WO2012153556A1 - 差動復調装置及び差動復調方法 - Google Patents

差動復調装置及び差動復調方法 Download PDF

Info

Publication number
WO2012153556A1
WO2012153556A1 PCT/JP2012/053793 JP2012053793W WO2012153556A1 WO 2012153556 A1 WO2012153556 A1 WO 2012153556A1 JP 2012053793 W JP2012053793 W JP 2012053793W WO 2012153556 A1 WO2012153556 A1 WO 2012153556A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
elementary
update
unit
differential
Prior art date
Application number
PCT/JP2012/053793
Other languages
English (en)
French (fr)
Inventor
勝崇 今尾
鈴木 宏
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP12782536.2A priority Critical patent/EP2709329B1/en
Priority to CN201280014560.1A priority patent/CN103460661B/zh
Priority to JP2013513950A priority patent/JP5599507B2/ja
Publication of WO2012153556A1 publication Critical patent/WO2012153556A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2331Demodulator circuits; Receiver circuits using non-coherent demodulation wherein the received signal is demodulated using one or more delayed versions of itself

Definitions

  • the present invention relates to a differential demodulation device and a differential demodulation method.
  • QPSK Quadrature Phase Shift Keying
  • a method of performing demodulation by comparing an absolute phase reference provided on a phase plane with a received signal is generally used. It is. For this reason, there is a problem that accurate demodulation cannot be performed in principle when the phase rotation amount of the received signal due to radio wave interference, movement, or thermal noise is large.
  • DQPSK Differential Quadrature Phase Shift Keying
  • DQPSK In DQPSK, a demodulated signal is generated using the phase difference between the signal received at a certain time and the signal received immediately before, so that a certain amount of phase rotation is applied to all received signals. Even in such an environment, accurate demodulation can be performed. In DQPSK, even in a mobile reception environment in which the phase rotation amount fluctuates with time, if the fluctuation speed is sufficiently small with respect to the signal transmission speed, accurate demodulation is performed with little dependence on the phase rotation. be able to.
  • Non-Patent Document 1 shows that the signal received at a certain time and the signal received immediately before are usually affected by thermal noise, the bit error rate of DQPSK is compared to the QPSK signal using the absolute phase reference. There is a problem of deterioration. This is shown in Non-Patent Document 1, for example.
  • Patent Document 1 the positions of all signal points that can be taken in the applied digital phase modulation method are estimated from the reception signal at the current time, and among the estimated signal points, the reception signal at the next time is estimated.
  • a technique for improving demodulation accuracy by performing demodulation using a signal point having a minimum distance from the signal point is disclosed.
  • Patent Document 1 estimates and compensates for the amount of phase rotation using only the received signals at the current time and the next time, so that random amplitude fluctuations and phase fluctuations due to noise are dominant. There is a possibility that demodulation accuracy may not be improved in a noisy environment. Further, in the technique described in Patent Document 1, in a mobile reception environment where the amount of phase rotation fluctuates with time, and when the fluctuation speed is equal to the signal transmission speed, the demodulated signal is affected by the phase rotation. Therefore, the reliability of the received signal is reduced.
  • the present invention improves the reliability of the demodulated signal even in a transmission path environment in which the amplitude and phase of the received signal change from moment to moment and in a poor transmission path environment in which the power of the received signal and noise antagonize.
  • the purpose is to do.
  • a differential demodulator includes a delay unit that delays an input signal for a predetermined time to obtain a delayed signal, and one or more differentials indicating the difference between the delayed signal and one or more reference elementary signals
  • a comparison unit that calculates a physical quantity; a selection unit that selects, as a reference signal, a reference elementary signal that is used to calculate one physical quantity having a minimum absolute value among the one or more physical quantities; and the input signal and the reference
  • a differential demodulator that demodulates the input signal according to a phase difference between the reference signal and each of the reference elementary signals is updated by referring to at least a part of the one or more physical quantities. It is characterized by that.
  • the reliability of a demodulated signal is ensured even in a transmission path environment in which the amplitude and phase of a reception signal change from moment to moment, and in a poor transmission path environment in which the power of a reception signal and noise antagonize. Can be improved.
  • FIG. 1 is a block diagram schematically showing a configuration of a differential demodulator according to a first embodiment.
  • 2 is a schematic diagram illustrating an example of a first physical quantity and a second physical quantity in Embodiment 1.
  • FIG. 7 is a schematic diagram illustrating another example of the first physical quantity and the second physical quantity in the first embodiment.
  • FIG. 3 is a schematic diagram illustrating a reference signal and a reference signal generated by updating the reference signal in the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an arrangement example of signal points of an input signal, a delay signal, and a reference signal in the first embodiment.
  • 5 is a block diagram schematically showing a configuration of a differential demodulator according to a second embodiment.
  • FIG. FIG. 10 is a block diagram schematically showing a configuration of a differential demodulation device according to a third embodiment.
  • FIG. 10 is a block diagram schematically showing a configuration of a differential demodulation device according to a fourth embodiment.
  • FIG. 1 is a block diagram schematically showing a configuration of a differential demodulator 100 according to the first embodiment.
  • the differential demodulator 100 according to the present embodiment efficiently suppresses the influence of noise and phase rotation by referring to the reference signal at the time of differential demodulation, and has high demodulation performance even in a strong noise environment. It is configured so that it can be maintained. Further, the differential demodulator 100 sequentially generates a weighting coefficient according to the reliability of the received signal, in other words, according to the comparison result between the received signal and the reference signal, and updates the reference signal using this weighting coefficient. Thus, it is configured to eliminate the influence of the cumulative phase rotation in the received signal.
  • the differential demodulator 100 includes a differential demodulator 101, a delay unit 102, a comparator 103, a selector 104, a calculator 105, and an updater 106. Then, the differential demodulator 100 differentially demodulates the input signal X (m + 1) which is a differential modulation signal, that is, a modulation signal modulated using the differential angle shift keying method, and outputs the result. Output as signal Y (m + 1).
  • “m” is a natural number equal to or greater than “1” and indicates a unit of time for performing signal processing.
  • the differential demodulator 101 detects a phase difference using the input signal X (m + 1) and the reference signal Z (m), and outputs this phase difference as an output signal Y (m + 1).
  • the differential demodulation unit 101 detects a phase difference by performing calculation using the following equation (1).
  • ⁇ ⁇ A ⁇ is the deflection angle of A
  • B * is the complex conjugate signal of B.
  • Y (m + 1) ⁇ ⁇ X (m + 1) Z * (m) ⁇ : (1)
  • the delay unit 102 delays the input signal by a predetermined time to obtain a delayed signal. Then, the delay unit 102 gives this delayed signal to the comparison unit 103. For example, when the input signal X (m + 1) is input, the delay unit 102 outputs the input signal input before the input signal X (m + 1) as the delay signal X (m). In this example, the delay unit 102 delays each input signal by a unit time for processing one input signal.
  • the comparison unit 103 compares the delay signal X (m) with a reference signal S (m) composed of one or more reference elementary signals S k (m), A physical quantity indicating a difference from the reference elementary signal S k (m) is calculated as a first physical quantity D k (m) and a second physical quantity E k (m).
  • the comparator unit 103 gives the reference element signals S k (m) first physical quantity D k (m) selecting section 104 first comparison signal D (m) indicating the per reference element signal S k (m)
  • a second comparison signal E (m) indicating each second physical quantity E k (m) is supplied to the calculation unit 105.
  • k is a natural number, and the range of k is preferably 1 ⁇ k ⁇ N, where N is the total number of signal points used in the digital angle modulation method.
  • Each of the reference elementary signals is preferably a candidate signal that is obtained by cumulative addition of weighted delay signals and is estimated to have a delay signal that suppresses a noise component that has no correlation in the transmission path environment. .
  • N 2
  • is the initial phase of S k (0).
  • N 4
  • j is an imaginary unit.
  • the initial value S k (0) of the reference elementary signal can be similarly determined.
  • the number of initial values of the reference elementary signal is the number of signal points that can be taken by the modulation signal generated on the transmission side in the wireless communication system (or less), the initial value of the reference elementary signal will be described later.
  • the reference elementary signal adapted to the transmission path is converged.
  • the update convergence speed can be increased.
  • FIG. 2 is a schematic diagram illustrating an example of the first physical quantity D k (m) and the second physical quantity E k (m).
  • the comparison unit 103 can set the Euclidean distance between the delayed signal X (m) and each reference elementary signal S k (m) as the first physical quantity D k (m). Then, the comparison unit 103 aggregates the Euclidean distances calculated in the range of 1 ⁇ k ⁇ 4, and generates a first comparison signal D (m) indicating these Euclidean distances.
  • the comparison unit 103 can also set the Euclidean distance between the delay signal X (m) and each reference elementary signal S k (m) as the second physical quantity E k (m). Then, the comparison unit 103 aggregates the Euclidean distances calculated in the range of 1 ⁇ k ⁇ 4, and generates a second comparison signal E (m) indicating these Euclidean distances.
  • FIG. 3 is a schematic diagram illustrating another example of the first physical quantity D k (m) and the second physical quantity E k (m).
  • the comparison unit 103 can set the phase difference between the delayed signal X (m) and each reference elementary signal S k (m) as the first physical quantity D k (m). Then, the comparison unit 103 aggregates the phase differences calculated in the range of 1 ⁇ k ⁇ 4, and generates a first comparison signal D (m) indicating these phase differences.
  • the comparison unit 103 can also set the phase difference between the delayed signal X (m) and each reference elementary signal S k (m) as the second physical quantity E k (m). Then, the comparison unit 103 aggregates the phase differences calculated in the range of 1 ⁇ k ⁇ 4, and generates a second comparison signal E (m) indicating these phase differences.
  • the first physical quantity D k (m), the first comparison signal D (m), the second physical quantity E k (m), and the second comparison signal E (m) are any of those shown in FIGS. It may be calculated by only one method. In addition, the first physical quantity D k (m) and the first comparison signal D (m) are calculated by any one of the methods shown in FIGS. 2 and 3, and the second physical quantity E k (m) and the second comparison quantity D 2 (m) are calculated.
  • the comparison signal E (m) may be calculated by one of the other methods shown in FIGS. Further, the first physical quantity D k (m), the first comparison signal D (m), the second physical quantity E k (m), and the second comparison signal E (m) are the same as those shown in FIGS. May be calculated using different methods.
  • the comparison unit 103 gives the delay signal X (m) given from the delay unit 102 to the update unit 106.
  • the selection unit 104 uses the reference elementary signal S k (m) associated with one first physical quantity D k (m) selected from the first comparison signal D (m) based on a predetermined selection rule as a reference signal Z. (M) is given to the differential demodulator 101 and the update unit 106. For example, the selection unit 104 selects the first physical quantity D k (m) having the smallest absolute value as D c (m), and uses the reference elementary signal S c (m) associated therewith as the reference signal. Z (m) is provided to the differential demodulator 101 and the update unit 106.
  • c is a natural number, and the range of c is preferably 1 ⁇ c ⁇ N.
  • the calculation unit 105 calculates the weighting coefficient W (m) using the second physical quantity E k (m) that constitutes the second comparison signal E (m). For example, the calculation unit 105 determines the reliability of one second physical quantity E k (m) selected from the N second physical quantities E k (m), or the N second physical quantities E k ( A weighting coefficient W (m) depending on the ratio of the reliability of this one second physical quantity E k (m) to the reliability of m) is calculated. This will be specifically described below.
  • the calculation unit 105 identifies the N second physical quantity E k (m) having the smallest absolute value as the smallest value, and calculates the weighting coefficient W (m) proportional to the reciprocal of the smallest value. Can be calculated.
  • the above processing in the calculation unit 105 can be expressed by the following equation (4).
  • A is a proportionality constant.
  • the proportionality constant A affects when the updating unit 106 updates the reference signal S (m) using the weighting coefficient W (m). Specifically, the smaller the value of A, the smaller the contribution ratio of the weighting coefficient W (m) to the update of the reference signal S (m), and the larger the value of A, the larger the contribution ratio. For this reason, the value of the proportionality constant A should just be selected based on this contribution rate.
  • the calculation unit 105 from among the N second physical quantity E k (m) to identify the absolute value is the minimum as the minimum value, N second physical quantity E k of (m) A weighting factor W (m) proportional to the ratio of the reciprocal of this minimum value to the sum of the reciprocals can be calculated.
  • the above processing in the calculation unit 105 can be expressed by the following equation (5).
  • H 1 (m) is a harmonic average of the N second physical quantities E k (m).
  • the calculation unit 105 identifies the smallest absolute value from among the N second physical quantities E k (m) as the minimum value, and i of N (1 ⁇ i ⁇ i) A weighting factor W (m) proportional to the ratio of the reciprocal of this minimum value to the sum of the reciprocal of the second physical quantity E k (m) of N) can be calculated.
  • W (m) proportional to the ratio of the reciprocal of this minimum value to the sum of the reciprocal of the second physical quantity E k (m) of N) can be calculated.
  • the above processing in the calculation unit 105 can be expressed by the following equation (6).
  • selmin ⁇ means the minimum value of i numbers selected from the numbers included in parentheses.
  • H 2 (m) is a harmonic average of i second physical quantities E k (m) selected from N.
  • the calculation unit 105 selects i (1 ⁇ i) by selecting the N second physical quantities E k (m) whose absolute value is equal to or less than a predetermined threshold (third threshold).
  • a second physical quantity E k (m) of ⁇ N) can be selected.
  • calculation unit 105 may calculate the weighting coefficient W (m) using a method different from the equations (4), (5), and (6). Then, the calculation unit 105 gives the calculated weighting coefficient W (m) to the update unit 106.
  • the update unit 106 gives the reference signal S (m) to the selection unit 104 and the comparison unit 103.
  • the reference signal S (m) is used for processing the input signal X (m + 1).
  • the update unit 106 updates the reference signal S (m) using the weighting coefficient W (m) to generate the reference signal S (m + 1).
  • the reference signal S (m + 1) is used to process the input signal X (m + 2) input next to the input signal X (m + 1).
  • the updating unit 106 calculates an amplitude correction amount and a phase correction amount for updating the reference signal S (m) based on the weighting coefficient W (m).
  • the updating unit 106 displaces all the amplitudes and phases of all the reference elementary signals S k (m) constituting the reference signal S (m) based on the calculated amplitude correction amount and phase correction amount.
  • the reference signal S (m) is updated.
  • the update unit 106 is selected as the signal point of the delayed signal X (m) and the reference signal Z (m) using the weighting coefficient W (m) normalized to 0 ⁇ W (m) ⁇ 1.
  • W (m) normalized to 0 ⁇ W (m) ⁇ 1.
  • the amplitude correction amount ⁇ (m) and the phase correction amount ⁇ (m) is calculated.
  • the updating unit 106 can calculate the amplitude correction amount ⁇ (m) and the phase correction amount ⁇ (m) by the following equation (7).
  • indicates an absolute value.
  • ABS ⁇ means the absolute value of the numerical value in parentheses.
  • ABS ⁇ S k (m + 1) ⁇ ⁇ (m):
  • (8) ⁇ ⁇ S k (m + 1) ⁇ ⁇ ⁇ S k (m) ⁇ ⁇ ⁇ (m): (9)
  • FIG. 4 is a schematic diagram illustrating the reference signal S (m) and the reference signal S (m + 1) generated by updating the reference signal S (m).
  • the phase of S k (m + 1) is updated from the phase of S k (m) based on the phase correction amount ⁇ (m)
  • the amplitude of S k (m + 1) Is updated from the amplitude of S k (m) based on the amplitude correction amount ⁇ (m).
  • Updating unit 106 for performing the same amount of amplitude correction and phase correction to all of the reference element signals S k (m), the reference after placement and updating of signal points of the pre-update reference element signals S k (m)
  • the arrangement of signal points of the elementary signal S k (m + 1) maintains a similar relationship.
  • the signal point of the updated reference elementary signal S 1 (m + 1) obtained by updating the reference elementary signal S 1 (m) selected as the reference signal Z (m) It is arranged between the signal point of the signal S 1 (m) and the signal point of the delayed signal X (m). Since the reliability of the delayed signal X (m) is higher as the value of the weighting coefficient W (m) is larger, the signal point of the updated reference elementary signal S 1 (m + 1) is the delayed signal X ( m).
  • the update unit 106 is different from the above-described method as long as it is a method that performs the same amount of amplitude correction and phase correction on all the reference elementary signals S k (m) based on the weighting coefficient W (m).
  • the reference signal S (m) may be updated by a method.
  • the updating unit 106 provides a predetermined signal, for example, a signal corresponding to an ideal signal point, to the selection unit 104 and the comparison unit 103.
  • FIG. 5 is a schematic diagram showing an arrangement example of signal points of the input signal X (m + 1), the delay signal X (m), and the reference signal S (m) when DQPSK is used as the digital angle modulation method.
  • the phase angle P old (m + 1) in FIG. 5 is a demodulation result obtained by using conventional general differential demodulation.
  • the bit error rate of DQPSK is higher than that of a QPSK signal using an absolute phase reference. There is a problem of deterioration.
  • the reference elementary signal S k (m) closest to the delayed signal X (m) is used as the reference signal Z (m), and the input signal X (m + 1). Then, the demodulation operation is performed by obtaining the phase difference from the reference signal Z (m).
  • the phase angle P new (m + 1) in FIG. 5 is a demodulation result when the differential demodulator 100 of the present embodiment is used.
  • the reference elementary signal S k (m) is cumulatively corrected based on signals received in the past.
  • a small weighting factor is given to the received signal that is estimated to be strongly affected by noise and phase rotation, and a large weighting factor is given to the received signal that is estimated to be close to the ideal demodulation point.
  • the signal S (m) can be obtained quickly and efficiently.
  • the differential demodulator 100 uses a reference signal Z (m) selected from the reference elementary signal S k (m) with reduced influence of thermal noise, instead of the delayed signal X (m). Therefore, there is a feature that an absolute phase reference can be artificially provided because differential demodulation is performed. Therefore, an effect lower than the theoretical DQPSK bit error rate obtained by the conventional differential demodulation can be obtained. Furthermore, since the influence of thermal noise is further reduced by cumulatively correcting the reference elementary signal S k (m), the bit error rate can be improved to be equivalent to the theoretical QPSK bit error rate. Is obtained.
  • the reference elementary signal S k (m) follows the time change even in a mobile transmission line environment in which the phase rotation amount changes every moment. Can do. Accordingly, since the reference signal Z (m) selected from the reference elementary signal S k (m) also follows the change in the transmission path environment, a differential demodulation result in which the influence of noise and phase rotation is efficiently suppressed is obtained. be able to.
  • the reference signal is updated using the weighting coefficient corresponding to the comparison result between the received signal and the reference signal, and the reference signal is differentially demodulated. Since the signal can be referenced, the amount of phase rotation can be accurately detected even in a strong noise environment, that is, when the received electric field strength with respect to the noise power is small, and even in the case of a mobile transmission line with a temporal change in phase rotation. The demodulation performance can be kept high.
  • FIG. FIG. 6 is a block diagram schematically showing the configuration of the differential demodulator 200 according to the second embodiment.
  • the differential demodulation device 200 includes a differential demodulation unit 101, a delay unit 202, a comparison unit 103, a selection unit 204, a calculation unit 105, and an update unit 206.
  • the differential demodulator 200 according to the second embodiment is different from the differential demodulator 100 according to the first embodiment in the processing in the delay unit 202, the selection unit 204, and the update unit 206.
  • the delay unit 202 delays the input signal by a predetermined time, thereby giving the delayed input signal to the comparison unit 103 and the selection unit 204 as a delay signal. For example, in FIG. 6, when the input signal X (m + 1) is input, the delay unit 202 uses the input signal input before the input signal X (m + 1) as the delay signal X (m). And the selection unit 204.
  • the selection unit 204 based on a predetermined selection rule, the reference elementary signal S k (m) and the delay signal X related to one first physical quantity D k (m) selected from the first comparison signal D (m). Any one of (m) is selected in accordance with the update difference indicated by the selection control signal F (m) given from the update unit 206, and the selected signal is used as the reference signal Z (m) for the differential demodulation unit 101. To give.
  • the selection unit 204 first selects the first physical quantity D k (m) having the smallest absolute value as D c (m), and specifies the reference elementary signal S c (m) associated therewith. To do. Next, when the update difference indicated by the selection control signal F (m) is equal to or less than the first predetermined value R 1 as the first threshold value, the selection unit 204 uses the reference elementary signal S c (m) as the reference signal Z. output as (m), if the update difference indicated by the selection control signal F (m) exceeds a first predetermined value R 1 and outputs a delayed signal X (m) as a reference signal Z (m).
  • the selection unit 204 generates a reference elementary signal S k (m) associated with one physical quantity selected from the first comparison signal D (m) based on a predetermined selection rule, and the delayed signal X (m).
  • the method for selecting either one according to the value of the selection control signal F (m) may be other than the above.
  • the updating unit 206 updates the reference signal S (m ⁇ 1), sets a difference value when the reference signal S (m) is generated as an update difference, and a selection control signal F (m) indicating the update difference. Is given to the selection unit 204.
  • the updating unit 206 can set the Euclidean distance or phase difference between the reference signal S (m ⁇ 1) and the reference signal S (m) as an update difference.
  • the update unit 206 updates the reference signal S (m) using the weighting coefficient W (m) to generate the reference signal S (m + 1).
  • the method shown in the first embodiment may be used, but all the reference elementary signals S k (m) are based on the weighting coefficient W (m).
  • a method different from the method used in the first embodiment may be used as long as the method performs the same amplitude correction and phase correction.
  • the reference signal is updated and the selection control signal is generated using the weighting coefficient according to the comparison result between the delay signal and the reference signal, Based on this, it is possible to adaptively switch between the delayed signal and the reference signal and use it as a reference signal for differential demodulation, enabling differential demodulation operations taking into account the stable state of the reference signal, and improving the demodulation performance. Further improvement can be achieved.
  • FIG. 7 is a block diagram schematically showing the configuration of the differential demodulator 300 according to the third embodiment.
  • the differential demodulator 300 includes a differential demodulator 101, a delay unit 102, a comparator 103, a selector 304, a calculator 105, and an updater 306.
  • the differential demodulator 300 according to the third embodiment is different from the differential demodulator 100 according to the first embodiment in processing in the selection unit 304 and the update unit 306.
  • the selection unit 304 uses the reference elementary signal S k (m) associated with one first physical quantity D k (m) selected from the first comparison signal D (m) based on a predetermined selection rule as a reference signal Z. (M) is given to the differential demodulator 101. For example, the selection unit 304 first selects the first physical quantity D k (m) having the smallest absolute value as D c (m), and refers to the reference elementary signal S c (m) associated therewith. Output as signal Z (m). Further, the selection unit 304 provides the update unit 306 with an update control signal G (m) indicating the magnitude of the reference signal Z (m).
  • the selection unit 304 generates an update control signal G (m) indicating the amplitude or power value of the reference signal Z (m), and gives this update control signal G (m) to the update unit 306.
  • the magnitude of the reference signal Z (m) is not limited to these.
  • the update unit 306 gives the reference signal S (m) to the selection unit 304 and the comparison unit 103.
  • the updating unit 306 updates the reference signal S (m) using the weighting coefficient W (m) according to the update control signal G (m), and generates the reference signal S (m + 1).
  • the update unit 306 when the value indicated by the update control signal G (m) is the second predetermined value R 2 following the second threshold value, the weighting factor W (m) a reference signal based on the S (
  • the reference signal S (m) is updated by displacing all the amplitudes and phases of the reference elementary signal S k (m) constituting m) by the same amount.
  • the update unit 306 updates the control signal G (m) is the case above a second predetermined value R 2 stops updating the reference signal S (m).
  • the method for stopping or restarting the update of the reference signal S (m) is not limited to the above. Further, as long as the update control signal G (m) is referred to and the update of the reference signal S (m) is controlled, the control content
  • the reference signal is updated using a weighting coefficient according to the comparison result between the received signal and the reference signal, and this reference signal is referred to as a reference signal during differential demodulation.
  • this reference signal since the update of the reference signal can be adaptively stopped or restarted based on the update control signal obtained from this reference signal, stable update of the reference signal can be performed even if an unexpected fluctuation of the received signal occurs. Thus, the demodulation performance can be further improved.
  • FIG. FIG. 8 is a block diagram schematically showing the configuration of the differential demodulator 400 according to the fourth embodiment.
  • the differential demodulator 400 includes a differential demodulator 101, a delay unit 402, a comparator 103, a selector 404, a calculator 105, and an updater 406.
  • the differential demodulator 400 according to the fourth embodiment is different from the differential demodulator 100 according to the first embodiment in the processing in the delay unit 402, the selector 404, and the update unit 406.
  • the delay unit 402 delays the input signal by a predetermined time, and gives the delayed input signal to the comparison unit 103 and the selection unit 404 as a delay signal. For example, in FIG. 8, when the input signal X (m + 1) is input, the delay unit 402 uses the input signal input before the input signal X (m + 1) as the delay signal X (m). And the selection unit 404.
  • the selection unit 404 based on a predetermined selection rule, the reference elementary signal S k (m) and the delay signal X related to one first physical quantity D k (m) selected from the first comparison signal D (m). Any one of (m) is selected in accordance with the update difference indicated by the selection control signal F (m) given from the update unit 406, and the selected signal is used as the reference signal Z (m) as the differential demodulation unit 101.
  • the selection unit 404 first selects the first physical quantity D k (m) having the smallest absolute value as D c (m), and specifies the reference elementary signal S c (m) associated therewith. To do.
  • the selection unit 404 the output when the update difference represented by the selection control signal F (m) is first less than the predetermined value R 1 is a reference element signal S c (m) as a reference signal Z (m) and, if the update difference indicated by the selection control signal F (m) exceeds a first predetermined value R 1 outputs delayed signal X (m) is a reference signal Z (m).
  • the above processing in the selection unit 404 is expressed by the above equations (2), (10), and (11).
  • the selection unit 404 uses a method different from the above and the reference elementary signal S k (m) associated with one physical quantity selected from the first comparison signal D (m) based on a predetermined selection rule. Any one of the delay signal X (m) may be selected according to the value of the selection control signal F (m).
  • the selection unit 404 gives an update control signal G (m) indicating the magnitude of the reference signal Z (m) to the update unit 406.
  • the selection unit 404 generates an update control signal G (m) indicating the amplitude or power value of the reference signal Z (m), and gives this update control signal G (m) to the update unit 406.
  • the magnitude of the reference signal Z (m) is not limited to these.
  • the above processing in the selection unit 404 is expressed by, for example, the above equations (2), (3), and (12).
  • the update control signal G (m) may be calculated by other methods.
  • the reference signal S (m) is used for processing the input signal X (m + 1).
  • the updating unit 406 updates the reference signal S (m ⁇ 1), sets a difference value when the reference signal S (m) is generated as an update difference, and a selection control signal F (m) indicating the update difference. Is given to the selection unit 404.
  • the updating unit 406 can set the Euclidean distance or phase difference between the reference signal S (m ⁇ 1) and the reference signal S (m) as an update difference.
  • the updating unit 406 updates the reference signal S (m) using the weighting coefficient W (m) according to the update control signal G (m), and generates the reference signal S (m + 1).
  • the update unit 406 the value indicated by the update control signal G (m) is the case where the second predetermined value R 2 below, constitutes a reference signal S (m) on the basis of the weighting factor W (m)
  • the reference signal S (m) is updated by displacing all the amplitudes and phases of the reference elementary signal S k (m) by the same amount.
  • the update unit 406 updates the control signal G (m) is the case above a second predetermined value R 2 stops updating the reference signal S (m).
  • the above processing in the updating unit 406 is expressed by, for example, the above equations (7) and (13) to (16).
  • the method for stopping or restarting the update of the reference signal S (m) is not limited to the above.
  • the control content may be different from the stop and restart of the update.
  • the reference signal is updated and the selection control signal is generated using the weighting coefficient corresponding to the comparison result between the received signal and the reference signal.
  • the delay signal and the reference signal can be switched adaptively to obtain a reference signal for differential demodulation, and the update of the reference signal is adaptively stopped based on the update control signal obtained from this reference signal.
  • the differential demodulation operation considering the stable state of the reference signal can be performed, it is possible to perform a stable reference signal update operation even when unexpected reception signal fluctuation occurs. Thus, the demodulation performance can be further improved.
  • the contents of the first to fourth embodiments described above exemplify aspects applicable to the differential demodulator, and the present invention is not limited to this.
  • the present invention can be applied to a broadcast receiving apparatus.
  • 100, 200, 300, 400 differential demodulation apparatus
  • 101 differential demodulation unit
  • 102, 202, 402 delay unit
  • 103 comparison unit
  • 104, 204, 304, 404 selection unit
  • 105 calculation unit
  • 106, 206, 306, 406 Update unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

 差動復調装置(100)は、入力信号を所定時間遅延させて遅延信号とする遅延部(102)と、遅延信号と、1以上の基準素信号との間の差分を示す1以上の物理量を算出する比較部(103)と、1以上の物理量の内、絶対値が最小となる1つの物理量の算出に用いられた基準素信号を参照信号として選択する選択部(104)と、入力信号と参照信号との間の位相差により、入力信号の復調を行う差動復調部(101)と、を備え、基準素信号の各々は、1以上の物理量の少なくとも一部を参照することで更新される。

Description

差動復調装置及び差動復調方法
 本発明は、差動復調装置及び差動復調方法に関する。
 ディジタル角度変調を用いた無線通信システムでは、電波の干渉によるマルチパスフェージング及び移動に伴う伝送路環境の激しい変動により、受信機に到来する信号の品質が劣化しやすいという問題がある。また、弱電界環境では、受信信号電力と雑音電力とが拮抗するため、復調信号の信頼性が低下する。
 例えば、ディジタル角度変調方式としてQPSK(Quadrature Phase Shift Keying:四位相偏移変調)を適用する場合、位相平面上に設けられた絶対位相基準と受信信号とを比較して復調を行う方法が一般的である。このため、電波干渉、移動又は熱雑音に起因する受信信号の位相回転量が大きい場合に、正確な復調が原理上行えなくなる問題がある。
 このような問題による受信性能劣化を軽減するため、QPSK信号の位相差分を用いて新たな変調信号を生成するDQPSK(Differential Quadrature Phase Shift Keying:差動四位相偏移変調)が広く一般的に利用されている。
 DQPSKでは、ある時刻に受信した信号と、その直前に受信した信号の位相差分を用いて復調信号を生成するため、マルチパスフェージング環境、即ち、全ての受信信号に対し一定量の位相回転が加えられるような環境であっても正確な復調が行える。また、DQPSKでは、位相回転量が時間的に変動する移動受信環境であっても、その変動速度が信号伝送速度に対し十分に小さい場合は、位相回転にほとんど依存することなく正確な復調を行うことができる。
 しかしながら、ある時刻に受信した信号と、その直前に受信した信号は、双方ともに熱雑音の影響を受けているのが普通であるため、DQPSKのビット誤り率は絶対位相基準を用いるQPSK信号に対し劣化するという問題がある。このことは、例えば非特許文献1に示されている。
 これに対して、特許文献1には、適用されるディジタル位相変調方式において取り得る全ての信号点の位置を現時刻における受信信号から推定し、推定された信号点のうち、次時刻における受信信号の信号点との距離が最小となる信号点を用いて復調を行うことで、復調精度を向上する技術が開示されている。
特開平5-176007公報(段落0007、図1)
斉藤洋一著「ディジタル無線通信の変復調」コロナ社、平成8年2月10日、pp.233-242
 特許文献1に記載された技術は、現時刻及び次時刻における受信信号のみを用いて位相回転量を推定し補償するものであるため、雑音によるランダムな振幅変動及び位相変動が支配的となる強雑音環境下では復調精度が向上しないおそれがある。
 また、特許文献1に記載された技術では、位相回転量が時間的に変動する移動受信環境であり、その変動速度が信号伝送速度と同等であるような場合は、復調信号が位相回転の影響を受け易くなるため受信信号の信頼性が低下する。
 そこで、本発明は、受信信号の振幅及び位相が時々刻々と変化する伝送路環境、並びに、受信信号と雑音の電力が拮抗する劣悪な伝送路環境であっても、復調信号の信頼性を向上することを目的とする。
 本発明の一態様に係る差動復調装置は、入力信号を所定時間遅延させて遅延信号とする遅延部と、前記遅延信号と、1以上の基準素信号との間の差分を示す1以上の物理量を算出する比較部と、前記1以上の物理量の内、絶対値が最小となる1つの物理量の算出に用いられた基準素信号を参照信号として選択する選択部と、前記入力信号と前記参照信号との間の位相差により、前記入力信号の復調を行う差動復調部と、を備え、前記基準素信号の各々は、前記1以上の物理量の少なくとも一部を参照することで更新されることを特徴とする。
 本発明の一態様によれば、受信信号の振幅及び位相が時々刻々と変化する伝送路環境、並びに、受信信号と雑音の電力が拮抗する劣悪な伝送路環境であっても、復調信号の信頼性を向上することができる。
実施の形態1に係る差動復調装置の構成を概略的に示すブロック図である。 実施の形態1における第1物理量及び第2物理量の一例を示す概略図である。 実施の形態1における第1物理量及び第2物理量の他の例を示す概略図である。 実施の形態1における、基準信号と、基準信号を更新することで生成された基準信号とを示す概略図である。 実施の形態1における、入力信号、遅延信号及び基準信号の信号点の配置例を示す概略図である。 実施の形態2に係る差動復調装置の構成を概略的に示すブロック図である。 実施の形態3に係る差動復調装置の構成を概略的に示すブロック図である。 実施の形態4に係る差動復調装置の構成を概略的に示すブロック図である。
実施の形態1.
 図1は、実施の形態1に係る差動復調装置100の構成を概略的に示すブロック図である。本実施の形態に係る差動復調装置100は、差動復調時に基準信号を参照することにより、雑音及び位相回転の影響を効率的に抑制し、強雑音環境下であっても復調性能を高く維持できるように構成されている。また、差動復調装置100は、受信信号の信頼性、言い換えると、受信信号と基準信号との比較結果に応じて、加重係数を逐次生成し、この加重係数を用いて基準信号の更新を行うことで、受信信号における累積的な位相回転の影響を排除できるように構成されている。
 図1に示すように、差動復調装置100は、差動復調部101と、遅延部102と、比較部103と、選択部104と、算出部105と、更新部106とを備える。そして、差動復調装置100は、差動変調信号、即ち、差動角度偏移変調方式を用いて変調された変調信号である入力信号X(m+1)を差動復調して、その結果を出力信号Y(m+1)として出力する。但し、「m」は、「1」以上の自然数であり、信号処理を行う時間単位を示す。
 差動復調部101は、入力信号X(m+1)と参照信号Z(m)とを用いて位相差分を検出し、この位相差分を出力信号Y(m+1)として出力する。例えば、差動復調部101は、下記の(1)式を用いて演算を行うことにより、位相差分を検出する。ここで、∠{A}はAの偏角であり、BはBの複素共役信号である。
Y(m+1)=∠{X(m+1)Z(m)}   :(1)
 遅延部102は、入力信号を所定時間だけ遅延させることにより、遅延信号とする。そして、遅延部102は、この遅延信号を比較部103に与える。例えば、遅延部102は、入力信号X(m+1)が入力された際に、入力信号X(m+1)の前に入力された入力信号を、遅延信号X(m)として出力する。この例では、遅延部102は、1つの入力信号が処理される単位時間だけ、各々の入力信号を遅延させる。
 比較部103は、遅延信号X(m)と、1以上の基準素信号S(m)から構成される基準信号S(m)とを比較して、遅延信号X(m)と、各々の基準素信号S(m)との間の差分を示す物理量を、第1物理量D(m)及び第2物理量E(m)として算出する。そして、比較部103は、基準素信号S(m)毎の第1物理量D(m)を示す第1比較信号D(m)を選択部104に与え、基準素信号S(m)毎の第2物理量E(m)を示す第2比較信号E(m)を算出部105に与える。但し、kは自然数であり、ディジタル角度変調方式に用いられる信号点の総数をNとしたとき、kの範囲は1≦k≦Nであることが望ましい。また、基準素信号の各々は、加重された遅延信号の累積加算により得られ、かつ伝送路環境に相関のない雑音成分を抑圧した遅延信号が存在すると推定される信号の候補であることが望ましい。
 より具体的には、例えば、ディジタル角度変調方式としてDBPSK(Differential Binary Phase Shift Keying)を用いる場合はN=2となり、基準信号S(m)を構成する基準素信号の初期値S(0)は、S(0)=1(θ=0)、S(0)=-1(θ=π)とできる。但し、θはS(0)の初期位相である。また、例えば、ディジタル角度変調方式としてDQPSKを用いる場合はN=4となり、基準信号S(m)を構成する基準素信号の初期値S(0)は、S(0)=1+j(θ=π/4)、S(0)=-1+j(θ=3π/4)、S(0)=-1-j(θ=5π/4)、S(0)=1-j(θ=7π/4)とすることができる。但し、jは虚数単位である。先述の他のディジタル角度変調方式を用いる場合も、同様にして基準素信号の初期値S(0)を決定できる。1以上の基準素信号S(m)から構成される基準信号S(m)の具体的な更新方法の例は、後述する更新部106の動作例において説明する。
 即ち、基準素信号の初期値数を、無線通信システムにおいて送信側で生成された変調信号が取り得る信号点の数(若しくは、それ以下)とすれば、基準素信号の初期値は、後述する基準素信号の更新によって伝送路に適応した基準素信号に収束する。さらに、基準素信号の初期値を、無線通信システムにおいて送信側で生成された変調信号が取り得る信号点の候補とすれば、更新の収束速度を高めることができる。
 図2は、第1物理量D(m)及び第2物理量E(m)の一例を示す概略図である。図示するように、比較部103は、遅延信号X(m)と各々の基準素信号S(m)との間のユークリッド距離を第1物理量D(m)とすることができる。そして、比較部103は、1≦k≦4の範囲において計算されたユークリッド距離を集約して、これらのユークリッド距離を示す第1比較信号D(m)を生成する。また、比較部103は、遅延信号X(m)と各々の基準素信号S(m)との間のユークリッド距離を第2物理量E(m)とすることもできる。そして、比較部103は、1≦k≦4の範囲において計算されたユークリッド距離を集約して、これらのユークリッド距離を示す第2比較信号E(m)を生成する。
 図3は、第1物理量D(m)及び第2物理量E(m)の他の例を示す概略図である。図示するように、比較部103は、遅延信号X(m)と各々の基準素信号S(m)との間の位相差を第1物理量D(m)とすることができる。そして、比較部103は、1≦k≦4の範囲において計算された位相差を集約して、これらの位相差を示す第1比較信号D(m)を生成する。また、比較部103は、遅延信号X(m)と各々の基準素信号S(m)との間の位相差を第2物理量E(m)とすることもできる。そして、比較部103は、1≦k≦4の範囲において計算された位相差を集約し、これらの位相差を示す第2比較信号E(m)を生成する。
 なお、第1物理量D(m)、第1比較信号D(m)、第2物理量E(m)及び第2比較信号E(m)は、図2及び図3で示された何れか一方の方法だけで算出されてもよい。
 また、第1物理量D(m)及び第1比較信号D(m)は、図2及び図3で示された何れか一方の方法で算出され、第2物理量E(m)及び第2比較信号E(m)は、図2及び図3で示された何れか他方の方法で算出されてもよい。
 さらに、第1物理量D(m)、第1比較信号D(m)、第2物理量E(m)及び第2比較信号E(m)は、図2及び図3で示された方法とは異なる方法を用いて算出されてもよい。
 また、比較部103は、遅延部102から与えられた遅延信号X(m)を更新部106に与える。
 選択部104は、所定の選択規則に基づいて、第1比較信号D(m)から選択された1つの第1物理量D(m)に連関する基準素信号S(m)を参照信号Z(m)として、差動復調部101及び更新部106に与える。例えば、選択部104は、第1物理量D(m)の中から絶対値が最小であるものをD(m)として選択し、これに連関する基準素信号S(m)を参照信号Z(m)として、差動復調部101及び更新部106に与える。但し、cは自然数であり、cの範囲は1≦c≦Nであることが望ましい。
 選択部104における上記の処理は、下記の(2)式及び(3)式で示すことができる。但し、min{ }は、括弧内に含まれる数値の最小値を意味する。
Figure JPOXMLDOC01-appb-M000001
 算出部105は、第2比較信号E(m)を構成する第2物理量E(m)を用いて加重係数W(m)を算出する。例えば、算出部105は、N個の第2物理量E(m)の中から選択された1つの第2物理量E(m)の信頼度、又は、このN個の第2物理量E(m)の信頼度に対する、この1つの第2物理量E(m)の信頼度の割合、に依存した加重係数W(m)を算出する。以下、具体的に説明する。
 例えば、算出部105は、N個の第2物理量E(m)の中から絶対値が最小であるものを最小値として特定し、この最小値の逆数に比例する加重係数W(m)を算出することができる。
 算出部105における上記の処理は、下記の(4)式で示すことができる。
Figure JPOXMLDOC01-appb-M000002
 但し、Aは比例定数である。ここで、比例定数Aは、更新部106が加重係数W(m)を用いて基準信号S(m)を更新する際に影響を及ぼす。具体的には、Aの値が小さいほど基準信号S(m)の更新に対する加重係数W(m)の寄与率が小さくなり、Aの値が大きいほどその寄与率が大きくなる。このため、比例定数Aの値は、この寄与率に基づいて、任意の値が選択されればよい。
 他の例として、算出部105は、N個の第2物理量E(m)の中から絶対値が最小であるものを最小値として特定し、N個の第2物理量E(m)の逆数の総和に対する、この最小値の逆数の比率に比例する加重係数W(m)を算出することができる。
 算出部105における上記の処理は、下記の(5)式で示すことができる。但し、H(m)はN個の第2物理量E(m)の調和平均である。
Figure JPOXMLDOC01-appb-M000003
 さらなる他の例として、算出部105は、N個の第2物理量E(m)の中から絶対値が最小であるものを最小値として特定し、N個のうちi個(1≦i≦N)の第2物理量E(m)の逆数の総和に対する、この最小値の逆数の比率に比例する加重係数W(m)を算出することができる。
 算出部105における上記の処理は、下記の(6)式で示すことができる。但し、selmin{ }は括弧内に含まれる数値から選択されたi個の数値の最小値を意味する。また、H(m)はN個から選択されたi個の第2物理量E(m)の調和平均である。
Figure JPOXMLDOC01-appb-M000004
 ここで、算出部105は、N個の第2物理量E(m)の中から、絶対値が所定の閾値(第3閾値)以下となるものを選択することで、i個(1≦i≦N)の第2物理量E(m)を選択することができる。このようにすることで、第2物理量E(m)の絶対値が極端に大きなもの、言い換えると、誤差が極端に大きいものを排除することができ、突発的な強い雑音等の影響を受けにくくなる。
 なお、算出部105は、(4)式、(5)式及び(6)式とは異なる方法を用いて、加重係数W(m)を算出してもよい。
 そして、算出部105は、算出された加重係数W(m)を更新部106に与える。
 更新部106は、基準信号S(m)を選択部104及び比較部103に与える。基準信号S(m)は、入力信号X(m+1)を処理するために使用されるものである。
 また、更新部106は、加重係数W(m)を用いて基準信号S(m)を更新して、基準信号S(m+1)を生成する。ここで、基準信号S(m+1)は、入力信号X(m+1)の次に入力される入力信号X(m+2)を処理するために使用される。例えば、更新部106は、加重係数W(m)に基づいて、基準信号S(m)を更新するための振幅補正量及び位相補正量を算出する。そして、更新部106は、基準信号S(m)を構成する全ての基準素信号S(m)の全ての振幅と位相を、算出された振幅補正量及び位相補正量に基づいて変位させて、基準信号S(m)を更新する。
 例えば、更新部106は、0≦W(m)<1に正規化された加重係数W(m)を用いて、遅延信号X(m)の信号点と、参照信号Z(m)として選択された基準素信号S(m)の信号点とにより構成される線分を、W(m):1-W(m)に内分することにより、振幅補正量α(m)及び位相補正量β(m)を算出する。具体的には、更新部106は、下記の(7)式により、振幅補正量α(m)及び位相補正量β(m)を算出することができる。但し、| |は、絶対値を示す。
Figure JPOXMLDOC01-appb-M000005
 また、更新部106は、下記の(8)式及び(9)式で、基準信号S(m)を更新する。但し、ABS{ }は、括弧内の数値の絶対値を意味する。
ABS{S(m+1)}=α(m)   :(8)
∠{S(m+1)}=∠{S(m)}-β(m)   :(9)
 図4は、基準信号S(m)と、基準信号S(m)を更新することで生成された基準信号S(m+1)とを示す概略図である。図4に示されているように、S(m+1)の位相は、位相補正量β(m)に基づいて、S(m)の位相から更新されており、S(m+1)の振幅は、振幅補正量α(m)に基づいて、S(m)の振幅から更新されている。更新部106は、全ての基準素信号S(m)に対し同量の振幅補正及び位相補正を行うため、更新前の基準素信号S(m)の信号点の配置及び更新後の基準素信号S(m+1)の信号点の配置は互いに相似の関係を維持する。
 以上のような更新を行うことにより、参照信号Z(m)として選択された基準素信号S(m)を更新した、更新済みの基準素信号S(m+1)の信号点は、基準素信号S(m)の信号点と、遅延信号X(m)の信号点との間に配置される。そして、加重係数W(m)の値が大きいほど、遅延信号X(m)の信頼度が高いことになるため、更新済みの基準素信号S(m+1)の信号点は、遅延信号X(m)に近い位置に配置される。
 なお、更新部106は、加重係数W(m)に基づいて全ての基準素信号S(m)に対し同量の振幅補正及び位相補正を行う手法であれば、上記に示した方法と異なる方法で基準信号S(m)の更新を行ってもよい。また、基準信号の初期値については、更新部106は、予め定められた信号、例えば、理想的な信号点に対応する信号を選択部104及び比較部103に与える。
 以上のような差動復調装置100を用いることによって、受信信号の信頼性に応じた加重係数W(m)を生成して基準信号S(m)を逐次補正することが可能となり、差動復調時にこの基準信号S(m)を参照することで、復調性能を高く維持することができる。図5を用いて、本実施の形態を適用することにより得られる効果について説明する。
 図5は、ディジタル角度変調方式としてDQPSKが用いられた場合の、入力信号X(m+1)、遅延信号X(m)及び基準信号S(m)の信号点の配置例を示す概略図である。
 従来の差動復調では、入力信号X(m+1)と遅延信号X(m)との位相差を求める方法が一般的である。例えば、図5における位相角Pold(m+1)が従来の一般的な差動復調を用いて得られる復調結果となる。この場合、熱雑音の影響は入力信号X(m+1)及び遅延信号X(m)の双方に含まれているのが普通であるため、DQPSKのビット誤り率は絶対位相基準を用いるQPSK信号に対し劣化するという問題がある。
 これに対し、本実施の形態の差動復調装置100を用いると、遅延信号X(m)に最も近い基準素信号S(m)を参照信号Z(m)とし、入力信号X(m+1)と、参照信号Z(m)との位相差を求めることで復調動作が実施される。例えば、図5における位相角Pnew(m+1)が本実施の形態の差動復調装置100を用いた場合の復調結果となる。この場合、基準素信号S(m)は、過去に受信された信号に基づいて累積的に補正されている。そして、雑音や位相回転の影響が強いと推定される受信信号には小さな加重係数が与えられ、理想復調点に近いと推定される受信信号は大きな加重係数が与えられているため、正確な基準信号S(m)が高速かつ効率的に得られる。
 本実施の形態に係る差動復調装置100は、遅延信号X(m)に代えて、熱雑音の影響を軽減した基準素信号S(m)から選択された参照信号Z(m)を用いて差動復調を行うため、絶対位相基準を擬似的に有することができる特徴がある。従って、従来の差動復調で得られる理論的なDQPSKのビット誤り率を下回る効果が得られる。さらに、基準素信号S(m)の補正を累積的に行うことで熱雑音の影響がより低減されるため、ビット誤り率を、理論的なQPSKのビット誤り率と同等にまで改善できる効果が得られる。
 また、本実施の形態に係る差動復調装置100によれば、位相回転量が時々刻々と変化する移動伝送路環境であっても基準素信号S(m)がその時間変化に追従することができる。従って、基準素信号S(m)から選択される参照信号Z(m)も伝送路環境の変化に追従するため、雑音や位相回転の影響が効率的に抑圧された差動復調結果を得ることができる。
 以上のように、本実施の形態に係る差動復調装置100によれば、受信信号と基準信号との比較結果に応じた加重係数を用いて基準信号の更新を行い、差動復調時にこの基準信号を参照することができるため、強雑音環境、即ち、雑音電力に対する受信電界強度が小さい場合、及び、位相回転の時間変化を伴う移動伝送路である場合でも、位相回転量を正確に検出し、復調性能を高く維持することができる。
実施の形態2.
 図6は、実施の形態2に係る差動復調装置200の構成を概略的に示すブロック図である。図示するように、差動復調装置200は、差動復調部101と、遅延部202と、比較部103と、選択部204と、算出部105と、更新部206とを備える。実施の形態2に係る差動復調装置200は、遅延部202、選択部204及び更新部206での処理において、実施の形態1に係る差動復調装置100と異なっている。
 遅延部202は、入力信号を所定時間だけ遅延させることにより、遅延済みの入力信号を遅延信号として比較部103及び選択部204に与える。例えば、図6では、遅延部202は、入力信号X(m+1)が入力される際に、入力信号X(m+1)の前に入力された入力信号を、遅延信号X(m)として比較部103及び選択部204に与える。
 選択部204は、所定の選択規則に基づいて、第1比較信号D(m)から選択された1つの第1物理量D(m)に連関する基準素信号S(m)及び遅延信号X(m)の何れか一方を、更新部206から与えられる選択制御信号F(m)で示される更新差分に応じて選択し、選択された信号を参照信号Z(m)として差動復調部101に与える。
 例えば、選択部204は、まず第1物理量D(m)の中から絶対値が最小であるものをD(m)として選択し、これに連関する基準素信号S(m)を特定する。次に、選択部204は、選択制御信号F(m)で示される更新差分が第1閾値としての第1所定値R以下である場合は、基準素信号S(m)を参照信号Z(m)として出力し、選択制御信号F(m)で示される更新差分が第1所定値Rを上回る場合は遅延信号X(m)を参照信号Z(m)として出力する。
 選択部204における上記の処理は、上記の(2)式、並びに、下記の(10)式及び(11)式で示される。
Z(m)=S(m) (F(m)≦R)   :(10)
Z(m)=X(m) (F(m)>R)   :(11)
 なお、選択部204が、所定の選択規則に基づいて第1比較信号D(m)から選択された1つの物理量に連関する基準素信号S(m)と、遅延信号X(m)との何れか一方を、選択制御信号F(m)の値に応じて選択する方法は、上記以外のものであってもよい。
 また、更新部206は、基準信号S(m-1)を更新して、基準信号S(m)を生成した際の差分値を更新差分とし、この更新差分を示す選択制御信号F(m)を選択部204に与える。ここで、更新部206は、基準信号S(m-1)と、基準信号S(m)との間のユークリッド距離又は位相差を更新差分とすることができる。
 さらに、更新部206は、加重係数W(m)を用いて基準信号S(m)を更新して、基準信号S(m+1)を生成する。ここで、基準信号S(m)を更新する方法は、実施の形態1で示されている方法が用いられればよいが、加重係数W(m)に基づいて全ての基準素信号S(m)に対して、同様の振幅補正及び位相補正を行う方法であれば、実施の形態1で用いられた方法とは異なる方法が用いられてもよい。
 本実施の形態に係る差動復調装置200によれば、遅延信号と基準信号の比較結果に応じた加重係数を用いて基準信号の更新と選択制御信号の生成とを行い、この選択制御信号に基づいて遅延信号と基準信号とを適応的に切換えて差動復調時の参照信号とすることができるため、基準信号の安定状態を考慮した差動復調動作を行うことが可能となり、復調性能をさらに向上させることができる。
実施の形態3.
 図7は、実施の形態3に係る差動復調装置300の構成を概略的に示すブロック図である。図示するように、差動復調装置300は、差動復調部101と、遅延部102と、比較部103と、選択部304と、算出部105と、更新部306とを備える。実施の形態3に係る差動復調装置300は、選択部304及び更新部306での処理において、実施の形態1に係る差動復調装置100と異なっている。
 選択部304は、所定の選択規則に基づいて、第1比較信号D(m)から選択された1つの第1物理量D(m)に連関する基準素信号S(m)を参照信号Z(m)として差動復調部101に与える。例えば、選択部304は、まず第1物理量D(m)の中から絶対値が最小であるものをD(m)として選択し、これに連関する基準素信号S(m)を参照信号Z(m)として出力する。
 また、選択部304は、参照信号Z(m)の大きさを示す更新制御信号G(m)を、更新部306に与える。例えば、選択部304は、参照信号Z(m)の振幅又は電力の値を示す更新制御信号G(m)を生成し、この更新制御信号G(m)を更新部306に与える。但し、参照信号Z(m)の大きさはこれらに限られるものではない。
 選択部304における上記の処理は、例えば、上記の(2)式、(3)式及び下記の(12)式で示される。
G(m)=|Z(m)|   :(12)
 なお、更新制御信号G(m)の算出方法は、上記以外のものであってもよい。
 更新部306は、基準信号S(m)を選択部304及び比較部103に与える。
 また、更新部306は、更新制御信号G(m)に応じて、加重係数W(m)を用いて基準信号S(m)を更新して、基準信号S(m+1)を生成する。例えば、更新部306は、更新制御信号G(m)で示される値が第2閾値としての第2所定値R以下である場合には、加重係数W(m)に基づいて基準信号S(m)を構成する基準素信号S(m)の全ての振幅と位相をそれぞれ同量だけ変位させて基準信号S(m)を更新する。一方、更新部306は、更新制御信号G(m)が第2所定値Rを上回る場合には、基準信号S(m)の更新を停止する。
 更新部306における上記の処理は、例えば、上記の(7)式及び下記の(13)式~(16)式で示される。
ABS{S(m+1)}=α(m) (G(m)≦R)   :(13)
∠{S(m+1)}=∠{S(m)}-β(m) (G(m)≦R)   :(14)
ABS{S(m+1)}=ABS{S(m)} (G(m)>R)   :(15)
∠{S(m+1)}=∠{S(m)} (G(m)>R)  :(16)
 但し、更新制御信号G(m)を参照する方法であれば、基準信号S(m)の更新の停止又は再開を行う方法は、上記に限られるものではない。また、更新制御信号G(m)を参照して基準信号S(m)の更新を制御する方法であれば、その制御内容は、更新の停止及び再開ではなくてもよい。
 本実施の形態に係る差動復調装置300によれば、受信信号と基準信号の比較結果に応じた加重係数を用いて基準信号の更新を行い、差動復調時にこの基準信号を参照信号として参照するとともに、この参照信号から得られる更新制御信号に基づいて基準信号の更新を適応的に停止又は再開することができるため、予期されない受信信号の変動が発生しても安定した基準信号の更新を維持することが可能となり、復調性能をさらに向上させることができる。
実施の形態4.
 図8は、実施の形態4に係る差動復調装置400の構成を概略的に示すブロック図である。図示するように、差動復調装置400は、差動復調部101と、遅延部402と、比較部103と、選択部404と、算出部105と、更新部406とを備える。実施の形態4に係る差動復調装置400は、遅延部402、選択部404及び更新部406での処理において、実施の形態1に係る差動復調装置100と異なっている。
 遅延部402は、入力信号を所定時間だけ遅延させることにより、遅延させた入力信号を遅延信号として比較部103及び選択部404に与える。例えば、図8では、遅延部402は、入力信号X(m+1)が入力される際に、入力信号X(m+1)の前に入力された入力信号を、遅延信号X(m)として比較部103及び選択部404に与える。
 選択部404は、所定の選択規則に基づいて、第1比較信号D(m)から選択された1つの第1物理量D(m)に連関する基準素信号S(m)及び遅延信号X(m)の何れか一方を、更新部406から与えられる選択制御信号F(m)で示される更新差分に応じて選択し、選択された信号を参照信号Z(m)として差動復調部101に与える。例えば、選択部404は、まず第1物理量D(m)の中から絶対値が最小であるものをD(m)として選択し、これに連関する基準素信号S(m)を特定する。次に、選択部404は、選択制御信号F(m)で示される更新差分が第1所定値R以下である場合は、基準素信号S(m)を参照信号Z(m)として出力し、選択制御信号F(m)で示される更新差分が第1所定値Rを上回る場合は遅延信号X(m)を参照信号Z(m)として出力する。ここで、選択部404における上記の処理は、上記の(2)式、(10)式及び(11)式で示される。なお、選択部404は、上記とは異なる方法を用いて、所定の選択規則に基づいて第1比較信号D(m)から選択された1つの物理量に連関する基準素信号S(m)と、遅延信号X(m)との何れか一方を、選択制御信号F(m)の値に応じて選択してもよい。
 また、選択部404は、参照信号Z(m)の大きさを示す更新制御信号G(m)を、更新部406に与える。例えば、選択部404は、参照信号Z(m)の振幅又は電力の値を示す更新制御信号G(m)を生成し、この更新制御信号G(m)を更新部406に与える。但し、参照信号Z(m)の大きさはこれらに限られるものではない。ここで、選択部404における上記の処理は、例えば、上記の(2)式、(3)式及び(12)式で示される。なお、更新制御信号G(m)の算出方法は、上記以外のものであってもよい。ここで、基準信号S(m)は、入力信号X(m+1)を処理するために使用されるものである。
 また、更新部406は、基準信号S(m-1)を更新して、基準信号S(m)を生成した際の差分値を更新差分とし、この更新差分を示す選択制御信号F(m)を選択部404に与える。ここで、更新部406は、基準信号S(m-1)と、基準信号S(m)との間のユークリッド距離又は位相差を更新差分とすることができる。
 さらに、更新部406は、更新制御信号G(m)に応じて、加重係数W(m)を用いて基準信号S(m)を更新して、基準信号S(m+1)を生成する。例えば、更新部406は、更新制御信号G(m)で示される値が第2所定値R以下である場合には、加重係数W(m)に基づいて基準信号S(m)を構成する基準素信号S(m)の全ての振幅と位相をそれぞれ同量だけ変位させて基準信号S(m)を更新する。一方、更新部406は、更新制御信号G(m)が第2所定値Rを上回る場合には、基準信号S(m)の更新を停止する。更新部406における上記の処理は、例えば、上記の(7)式、(13)式~(16)式で示される。
 但し、更新制御信号G(m)を参照する方法であれば、基準信号S(m)の更新の停止又は再開を行う方法は、上記に限られるものではない。また、更新制御信号G(m)を参照して基準信号S(m)の更新を制御する方法であれば、当該制御内容は、更新の停止及び再開と異なるものであってもよい。
 本実施の形態に係る差動復調装置400によれば、受信信号と基準信号の比較結果に応じた加重係数を用いて基準信号の更新と選択制御信号の生成とを行い、この選択制御信号に基づいて遅延信号と基準信号とを適応的に切換えて差動復調時の参照信号とすることができ、かつ、この参照信号から得られる更新制御信号に基づいて基準信号の更新を適応的に停止又は再開することができるため、基準信号の安定状態を考慮した差動復調動作を行うことが可能となるだけでなく、予期されない受信信号の変動が発生しても安定した基準信号の更新動作を維持することが可能となり、復調性能をさらに向上させることができる。
 上述の実施の形態1乃至実施の形態4の内容は、差動復調装置における適用可能な態様を例示したものであって、本発明はこれに限られるものではない。例えば、放送受信装置に本発明を適用することができる。
 100,200,300,400:差動復調装置、 101:差動復調部、 102,202,402:遅延部、 103:比較部、 104,204,304,404:選択部、 105:算出部、 106,206,306,406:更新部。

Claims (22)

  1.  入力信号を所定時間遅延させて遅延信号とする遅延部と、
     前記遅延信号と、1以上の基準素信号との間の差分を示す1以上の物理量を算出する比較部と、
     前記1以上の物理量の内、絶対値が最小となる1つの物理量の算出に用いられた基準素信号を参照信号として選択する選択部と、
     前記入力信号と前記参照信号との間の位相差により、前記入力信号の復調を行う差動復調部と、を備え、
     前記基準素信号の各々は、前記1以上の物理量の少なくとも一部を参照することで更新されること
     を特徴とする差動復調装置。
  2.  前記比較部は、前記遅延信号と、前記基準素信号との間のユークリッド距離及び位相差分の少なくとも何れか一方を、前記物理量として算出すること、
     を特徴とする請求項1に記載の差動復調装置。
  3.  前記1以上の物理量の少なくとも一部を用いて加重係数を算出する算出部と、
     前記加重係数を用いて、前記1以上の基準素信号を更新する更新部と、をさらに備えること
     を特徴とする請求項1又は2に記載の差動復調装置。
  4.  前記加重係数は、前記1つの物理量の逆数に比例すること
     を特徴とする請求項3に記載の差動復調装置。
  5.  前記加重係数は、前記1以上の物理量の逆数の全ての総和に対する、前記1つの物理量の逆数の比率に比例すること
     を特徴とする請求項3に記載の差動復調装置。
  6.  前記加重係数は、前記1以上の物理量から選択された物理量の逆数の総和に対する、前記1つの物理量の逆数の比率に比例すること
     を特徴とする請求項3に記載の差動復調装置。
  7.  前記更新部は、前記遅延信号の信号点と、前記参照信号の信号点との間に、前記参照信号に対応する基準素信号を更新した更新済みの基準素信号の信号点が位置するように、前記1以上の基準素信号を更新すること
     を特徴とする請求項3から6の何れか一項に記載の差動復調装置。
  8.  前記更新部は、前記加重係数の値が大きいほど、前記参照信号に対応する基準素信号を更新した更新済みの基準素信号の信号点が、前記遅延信号の信号点に近くなるようにすること
     を特徴とする請求項7に記載の差動復調装置。
  9.  前記更新部は、前記基準素信号と、前記更新済みの基準素信号との間の差分値を示す更新差分を算出し、
     前記選択部は、
     前記更新差分が第1閾値以下である場合に、前記基準素信号を前記参照信号として選択し、
     前記更新差分が前記第1閾値よりも大きい場合に、前記遅延信号を前記参照信号として選択すること
     を特徴とする請求項1から8の何れか一項に記載の差動復調装置。
  10.  前記更新部は、前記参照信号の大きさが第2閾値以下である場合に、前記基準素信号を更新すること
     を特徴とする請求項3から8の何れか一項に記載の差動復調装置。
  11.  前記更新部は、前記基準素信号と、前記更新済みの基準素信号との間の差分値を示す更新差分を算出し、
     前記選択部は、
     前記更新差分が第1閾値以下である場合に、前記基準素信号を前記参照信号として選択し、
     前記更新差分が前記第1閾値よりも大きい場合に、前記遅延信号を前記参照信号として選択すること
     を特徴とする請求項10に記載の差動復調装置。
  12.  入力信号を所定時間遅延させて遅延信号とする遅延過程と、
     前記遅延信号と、1以上の基準素信号との間の差分を示す1以上の物理量を算出する比較過程と、
     前記1以上の物理量の内、絶対値が最小となる1つの物理量の算出に用いられた基準素信号を参照信号として選択する選択過程と、
     前記入力信号と前記参照信号との間の位相差により、前記入力信号の復調を行う差動復調過程と、を有し、
     前記基準素信号の各々は、前記1以上の物理量の少なくとも一部を参照することで更新されること
     を特徴とする差動復調方法。
  13.  前記比較過程は、前記遅延信号と、前記基準素信号との間のユークリッド距離及び位相差分の少なくとも何れか一方を、前記物理量として算出すること、
     を特徴とする請求項12に記載の差動復調方法。
  14.  前記1以上の物理量の少なくとも一部を用いて加重係数を算出する算出過程と、
     前記加重係数を用いて、前記1以上の基準素信号を更新する更新過程と、をさらに有すること
     を特徴とする請求項12又は13に記載の差動復調方法。
  15.  前記加重係数は、前記1つの物理量の逆数に比例すること
     を特徴とする請求項14に記載の差動復調方法。
  16.  前記加重係数は、前記1以上の物理量の逆数の全ての総和に対する、前記1つの物理量の逆数の比率に比例すること
     を特徴とする請求項14に記載の差動復調方法。
  17.  前記加重係数は、前記1以上の物理量から選択された物理量の逆数の総和に対する、前記1つの物理量の逆数の比率に比例すること
     を特徴とする請求項14に記載の差動復調方法。
  18.  前記更新過程は、前記遅延信号の信号点と、前記参照信号の信号点との間に、前記参照信号に対応する基準素信号を更新した更新済みの基準素信号の信号点が位置するように、前記1以上の基準素信号を更新すること
     を特徴とする請求項14から17の何れか一項に記載の差動復調方法。
  19.  前記更新過程は、前記加重係数の値が大きいほど、前記参照信号に対応する基準素信号を更新した更新済みの基準素信号の信号点が、前記遅延信号の信号点に近くなるようにすること
     を特徴とする請求項18に記載の差動復調方法。
  20.  前記更新過程は、前記基準素信号と、前記更新済みの基準素信号との間の差分値を示す更新差分を算出し、
     前記選択過程は、
     前記更新差分が第1閾値以下である場合に、前記基準素信号を前記参照信号として選択し、
     前記更新差分が前記第1閾値よりも大きい場合に、前記遅延信号を前記参照信号として選択すること
     を特徴とする請求項12から19の何れか一項に記載の差動復調方法。
  21.  前記更新過程は、前記参照信号の大きさが第2閾値以下である場合に、前記基準素信号を更新すること
     を特徴とする請求項14から19の何れか一項に記載の差動復調方法。
  22.  前記更新過程は、前記基準素信号と、前記更新済みの基準素信号との間の差分値を示す更新差分を算出し、
     前記選択過程は、
     前記更新差分が第1閾値以下である場合に、前記基準素信号を前記参照信号として選択し、
     前記更新差分が前記第1閾値よりも大きい場合に、前記遅延信号を前記参照信号として選択すること
     を特徴とする請求項21に記載の差動復調方法。
PCT/JP2012/053793 2011-05-11 2012-02-17 差動復調装置及び差動復調方法 WO2012153556A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12782536.2A EP2709329B1 (en) 2011-05-11 2012-02-17 Device and corresponding method for differential demodulation
CN201280014560.1A CN103460661B (zh) 2011-05-11 2012-02-17 差动解调装置以及差动解调方法
JP2013513950A JP5599507B2 (ja) 2011-05-11 2012-02-17 差動復調装置及び差動復調方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-106274 2011-05-11
JP2011106274 2011-05-11

Publications (1)

Publication Number Publication Date
WO2012153556A1 true WO2012153556A1 (ja) 2012-11-15

Family

ID=47139042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053793 WO2012153556A1 (ja) 2011-05-11 2012-02-17 差動復調装置及び差動復調方法

Country Status (4)

Country Link
EP (1) EP2709329B1 (ja)
JP (1) JP5599507B2 (ja)
CN (1) CN103460661B (ja)
WO (1) WO2012153556A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201810A (ja) * 2014-04-10 2015-11-12 三菱電機株式会社 差動復調装置及び差動復調方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI604710B (zh) * 2016-04-29 2017-11-01 國立交通大學 四相移鍵控解調變器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176007A (ja) 1991-12-20 1993-07-13 Sony Corp 復調装置
JPH06177926A (ja) * 1992-12-09 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> 直流ドリフト補償回路
JPH07183831A (ja) * 1993-12-24 1995-07-21 Sharp Corp ディジタル通信方法およびディジタル通信装置
JP2000013353A (ja) * 1998-06-18 2000-01-14 Nippon Hoso Kyokai <Nhk> Ofdm信号復調装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468657B2 (ja) * 1997-02-21 2003-11-17 松下電器産業株式会社 誤り訂正付遅延検波器
JP2006211211A (ja) * 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd データ受信装置
KR100649678B1 (ko) * 2005-07-15 2006-11-27 삼성전기주식회사 가중치를 이용한 다중 차동 복조기
CN101366219A (zh) * 2006-03-06 2009-02-11 松下电器产业株式会社 脉冲无线接收装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176007A (ja) 1991-12-20 1993-07-13 Sony Corp 復調装置
JPH06177926A (ja) * 1992-12-09 1994-06-24 Nippon Telegr & Teleph Corp <Ntt> 直流ドリフト補償回路
JPH07183831A (ja) * 1993-12-24 1995-07-21 Sharp Corp ディジタル通信方法およびディジタル通信装置
JP2000013353A (ja) * 1998-06-18 2000-01-14 Nippon Hoso Kyokai <Nhk> Ofdm信号復調装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOICHI SAITO, DEJITARU MUSEN TSUSHIN NO HENPUKUCHO, February 1996 (1996-02-01), pages 233 - 242

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201810A (ja) * 2014-04-10 2015-11-12 三菱電機株式会社 差動復調装置及び差動復調方法

Also Published As

Publication number Publication date
JP5599507B2 (ja) 2014-10-01
CN103460661A (zh) 2013-12-18
EP2709329B1 (en) 2018-03-28
EP2709329A1 (en) 2014-03-19
JPWO2012153556A1 (ja) 2014-07-31
EP2709329A4 (en) 2014-10-22
CN103460661B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
EP1328100A1 (en) OFDM receiver and method for correcting multipath phase deviation using a training sequence and for performing carrier and clock recovery using pilot symbols
JP5955481B2 (ja) 軟判定値生成装置及び軟判定値生成方法
JP3666162B2 (ja) ディジタル放送受信機
US7139333B2 (en) Frequency error estimating receiver, and frequency error estimating method
JP2002118533A (ja) 周波数分割多重伝送信号受信装置
EP1198077A1 (en) Radio communication apparatus and radio communication method
JP5599507B2 (ja) 差動復調装置及び差動復調方法
US6381290B1 (en) Mobile unit for pilot symbol assisted wireless system and method of improving performance thereof
JP4657223B2 (ja) 変調誤差算出装置および方法、デジタル放送受信機ならびにデジタル放送波用測定装置
JP4380407B2 (ja) ブランチメトリック演算方法
JP2012094982A (ja) 受信装置及び方法、復調装置及び方法、並びにプログラム
WO2014141628A1 (ja) 無線通信システムにおける受信装置およびチャネル推定制御方法
JP5594074B2 (ja) 受信装置
JP4784834B2 (ja) データ処理装置及びデータ処理方法
JP6214454B2 (ja) 差動復調装置及び差動復調方法
JP4827449B2 (ja) 振幅位相制御装置および受信システム
KR101088042B1 (ko) 직교주파수 분할 다중 기반에서 채널상태정보를 적용한 수신신호 처리방법
WO2015107654A1 (ja) 受信装置および受信方法
KR20090020188A (ko) 일반화된 레이크 수신기에서 채널 추정 방법 및 장치
JP3355147B2 (ja) 自動周波数制御方式
JP4795274B2 (ja) 適応等化装置
US10142145B2 (en) Wireless receiver
WO2010038273A1 (ja) 伝搬路推定装置、受信機、及び伝搬路推定方法
JPH088786A (ja) 適応等化器
JP6037992B2 (ja) 受信装置及び方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280014560.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513950

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012782536

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE