WO2012153849A1 - 異方性導電接続材料、フィルム積層体、接続方法及び接続構造体 - Google Patents

異方性導電接続材料、フィルム積層体、接続方法及び接続構造体 Download PDF

Info

Publication number
WO2012153849A1
WO2012153849A1 PCT/JP2012/062194 JP2012062194W WO2012153849A1 WO 2012153849 A1 WO2012153849 A1 WO 2012153849A1 JP 2012062194 W JP2012062194 W JP 2012062194W WO 2012153849 A1 WO2012153849 A1 WO 2012153849A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic conductive
amine compound
adhesive
film
terminal
Prior art date
Application number
PCT/JP2012/062194
Other languages
English (en)
French (fr)
Inventor
恭志 阿久津
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to KR1020137032613A priority Critical patent/KR101973823B1/ko
Priority to CN201280022932.5A priority patent/CN103502379B/zh
Publication of WO2012153849A1 publication Critical patent/WO2012153849A1/ja
Priority to HK14102534.3A priority patent/HK1189389A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to an anisotropic conductive connection material used when mounting electronic components such as flexible printed wiring boards and semiconductor elements on a wiring board, and a film laminate in which an anisotropic conductive connection layer is formed on a release film.
  • the present invention relates to a connection method for connecting an electronic component and a wiring board using an anisotropic conductive connection layer, and a connection structure obtained by this connection method.
  • acrylic anisotropy is used to connect electronic components and wiring boards by radically polymerizing acrylates with organic peroxides to adhere and connect the wiring boards and electronic components.
  • a conductive film is used.
  • the acrylic anisotropic conductive film mainly includes (meth) acrylate, which is a radical polymerizable substance that is a curing component, a polymer material that is a film component, an organic peroxide that is a curing catalyst, and conductive particles. And are contained.
  • (meth) acrylate which is a radical polymerizable substance that is a curing component
  • a polymer material that is a film component
  • an organic peroxide that is a curing catalyst an organic peroxide that is a curing catalyst
  • conductive particles mainly includes (meth) acrylate, which is a radical polymerizable substance that is a curing component, a polymer material that is a film component, an organic peroxide that is a curing catalyst, and conductive particles. And are contained.
  • the adhesive strength is improved by adding a phosphate group-containing acrylate or urethane acrylate as a curing component (see, for example, Patent Document 2).
  • urethane acrylate when urethane acrylate is added, urethane acrylate that is usually used often uses urethane acrylate having a large molecular weight in consideration of stress relaxation properties. However, if the molecular weight is large, the viscosity increases.
  • an anisotropic conductive film 42 is bonded onto a wiring board 41 on which terminals 40 are formed, and an electronic component 43 is mounted on the anisotropic conductive film 42.
  • the electronic component 43 is heated and pressed to cure the anisotropic conductive film 42, and the terminals 40 of the wiring board 41 and the terminals of the electronic component 43 are interposed through the conductive particles 44. 45 can be electrically connected.
  • the adhesion and electrical conductivity between the wiring board 41 and the electronic component 43 become insufficient.
  • an anisotropic conductive film 46 is bonded onto a wiring board 41 on which terminals 40 are formed, and an electronic component 43 is mounted on the anisotropic conductive film 46.
  • the adhesive of the anisotropic conductive film 46 is solidified before electrical connection can be established between the terminal 40 of the wiring board 41 and the terminal 45 of the electronic component 43. This causes the problem of pre-curing.
  • the adhesive is not excluded from between the terminal 40 of the wiring board 41 and the terminal 45 of the electronic component 43, and conduction between the terminals cannot be obtained. Therefore, when urethane acrylate having a small molecular weight is used, the adhesive force between the wiring board 41 and the electronic component 43 does not increase, and a sufficient effect cannot be obtained.
  • the present invention has been proposed in view of such a conventional situation, and an anisotropic conductive connection material and a release film that can improve connection strength and conduction reliability in connection between a substrate and an electronic component.
  • an anisotropic conductive connection material and a release film that can improve connection strength and conduction reliability in connection between a substrate and an electronic component.
  • the anisotropic conductive connection material according to the present invention that achieves the above-mentioned object is obtained by dispersing conductive particles in an adhesive, and the adhesive includes a film-forming material, an acrylic resin, an organic peroxide, And an amine compound, wherein the amine compound is a cyclic tertiary amine compound.
  • the film laminate according to the present invention that achieves the above-described object is formed by forming an anisotropic conductive connection layer in which conductive particles are dispersed in an adhesive on a release film, and the adhesive forms a film. It contains a material, an acrylic resin, an organic peroxide, and an amine compound, and the amine compound is a cyclic tertiary amine compound.
  • a connection method that achieves the above-described object is a method of connecting a terminal of a substrate and a terminal of an electronic component by an anisotropic conductive connection layer, and conductive particles are contained in an adhesive on the substrate terminal.
  • An adhesive layer forming step for forming an anisotropic conductive connection layer dispersed in the substrate and mounting the electronic component on the substrate so that the terminal of the electronic component faces the terminal of the substrate through the anisotropic conductive connection layer A mounting step, heating and pressing with a pressure head from the upper surface of the electronic component, pressurizing the mounted electronic component against the substrate, and connecting the terminal of the substrate and the terminal of the electronic component to the anisotropic conductive connection layer And an anisotropic conductive connection layer adhesive containing a film forming material, an acrylic resin, an organic peroxide, and an amine compound.
  • the amine compound is a cyclic tertiary amine compound. .
  • connection structure according to the present invention that achieves the above-described object is one in which an anisotropic conductive connection layer is interposed between a terminal of a substrate and a terminal of an electronic component to connect and connect the substrate and the electronic component.
  • the anisotropic conductive connection layer has conductive particles dispersed in an adhesive, and the adhesive contains a film forming material, an acrylic resin, an organic peroxide, and an amine compound, and an amine compound. Is a cyclic tertiary amine compound.
  • the adhesive of the anisotropic conductive connection material or the anisotropic conductive connection layer contains a film forming material, an acrylic resin, an organic peroxide, and an amine compound, and is cyclic as the amine compound.
  • the conduction resistance is not increased, and the adhesive force can be improved.
  • FIG. 1 is a cross-sectional view of a film laminate to which the present invention is applied.
  • FIG. 2 is a cross-sectional view of a connection structure in which a substrate and an IC chip are connected by an anisotropic conductive film.
  • FIG. 3 is a perspective view of the connection structure used when measuring the conduction resistance of the example.
  • FIG. 4 is a perspective view of the connection structure used in the adhesive strength test of the example.
  • FIG. 5 is a cross-sectional view for explaining a method of connecting an electronic component and a wiring board with a general acrylic anisotropic conductive film, and (A) is on the anisotropic conductive film attached to the wiring board.
  • FIG. 6 is a cross-sectional view for explaining a method of connecting an electronic component and a wiring board with an anisotropic conductive film containing urethane acrylate, and (A) is on the anisotropic conductive film attached to the wiring board.
  • FIG. 6 is a cross-sectional view for explaining a method of connecting an electronic component and a wiring board with an anisotropic conductive film containing urethane acrylate, and (A) is on the anisotropic conductive film attached to the wiring board.
  • (B) is sectional drawing which shows the state which has not electrically connected the wiring board and the electronic component with the anisotropic conductive film.
  • Such an anisotropic conductive connecting material is a film-like anisotropic conductive adhesive film or a paste-like anisotropic conductive adhesive paste containing conductive particles.
  • the anisotropic conductive adhesive film or the anisotropic conductive adhesive paste is defined as “anisotropic conductive connecting material”.
  • an anisotropic conductive adhesive film is mentioned as an example and demonstrated.
  • the film laminate 1 is usually one in which an anisotropic conductive film 3 serving as an anisotropic conductive connection layer is laminated on a release film 2 serving as a base material.
  • the release film 2 is formed by, for example, applying a release agent such as silicone to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene) or the like. .
  • a release agent such as silicone to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene) or the like.
  • PET Poly Ethylene Terephthalate
  • OPP Oriented Polypropylene
  • PMP Poly-4-methlpentene-1
  • PTFE Polytetrafluoroethylene
  • anisotropic conductive film 3 conductive particles 5 are dispersed in an adhesive (binder) 4 containing at least a film-forming material, an acrylic resin as a curing component, an organic peroxide as a curing agent, and an amine compound. It is a thing.
  • the anisotropic conductive film 3 is formed on the release film 2 in a film shape.
  • the film forming resin is preferably a resin having an average molecular weight of about 10,000 to 80,000.
  • the film-forming resin include various resins such as phenoxy resin, polyester urethane resin, polyester resin, polyurethane resin, acrylic resin, polyimide resin, butyral tree. Among these, phenoxy resin is particularly preferable from the viewpoint of film formation state, connection reliability, and the like.
  • the content of the film-forming resin is usually 30 to 80 parts by mass, preferably 40 to 70 parts by mass with respect to 100 parts by mass of the adhesive 4.
  • a radically polymerizable resin is used, and a thermosetting acrylic resin is used.
  • a thermosetting acrylic resin is used.
  • an acrylic resin According to the objective, an acrylic compound, liquid acrylate, etc. can be selected suitably.
  • Examples include decanyl acrylate, tris (acryloxyethyl) isocyanurate, urethane acrylate, and epoxy acrylate.
  • what made acrylate the methacrylate can also be used.
  • a hardening component may be used individually by 1 type, and may use 2 or more types together.
  • the content of the curing component is usually 10 to 60 parts by mass, preferably 20 to 50 parts by mass with respect to 100 parts by mass of the adhesive 4.
  • the adhesive 4 does not contain an epoxy resin as a curing component. Since the adhesive 4 contains an amine compound in order to increase the adhesive strength as will be described later, if the epoxy resin is contained, the epoxy reaction proceeds to increase the viscosity. This is because the electronic parts cannot be connected to each other, the adhesive strength is reduced, and the conduction resistance is increased.
  • the curing agent is a radical-initiating polymerization agent, and an organic peroxide is used.
  • organic peroxide examples include lauroyl peroxide, butyl peroxide, benzyl peroxide, dilauroyl peroxide, dibutyl peroxide, benzyl peroxide, peroxydicarbonate, benzoyl peroxide, and the like.
  • the content of the curing agent is usually 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass with respect to 100 parts by mass of the adhesive 4.
  • the amine compound improves the adhesive strength of the adhesive 4.
  • the amine compound one not modified with a silanol group or a vinyl group is used.
  • the amine compound is a cyclic tertiary amine compound, and examples thereof include an imidazole compound.
  • an imidazole compound is preferable, and among them, an imidazole compound having a cyano group is particularly preferable. Since an imidazole compound having a cyano group has higher polarity, the adhesive strength can be further increased.
  • the compounding amount of the amine compound is preferably 0.1 to 5 parts by mass with respect to 30 parts by mass of the acrylic resin, and if less than 0.1 parts by mass, the adhesive strength of the anisotropic conductive film 3 However, if the amount is more than 5 parts by mass, the connection reliability is lowered.
  • the adhesive strength can be further increased by setting the imidazole compound content to 0.5 to 5 parts by mass with respect to 30 parts by mass of the acrylic resin. preferable.
  • the metal adhesion is usually increased due to its polarity.
  • the steric hindrance is less likely to occur, the amine compound can be used effectively, and the adhesive strength of the anisotropic conductive film 1 can be increased.
  • the adhesive 4 when an amine compound is used as a catalyst, for example, the reactivity is fast, the curing reaction proceeds, affects the storage stability of the adhesive 4 before use, and the product life is shortened. Even when 2-methylimidazole is used, it can be used without affecting the product life of the anisotropic conductive film 3.
  • the adhesive 4 may contain a silane coupling agent. Although it does not specifically limit as a silane coupling agent, For example, an amino type, a mercapto sulfide type, a ureido type etc. can be mentioned. By adding a silane coupling agent, the adhesion at the interface between the organic material and the inorganic material can be improved.
  • Examples of the conductive particles 5 to be contained in the adhesive 4 include any known conductive particles used in the anisotropic conductive film 3.
  • Examples of the conductive particles 5 include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, gold, metal oxide, carbon, graphite, glass, ceramic, Examples thereof include those in which the surface of particles such as plastic is coated with metal, or those in which the surface of these particles is further coated with an insulating thin film.
  • resin particles whose surfaces are coated with metal can be used as the conductive particles 5.
  • the resin particles include epoxy resins, phenol resins, acrylic resins, acrylonitrile / styrene (AS) resins, and benzoguanamine.
  • examples thereof include particles of resin, divinylbenzene resin, styrene resin, and the like.
  • the average particle diameter of the conductive particles 5 is preferably 1 to 20 ⁇ m, more preferably 2 to 10 ⁇ m, from the viewpoint of connection reliability.
  • the average particle density of the conductive particles 5 in the adhesive 4 is connected in terms of reliability and insulation reliability, is preferably 1000 to 50000 / mm 2, more preferably 3,000 to 30,000 pieces / mm 2 .
  • the film laminate 1 having such a structure is prepared by dissolving the above-described adhesive 4 in a solvent such as toluene or ethyl acetate to produce an adhesive solution in which the conductive particles 5 are dispersed. It can manufacture by apply
  • the film laminated body 1 is not limited to the structure which formed the anisotropic conductive film 3 on such a peeling film 2,
  • the insulating resin layer (only the adhesive 4 is formed on the anisotropic conductive film 3 ( NCF: Non Conductive Film layer) may be laminated.
  • the film laminate 1 may have a configuration in which a release film is also provided on the surface opposite to the surface on which the release film 2 of the anisotropic conductive film 3 is laminated.
  • the anisotropic conductive film 3 of the film laminate 1 having the above-described configuration is a radical anisotropic conductive film, containing a phenoxy resin, a urethane resin, or the like as a film-forming resin, and an acrylic resin as a curing component.
  • a radical anisotropic conductive film containing a phenoxy resin, a urethane resin, or the like as a film-forming resin, and an acrylic resin as a curing component.
  • the adhesive 4 does not contain an epoxy resin that undergoes anion polymerization with an amine compound such as an imidazole compound, and the amine compound is not used as a radical polymerization initiator. Therefore, it can be used to enhance the adhesive 4 and the effect of the amine compound can be exhibited.
  • connection structure and connection method> Next, a connection method for conducting and connecting the terminals of the substrate and the terminals of the electronic component using the anisotropic conductive film 3 and the connection structure manufactured thereby will be described.
  • connection structure 10 shown in FIG. 2 is obtained by mechanically and electrically connecting and fixing a rigid wiring board 11 as a substrate and an IC chip 12 as an electronic component with an anisotropic conductive film 3, for example.
  • the terminal 13 of the rigid wiring board 11 and the terminal 14 of the IC chip 12 are electrically connected by the conductive particles 5.
  • the manufacturing method of the connection structure 10 includes an adhesive layer forming step of attaching an anisotropic conductive film 3 serving as an anisotropic conductive connection layer on the terminal 13 of the rigid wiring board 11, and an anisotropic conductive film 3. Then, a mounting process for mounting the IC chip 12 on the rigid wiring board 11 so that the terminal 14 of the IC chip 12 faces the terminal 13 of the rigid wiring board 11, and the pressure head is heated from the upper surface of the IC chip 12. Then, the mounted IC chip 12 is pressurized while being heated with respect to the rigid wiring board 11, and the terminal 13 of the rigid wiring board 11 and the terminal 14 of the IC chip 12 are electrically conductive of the anisotropic conductive film 3. A connection step of electrically connecting through the particles 5.
  • the anisotropic conductive film 3 of the film laminate 1 is on the terminal 13 side of the rigid wiring board 11 at a position where the terminal 13 on the rigid wiring board 11 is connected to the terminal 14 of the IC chip 12. Then, the release film 2 is peeled off to make only the anisotropic conductive film 3, and then the anisotropic conductive film 3 is attached to the terminal 13.
  • This pasting is performed at a temperature at which the thermosetting resin component contained in the anisotropic conductive film 3 is not cured. For example, heating is performed at a temperature of about 70 ° C. to 100 ° C. for about 0.5 seconds to 2 seconds with slight pressurization. To do. Thereby, the anisotropic conductive film 3 is positioned and fixed on the terminal 13 of the rigid wiring board 11.
  • a mounting process for mounting the IC chip 12 on the anisotropic conductive film 3 is performed.
  • the alignment state of the anisotropic conductive film 3 is confirmed, and if there is no misalignment or the like, the terminals 14 of the IC chip 12 are positioned on the anisotropic conductive film 3, and the rigid wiring board
  • the IC chip 12 is mounted on the rigid wiring 11 via the anisotropic conductive film 3 so that the terminal 13 of the terminal 11 and the terminal 14 of the IC chip 12 face each other.
  • a connection process for mechanically and electrically connecting the rigid wiring board 11 and the IC chip 12 is performed.
  • the IC chip 12 is pressed against the rigid wiring board 11 from the upper surface of the IC chip 12 with a pressurizing head that can be heated and pressurized to cure the anisotropic conductive film 3, and the rigid wiring board.
  • 11 terminal 13 and IC chip 12 terminal 14 are electrically connected via conductive particles 5, and rigid wiring board 1 and IC chip 12 are mechanically connected by anisotropic conductive film 3.
  • the condition of this connection process is that the heating temperature is equal to or higher than the curing temperature of the thermosetting resin contained in the anisotropic conductive film 3, the adhesive 4 is excluded from between the terminals 13 and 14, and the conductive particles 5 are removed. Pressurize with pressure that can be pinched. Thereby, the rigid substrate 11 and the IC chip 12 are electrically and mechanically connected via the anisotropic conductive film 3.
  • Specific conditions for temperature and pressurization are a temperature of about 130 ° C. to 150 ° C. and a pressure of about 1 MPa to 100 MPa.
  • the anisotropic conductive film 3 contains a phenoxy resin, a urethane resin, or the like as a film-forming resin, an acrylic resin as a curing component, and an organic peroxide as a radical-initiating polymerization agent.
  • a phenoxy resin, a urethane resin, or the like as a film-forming resin
  • an acrylic resin as a curing component
  • an organic peroxide as a radical-initiating polymerization agent.
  • connection structure 10 since the anisotropic conductive film 3 does not contain an epoxy resin, the anisotropic conductive film 13 does not thicken and is connected between the rigid wiring board 11 and the IC chip 12. The occurrence of defects can also be prevented. Therefore, the connection structure 10 has high connection strength between the rigid wiring board 11 and the IC chip 12 and high reliability of conduction.
  • the substrate of the connection structure 10 is not limited to the rigid wiring board 11 and may be any insulating substrate having a terminal, such as a glass substrate provided with a terminal, a plastic substrate, or a glass reinforced.
  • substrate etc. can be mentioned.
  • the electronic component is not limited to the IC chip 12 and may be another electronic component.
  • semiconductor chips other than IC chips such as LSI (Large Scale Integration) chips, semiconductor elements such as chip capacitors, flexible printed circuit boards (FPC), semiconductor mounting materials for driving liquid crystals (COF: Chip On Film), etc.
  • LSI Large Scale Integration
  • FPC flexible printed circuit boards
  • COF Chip On Film
  • ethyl acetate and toluene are used as an organic solvent, and a film forming material, a curing component, an organic peroxide, and an amine compound having the composition shown in Tables 1 and 2 below are added to the organic solvent so as to have a solid content of 50%.
  • a mixed solution was prepared.
  • this mixed solution was applied on a polyethylene terephthalate film having a thickness of 50 ⁇ m and dried at 70 ° C. for 5 minutes to prepare a film laminate sample formed in a film shape.
  • the anisotropic conductive film materials in Examples 1 to 6 and Comparative Examples 1 to 3 were blended as shown in Tables 1 and 2. In addition, when performing evaluation shown below, what was adjusted so that thickness might be set to 20 micrometers was used.
  • the anisotropic conductive films of Examples 1 to 6 and Comparative Examples 1 to 3 were subjected to conduction resistance measurement and adhesive strength test.
  • connection structure 20 shown in FIG. 3 was produced as follows, and the conduction resistance was measured.
  • an anisotropic conductive film 22 of each example and each comparative example is attached to ITO glass 21 obtained by attaching a transparent conductive film (ITO film) 21a to 0.7 mm thick glass, and a flexible wiring board (FPC) is formed thereon. ) 23.
  • the flexible printed circuit board 23 is heated to the ITO glass 21 side with a pressure head while applying pressure for 4 seconds under the conditions of a temperature of 160 ° C. and a pressure of 4 MPa to cure the anisotropic conductive film 22.
  • a connection structure 20 in which the ITO glass 21 and the ITO glass 21 were made conductive was produced.
  • the conduction resistance value after being left in a 60 ° C./95% RH environment for 500 hours (after aging) was evaluated.
  • the conduction resistance value was measured using a digital multimeter when a current of 1 mA was passed by the four-terminal method. When the conduction resistance value after aging is 5 ⁇ or less, the resistance is low.
  • connection structure 30 shown in FIG.
  • connection structure 30 the ITO glass 31 and the flexible printed wiring board 32 having the same configuration as the above-described conduction resistance measurement were used.
  • the anisotropic conductive film 33 of each Example and Comparative Example is interposed between the ITO glass 31 and the flexible printed wiring board 32, and the ITO glass and the flexible printed wiring board 32 are subjected to the same temperature and heating conditions as the above-described conduction resistance measurement. Were connected mechanically and electrically to produce a connection structure 30.
  • the central part of the flexible printed wiring board 32 was cut out with a width of 10 mm, and the anisotropic conductive film 33 exposed from the cut out part was subjected to a tensile tester (Tensilon, (Orientec Co., Ltd.) was used, and the peeling strength was 50 mm / min and the pulling up was 90 degrees (Y-axis direction), and the adhesive strength was measured.
  • a tensile tester Teensilon, (Orientec Co., Ltd.) was used, and the peeling strength was 50 mm / min and the pulling up was 90 degrees (Y-axis direction), and the adhesive strength was measured.
  • the adhesive strength is 4 N / cm or more, the adhesive strength is high.
  • Example 1 From the results shown in Table 1, in Examples 1 to 6 in which the anisotropic conductive film contains an imidazole compound, the adhesive strength of the anisotropic conductive film is increased by the polarity of imidazole, and ITO glass and flexible print The adhesion strength with the wiring board increased and the adhesive strength increased to 4 N / cm or more. Moreover, in Example 2 and Example 3 containing the imidazole compound which has a cyano group, adhesive strength is high, and as shown in Example 2, even if content of imidazole is as small as 0.5 weight part, adhesive strength is low. It became high.
  • Comparative Example 1 since the anisotropic conductive film contains an epoxy resin, the imidazole compound is consumed as a curing agent, the adhesive strength is reduced, and the resistance is increased. Since the bifunctional primary amine was used as the amine compound, the adhesive strength was not sufficiently improved and the resistance was increased. In Comparative Example 3, since a linear tertiary amine compound was used as the amine compound, the adhesive strength was not sufficiently improved.

Abstract

 接続強度及び導通の信頼性を向上させる。導電性粒子(5)が接着剤(4)中に分散されてなり、接着剤(4)は、膜形成材料と、アクリル樹脂と、有機過酸化物と、アミン化合物とを含有し、アミン化合物が環状の第3級アミン化合物である。

Description

異方性導電接続材料、フィルム積層体、接続方法及び接続構造体
 本発明は、例えばフレキシブルプリント配線板や半導体素子等の電子部品を配線板に実装する際に使用する異方性導電接続材料、剥離フィルム上に異方性導電接続層が形成されたフィルム積層体、異方性導電接続層を用いて電子部品と配線板とを接続する接続方法及びこの接続方法により得られた接続構造体に関するものである。
 本出願は、日本国において2011年5月12日に出願された日本特許出願番号特願2011-107457を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 近年、大画面テレビジョン装置に代表されるように、液晶画面の大型化が進んでいる。
このような状況の中、電子部品と配線板とを異方性導電フィルムで接続する際に、熱応力の影響を抑えるための低温硬化、及び生産性の向上を図るためのタクトタイムの短縮化が求められている。現在、160℃-4secまで低温、短時間化が実現できている。しかしながら、更に、140℃-4secまで低温化することが求められている。
 このような要求を満足するため、電子部品と配線板との接続には、アクリレートを有機過酸化物によりラジカル重合させて、配線板と電子部品とを接着し、導通するアクリル系の異方性導電フィルムが使用されている。
 アクリル系の異方性導電フィルムには、主に硬化成分となるラジカル重合性物質の(メタ)アクリレートと、膜成分となる高分子材料と、硬化触媒となる有機過酸化物と、導電性粒子とが含有されている。例えば、ラジカル重合性物質としてエポキシアクリレートオリゴマーと、光照射によって活性ラジカルを発生するビスイミダゾール類と、導電性粒子とを含有した異方性導電フィルムがある(例えば、特許文献1参照。)。このようなアクリル系の異方性導電フィルムは、エポキシ系の異方性導電フィルムとは反応が異なり、反応過程で接着性が得られる水酸基を発生することがないことから接着性が低下するといった問題が生じる。
 そこで、アクリル系の異方性導電フィルムでは、硬化成分としてリン酸基含有アクリレートやウレタンアクリレートを添加することで接着強度を向上させている(例えば、特許文献2参照。)。
 しかしながら、リン酸基含有アクリレートを添加した場合には、ポリイミドや金属配線等への接着性は向上するが、不純物や分解して発生するリン酸が配線を腐食してしまう。
このため、アクリル系の異方性導電フィルムでは、リン酸基含有アクリレートを少量しか添加することができず、電子部品と配線板との接着や導通性において十分な効果を得ることができない。
 また、ウレタンアクリレートを添加する場合には、通常使用されるウレタンアクリレートは応力緩和性も考慮にいれて分子量が大きいウレタンアクリレートを使用することが多いが、分子量が大きいと粘度が高くなる。
 通常、図5(A)に示すように、端子40が形成された配線板41上に、異方性導電フィルム42を貼り合せ、この異方性導電フィルム42上に電子部品43を搭載する。そして、図5(B)に示すように、電子部品43を加熱、押圧し、異方性導電フィルム42を硬化させ、導電性粒子44を介して配線板41の端子40と電子部品43の端子45とを電気的に接続させることができる。
 一方、ウレタンアクリレートを添加した異方性導電フィルム46では、図6に示すように、配線板41と電子部品43との接着や導通性が不十分となってしまう。図6(A)に示すように、端子40が形成された配線板41上に、異方性導電フィルム46を貼り合せ、この異方性導電フィルム46上に電子部品43を搭載し、配線板41に対して電子部品43を加熱、加圧する際に、配線板41の端子40と電子部品43の端子45との間で電気的接続が取れる前に異方性導電フィルム46の接着剤が固まってしまう先硬化の問題が発生する。これにより、配線板41の端子40と電子部品43の端子45との間から接着剤が排除されず、端子間の導通が得られなくなる。そこで、分子量が小さいウレタンアクリレートを使用した場合には、配線板41と電子部品43との接着力が上がらず、十分な効果を得ることができない。
 したがって、配線板と電子部品とを低温硬化及び生産性の向上を図ることができるアクリル系の異方性導電フィルムで接続する方法において、接続強度及び導通の信頼性が高い接続をすることができる方法が求められている。
特開2009-283985号公報 特開2003-313533号公報
 本発明は、このような従来の実情に鑑みて提案されたものであり、基板及び電子部品の接続において、接続強度及び導通の信頼性を向上させることができる異方性導電接続材料、剥離フィルム上に異方性導電接続層を形成したフィルム積層体、異方性導電接続層を用いて電子部品と配線板とを接続する接続方法及びこの接続方法によって得られた接続構造体を提供することを目的とする。
 上述した目的を達成する本発明に係る異方性導電接続材料は、導電性粒子が接着剤中に分散されてなり、接着剤は、膜形成材料と、アクリル樹脂と、有機過酸化物と、アミン化合物とを含有し、アミン化合物が環状の第3級アミン化合物であることを特徴とする。
 上述した目的を達成する本発明に係るフィルム積層体は、剥離フィルム上に、導電性粒子が接着剤中に分散されてなる異方性導電接続層が形成されてなり、接着剤は、膜形成材料と、アクリル樹脂と、有機過酸化物と、アミン化合物とを含有し、アミン化合物が環状の第3級アミン化合物であることを特徴とする。
 上述した目的を達成する本発明に係る接続方法は、基板の端子と電子部品の端子とを異方性導電接続層により接続する方法であり、基板の端子上に、導電性粒子が接着剤中に分散されてなる異方性導電接続層を形成する接着層形成工程と、異方性導電接続層を介して、電子部品の端子が基板の端子と対向するように電子部品を基板上に搭載する搭載工程と、電子部品の上面から加圧ヘッドで加熱、加圧して、搭載した電子部品を上記基板に対して加圧し、基板の端子と電子部品の端子とを異方性導電接続層の導電性粒子を介して電気的に接続する接続工程とを有し、異方性導電接続層の接着剤は、膜形成材料と、アクリル樹脂と、有機過酸化物と、アミン化合物とを含有し、アミン化合物が環状の第3級アミン化合物であることを特徴とする。
 上述した目的を達成する本発明に係る接続構造体は、基板の端子と電子部品の端子との間に異方性導電接続層を介在させて、基板と電子部品とを接続導通したものであり、異方性導電接続層は、導電性粒子が接着剤中に分散されてなり、接着剤は、膜形成材料と、アクリル樹脂と、有機過酸化物と、アミン化合物とを含有し、アミン化合物が環状の第3級アミン化合物であることを特徴とする。
 本発明によれば、異方性導電接続材料や異方性導電接続層の接着剤に、膜形成材料と、アクリル樹脂と、有機過酸化物と、アミン化合物とを含有し、アミン化合物として環状の第3級アミン化合物を含有することにより、導通抵抗が高くならず、接着力を向上させることができる。
図1は、本発明を適用したフィルム積層体の断面図である。 図2は、基板とICチップとを異方性導電フィルムで接続した接続構造体の断面図である。 図3は、実施例の導通抵抗を測定する際に使用した接続構造体の斜視図である。 図4は、実施例の接着強度試験に使用した接続構造体の斜視図である。 図5は、一般的なアクリル系異方性導電フィルムで電子部品と配線板とを接続する方法を説明する断面図であり、(A)は、配線板に貼付けた異方性導電フィルム上に電子部品を搭載し、加熱、加圧している状態を示す断面図であり、(B)は、配線板と電子部品とを異方性導電フィルムで接着した状態を示す断面図である。 図6は、ウレタンアクリレートを含有する異方性導電フィルムで電子部品と配線板とを接続する方法を説明する断面図であり、(A)は、配線板に貼付けた異方性導電フィルム上に電子部品を搭載し、加熱、加圧している状態を示す断面図であり、(B)は、配線板と電子部品とを異方性導電フィルムで導通していない状態を示す断面図である。
 以下、本発明が適用された異方性導電接続材料、フィルム積層体、接続方法及び接続構造体の実施の形態(以下、「本実施の形態」という。)について、図面を参照しながら下記順序にて詳細に説明する。
1.異方性導電接続材料・フィルム積層体
2.接続構造体・接続方法
3.実施例
<1.異方性導電接続材料・フィルム積層体>
 異方性導電接続材料は、例えば基板の端子と電子部品の端子との間に介在し、基板と電子部品とを接続して導通させるものである。このような異方性導電接続材料は、導電性粒子を含有するフィルム状の異方性導電接着フィルム又はペースト状の異方性導電接着ペーストである。本願では、異方性導電接着フィルム又は異方性導電接着ペーストを「異方性導電接続材料」と定義する。以下では、異方性導電接着フィルムを例に挙げて説明する。
 フィルム積層体1は、図1に示すように、通常、基材となる剥離フィルム2上に異方性導電接続層となる異方性導電フィルム3が積層されたものである。
 剥離フィルム2は、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)等にシリコーン等の剥離剤を塗布してなるものである。異方性導電フィルム3は、この剥離フィルム2により形状が維持されている。
 異方性導電フィルム3は、膜形成材料と、硬化成分としてアクリル樹脂と、硬化剤として有機過酸化物と、アミン化合物とを少なくとも含有する接着剤(バインダ)4に導電性粒子5が分散されたものである。この異方性導電フィルム3は、剥離フィルム2上にフィルム状に形成されている。
 膜形成樹脂としては、平均分子量が10000~80000程度の樹脂が好ましい。膜形成樹脂としては、例えばフェノキシ樹脂、ポリエステルウレタン樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ブチラール樹等の各種の樹脂が挙げられる。中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂が特に好ましい。膜形成樹脂の含有量は、100質量部の接着剤4に対して、通常30~80質量部、好ましくは40~70質量部である。
 硬化成分としては、ラジカル重合性樹脂であり、熱硬化性樹脂のアクリル樹脂を用いる。アクリル樹脂としては、特に制限はなく、目的に応じてアクリル化合物、液状アクリレート等を適宜選択することができる。例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート、エポキシアクリレート等を挙げることができる。なお、アクリレートをメタクリレートにしたものを用いることもできる。
 硬化成分は、1種単独で使用してもよいし、2種以上を併用してもよい。硬化成分の含有量は、100質量部の接着剤4に対して、通常10~60質量部、好ましくは20~50質量部である。
 なお、接着剤4には、エポキシ樹脂を硬化成分として含有させていない。接着剤4には、後述するように接着力を上げるためにアミン化合物を含有させていることから、エポキシ樹脂を含有していると、エポキシの反応が進行して増粘するため、正常に基板と電子部品とを接続することができず、接着強度が低下し、導通抵抗が上昇してしまうからである。
 硬化剤には、ラジカル開始重合剤となるものであり、有機過酸化物を用いる。有機過酸化物としては、例えば、ラウロイルパーオキサイド、ブチルパーオキサイド、ベンジルパーオキサイド、ジラウロイルパーオキサイド、ジブチルパーオキサイド、ベンジルパーオキサイド、パーオキシジカーボネート、ベンゾイルパーオキサイド等を挙げることができる。硬化剤の含有量は、100質量部の接着剤4に対して、通常0.1~30質量部、好ましくは1~20質量部である。
 アミン化合物は、接着剤4の接着力を向上させるものである。アミン化合物としては、シラノール基やビニル基等により変性されていないものを用いる。具体的に、アミン化合物としては、環状の第3級アミン化合物であり、イミダゾール化合物等を挙げることができる。環状の第3級アミン化合物としては、イミダゾール化合物が好ましく、中でもシアノ基を有するイミダゾール化合物が特に好ましく、シアノ基を有するイミダゾール化合物では極性が上がるため、接着強度をより高くすることができる。アミン化合物の配合量は、アクリル樹脂30質量部に対して、0.1~5質量部とすることが好ましく、0.1質量部よりも少ない場合には、異方性導電フィルム3の接着力が十分に上がらず、一方、5質量部よりも多い場合には、接続信頼性が低下してしまう。アミン化合物としてイミダゾール化合物を使用する場合、イミダゾール化合物の含有量は、アクリル樹脂30質量部に対して、0.5質量部~5質量部とすることによって、より接着強度を高くすることができるので好ましい。
 以上のような構成からなる接着剤4では、アミン化合物を添加すると、通常その極性により金属密着性が上がるといわれているが、アミン化合物により重合が開始する材料が含有されていないので、反応後の立体障害が起きにくく、アミン化合物を効果的に使用でき、異方性導電フィルム1の接着力を上げることができる。
 また、接着剤4では、アミン化合物を触媒として使用した場合、例えば、反応性が早く、硬化反応が進行して使用前における接着剤4の保存安定性に影響を与え、製品寿命が短くなるような2-メチルイミダゾールを使用した場合であっても、異方性導電フィルム3の製品寿命に影響を与えることなく使用できる。
 なお、接着剤4には、シランカップリング剤を含有させてもよい。シランカップリング剤としては、特に限定されないが、例えば、アミノ系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。シランカップリング剤を添加することにより、有機材料と無機材料との界面における接着性を向上させることができる。
 接着剤4に含有させる導電性粒子5としては、異方性導電フィルム3において使用されている公知の何れの導電性粒子を挙げることができる。導電性粒子5としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、或いは、これらの粒子の表面に更に絶縁薄膜をコートしたもの等が挙げられる。また、導電性粒子5としては、樹脂粒子の表面に金属をコートしたものも用いることができ、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を挙げることができる。
 導電性粒子5の平均粒径は、接続信頼性の観点から、好ましくは1~20μm、より好ましくは2~10μmである。また、接着剤4中の導電性粒子5の平均粒子密度は、接続信頼性及び絶縁信頼性の観点から、好ましくは1000~50000個/mm、より好ましくは3000~30000個/mmである。
 このような構成からなるフィルム積層体1は、トルエンや酢酸エチル等の溶媒に、上述した接着剤4を溶解させ、導電性粒子5を分散させた接着剤溶液を作製し、この接着剤溶液を剥離性を有する剥離フィルム2上に所望の厚さとなるように塗布し、乾燥して溶媒を除去し、異方性導電フィルム3を形成することによって製造することができる。
 なお、フィルム積層体1は、このような剥離フィルム2上に異方性導電フィルム3を形成した構成に限定されず、異方性導電フィルム3に例えば接着剤4のみからなる絶縁性樹脂層(NCF:Non Conductive Film層)を積層するようにしてもよい。
 また、フィルム積層体1は、異方性導電フィルム3の剥離フィルム2が積層された面とは反対の面側にも剥離フィルムを設ける構成としてもよい。
 以上のような構成からなるフィルム積層体1の異方性導電フィルム3は、ラジカル系異方性導電フィルムであり、膜形成樹脂としてフェノキシ樹脂やウレタン樹脂等を含有し、硬化成分としてアクリル樹脂を含有し、ラジカル開始重合剤として有機過酸化物を含有し、これらと共に接着剤4の接着力を向上させるアミン化合物が含有されていることによって、抵抗が上がることなく高い接着強度が得られる。
 また、フィルム積層体1の異方性導電フィルム3では、イミダゾール化合物等のアミン化合物によってアニオン重合するようなエポキシ樹脂が接着剤4に含有されておらず、アミン化合物がラジカル重合開始剤として使用されないため、接着剤4を高めるものとして使用することができ、アミン化合物の効果を発揮させることができる。
<2.接続構造体・接続方法>
 次に、この異方性導電フィルム3を用いて基板の端子と電子部品の端子とを導通して接続する接続方法及びこれにより製造される接続構造体について説明する。
 図2に示す接続構造体10は、例えば基板としてリジッド配線板11と電子部品としてICチップ12とを異方性導電フィルム3で機械的及び電気的に接続固定したものである。この接続構造体10は、リジッド配線板11の端子13とICチップ12の端子14とが導電性粒子5によって電気的に接続されている。
 この接続構造体10の製造方法は、リジッド配線板11の端子13上に、異方性導電接続層となる異方性導電フィルム3を貼り付ける接着層形成工程と、異方性導電フィルム3を介して、ICチップ12の端子14がリジッド配線板11の端子13と対向するように、ICチップ12をリジッド配線板11上に搭載する搭載工程と、ICチップ12の上面から加圧ヘッドを加熱、加圧して、搭載したICチップ12をリジッド配線板11に対して加熱しながら加圧し、リジッド配線板11の端子13とICチップ12の端子14とを異方性導電性フィルム3の導電性粒子5を介して電気的に接続する接続工程とを有する。
 先ず、接着層形成工程は、リジッド配線板11上の端子13におけるICチップ12の端子14と接続する位置にフィルム積層体1の異方性導電フィルム3がリジッド配線板11の端子13側となるように置き、剥離フィルム2を剥がし取り、異方性導電フィルム3のみとした後、端子13に異方性導電フィルム3を貼付ける。この貼付けは、異方性導電フィルム3に含まれる熱硬化性樹脂成分が硬化しない温度で行い、例えば僅かに加圧しながら70℃~100℃程度の温度で、0.5秒~2秒程度加熱する。これにより、異方性導電フィルム3がリジッド配線板11の端子13上に位置決め固定される。
 次に、異方性導電フィルム3上にICチップ12を搭載する搭載工程を行う。搭載工程では、異方性導電フィルム3の位置合わせ状態を確認し、位置ずれ等が生じていない場合には、異方性導電フィルム3上にICチップ12の端子14が位置し、リジッド配線板11の端子13とICチップ12の端子14が対向するように、ICチップ12を異方性導電フィルム3を介してリジッド配線11上に搭載する。
 次に、リジッド配線板11とICチップ12とを機械的及び電気的に接続する接続工程を行う。接続工程は、加熱及び加圧可能な加圧ヘッドでICチップ12の上面からICチップ12をリジッド配線板11に対して加熱しながら加圧し、異方性導電フィルム3を硬化させ、リジッド配線板11の端子13とICチップ12の端子14とを導電性粒子5を介して電気に接続し、リジッド配線板1とICチップ12とを異方性導電フィルム3で機械的に接続する。
 この接続工程の条件は、加熱温度が異方性導電フィルム3に含まれる熱硬化性樹脂の硬化温度以上の温度であり、端子13、14間から接着剤4が排除され、導電性粒子5を挟持し得る圧力で加圧する。これにより、リジッド基板11とICチップ12とが異方性導電フィルム3を介して電気的及び機械的に接続される。温度及び加圧の具体的な条件としては、温度130℃~150℃程度、圧力1MPa~100MPa程度である。
 以上のように製造された接続構造体10は、異方性導電フィルム3に膜形成樹脂としてフェノキシ樹脂やウレタン樹脂等が含有され、硬化成分としてアクリル樹脂が含有され、ラジカル開始重合剤として有機過酸化物が含有され、これらと共に接着剤4の接着力を向上させるアミン化合物が含有されていることによって、異方性導電フィルム3の接着強度を高く、リジッド配線板11とICチップ12の機械的な接続強度が高いだけではなく、リジッド基板11の端子13とICチップ12の端子14との電気的な接続強度も高いものである。
 また、この接続構造体10では、異方性導電フィルム3にエポキシ樹脂が含有されていないため、異方性導電フィルム13が増粘せず、リジッド配線板11とICチップ12との間で接続不良が発生することも防止できている。したがって、この接続構造体10は、リジッド配線板11とICチップ12との接続強度が高く、導通の信頼性が高いものである。
 また、接続構造体10の基板としては、リジッド配線板11に限定されず、端子を有する絶縁性基板であれば何れのものであってもよく、端子を設けたガラス基板、プラスチック基板、ガラス強化エポキシ基板等を挙げることができる。
 また、電子部品としては、ICチップ12に限らず、他の電子部品であってもよい。例えば、LSI(Large Scale Integration)チップ等のICチップ以外の半導体チップやチップコンデンサ等の半導体素子、フレキシブルプリント基板(FPC:Flexible printed circuits)、液晶駆動用半導体実装材料(COF:Chip On Film)等を挙げることができる。
 以上、本実施の形態について説明したが、本発明が前述の実施の形態に限定されるものでないことは言うまでもなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
<3.実施例>
 次に、本発明の具体的な実施例について、実際に行った実験結果に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。
 <フィルム積層体の作製>
 先ず、有機溶媒として酢酸エチル、トルエンを用い、この有機溶媒に下記の表1、表2に示す配合の膜形成材料、硬化成分、有機過酸化物、アミン化合物を固形分50%となるようにして溶解した混合溶液を作製した。次に、この混合溶液を厚さ50μmのポリエチレンテレフタレートフィルム上に塗布し、70℃で5分間乾燥して、フィルム状に形成したフィルム積層体のサンプルを作製した。実施例1~実施例6及び比較例1~比較例3における異方性導電フィルム材料の配合は、表1、表2に示すように行った。なお、下記に示す評価を行う際には、厚みが20μmとなるように調整したものを使用した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~実施例6及び比較例1~比較例3の異方性導電フィルムについて、導通抵抗測定及び接着強度試験を行った。
 <導通抵抗測定>
 導通抵抗測定の試験は、次のようにして図3に示す接続構造体20を作製し、導通抵抗を測定した。先ず、0.7mm厚のガラスに透明導電膜(ITO膜)21aを付けたITOガラス21に、各実施例及び各比較例の異方性導電フィルム22を貼付け、その上にフレキシブル配線基板(FPC)23を搭載した。フレキシブル配線基板23は、サイズは20mm×40mm×総厚み46μmであり、PI/Cu=38μm/8μm、ピッチ50μmで導通測定用配線を形成した測定用の特性評価用素子を使用した。次に、加圧ヘッドでフレキシブル配線基板23をITOガラス21側に、温度160℃、圧力4MPaの条件で4秒間加圧しながら加熱し、異方性導電フィルム22を硬化させて、プリント配線基板23とITOガラス21とを導通させた接続構造体20を作製した。
 そして、この各実施例及び比較例の接続構造体20について、60℃/95%RH環境下に500時間放置後(エージング後)の導通抵抗値を評価した。導通抵抗値は、デジタルマルチメーターを用いて、4端子法にて電流1mAを流したときの導通抵抗値を測定した。エージング後の導通抵抗値が5Ω以下である場合には、抵抗が低いものとする。
 <接着強度試験>
 接着強度試験は、図4に示す接続構造体30を作製して行った。接続構造体30には、上述した導通抵抗測定と同じ構成のITOガラス31及びフレキシブルプリント配線基板32を使用した。ITOガラス31とフレキシブルプリント配線基板32との間に各実施例及び比較例の異方性導電フィルム33を介在させ、上述した導通抵抗測定と同じ温度及び加熱条件でITOガラスとフレキシブルプリント配線基板32とを機械的及び電気的に接続し、接続構造体30を作製した。そして、この各実施例及び比較例の接続構造体30について、フレキシブルプリント配線基板32の中央部分を幅10mmで切取り、切取った部分から露出した異方性導電フィルム33を引張試験機(テンシロン、オリエンテック社製)を用いて、剥離速度50mm/分、90度(Y軸方向)に引き上げ、接着強度を測定した。接着強度が4N/cm以上である場合には、接着強度が高いものとする。
 表1に示す結果から、異方性導電フィルムにイミダゾール化合物が含有されている実施例1~実施例6では、イミダゾールの極性により異方性導電フィルムの接着力が高くなり、ITOガラスとフレキシブルプリント配線基板との密着力が増して、接着強度が4N/cm以上と高くなった。また、シアノ基を有するイミダゾール化合物を含有した実施例2及び実施例3では、接着強度が高く、実施例2に示すように、イミダゾールの含有量が0.5重量部と少なくても接着強度が高くなった。
 一方、比較例1では、異方性導電フィルムにエポキシ樹脂が含有されているため、イミダゾール化合物が硬化剤として消費されてしまい、接着強度が低下し、また抵抗が大きくなった、比較例2では、アミン化合物として2官能第1級アミンを用いているため、接着強度が十分に向上せず、また抵抗が大きくなった。比較例3では、アミン化合物として直鎖状の第3級アミン化合物を用いているため、接着強度が十分に向上しなかった。
 1 フィルム積層体、2 剥離フィルム、3 異方性導電フィルム、4 接着剤、5 導電性粒子、10 接続構造体、11 リジッド配線板、12 ICチップ、13 端子、14 端子

Claims (8)

  1.  導電性粒子が接着剤中に分散されてなる異方性導電接続材料において、
     上記接着剤は、膜形成材料と、アクリル樹脂と、有機過酸化物と、アミン化合物とを含有し、
     上記アミン化合物が環状の第3級アミン化合物であることを特徴とする異方性導電接続材料。
  2.  上記環状の第3級アミン化合物は、イミダゾール化合物であることを特徴とする請求項1記載の異方性導電接続材料。
  3.  上記イミダゾール化合物は、シアノ基を有することを特徴とする請求項2記載の異方性導電接続材料。
  4.  上記環状の第3級アミン化合物の含有量は、上記アクリル樹脂30質量部に対して、0.1~5質量部であることを特徴とする請求項1乃至請求項3のいずれか1項記載の異方性導電接続材料。
  5.  該異方性導電接続材料は、フィルム状に形成されていることを特徴とする請求項1乃至請求項4のいずれか1項記載の異方性導電接続材料。
  6.  剥離フィルム上に、導電性粒子が接着剤中に分散されてなる異方性導電接続層が形成されたフィルム積層体において、
     上記接着剤は、膜形成材料と、アクリル樹脂と、有機過酸化物と、アミン化合物とを含有し、
     上記アミン化合物が環状の第3級アミン化合物であることを特徴とするフィルム積層体。
  7.  基板の端子と電子部品の端子とを異方性導電接続層により接続する接続方法において、上記基板の端子上に、導電性粒子が接着剤中に分散されてなる異方性導電接続層を形成する接着層形成工程と、
     上記異方性導電接続層を介して、上記電子部品の端子が上記基板の端子と対向するように上記電子部品を上記基板上に搭載する搭載工程と、
     上記電子部品の上面から加圧ヘッドで加熱、加圧して、搭載した上記電子部品を上記基板に対して加圧し、上記基板の端子と上記電子部品の端子とを上記異方性導電接続層の上記導電性粒子を介して電気的に接続する接続工程とを有し、
     上記異方性導電接続層の接着剤は、膜形成材料と、アクリル樹脂と、有機過酸化物と、アミン化合物とを含有し、上記アミン化合物が環状の第3級アミン化合物であることを特徴とする接続方法。
  8.  基板の端子と電子部品の端子との間に異方性導電接続層を介在させて、上記基板と上記電子部品とを接続及び導通した接続構造体において、
     上記異方性導電接続層は、導電性粒子が接着剤中に分散されてなり、
     上記接着剤は、膜形成材料と、アクリル樹脂と、有機過酸化物と、アミン化合物とを含有し、
     上記アミン化合物が環状の第3級アミン化合物であることを特徴とする接続構造体。
PCT/JP2012/062194 2011-05-12 2012-05-11 異方性導電接続材料、フィルム積層体、接続方法及び接続構造体 WO2012153849A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137032613A KR101973823B1 (ko) 2011-05-12 2012-05-11 이방성 도전 접속 재료, 필름 적층체, 접속 방법 및 접속 구조체
CN201280022932.5A CN103502379B (zh) 2011-05-12 2012-05-11 各向异性导电连接材料、膜层叠体、连接方法及连接结构体
HK14102534.3A HK1189389A1 (zh) 2011-05-12 2014-03-13 各向異性導電連接材料、膜層叠體、連接方法及連接結構體

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-107457 2011-05-12
JP2011107457A JP5816456B2 (ja) 2011-05-12 2011-05-12 異方性導電接続材料、フィルム積層体、接続方法及び接続構造体

Publications (1)

Publication Number Publication Date
WO2012153849A1 true WO2012153849A1 (ja) 2012-11-15

Family

ID=44881092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062194 WO2012153849A1 (ja) 2011-05-12 2012-05-11 異方性導電接続材料、フィルム積層体、接続方法及び接続構造体

Country Status (6)

Country Link
JP (1) JP5816456B2 (ja)
KR (1) KR101973823B1 (ja)
CN (1) CN103502379B (ja)
HK (1) HK1189389A1 (ja)
TW (1) TWI539470B (ja)
WO (1) WO2012153849A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119136A1 (ja) * 2014-02-04 2015-08-13 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP6608147B2 (ja) * 2015-02-23 2019-11-20 デクセリアルズ株式会社 多層接着フィルム、および接続構造体
CN109790425B (zh) * 2016-10-03 2022-03-04 昭和电工材料株式会社 导电性膜、卷绕体、连接结构体和连接结构体的制造方法
CN106371250A (zh) * 2016-10-21 2017-02-01 芜湖赋兴光电有限公司 一种acf胶热压工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064344A (ja) * 2001-08-30 2003-03-05 Hitachi Chem Co Ltd 回路接続用接着剤及びそれを用いた回路接続構造体
JP2003313533A (ja) * 2002-04-23 2003-11-06 Sumitomo Bakelite Co Ltd 異方導電性接着剤
WO2005121266A1 (ja) * 2004-06-09 2005-12-22 Hitachi Chemical Co., Ltd. 接着剤組成物、回路接続材料、回路部材の接続構造及び半導体装置
JP2006160861A (ja) * 2004-12-07 2006-06-22 Denki Kagaku Kogyo Kk 接着剤組成物とそれを用いた接合体、接着剤組成物の製造方法
WO2007046189A1 (ja) * 2005-10-18 2007-04-26 Hitachi Chemical Company, Ltd. 接着剤組成物、回路接続材料、回路接続部材の接続構造及び半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000695B2 (ja) 2009-09-01 2012-08-15 日立化成工業株式会社 回路板装置の製造法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064344A (ja) * 2001-08-30 2003-03-05 Hitachi Chem Co Ltd 回路接続用接着剤及びそれを用いた回路接続構造体
JP2003313533A (ja) * 2002-04-23 2003-11-06 Sumitomo Bakelite Co Ltd 異方導電性接着剤
WO2005121266A1 (ja) * 2004-06-09 2005-12-22 Hitachi Chemical Co., Ltd. 接着剤組成物、回路接続材料、回路部材の接続構造及び半導体装置
JP2006160861A (ja) * 2004-12-07 2006-06-22 Denki Kagaku Kogyo Kk 接着剤組成物とそれを用いた接合体、接着剤組成物の製造方法
WO2007046189A1 (ja) * 2005-10-18 2007-04-26 Hitachi Chemical Company, Ltd. 接着剤組成物、回路接続材料、回路接続部材の接続構造及び半導体装置

Also Published As

Publication number Publication date
KR20140035391A (ko) 2014-03-21
CN103502379B (zh) 2016-02-10
TWI539470B (zh) 2016-06-21
HK1189389A1 (zh) 2014-06-06
JP5816456B2 (ja) 2015-11-18
KR101973823B1 (ko) 2019-04-29
CN103502379A (zh) 2014-01-08
JP2011204685A (ja) 2011-10-13
TW201301300A (zh) 2013-01-01

Similar Documents

Publication Publication Date Title
KR102467618B1 (ko) 접착제 조성물
JP7347576B2 (ja) 接着剤フィルム
JP5685473B2 (ja) 異方性導電フィルム、接合体の製造方法、及び接合体
JP5509542B2 (ja) 配線部材の接続構造体及び配線部材の接続方法
JP2011192651A (ja) 異方性導電フィルム、接続方法及び接続構造体
WO2013125388A1 (ja) 異方性導電接続材料、接続構造体、接続構造体の製造方法及び接続方法
JP2014096531A (ja) 接続構造体の製造方法及び接続方法
CN111512502B (zh) 连接结构体及其制造方法
JP5844588B2 (ja) 回路接続材料及びそれを用いた接続方法並びに接続構造体
JP5816456B2 (ja) 異方性導電接続材料、フィルム積層体、接続方法及び接続構造体
JP5972564B2 (ja) 接続方法、接続構造体、異方性導電フィルム及びその製造方法
JP5844589B2 (ja) 異方性導電フィルム及びそれを用いた接続方法並びに接続構造体
JP4513147B2 (ja) 回路接続方法
JP2023029350A (ja) 接着剤フィルム
CN112543795B (zh) 连接结构体的制备方法及连接膜
TWI837173B (zh) 連接構造體之製造方法及連接膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782289

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137032613

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12782289

Country of ref document: EP

Kind code of ref document: A1