodium peroxodisulfate and ammonium peroxodisul
  • persulfate as a green emerging catalyst has the following advantages: (1) It is easy to ionize and induces strong ozone decomposing ability; (2) It has less residual amount in the process of catalytic ozone, does not consume residual chlorine in the subsequent treatment process, and has its own sterilization and disinfection effect; (3) weak ability to consume free radicals; ) As a powdery solid, it is easy to store and transport.
  • the method for treating water by using persulfate-catalyzed ozone of the present invention utilizes persulfate-catalyzed oxidation of dehydration by strong oxidizing hydroxyl radical and sulfate radical generated by ozone during the reaction, and hydrogen peroxide catalytic ozone treatment method Compared with strong catalytic ability and high oxidative degradation efficiency,
  • the pH has a wide application range, a small amount of catalyst residue, and convenient operation and operation, and can be applied in large-scale production.
  • Fig. 1 is a graph showing the removal rate of pesticide atrazine in water source water in the twenty-ninth embodiment.
  • Embodiment 1 is A water treatment method using persulfate-catalyzed ozone is carried out by introducing ozone into an ozone-contacting reactor containing water to be treated, and simultaneously adding persulfate to make the initial concentration of ozone 0.1 ⁇ 40mg/L, the molar ratio of persulfate to ozone is 1: 0.1 ⁇ 10, that is, the water treatment method using persulfate-catalyzed ozone is completed, wherein The residence time of the water to be treated in the ozone contact reactor is controlled to be 5 to 60 minutes, and the water is maintained in a state of agitation during the water treatment.
  • the water to be treated is sewage, sewage plant secondary water, water source water and filtered water.
  • the persulfate is added in the form of a solid persulfate or as a persulfate solution.
  • the water treatment method using persulfate-catalyzed ozone of the present embodiment utilizes persulfate-catalyzed oxidation of a highly oxidizing hydroxyl radical and sulfate radical generated by ozone in the reaction process, and catalytic hydrogenation with hydrogen peroxide. Compared with the method, it has strong catalytic ability and high oxidative degradation efficiency.
  • the pH has a wide application range, a small amount of catalyst residue, and convenient operation and operation, and can be applied in large-scale production.
  • Embodiment 2 This embodiment differs from the specific embodiment in that persulfate is persulfate and / Or peroxodisulfate. The other steps and parameters are the same as in the first embodiment.
  • the persulfate is a mixture of peroxysulfate and peroxodisulfate
  • the two are mixed in any ratio.
  • the persulfate salt is a mixture of one or more of potassium peroxymonosulfate, sodium persulfate and peroxymonosulfate
  • the peroxodisulfate is potassium peroxodisulfate, sodium peroxodisulfate and peroxodisulfate. a mixture of one or several.
  • the present embodiment differs from the specific embodiment in that the persulfate is a persulfate, and the persulfate is one of potassium peroxymonosulfate, sodium persulfate and peroxymonosulfate or Several mixtures.
  • the other steps and parameters are the same as in the first embodiment.
  • the persulfate when the persulfate is a mixture, it is mixed at an arbitrary ratio.
  • Embodiment 4 This embodiment differs from Embodiment 1 in that the persulfate is a peroxodisulfate, wherein the peroxodisulfate is one of potassium peroxodisulfate, sodium peroxodisulfate and ammonium peroxodisulfate or Several mixtures. The other steps and parameters are the same as in the first embodiment.
  • the peroxodisulfate when the peroxodisulfate is a mixture, it is mixed at an arbitrary ratio.
  • persulfate is persulfate and peroxodisulfate
  • the persulfate is a mixture of one or more of potassium peroxymonosulfate, sodium persulfate and peroxymonosulfate
  • the peroxodisulfate is potassium peroxodisulfate, sodium peroxodisulfate and peroxodisulfate. a mixture of one or several.
  • the other steps and parameters are the same as in the first embodiment.
  • the persulfate and the peroxodisulfate are mixed at an arbitrary ratio, and when the persulfate is a mixture, the mixture is mixed at an arbitrary ratio, and when the peroxodisulfate is a mixture, it is mixed at an arbitrary ratio.
  • This embodiment differs from the specific embodiment 1 in that the persulfate is replaced by a composite salt of a persulfate and a base, wherein the molar ratio of the persulfate to the base is 1: 1 to 10 , wherein the persulfate is persulfate and / Or peroxodisulfate, the base being one of or a mixture of potassium hydroxide, sodium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate.
  • the other steps and parameters are the same as in the first embodiment.
  • the persulfate is a persulfate and a peroxodisulfate
  • it is mixed at an arbitrary ratio.
  • the base is a mixture of several of them, it is mixed at an arbitrary ratio.
  • the addition of the base can adjust the pH of the water treatment system from 6 to 9 It is beneficial to the persulfate ionization, which enhances the ability to induce ozone decomposition.
  • the molar ratio of persulfate to base is preferably from 1:3 to 8, and most preferably 1:5.
  • the embodiment is different from the sixth embodiment in that the persulfate is replaced by a composite salt of persulfate and alkali, wherein the molar ratio of persulfate to alkali is 1: 1 ⁇ 10.
  • the persulfate salt is a mixture of one or more of potassium peroxymonosulfate, sodium persulfate and peroxymonosulfate.
  • the persulfate when it is a mixture of several of them, it is mixed at an arbitrary ratio.
  • the molar ratio of persulfate to base is preferably 1:3 to 8, and most preferably 1:5.
  • BEST MODE 8 This embodiment differs from Embodiment 6 in that the persulfate is replaced by a composite salt of peroxodisulfate and alkali, wherein the molar ratio of persulfate to alkali is 1:1 ⁇ 10.
  • the peroxodisulfate is a mixture of one or more of potassium peroxydisulfate, sodium peroxodisulfate and peroxodisulfate.
  • the peroxodisulfate when the peroxodisulfate is a mixture, it is mixed at an arbitrary ratio.
  • the molar ratio of peroxodisulfate to alkali is preferably 1:3 to 8, and most preferably 1:5.
  • This embodiment differs from Embodiment 6 in that persulfate is replaced by a composite salt of persulfate, peroxodisulfate and alkali, wherein the total molar amount of persulfate and peroxodisulfate is The molar ratio of the base is 1 : 1 ⁇ 10
  • the persulfate is a mixture of one or more of potassium peroxymonosulfate, sodium persulfate and peroxymonosulfate
  • the peroxodisulfate is potassium peroxydisulfate, sodium peroxodisulfate and ammonium peroxodisulfate. a mixture of one or more of them.
  • the persulfate when the persulfate is a mixture of several of them, it is mixed at an arbitrary ratio. In the present embodiment, when the peroxodisulfate is a mixture, it is mixed at an arbitrary ratio.
  • the ratio of the total molar amount of persulfate and peroxodisulfate to the molar amount of the base is preferably 1:3 to 8, and most preferably 1 : 5 .
  • the present embodiment differs from one of the specific embodiments one to fourteen in that the molar ratio of persulfate to ozone is 1: 0.2 ⁇ 9.
  • the other steps and parameters are the same as one of the specific embodiments one to fourteen.
  • the present embodiment differs from one of the specific embodiments one to fourteen in that the molar ratio of persulfate to ozone is 1: 0.4 ⁇ 7.
  • the other steps and parameters are the same as one of the specific embodiments one to fourteen.
  • This embodiment differs from one of the specific embodiments one to fourteen in that the molar ratio of persulfate to ozone is 1: 0.5 ⁇ 6.
  • the other steps and parameters are the same as one of the specific embodiments one to fourteen.
  • the present embodiment differs from one of the specific embodiments one to fourteen in that the molar ratio of persulfate to ozone is 1: 0.6 ⁇ 5.
  • the other steps and parameters are the same as one of the specific embodiments one to fourteen.
  • the present embodiment differs from one of the specific embodiments one to fourteen in that the molar ratio of persulfate to ozone is 1: 0.9 ⁇ 2.
  • the other steps and parameters are the same as one of the specific embodiments one to fourteen.
  • This embodiment differs from one of the specific embodiments one to fourteen in that the molar ratio of persulfate to ozone is 1 : 1 .
  • the other steps and parameters are the same as one of the specific embodiments one to fourteen.
  • This embodiment differs from one of the specific embodiments one to twenty-three in that the residence time of the water to be treated in the ozone contact reactor is 10 to 50 minutes. .
  • the other steps and parameters are the same as one of the specific embodiments one to twenty-three.
  • This embodiment differs from one of the specific embodiments one to twenty-three in that the residence time of the water to be treated in the ozone contact reactor is controlled to be 30 minutes. .
  • the other steps and parameters are the same as one of the specific embodiments one to twenty-three.
  • This embodiment is a water treatment method using persulfate-catalyzed ozone, which is realized by the following steps: The ozone in the sewage contact reactor is filled with ozone, and a composite salt of monosulfate and potassium hydroxide is added at the same time, so that the initial concentration of ozone is 30 mg/L, and the molar ratio of persulfate to ozone is 1 : 1 The molar ratio of persulfate to potassium hydroxide is 1:8, that is, the water treatment method using persulfate-catalyzed ozone is completed, wherein the residence time of the treated water in the ozone contact reactor is controlled to be 60 min. Keep stirring during the water treatment.
  • the persulfate is added in the form of a persulfate solution.
  • the persulfate salt is a mixture of potassium peroxymonosulfate and sodium persulfate in any ratio.
  • the addition of potassium hydroxide brings the pH of the sewage treatment system to 6-9. To make sewage have better treatment effect.
  • the persulfate salt is a mixture of one or more of potassium peroxymonosulfate, sodium persulfate and peroxymonosulfate.
  • the removal rate of the pollutant in the sewage reaches 90%. the above.
  • This embodiment is a water treatment method using persulfate-catalyzed ozone, which is achieved by the following steps: The ozone contact reactor of the secondary effluent of the sewage plant is filled with ozone, and the disulfate is added at the same time, so that the initial concentration of ozone is 10 mg/L, and the molar ratio of persulfate to ozone is 1:1. A water treatment method using persulfate-catalyzed ozone, wherein the residence time of the water to be treated in the ozone contact reactor is controlled to be 60 minutes, and the stirring state is maintained during the water treatment.
  • the persulfate is added in the form of a persulfate solution.
  • the peroxodisulfate is a mixture of potassium peroxydisulfate, sodium peroxodisulfate and peroxodisulfate in an arbitrary ratio.
  • This embodiment is a water treatment method using persulfate-catalyzed ozone, which is achieved by the following steps: Ozone contact reactor of water source water is supplied with ozone, and potassium peroxymonosulfate is added at the same time, the initial concentration of ozone is 2 mg/L, and the molar ratio of mixed salt to ozone is 1:2.
  • a water treatment method using persulfate-catalyzed ozone wherein the residence time of the water to be treated in the ozone contact reactor is controlled to be 30 minutes, and the stirring state is maintained during the water treatment.
  • the persulfate is added in the form of a persulfate solution.
  • the water treatment method for catalyzing ozone by potassium monosulfate has a water source water content of 0.5 ⁇ mol/L.
  • the pesticide, atrazine has a removal rate of more than 99% of the pesticide atrazine after oxidation treatment, as shown in Figure 1.
  • This embodiment is a water treatment method using persulfate-catalyzed ozone, which is realized by the following steps: The ozone of the filtered water is contacted with ozone in the reactor, and the mixed salt of sodium sulfite and potassium peroxodisulfate mixed at any ratio is added to make the initial concentration of ozone 0.5 mg/L, and the molar ratio of mixed salt to ozone. Is 1 5: The water treatment method using persulfate-catalyzed ozone is completed, wherein the residence time of the water to be treated in the ozone contact reactor is controlled to be 30 min, and the stirring state is maintained during the water treatment.
  • the persulfate is added in the form of a persulfate solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

一种利用过硫酸盐催化臭氧的水处理方法 技术领域
本发明涉及一种利用臭氧进行水处理的方法。
背景技术
臭氧作为一种强氧化剂,在饮用水和废水处理过程中得到广泛应用,但它对有机物的氧化降解具有一定的选择性。催化臭氧氧化技术是近年发展起来的一种高级氧化处理技术,臭氧在催化剂的作用下产生具有强氧化性的羟基自由基( • OH ),与单独臭氧相比,产生的羟基自由基可以无选择的氧化有机物,且反应高效迅速。因此,臭氧催化氧化技术成为国内外研究的热点。过氧化氢( H2O2 )催化臭氧主要是利用过氧化氢在水溶液中电离出来的 HO2 - 诱发臭氧分解产生羟基自由基。但在实际应用过程中过氧化氢催化臭氧处理技术具有以下缺点: (1) 过氧化氢自身不易电离,因此诱发臭氧分解能力弱; (2) 过氧化氢残留会导致后续消毒工艺中液氯投加量增大; (3) 过氧化氢自身会消耗自由基( •OH+H2O2 → H2O+H + +O2 - • ),因此在实际应用过程中经常采用多点投加方式,给操作和管理带来诸多不便; (4) 液态过氧化氢自身易分解、贮存运输不方便。
技术问题
本发明的目的是为了解决现有过氧化氢催化臭氧水处理方法存在过氧化氢自身不易电离、诱发臭氧分解能力弱、过氧化氢残留及运输贮存不方便的问题,本发明提供了一种 利用过硫酸盐催化臭氧的水处理方法 。
技术解决方案
本发明的 利用过硫酸盐催化臭氧的水处理方法是通过以下步骤实现的:向装有待处理水的 臭氧接触反应器中通入臭氧, 同时投加过硫酸盐,使臭氧初始浓度为 0.1~40mg/L ,过硫酸盐与臭氧的摩尔比为 1 : 0.1~10 ,即完成 利用过硫酸盐催化臭氧的水处理方法,其中, 控制待处理水在臭氧接触反应器中的停留时间为 5~60min ,水处理过程中保持搅拌状态,所述待处理水为污水、污水厂二级出水、水源水和过滤后水。
本发明中所述 过硫酸盐的投加方式为以固体过硫酸盐的形式直接投加或者以过硫酸盐溶液的形式投加。
本发明的 利用过硫酸盐催化臭氧的水处理方法中 所述的过硫酸盐为过一硫酸盐和 / 或过二硫酸盐,其中过一硫酸盐为过一硫酸钾、过一硫酸钠和过一硫酸氨中的一种或几种的混合物,过二硫酸盐为过二硫酸钾、过二硫酸钠和过二硫酸氨中的一种或几种的混合物。
本发明的 利用过硫酸盐催化臭氧的水处理方法 中所述过硫酸盐由过硫酸盐和碱的复合盐代替,其中过硫酸盐和碱的摩尔比为 1 : 1~10 ,碱的加入能调节水处理体系的 pH 值在 6~9 ,有利于过硫酸盐电离,使得诱发臭氧分解能力增强;其中,过硫酸盐为过一硫酸盐和 / 或过二硫酸盐,碱为氢氧化钾、氢氧化钠、氢氧化钙、碳酸钠、碳酸钾、碳酸氢钠、碳碳酸氢钾中的一种或其中几种的混合物;过一硫酸盐为过一硫酸钾、过一硫酸钠和过一硫酸氨中的一种或几种的混合物,过二硫酸盐为过二硫酸钾、过二硫酸钠和过二硫酸氨中的一种或几种的混合物。
有益效果
本发明的利用过硫酸盐催化臭氧的水处理方法中,过硫酸盐 作为绿色新兴催化剂 具有以下优点: (1) 自身易于电离,诱发臭氧分解能力强; (2) 催化臭氧过程中剩余量少,在后续处理过程中不消耗余氯,且其自身具有杀菌消毒作用; (3) 消耗自由基能力弱; (4) 作为粉末状固体,易于贮存运输。
本发明的利用过硫酸盐催化臭氧的水处理方法利用过硫酸盐催化臭氧在反应过程中产生的具有强氧化性的羟基自由基和硫酸根自由基氧化除污染,与过氧化氢催化臭氧处理方法相比,具有催化能力强、氧化降解效率高、 pH 适用范围宽、催化剂残留量少、运行操作方便等优点,能够在大规模生产中应用。
附图说明
图 1 是具体实施方式二十九中 水源水中农药莠去津的去除率曲线图。
本发明的实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式为 利用过硫酸盐催化臭氧的水处理方法,其是通过以下步骤实现的:向装有待处理水的 臭氧接触反应器中通入臭氧, 同时投加过硫酸盐,使臭氧初始浓度为 0.1~40mg/L ,过硫酸盐与臭氧的摩尔比为 1 : 0.1~10 ,即完成 利用过硫酸盐催化臭氧的水处理方法,其中, 控制待处理水在臭氧接触反应器中的停留时间为 5~60min ,水处理过程中保持搅拌状态,所述待处理水为污水、污水厂二级出水、水源水和过滤后水。
本实施方式中所述 过硫酸盐的投加方式为以固体过硫酸盐的形式直接投加或者以过硫酸盐溶液的形式投加。
本实施方式的利用过硫酸盐催化臭氧的水处理方法利用过硫酸盐催化臭氧在反应过程中产生的具有强氧化性的羟基自由基和硫酸根自由基氧化除污染,与过氧化氢催化臭氧处理方法相比,具有催化能力强、氧化降解效率高、 pH 适用范围宽、催化剂残留量少、运行操作方便等优点,能够在大规模生产中应用。
具体实施方式二:本实施方式与具体实施方式一不同的是过硫酸盐为过一硫酸盐和 / 或过二硫酸盐。其它步骤及参数与具体实施方式一相同。
本实施方式中 过硫酸盐为过一硫酸盐和过二硫酸盐的混合物时,两者以任意比混合。其中过一硫酸盐为过一硫酸钾、过一硫酸钠和过一硫酸氨中的一种或几种的混合物,过二硫酸盐为过二硫酸钾、过二硫酸钠和过二硫酸氨中的一种或几种的混合物。
具体实施方式三:本实施方式与具体实施方式一不同的是过硫酸盐为过一硫酸盐,其中过一硫酸盐为过一硫酸钾、过一硫酸钠和过一硫酸氨中的一种或几种的混合物。其它步骤及参数与具体实施方式一相同。
本实施方式中过一硫酸盐为混合物时,以任意比混合。
具体实施方式四:本实施方式与具体实施方式一不同的是过硫酸盐为过二硫酸盐,其中过二硫酸盐为过二硫酸钾、过二硫酸钠和过二硫酸氨中的一种或几种的混合物。其它步骤及参数与具体实施方式一相同。
本实施方式中过二硫酸盐为混合物时,以任意比混合。
具体实施方式五:本实施方式与具体实施方式一不同的是过硫酸盐为过一硫酸盐和过二硫酸盐,其中 过一硫酸盐为过一硫酸钾、过一硫酸钠和过一硫酸氨中的一种或几种的混合物,过二硫酸盐为过二硫酸钾、过二硫酸钠和过二硫酸氨中的一种或几种的混合物。其它步骤及参数与具体实施方式一相同。
本实施方式中过一硫酸盐和过二硫酸盐间以任意比混合,过一硫酸盐为混合物时,以任意比混合,过二硫酸盐为混合物时,以任意比混合。
具体实施方式六:本实施方式与具体实施方式一不同的是过硫酸盐由过硫酸盐和碱的复合盐代替,其中过硫酸盐和碱的摩尔比为 1 : 1~10 ,其中,过硫酸盐为过一硫酸盐和 / 或过二硫酸盐,碱为氢氧化钾、氢氧化钠、氢氧化钙、碳酸钠、碳酸钾、碳酸氢钠、碳碳酸氢钾中的一种或其中几种的混合物。其它步骤及参数与具体实施方式一相同。
本实施方式中 过硫酸盐为过一硫酸盐和过二硫酸盐时,以任意比混合。碱为其中几种的混合物时,以任意比混合。
本实施方式中碱的加入能调节水处理体系的 pH 值在 6~9 ,有利于过硫酸盐电离,使得诱发臭氧分解能力增强。
本实施方式中过硫酸盐和碱的摩尔比优选为 1 : 3~8 ,最佳的是 1 : 5 。
具体实施方式七:本实施方式与具体实施方式六不同的是过硫酸盐由过一硫酸盐和碱的复合盐代替,其中过一硫酸盐和碱的摩尔比为 1 : 1~10 ,其中过一硫酸盐为过一硫酸钾、过一硫酸钠和过一硫酸氨中的一种或几种的混合物。其它步骤及参数与具体实施方式六相同。
本实施方式中过一硫酸盐为其中几种的混合物时,以任意比混合。
本实施方式中过一硫酸盐和碱的摩尔比优选为 1 : 3~8 ,最佳的是 1 : 5 。
具体实施方式八:本实施方式与具体实施方式六不同的是过硫酸盐由过二硫酸盐和碱的复合盐代替,其中过硫酸盐和碱的摩尔比为 1 : 1~10 ,其中过二硫酸盐为过二硫酸钾、过二硫酸钠和过二硫酸氨中的一种或几种的混合物。其它步骤及参数与具体实施方式六相同。
本实施方式中过二硫酸盐为混合物时,以任意比混合。
本实施方式中过二硫酸盐和碱的摩尔比优选为 1 : 3~8 ,最佳的是 1 : 5 。
具体实施方式九:本实施方式与具体实施方式六不同的是过硫酸盐由过一硫酸盐、过二硫酸盐和碱的复合盐代替,其中过一硫酸盐和过二硫酸盐总摩尔量与碱的摩尔量比值为 1 : 1~10 ,其中过一硫酸盐为过一硫酸钾、过一硫酸钠和过一硫酸氨中的一种或几种的混合物,过二硫酸盐为过二硫酸钾、过二硫酸钠和过二硫酸氨中的一种或几种的混合物。
本实施方式中过一硫酸盐为其中几种的混合物时,以任意比混合。本实施方式中过二硫酸盐为混合物时,以任意比混合。
本实施方式中过一硫酸盐和过二硫酸盐总摩尔量与碱的摩尔量比值优选为 1 : 3~8 ,最佳的是 1 : 5 。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是臭氧初始浓度为 0. 5~30mg/L 。其它步骤及参数与具体实施方式一至九之一相同。
具体实施方式十一:本实施方式与具体实施方式一至九之一不同的是臭氧初始浓度为 1 ~20mg/L 。其它步骤及参数与具体实施方式一至九之一相同。
具体实施方式十二:本实施方式与具体实施方式一至九之一不同的是臭氧初始浓度为 1.5 ~15mg/L 。其它步骤及参数与具体实施方式一至九之一相同。
具体实施方式十三:本实施方式与具体实施方式一至九之一不同的是臭氧初始浓度为 2 ~10mg/L 。其它步骤及参数与具体实施方式一至九之一相同。
具体实施方式十四:本实施方式与具体实施方式一至九之一不同的是臭氧初始浓度为 5mg/L 。其它步骤及参数与具体实施方式一至九之一相同。
具体实施方式十五:本实施方式与具体实施方式一至十四之一不同的是过硫酸盐与臭氧的摩尔比为 1 : 0.2~9 。其它步骤及参数与具体实施方式一至十四之一相同。
具体实施方式十六:本实施方式与具体实施方式一至十四之一不同的是过硫酸盐与臭氧的摩尔比为 1 : 0.3~8 。其它步骤及参数与具体实施方式一至十四之一相同。
具体实施方式十七:本实施方式与具体实施方式一至十四之一不同的是过硫酸盐与臭氧的摩尔比为 1 : 0.4~7 。其它步骤及参数与具体实施方式一至十四之一相同。
具体实施方式十八:本实施方式与具体实施方式一至十四之一不同的是过硫酸盐与臭氧的摩尔比为 1 : 0.5~6 。其它步骤及参数与具体实施方式一至十四之一相同。
具体实施方式十九:本实施方式与具体实施方式一至十四之一不同的是过硫酸盐与臭氧的摩尔比为 1 : 0.6~5 。其它步骤及参数与具体实施方式一至十四之一相同。
具体实施方式二十:本实施方式与具体实施方式一至十四之一不同的是过硫酸盐与臭氧的摩尔比为 1 : 0.7~4 。其它步骤及参数与具体实施方式一至十四之一相同。
具体实施方式二十一:本实施方式与具体实施方式一至十四之一不同的是过硫酸盐与臭氧的摩尔比为 1 : 0.8~3 。其它步骤及参数与具体实施方式一至十四之一相同。
具体实施方式二十二:本实施方式与具体实施方式一至十四之一不同的是过硫酸盐与臭氧的摩尔比为 1 : 0.9~2 。其它步骤及参数与具体实施方式一至十四之一相同。
具体实施方式二十三:本实施方式与具体实施方式一至十四之一不同的是过硫酸盐与臭氧的摩尔比为 1 : 1 。其它步骤及参数与具体实施方式一至十四之一相同。
具体实施方式二十四:本实施方式与具体实施方式一至二十三之一不同的是控制待处理水在臭氧接触反应器中的停留时间为 10~50min 。其它步骤及参数与具体实施方式一至二十三之一相同。
具体实施方式二十五:本实施方式与具体实施方式一至二十三之一不同的是控制待处理水在臭氧接触反应器中的停留时间为 20~40min 。其它步骤及参数与具体实施方式一至二十三之一相同。
具体实施方式二十六:本实施方式与具体实施方式一至二十三之一不同的是控制待处理水在臭氧接触反应器中的停留时间为 30min 。其它步骤及参数与具体实施方式一至二十三之一相同。
具体实施方式二十七:本实施方式为 利用过硫酸盐催化臭氧的水处理方法,其是通过以下步骤实现的:向装有 污水 的 臭氧接触反应器中通入臭氧, 同时投加过一硫酸盐和氢氧化钾的复合盐,使臭氧初始浓度为 30mg/L ,过一硫酸盐与臭氧的摩尔比为 1 : 1 ,过一硫酸盐和氢氧化钾的摩尔比为 1 : 8 , 即完成 利用过硫酸盐催化臭氧的水处理方法,其中, 控制待处理水在臭氧接触反应器中的停留时间为 60min ,水处理过程中保持搅拌状态。
本实施方式中所述 过硫酸盐的投加方式为以过硫酸盐溶液的形式投加。本实施方式中 过一硫酸盐为过一硫酸钾和过一硫酸钠以任意比混合的混合物。
本实施方式中氢氧化钾的加入,将污水处理体系的 pH 值达到 6~9 ,使污水具有更好的处理效果。
其中过一硫酸盐为过一硫酸钾、过一硫酸钠和过一硫酸氨中的一种或几种的混合物。
本实施方式利用过一硫酸盐催化臭氧的水处理方法中,经氧化处理后,污水中的污染物的去除率达 90% 以上。
具体实施方式二十八:本实施方式为 利用过硫酸盐催化臭氧的水处理方法,其是通过以下步骤实现的:向装有 污水厂二级出水 的 臭氧接触反应器中通入臭氧, 同时投加过二硫酸盐,使臭氧初始浓度为 10mg/L ,过硫酸盐与臭氧的摩尔比为 1 : 1 ,即完成 利用过硫酸盐催化臭氧的水处理方法,其中, 控制待处理水在臭氧接触反应器中的停留时间为 60min ,水处理过程中保持搅拌状态。
本实施方式中所述 过硫酸盐的投加方式为以过硫酸盐溶液的形式投加。
本实施方式中 过二硫酸盐为过二硫酸钾、过二硫酸钠和过二硫酸氨三者以任意比混合的混合物。
具体实施方式二十九:本实施方式为 利用过硫酸盐催化臭氧的水处理方法,其是通过以下步骤实现的:向装有 水源水 的 臭氧接触反应器中通入臭氧, 同时投加过一硫酸钾,使臭氧初始浓度为 2mg/L ,混合盐与臭氧的摩尔比为 1 : 2 ,即完成 利用过硫酸盐催化臭氧的水处理方法,其中, 控制待处理水在臭氧接触反应器中的停留时间为 30min ,水处理过程中保持搅拌状态。
本实施方式中所述 过硫酸盐的投加方式为以过硫酸盐溶液的形式投加。
本实施方式利用过一硫酸钾催化臭氧的水处理方法中,水源水中含有 0.5μmol/L 的农药莠去津,经氧化处理后,农药莠去津的去除率达 99% 以上,如图 1 所示。
具体实施方式三十:本实施方式为 利用过硫酸盐催化臭氧的水处理方法,其是通过以下步骤实现的:向装有 过滤后水 的 臭氧接触反应器中通入臭氧, 同时投加过一硫酸钠和过二硫酸钾以任意比混合的混合盐,使臭氧初始浓度为 0.5mg/L ,混合盐与臭氧的摩尔比为 1 : 5 ,即完成 利用过硫酸盐催化臭氧的水处理方法,其中, 控制待处理水在臭氧接触反应器中的停留时间为 30min ,水处理过程中保持搅拌状态。
本实施方式中所述 过硫酸盐的投加方式为以过硫酸盐溶液的形式投加。

Claims (10)

  1. 一种利用过硫酸盐催化臭氧的水处理方法,其特征在于利用过硫酸盐催化臭氧的水处理方法是通过以下步骤实现的:向装有待处理水的臭氧接触反应器中通入臭氧,同时投加过硫酸盐,使臭氧初始浓度为0.1~40mg/L,过硫酸盐与臭氧的摩尔比为1:0.1~10,即完成利用过硫酸盐催化臭氧的水处理方法,其中,控制待处理水在臭氧接触反应器中的停留时间为5~60min,水处理过程中保持搅拌状态,所述待处理水为污水、污水厂二级出水、水源水和过滤后水。
  2. 根据权利要求1所述的一种利用过硫酸盐催化臭氧的水处理方法,其特征在于过硫酸盐为过一硫酸盐和/或过二硫酸盐,其中过一硫酸盐为过一硫酸钾、过一硫酸钠和过一硫酸氨中的一种或几种的混合物,过二硫酸盐为过二硫酸钾、过二硫酸钠和过二硫酸氨中的一种或几种的混合物。
  3. 根据权利要求1或2所述的一种利用过硫酸盐催化臭氧的水处理方法,其特征在于臭氧初始浓度为0.5~30mg/L。
  4. 根据权利要求1或2所述的一种利用过硫酸盐催化臭氧的水处理方法,其特征在于过硫酸盐与臭氧的摩尔比为1:0.2~9。
  5. 根据权利要求1或2所述的一种利用过硫酸盐催化臭氧的水处理方法,其特征在于过硫酸盐与臭氧的摩尔比为1:0.8~3。
  6. 根据权利要求1或2所述的一种利用过硫酸盐催化臭氧的水处理方法,其特征在于过硫酸盐与臭氧的摩尔比为1:1。
  7. 根据权利要求1或2所述的一种利用过硫酸盐催化臭氧的水处理方法,其特征在于过硫酸盐由过硫酸盐和碱的复合盐代替,其中过硫酸盐和碱的摩尔比为1:1~10,其中,过硫酸盐为过一硫酸盐和/或过二硫酸盐,碱为氢氧化钾、氢氧化钠、氢氧化钙、碳酸钠、碳酸钾、碳酸氢钠、碳碳酸氢钾中的一种或其中几种的混合物。
  8. 根据权利要求7所述的一种利用过硫酸盐催化臭氧的水处理方法,其特征在于过硫酸盐和碱的摩尔比为1:3~8。
  9. 根据权利要求7所述的一种利用过硫酸盐催化臭氧的水处理方法,其特征在于过硫酸盐和碱的摩尔比为1:5。
  10. 根据权利要求7所述的一种利用过硫酸盐催化臭氧的水处理方法,其特征在于过一硫酸盐为过一硫酸钾、过一硫酸钠和过一硫酸氨中的一种或几种的混合物,过二硫酸盐为过二硫酸钾、过二硫酸钠和过二硫酸氨中的一种或几种的混合物。
PCT/CN2012/075484 2011-05-19 2012-05-15 一种利用过硫酸盐催化臭氧的水处理方法 WO2012155823A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/118,660 US9169141B2 (en) 2011-05-19 2012-05-15 Water treatment method by catalyzing ozone with a persulfate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101309269A CN102145932B (zh) 2011-05-19 2011-05-19 一种利用过硫酸盐催化臭氧的水处理方法
CN201110130926.9 2011-05-19

Publications (1)

Publication Number Publication Date
WO2012155823A1 true WO2012155823A1 (zh) 2012-11-22

Family

ID=44420428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075484 WO2012155823A1 (zh) 2011-05-19 2012-05-15 一种利用过硫酸盐催化臭氧的水处理方法

Country Status (3)

Country Link
US (1) US9169141B2 (zh)
CN (1) CN102145932B (zh)
WO (1) WO2012155823A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071886A (zh) * 2014-07-01 2014-10-01 中节能大地环境修复有限公司 自激活型过硫酸盐氧化药剂的制备方法及其应用

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145932B (zh) * 2011-05-19 2012-07-25 哈尔滨工业大学 一种利用过硫酸盐催化臭氧的水处理方法
CN102701425B (zh) * 2012-05-16 2014-01-15 四川大学 一种抑制臭氧氧化过程中溴酸盐生成的方法
CN103553204B (zh) * 2013-11-20 2015-04-15 哈尔滨理工大学 一种利用无机固体过氧化物诱导过一硫酸盐产生单线态氧的水处理方法
CN103553247B (zh) * 2013-11-20 2015-03-11 哈尔滨理工大学 一种利用无机固体过氧化物诱导过硫酸盐产生单线态氧除藻的水处理方法
CN103553203B (zh) * 2013-11-20 2015-03-18 哈尔滨理工大学 一种利用无机固体过氧化物诱导过一硫酸盐产生单线态氧处理反渗透浓缩液的方法
US10974979B1 (en) * 2013-12-27 2021-04-13 James Stuart Water cleaning composition and related methods
CN104043325B (zh) * 2014-05-30 2016-08-24 江苏大学 一种臭氧活化过硫酸盐的烟气净化方法和装置
CN104591370A (zh) * 2015-01-21 2015-05-06 哈尔滨工业大学 一种过氧化氢与过硫酸盐联合催化臭氧的水处理方法
CN105036293B (zh) * 2015-08-27 2018-01-30 哈尔滨工业大学 一种利用高铁酸盐强化臭氧氧化去除水中有机污染物的方法
WO2017131972A1 (en) 2016-01-25 2017-08-03 Oxytec Llc Soil and water remediation method and apparatus for treatment of recalcitrant halogenated substances
CN105800768B (zh) * 2016-05-10 2019-01-04 哈尔滨工业大学深圳研究生院 一种促使臭氧快速产生羟基自由基的方法
CN106045007A (zh) * 2016-08-12 2016-10-26 哈尔滨工业大学 利用过硫酸盐催化臭氧氧化难降解碘化有机物控制碘代消毒副产物的水处理方法
CN106698638A (zh) * 2017-01-09 2017-05-24 北京林业大学 一种用于臭氧催化氧化工艺的催化剂优化投加控制方法
CN107337331A (zh) * 2017-07-25 2017-11-10 江苏大学 一种臭氧涡流空化过硫酸盐协同氧化污泥减量方法
US10865128B2 (en) 2018-02-06 2020-12-15 Oxytec Llc Soil and water remediation method and apparatus for treatment of recalcitrant halogenated substances
CN110316807A (zh) * 2018-03-30 2019-10-11 武汉纺织大学 一种利用紫外协同过硫酸盐催化臭氧的水处理方法
CN109081420A (zh) * 2018-08-06 2018-12-25 河北科技大学 一种臭氧协同过硫酸盐催化氧化处理废水的方法
CN108996658A (zh) * 2018-08-14 2018-12-14 山东上水环境科技有限公司 一种用于去除泳池中尿素的装置及使用方法
CN109775893B (zh) * 2019-03-11 2022-03-01 山东建筑大学 一种过硫酸盐梯级氧化耦合膜滤净水装置及其运行方法
CN109775892A (zh) * 2019-03-11 2019-05-21 山东建筑大学 一种低能耗重力流催化膜一体化净水装置及其运行方法
US11661360B2 (en) 2020-06-18 2023-05-30 Wp&E Technologies And Solutions, Llc System for removing per- and polyfluorinated alkyl substances from contaminated aqueous streams, via chemical aided filtration, and methods of use thereof
CN114229987A (zh) * 2021-12-20 2022-03-25 北京化工大学 一种平板陶瓷膜催化氧化装置及处理生物难降解废水的工艺
CN114590975B (zh) * 2022-04-06 2023-04-25 成都硕特科技股份有限公司 一种含酚煤气废水零排放处理方法及处理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015529A1 (en) * 1991-03-08 1992-09-17 Fmc Corporation Purification of waste streams
CN1559938A (zh) * 2004-03-03 2005-01-05 哈尔滨工业大学 以羟基氧化铁为催化剂的催化臭氧氧化给水深度处理方法
CN1565987A (zh) * 2002-04-13 2005-01-19 马军 臭氧催化氧化水处理方法
JP2006314880A (ja) * 2005-05-11 2006-11-24 Ebara Corp 硫酸ラジカルを用いた水処理方法及び装置
CN101269892A (zh) * 2008-05-04 2008-09-24 哈尔滨工业大学 一种催化臭氧氧化去除水中有机物的方法
TW200904762A (en) * 2007-07-18 2009-02-01 Taiwan Environment Scient Co Ltd Chemical oxidation method for remediating organic pollutants in the environment
CN102145932A (zh) * 2011-05-19 2011-08-10 哈尔滨工业大学 一种利用过硫酸盐催化臭氧的水处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667087B2 (en) * 2006-06-27 2010-02-23 Enchem Engineering, Inc. Soil and water remediation method and apparatus
CN101385971A (zh) * 2007-09-13 2009-03-18 中国科学院生态环境研究中心 一种高效催化臭氧氧化水中有机污染物的催化剂制备方法
CN101185884B (zh) * 2007-12-27 2012-05-30 哈尔滨工业大学 一种催化臭氧氧化用催化剂及其制备方法
CN101717147B (zh) * 2009-12-03 2011-06-29 浙江工业大学 一种利用臭氧和树叶协同作用去除水中氨氮的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015529A1 (en) * 1991-03-08 1992-09-17 Fmc Corporation Purification of waste streams
CN1565987A (zh) * 2002-04-13 2005-01-19 马军 臭氧催化氧化水处理方法
CN1559938A (zh) * 2004-03-03 2005-01-05 哈尔滨工业大学 以羟基氧化铁为催化剂的催化臭氧氧化给水深度处理方法
JP2006314880A (ja) * 2005-05-11 2006-11-24 Ebara Corp 硫酸ラジカルを用いた水処理方法及び装置
TW200904762A (en) * 2007-07-18 2009-02-01 Taiwan Environment Scient Co Ltd Chemical oxidation method for remediating organic pollutants in the environment
CN101269892A (zh) * 2008-05-04 2008-09-24 哈尔滨工业大学 一种催化臭氧氧化去除水中有机物的方法
CN102145932A (zh) * 2011-05-19 2011-08-10 哈尔滨工业大学 一种利用过硫酸盐催化臭氧的水处理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FU, JINXIANG ET AL.: "Study on Advanced Treatment of Drinking Water with Joint Process of Ozone Catalytic-Activated Carbon-Filtration", JOURNAL OF SHENYANG JIANZHU UNIVERSITY (NATURAL SCIENCE), vol. 22, no. 5, September 2006 (2006-09-01), pages 791 - 794 *
SUI, MINGHAO ET AL.: "Research status of heterogeneous catalytic ozonation in water treatment", MODERN CHEMICAL INDUSTRY, vol. 27, no. 3, March 2007 (2007-03-01), pages 15 - 19 *
ZHAO, KAI: "Study of Petroleum Fracture Wastewater Ozone Catalyzed Oxidation Craft", CHINA MASTER'S THESES FULL-TEXT DATABASE, DECEMBER 2010, ENGINEERING SCIENCE AND TECHNOLOGY EDITION I, no. 12, 2010, pages B027-89 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071886A (zh) * 2014-07-01 2014-10-01 中节能大地环境修复有限公司 自激活型过硫酸盐氧化药剂的制备方法及其应用
CN104071886B (zh) * 2014-07-01 2016-01-20 中节能大地环境修复有限公司 自激活型过硫酸盐氧化药剂的制备方法及其应用

Also Published As

Publication number Publication date
CN102145932A (zh) 2011-08-10
CN102145932B (zh) 2012-07-25
US9169141B2 (en) 2015-10-27
US20140091046A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
WO2012155823A1 (zh) 一种利用过硫酸盐催化臭氧的水处理方法
WO2014094399A1 (zh) 一种原位电产生 h 2 o 2 协同 o 3 氧化的废水处理装置及方法
CN107473371B (zh) 一种利用吸附氨氮材料强化sbr实现稳定亚硝化的方法
CN101522572A (zh) 流体污染物的吸附方法和吸附剂的再生
CN202226738U (zh) 蜂窝陶瓷O3/TiO2循环流光催化氧化处理工业废水的装置
CN104163539A (zh) 一种煤化工废水的处理方法
JPWO2002094719A1 (ja) 窒素化合物含有水処理方法及び装置
CN103508593B (zh) 一种应用于抗生素废水治理的化学深度处理方法
WO2021002601A1 (ko) 황산폐산 내의 과산화수소를 제거하기 위한 활성탄 촉매 분해방법
JP2011200848A (ja) 排水の処理方法
CN211111579U (zh) 一种基于臭氧的生物膜生化反应系统
CN1490263A (zh) 强化膜生物反应器水处理新技术
CN112723520A (zh) 芬顿反应铁泥的回收再利用方法及采用该方法制得的芬顿试剂
JP2002263689A (ja) アンモニア含有廃水の処理方法及び装置
CN108383335B (zh) 高浓度有机废水处理系统及方法
CN101717146A (zh) 一种催化臭氧氧化水处理的方法
CN101549922B (zh) 一种受酚污染的河流应急处理方法
CN103449679B (zh) 一种兰炭废水综合处理工艺
WO2024045614A1 (zh) 酸洗废液资源化处理系统及方法
CN205295050U (zh) 一种组合处理高cod污水的装置
JP2012076057A (ja) 難分解性物質を含む排水の処理方法及び処理装置
CN103420472A (zh) 含硫有机废水处理方法
CN206298406U (zh) 一种芬顿氧化处理的新型装置
JP2011062656A (ja) 窒素含有排水処理方法
CN210825780U (zh) 一种双氧水/紫外线多相催化纳米气泡臭氧氧化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14118660

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12785078

Country of ref document: EP

Kind code of ref document: A1