WO2012150696A1 - 改変型リパーゼ及びその製造方法、並びに当該酵素を用いた反応 - Google Patents

改変型リパーゼ及びその製造方法、並びに当該酵素を用いた反応 Download PDF

Info

Publication number
WO2012150696A1
WO2012150696A1 PCT/JP2012/061326 JP2012061326W WO2012150696A1 WO 2012150696 A1 WO2012150696 A1 WO 2012150696A1 JP 2012061326 W JP2012061326 W JP 2012061326W WO 2012150696 A1 WO2012150696 A1 WO 2012150696A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified lipase
lipase
group
carbamate
modified
Prior art date
Application number
PCT/JP2012/061326
Other languages
English (en)
French (fr)
Inventor
淳也 生田
吉田 洋一
康仁 山本
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2013513081A priority Critical patent/JP5987824B2/ja
Priority to CN201280021484.7A priority patent/CN103517987B/zh
Publication of WO2012150696A1 publication Critical patent/WO2012150696A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site

Definitions

  • the present invention relates to a novel modified lipase, a method for producing the same, and various reactions using the enzyme. More specifically, the present invention relates to a modified lipase having excellent carbamate activity. Further, the present invention relates to a method for producing a carbamate compound using this modified lipase.
  • the present invention also relates to a method for producing a carbamate compound using a known modified lipase.
  • a method for obtaining a carbamate compound using lipase as a catalyst is, for example, a carbamate compound obtained by reaction of 3 ′, 5′-diaminonucleoside (aliphatic amine compound) with a diethyl carbonate compound in the presence of lipase.
  • carbamate compound obtained by reaction of 3 ′, 5′-diaminonucleoside (aliphatic amine compound) with a diethyl carbonate compound in the presence of lipase.
  • Non-patent Documents 2 and 3 studies have been conducted to improve the activity and stability by modifying the amino acid sequence of lipase.
  • Non-patent Documents 2 and 3 studies have been conducted to improve the activity and stability by modifying the amino acid sequence of lipase.
  • Patent Document 1 describes an increase in acrylate activity by modifying the amino acid sequence of lipase (CALB), but describes that single substitution of tryptophan at position 104 with phenylalanine results in a decrease in activity.
  • CAB amino acid sequence of lipase
  • An object of the present invention is to provide a modified lipase having excellent carbamate activity and a method for producing a carbamate compound using the modified lipase.
  • Another object of the present invention is to provide a method for producing a carbamate compound using a known modified lipase.
  • the present inventors selected CALB as a lipase, prepared a mutant of CALB, and aimed to reduce the cost required for the production of a carbamate compound by improving carbamate activity. As a result of extensive studies, the inventors succeeded in producing a mutant CALB having a higher carbamate activity than the wild type. The present inventors have also found that known modified CALB has high carbamation activity. That is, the present invention provides the following inventions.
  • Modified lipase in which glutamine at position 193 in SEQ ID NO: 1 is substituted with another amino acid residue, or a variant thereof having substitution, deletion, insertion, addition or inversion of one or more amino acids A mutant that exhibits higher carbamate activity than the wild-type lipase shown in SEQ ID NO: 1. That is, a single modified lipase having SEQ ID NO: 1 of Q193X (where X represents any amino acid other than glutamine) or a variant thereof.
  • tryptophan at position 104 is substituted with phenylalanine, the modified lipase according to (1) or (2), or further substitution, deletion, insertion, addition or inversion of one or several amino acids.
  • Those variants having the same carbamation activity as the modified lipase That is, a double modified lipase having SEQ ID NO: 1 of [Q193X, Q193E or Q193D] + W104F or a variant thereof.
  • leucine at position 278 is substituted with arginine or lysine, the modified lipase according to (1) or (2), or further substitution, deletion, insertion, addition or reverse of one or several amino acids And mutants having the same carbamation activity as the modified lipase. That is, the double-modified lipase of SEQ ID NO: 1 having [Q193X, Q193E or Q193D] + [L278K or L278R] or a variant thereof.
  • modified lipase according to (3) wherein leucine at position 278 is substituted with arginine or lysine, or further, substitution, deletion, insertion, addition or inversion of one or several amino acids
  • these mutants exhibiting the same carbamation activity as the modified lipase. That is, the triple modified lipase of SEQ ID NO: 1 having [Q193X, Q193E or Q193D] + W104F + [L278K or L278R] or a variant thereof.
  • modified lipase according to (5) wherein alanine at position 283 is substituted with valine, or further, substitution, deletion, insertion, addition or inversion of one or several amino acids, Those variants that show the same carbamate activity as the modified lipase. That is, the quadruple modified lipase of SEQ ID NO: 1 having [Q193X, Q193E or Q193D] + W104F + [L278K or L278R] + A283V or a variant thereof.
  • a transformed microorganism comprising the DNA according to (7).
  • a modified lipase or a mutant thereof characterized by culturing the transformed microorganism according to (8) in a medium and accumulating the modified lipase or a mutant thereof in the medium and / or the microorganism. Production method.
  • a modified lipase in which tryptophan at position 104 of SEQ ID NO: 1 is substituted with phenylalanine, or further having one or several amino acid substitutions, deletions, insertions, additions or inversions, and the modified lipase A method for producing a carbamate compound, comprising reacting a dialkyl carbonate compound and an amine compound as a substrate in the presence of a mutant exhibiting the same carbamate activity.
  • a modified lipase obtained by substituting leucine at position 278 of SEQ ID NO: 1 with another amino acid residue, or a variant thereof having substitution, deletion, insertion, addition or inversion of one or more amino acids A modified lipase or a mutant thereof, which exhibits a higher carbamate activity than the wild-type lipase shown in SEQ ID NO: 1. That is, the modified lipase of SEQ ID NO: 1 having L278X 1 (wherein X 1 represents any amino acid other than leucine) or a variant thereof.
  • glutamine at position 193 is substituted with glutamic acid or aspartic acid, or the modified lipase according to (19) or (20), or further, one or several amino acid substitutions, deletions, insertions, additions or Those mutants having an inversion and exhibiting the same carbamation activity as the modified lipase. That is, the modified lipase of SEQ ID NO: 1 having [Q193E or Q193D] + [L278X 1 , L278K or L278R] or a variant thereof.
  • a modified lipase or a mutant thereof wherein the transformed microorganism according to (23) is cultured in a medium, and the modified lipase or a mutant thereof is accumulated in the medium and / or the microorganism. Production method.
  • the modified lipase of the present invention or a mutant thereof shows a carbamation activity superior to that of wild-type lipase.
  • the expression vector pYES2CT (pYES2CT / SUC2sig / mCALB) containing the mature wild type CalB gene linked to the signal sequence of SUC2 is shown.
  • disassembly activity of the transformed yeast which holds pYES2CT / SUC2sig / mCALB vector is shown.
  • “-CALB” indicates a transformed yeast (control) carrying the pYES2CT / SUC2sig vector without the CalB gene.
  • “+ CALB” indicates a transformed yeast carrying the pYES2CT / SUC2sig / mCALB vector having the CalB gene.
  • the carbamate compound synthesis activity from dimethyl carbonate (DMC) and n-hexylamine using W104F, Q193E, W104F / Q193E modified lipase is shown.
  • (A) shows GC chromatography of the reaction liquid after 8 hours using W104F / Q193E modified lipase. IS indicates an internal standard.
  • (B) shows the yield (%) of methylhexyl carbamate. w. t. , W104F, Q193E and W104F / Q193E represent wild type lipase, W104F modified lipase, Q193E modified lipase and W104F / Q193E modified lipase, respectively.
  • the activity of synthesizing carbamate compounds from dimethyl carbonate (DMC) and 1,3-bisaminomethylcyclohexane (1,3BAC) using W104F, Q193E, W104F / Q193E modified lipase is shown.
  • the carbamate compound synthesis activity from dimethyl carbonate (DMC) and 1,12-diaminododecane (DMD) using W104F, Q193E, W104F / Q193E modified lipase is shown.
  • the carbamate compound synthesis activity from dimethyl carbonate (DMC) and xylylenediamine (XDA) using W104F, Q193E, W104F / Q193E modified lipase is shown.
  • DMC Dimethyl carbonate
  • W104F / Q193E / L278R / A283V W104F / Q193D / L278K
  • W104F / Q193E / L278K W104F / Q193E / L278K
  • Q193E / L278R, L278R, L278K Q193D, A283V modified lipase It shows carbamate compound synthesis activity.
  • the lipase of the present invention means a lipase originating from Candida antarctica (CALB, Genebank Accession No. P41365).
  • CALB of the present invention preferably means mature CALB, and its amino acid sequence is shown in SEQ ID NO: 1.
  • the CALB of the present invention may include a fragment that retains its function.
  • the modified lipase of this invention or its variant may also contain the fragment
  • the lipase having the amino acid sequence of SEQ ID NO: 1 is referred to as wild-type lipase.
  • glutamine at position 193 in SEQ ID NO: 1 having a higher carbamate activity than wild-type lipase was substituted with another amino acid residue (Q193X, X is any amino acid except glutamine). It means a modified lipase (hereinafter referred to as Q193X modified lipase).
  • Q193X modified lipase The modified lipase in which tryptophan at position 104 is substituted with phenylalanine (W104F) (hereinafter referred to as W104F modified lipase (SEQ ID NO: 3)) may also be included.
  • a single modified lipase in which the glutamine at position 193 is substituted with glutamic acid or aspartic acid (hereinafter referred to as Q193E modified lipase (SEQ ID NO: 2) or Q193D modified lipase (SEQ ID NO: 19)) Called).
  • a double modified lipase (hereinafter referred to as Q193E / W104F modified lipase (SEQ ID NO: 4)) wherein glutamine at position 193 is substituted with glutamic acid or aspartic acid and tryptophan at position 104 is substituted with phenylalanine.
  • Q193D / W104F modified lipase (referred to as SEQ ID NO: 20).
  • L278X 1 modified lipase leucine at position 278 in SEQ ID NO: 1 has a higher carbamate activity than wild-type lipase, and other amino acid residues are substituted (L278X 1 , X 1 is any amino acid except leucine) has been modified lipase (hereinafter, referred to as L278X 1 modified lipase) means.
  • the leucine at position 278 is replaced with arginine or lysine (L278R or L278K) as a single modified lipase (hereinafter referred to as L278R modified lipase (SEQ ID NO: 21) or L278K modified lipase (SEQ ID NO: 22)).
  • L278R modified lipase SEQ ID NO: 21
  • L278K modified lipase SEQ ID NO: 22
  • a double modified lipase (hereinafter referred to as Q193E / L278K modified lipase (SEQ ID NO: 24) in which glutamine at position 193 is substituted with glutamic acid or aspartic acid, and leucine at position 278 is substituted with arginine or lysine. ), Q193E / L278R modified lipase (SEQ ID NO: 23), Q193D / L278K modified lipase (SEQ ID NO: 26) or Q193D / L278R modified lipase (SEQ ID NO: 25)).
  • the triple-modified lipase (hereinafter referred to as Q193E / Q) in which glutamine at position 193 is substituted with glutamic acid or aspartic acid, tryptophan at position 104 is substituted with phenylalanine, and leucine at position 278 is substituted with arginine or lysine.
  • W104F / L278K modified lipase (SEQ ID NO: 28), Q193E / W104F / L278R modified lipase (SEQ ID NO: 27), Q193D / W104F / L278K modified lipase (SEQ ID NO: 30) or Q193D / W104F / L278R modified lipase (sequence) No. 29)).
  • glutamine at position 193 is substituted with glutamic acid or aspartic acid
  • tryptophan at position 104 is substituted with phenylalanine
  • leucine at position 278 is substituted with arginine or lysine
  • alanine at position 283 is substituted with valine.
  • Quadruple modified lipase (hereinafter referred to as Q193E / W104F / L278K / A283V modified lipase (SEQ ID NO: 32), Q193E / W104F / L278R / A283V modified lipase (SEQ ID NO: 31), Q193D / W104F / L278K / A283V modified) Lipase (SEQ ID NO: 34) or Q193D / W104F / L278R / A283V modified lipase (SEQ ID NO: 33)).
  • the modified lipase of the present invention has an amino acid sequence in which amino acid substitution is performed at the 193-position, 104-position, 278-position and / or 283-position, and the 193-position, 104-position, 278-position and An amino acid mutation may be further included at a position other than position 283. Therefore, the present invention has the same function when compared with the modified lipase having the amino acid substitution at positions 193, 104, 278 and / or 283, but the positions 193, 104, 278 are the same. Also provided are variants that differ in part in amino acid sequence from modified lipases having an amino acid substitution at position 283 and / or.
  • the difference in amino acid sequence in a part means that the amino acid sequence is typically mutated by deletion, substitution, addition, insertion, inversion, or a combination of one to several amino acids constituting the amino acid sequence. It means that
  • the present invention includes substitution of one or several amino acids, deletion, insertion, addition or inversion in addition to substitution of glutamine at position 193 with other amino acid residues, and is the same as 193 modified lipase Including variants thereof exhibiting carbamate activity.
  • the present invention further includes a variant thereof that includes one or several amino acid substitutions, deletions, insertions, additions, or inversions and exhibits the same carbamation activity as the W104F modified lipase. .
  • the present invention further includes one or several amino acid substitutions, deletions, insertions, additions or inversions thereof, and mutants thereof showing the same carbamation activity as the Q193E modified lipase. .
  • the present invention includes, in addition to the Q193D substitution, a variant thereof that further includes substitution, deletion, insertion, addition or inversion of one or several amino acids and exhibits the same carbamation activity as the Q193D modified lipase.
  • the present invention includes Q193E / W104F substitution, and further includes substitution, deletion, insertion, addition or inversion of one or several amino acids, and exhibits the same carbamation activity as Q193E / W104F modified lipase. Also includes variants.
  • the present invention further includes one or several amino acid substitutions, deletions, insertions, additions or inversions, and the mutants exhibiting the same carbamate activity as the Q193D / W104F modified lipase Including.
  • the present invention further includes one or several amino acid substitutions, deletions, insertions, additions or inversions, and mutants thereof exhibiting the same carbamate activity as the Q193E / L278K modified lipase Including.
  • the present invention further includes one or several amino acid substitutions, deletions, insertions, additions, or inversions, and mutants thereof exhibiting the same carbamate activity as the Q193E / L278R modified lipase Including.
  • the present invention further includes one or several amino acid substitutions, deletions, insertions, additions or inversions, and the mutants exhibiting the same carbamation activity as the Q193D / L278K modified lipase Including.
  • the present invention further includes one or several amino acid substitutions, deletions, insertions, additions or inversions, and the mutants exhibiting the same carbamation activity as the Q193D / L278R modified lipase Including.
  • the present invention further includes one or several amino acid substitutions, deletions, insertions, additions or inversions in addition to the Q193E / W104F / L278K substitution, and has the same carbamate activity as the Q193E / W104F / L278K modified lipase.
  • the mutants shown are also included.
  • the present invention further includes one or several amino acid substitutions, deletions, insertions, additions or inversions in addition to the Q193E / W104F / L278R substitution, and has the same carbamate activity as the Q193E / W104F / L278R modified lipase.
  • the mutants shown are also included.
  • the present invention further includes one or several amino acid substitutions, deletions, insertions, additions or inversions in addition to the Q193D / W104F / L278K substitution, and has the same carbamate activity as the Q193D / W104F / L278K modified lipase.
  • the mutants shown are also included.
  • the present invention further includes one or several amino acid substitutions, deletions, insertions, additions or inversions, and has the same carbamate activity as the Q193D / W104F / L278R modified lipase.
  • the mutants shown are also included.
  • the present invention further includes one or several amino acid substitutions, deletions, insertions, additions or inversions, and is the same as the Q193E / W104F / L278K / A283V modified lipase Also included are variants thereof that exhibit carbamate activity.
  • the present invention further includes one or several amino acid substitutions, deletions, insertions, additions or inversions, and is the same as the Q193E / W104F / L278R / A283V modified lipase Also included are variants thereof that exhibit carbamate activity.
  • the present invention further includes substitution, deletion, insertion, addition or inversion of one or several amino acids, and is the same as the Q193D / W104F / L278K / A283V modified lipase Also included are variants thereof that exhibit carbamate activity.
  • the present invention further includes one or several amino acid substitutions, deletions, insertions, additions or inversions, and is the same as the Q193D / W104F / L278R / A283V modified lipase Also included are variants thereof that exhibit carbamate activity.
  • the present invention includes the same carbamation as 278 modified lipase, including substitution of leucine at position 278 to other amino acid residues, and further substitution, deletion, insertion, addition or inversion of one or several amino acids. Including variants thereof exhibiting activity.
  • the present invention further includes a variant thereof that includes one or several amino acid substitutions, deletions, insertions, additions, or inversions and exhibits the same carbamation activity as the L278R modified lipase.
  • the present invention further includes a variant thereof that includes one or several amino acid substitutions, deletions, insertions, additions, or inversions and exhibits the same carbamation activity as the L278K modified lipase.
  • the difference in the amino acid sequence is permissible as long as the characteristics relating to the carbamate reaction are not significantly reduced (preferably within the limit that is substantially maintained). Therefore, as long as this condition is satisfied, the position where the amino acid sequence is different may not be particularly limited. Further, a difference may occur at a plurality of positions.
  • the term “plurality” refers to, for example, a number corresponding to less than about 30% of all amino acids, preferably a number corresponding to less than about 20%, and more preferably a number corresponding to less than about 10%. The number is preferably less than about 5%, and most preferably less than about 1%.
  • a protein partially differing in amino acid sequence may be, for example, about 70% or more, preferably about 80% or more, more preferably about 90% or more, and even more preferably about 95%, with any of the amino acid sequences of the modified lipase. % Or more, most preferably about 99% or more homologous protein having amino acid sequence identity.
  • Amino acid sequence identity may be calculated with default values using BLAST well known to those skilled in the art.
  • the above homologous protein can be preferably obtained by causing a conservative amino acid substitution to occur at an amino acid residue not involved in the carbamation reaction.
  • conservative amino acid substitution refers to substitution of an amino acid residue with an amino acid residue having a side chain having similar properties.
  • a basic side chain eg, lysine, arginine, histidine
  • an acidic side chain eg, aspartic acid, glutamic acid
  • an uncharged polar side chain eg, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • Non-polar side chains eg glycine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • ⁇ -branched side chains eg threonine, valine, isoleucine
  • aromatic side chains eg tyrosine, phenylalanine, Like tryptophan
  • a conservative amino acid substitution is preferably a substitution between amino acid residues within the same family.
  • the mutant of the Q193X modified lipase may have about 70% or more amino acid sequence identity with the Q193X modified lipase and exhibit a carbamateization activity equivalent to that of the 193 modified lipase.
  • a variant of W104F modified lipase may have about 70% or more amino acid sequence identity with W104F modified lipase and exhibit a carbamateization activity equivalent to that of W104F modified lipase.
  • mutant of the Q193E modified lipase may have about 70% or more amino acid sequence identity with the Q193E modified lipase and exhibit a carbamate activity equivalent to that of the Q193E modified lipase.
  • the mutant of the Q193D modified lipase may have about 70% or more amino acid sequence identity with the Q193D modified lipase and exhibit a carbamateization activity equivalent to that of the Q193D modified lipase.
  • mutant of the Q193E / W104F modified lipase has about 70% or more amino acid sequence identity with the Q193E / W104F modified lipase and exhibits the same carbamate activity as the Q193E / W104F modified lipase. May be.
  • the mutant of the Q193D / W104F modified lipase has about 70% or more amino acid sequence identity with the Q193D / W104F modified lipase, and exhibits the same carbamate activity as the Q193D / W104F modified lipase. Good.
  • a variant of the Q193E / L278K modified lipase has about 70% or more amino acid sequence identity with the Q193E / L278K modified lipase, and exhibits a carbamate activity equivalent to that of the Q193E / L278K modified lipase. Good.
  • a mutant of the Q193D / L278K modified lipase has about 70% or more amino acid sequence identity with the Q193D / L278K modified lipase, and exhibits the same carbamate activity as the Q193D / L278K modified lipase. Good.
  • a mutant of the Q193E / L278R modified lipase has about 70% or more amino acid sequence identity with the Q193E / L278R modified lipase, and exhibits the same carbamate activity as the Q193E / L278R modified lipase. Good.
  • a mutant of the Q193D / L278R modified lipase has about 70% or more amino acid sequence identity with the Q193D / L278R modified lipase, and exhibits the same carbamate activity as the Q193D / L278R modified lipase. Good.
  • the mutant of the Q193E / W104F / L278K modified lipase has about 70% or more amino acid sequence identity with the Q193E / W104F / L278K modified lipase and has the same carbamate activity as the Q193E / W104F / L278K modified lipase. It may be shown.
  • the mutant of the Q193D / W104F / L278K modified lipase has about 70% or more amino acid sequence identity with the Q193D / W104F / L278K modified lipase and has the same carbamate activity as the Q193D / W104F / L278K modified lipase. It may be shown.
  • the mutant of the Q193E / W104F / L278R modified lipase has about 70% or more amino acid sequence identity with the Q193E / W104F / L278R modified lipase and has a carbamate activity equivalent to that of the Q193E / W104F / L278R modified lipase. It may be shown.
  • the mutant of the Q193D / W104F / L278R modified lipase has about 70% or more amino acid sequence identity with the Q193D / W104F / L278R modified lipase and has the same carbamate activity as the Q193D / W104F / L278R modified lipase. It may be shown.
  • the mutant of the Q193E / W104F / L278K / A283V modified lipase has about 70% or more amino acid sequence identity with the Q193E / W104F / L278K / A283V modified lipase, and the Q193E / W104F / L278K / A283V modified lipase It may exhibit equivalent carbamate-forming activity.
  • the mutant of the Q193D / W104F / L278K / A283V modified lipase has about 70% or more amino acid sequence identity with the Q193D / W104F / L278K / A283V modified lipase, and the Q193D / W104F / L278K / A283V modified lipase It may exhibit equivalent carbamate-forming activity.
  • the mutant of the Q193E / W104F / L278R / A283V modified lipase has about 70% or more amino acid sequence identity with the Q193E / W104F / L278R / A283V modified lipase, and the Q193E / W104F / L278R / A283V modified lipase It may exhibit equivalent carbamate-forming activity.
  • the mutant of the Q193D / W104F / L278R / A283V modified lipase has about 70% or more amino acid sequence identity with the Q193D / W104F / L278R / A283V modified lipase, and the Q193D / W104F / L278R / A283V modified lipase It may exhibit equivalent carbamate-forming activity.
  • L278X 1 modified lipase has L278X 1 modified lipase having at least about 70% amino acid sequence identity, may represent a L278X 1 modified lipase equivalent carbamate activity.
  • the mutant of the L278R modified lipase may have about 70% or more amino acid sequence identity with the L278R modified lipase and exhibit a carbamate activity equivalent to that of the L278R modified lipase.
  • the mutant of the L278K modified lipase may have about 70% or more amino acid sequence identity with the L278K modified lipase and exhibit a carbamateization activity equivalent to that of the L278K modified lipase.
  • the DNA encoding the modified lipase or a variant thereof means a DNA having a nucleic acid sequence encoding the amino acid sequence of the modified lipase or a variant thereof, and the nucleic acid sequence is based on the genetic code well known to those skilled in the art. Can be determined from
  • the DNA encoding the modified lipase or a variant thereof is not limited as long as it is a nucleic acid sequence encoding the modified lipase or a variant thereof.
  • nucleic acid sequence encoding the amino acid sequence of Q193E modified lipase (SEQ ID NO: 2) or Q193D modified lipase (SEQ ID NO: 19) include the sequence of SEQ ID NO: 14 or 35.
  • nucleic acid sequence encoding the amino acid sequence of W104F modified lipase (SEQ ID NO: 3) include the sequence of SEQ ID NO: 17.
  • nucleic acid sequence encoding the amino acid sequence of Q193E / W104F modified lipase (SEQ ID NO: 4) or Q193D / W104F modified lipase (SEQ ID NO: 20) include the sequence of SEQ ID NO: 18 or 36.
  • Amino acid sequence of Q193E / L278R modified lipase (SEQ ID NO: 23), Q193E / L278K modified lipase (SEQ ID NO: 24), Q193D / L278R modified lipase (SEQ ID NO: 25) or Q193D / L278K modified lipase (SEQ ID NO: 26)
  • Q193E / W104F / L278R / A283V modified lipase (SEQ ID NO: 31), Q193E / W104F / L278K / A283V modified lipase (SEQ ID NO: 32), Q193D / W104F / L278R / A283V modified lipase (SEQ ID NO: 33) or Q193D /
  • sequence number 34 the sequence of sequence number 47, 48, 49 or 50 is mentioned, for example.
  • nucleic acid sequence encoding the amino acid sequence of L278R modified lipase (SEQ ID NO: 21) or L278K modified lipase (SEQ ID NO: 22) include the sequence of SEQ ID NO: 37 or 38.
  • the mutant of the modified lipase may be one that hybridizes with the modified lipase gene and exhibits a carbamation activity equivalent to that of the modified lipase.
  • a transformed microorganism containing a DNA encoding a modified lipase or a mutant thereof refers to a transformed microorganism that introduces a DNA encoding a modified lipase or a mutant thereof into the microorganism to produce the modified lipase or a mutant thereof.
  • the DNA encoding the modified lipase or a variant thereof may be present in the microorganism as a plasmid or may be integrated into the chromosome.
  • the microorganism is not limited, and examples thereof include bacteria, yeast, and filamentous fungi.
  • Escherichia Corynebacterium, Bacillus, lactic acid bacteria (Lactobacillus, Bifidobacterium), yeast (Saccharomyces, Pichia, Schizosaccharomyces, Kluyveromyces, Hansenula, Yarrowia), filamentous fungi (Aspergillus, etc.) It is done.
  • Escherichia coli Escherichia coli, yeast (Saccharomyces, Pichia, Schizosaccharomyces, Kluyveromyces, Hansenula, Yarrowia), and filamentous fungi (Aspergillus) are more preferable. These microorganisms are available from the market.
  • the DNA encoding the modified lipase or its mutant transformed into a microorganism is preferably in a vector.
  • the vector include a phage and a plasmid, and a plasmid is preferable.
  • the plasmid is more preferably an expression plasmid having a promoter for expression, a start codon, a stop codon, a polyadenylation signal sequence, a multicloning site, a replication origin, a selection marker, and the like.
  • Examples of plasmids derived from E. coli include pBR322, pBR325, pUC18, and pUC118.
  • Examples of yeast-derived plasmids include pSH19, pSH15, pYES2, and examples of filamentous fungus-derived plasmids include pAUR316. These plasmids are commercially available.
  • the DNA encoding the modified lipase to be transformed into a microorganism or a mutant thereof is operably linked to a promoter that enables expression in the microorganism.
  • the promoter is not limited as long as it can express a linked modified lipase or a mutant thereof in a microorganism.
  • the microorganism is Escherichia coli, trp promoter, lac promoter, rec ⁇ ⁇ ⁇ ⁇ ⁇ A promoter, ⁇ PL promoter, lpp promoter, T7 promoter, etc.
  • the microorganism is yeast, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, The GAL1 promoter and the like are preferable.
  • glucoamylase gene promoter When the microorganism is a filamentous fungus, a glucoamylase gene promoter, an ⁇ -amylase gene promoter, an alcohol dehydrogenase I gene promoter, an enolase gene promoter, and the like are preferable.
  • Operably linked to a promoter means that the modified lipase or a mutant thereof is linked downstream of the promoter so that the modified lipase or a mutant thereof is produced under the control of the promoter.
  • Transformation of microorganisms can be performed according to methods known in the art. For example, there are an electroporation method and a method of introducing DNA into a microorganism used as a competent cell by a calcium method.
  • the production of the modified lipase of the present invention or a mutant thereof is preferably carried out by culturing the above transformant in a medium and accumulating the modified lipase in the medium and / or in the transformant.
  • the medium for culturing the transformant is not particularly limited as long as the microorganism grows, and can be cultured according to a method known in the art.
  • a culture solution containing sugars such as glucose and sucrose as a carbon source, inorganic nitrogen sources such as ammonium salts and nitrates, organic nitrogen sources such as yeast extract, and various inorganic salts and vitamins.
  • an inducer such as IPTG
  • a selective agent such as antibiotics such as ampicillin, chloramphenicol, carbenicillin
  • the culture conditions temperature, time, shaking, aerobic or anaerobic are not particularly limited as long as microorganisms grow.
  • the DNA encoding the modified lipase or the mutant thereof may be linked to a signal sequence for secretion.
  • a signal sequence such as alkaline phosphatase or invertase can be used.
  • it may be linked to a tag sequence for facilitating purification, for example, a histidine tag sequence, a flag tag sequence or the like.
  • a cleavage sequence such as an endopeptidase recognition sequence may be linked between the tag sequence, the signal sequence and the modified lipase or a variant thereof.
  • the modified lipase produced by the transformant or a mutant thereof may use the culture medium and / or the culture transformant as they are, or may be further purified.
  • chromatography gel filtration chromatography, affinity chromatography, ion exchange chromatography, hydrophobic chromatography, etc.
  • chromatography gel filtration chromatography, affinity chromatography, ion exchange chromatography, hydrophobic chromatography, etc.
  • modified lipase of the present invention or a variant thereof is preferably an immobilized modified lipase bound to an insoluble carrier or a variant thereof.
  • the carrier binding method for example, polysaccharides (cellulose, agarose, etc.), inorganic substances (porous glass, metal, etc.) Oxides) and synthetic polymers (polyacrylamide compounds, polystyrene resins, ion exchange resins, etc.).
  • polysaccharides cellulose, agarose, etc.
  • inorganic substances porous glass, metal, etc.
  • Oxides synthetic polymers
  • polyacrylamide compounds polystyrene resins, ion exchange resins, etc.
  • the inclusion method include polysaccharides (alginic acid, carrageenan, etc.), polyacrylamide compounds, ENT, PU, and nylon.
  • Immobilization of the modified lipase or its variant on the carrier can be performed according to a conventional immobilization method for proteins.
  • modified lipase of the present invention or a mutant thereof in the carbamate reaction means that the carbamate reaction is performed by the modified lipase of the present invention or a mutant thereof.
  • the modified lipase or variant thereof is preferably immobilized.
  • the carbamate reaction is represented by the following reaction formula (A):
  • R represents a hydrogen atom or a hydrocarbon group which may have a substituent
  • the amine compound is not particularly limited as long as it synthesizes a carbamate compound by reacting with a carbonate compound, but a monoamine compound or a diamine compound is preferably used in the present invention.
  • An aliphatic monoamine compound or an aliphatic diamine compound is more preferably used.
  • An aliphatic amine means a compound in which a hydrogen atom of a linear hydrocarbon is substituted with an amino group, -NH2.
  • the monoamine compound has the general formula (I): (In the formula, R 1 may have a substituent, C 1 ⁇ 20 linear or branched alkyl group, C 2 ⁇ 20 linear or branched alkenyl group, C 2 ⁇ 20 linear or branched chain alkynyl group, a C 4 ⁇ 24 cycloalkyl group, C 7 ⁇ 21 aralkyl group, or a C 3 ⁇ 20 cycloalkyl group, n is 0 or 1) Is preferably used.
  • the optionally substituted C 1-20 linear or branched alkyl group for R 1 is a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, or an n-hexyl group.
  • C 1 ⁇ 12 preferably a straight-chain or branched-chain alkyl group, a methyl group, an ethyl group, n- propyl group, n- butyl group, n- hexyl, n- dodecyl group, more preferably isopropyl or t- butyl group .
  • R 1 which may have a substituent C 2 ⁇ 20 linear or branched alkenyl group, include allyl, 1-propenyl, 1-butenyl, 1-pentenyl group or Isopuropaniru group, is It is done.
  • C 2 ⁇ 12 linear or branched alkenyl group, an allyl group are more preferable.
  • R 1 which may have a substituent C 2 ⁇ 20 linear or branched alkynyl group, an ethynyl group, a propargyl group, a butenyl group or 1-methyl-2-propynyl group or the like, it can be mentioned.
  • C 2 ⁇ 12 linear or branched alkynyl group, an ethynyl group or a propargyl group are more preferable.
  • R 1 which may have a substituent group C 3 ⁇ 20 cycloalkyl group, in optionally substituted with C 1 ⁇ 4 straight chain alkyl group monocyclic or polycyclic alicyclic hydrocarbon group
  • C 1 ⁇ 4 straight chain alkyl group monocyclic or polycyclic alicyclic hydrocarbon group
  • C 3 ⁇ 12 cycloalkyl group are preferable, cyclohexyl or bicyclo [2.2.1] heptyl group are more preferable.
  • examples of the C 1-4 straight chain alkyl group include a methyl group, an ethyl group, an n-
  • an optionally substituted C 4 ⁇ 24 cycloalkylalkyl group is C 1 ⁇ 4 straight chain alkyl group substituted with a C 3 ⁇ 20 cycloalkyl group as defined above, Examples include cyclohexylmethyl group, cyclohexylethyl group, trimethylcyclohexylmethyl group, norbornylmethyl group, and the like.
  • C 3 ⁇ 10 C 4 ⁇ 14 cycloalkylalkyl group is preferably a cycloalkyl group C 1 ⁇ 4 straight chain alkyl group substituted by, cyclohexylmethyl group is more preferable.
  • R 1 which may have a substituent C 7 ⁇ 21 aralkyl group include an alkyl group substituted with a C 6 ⁇ 20 aryl group.
  • C 6 ⁇ 20 aryl group is a group having a monocyclic or polycyclic aromatic ring, a phenyl group, a naphthyl group, biphenylyl group, or a terphenyl yl group (e.g., p- terphenyl-4-yl group, m-terphenyl-3-yl group) and the like.
  • the number of carbon atoms in the alkyl group is the number obtained by subtracting the number of carbon atoms in the aryl group from the number of carbon atoms in the aralkyl group.
  • C 7 ⁇ 21 aralkyl groups include benzyl group, phenethyl group, naphthylmethyl group, or m- terphenyl-3-yl, - a methyl group, and the like, preferably C 7 ⁇ 13 aralkyl group, more benzyl groups preferable.
  • the group mentioned as R 1 includes various isomers.
  • R 1 may have a further substituent.
  • Further substituents for R 1 are, for example, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom); a C 1-4 alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, or a butoxy group; benzene ring and when R 1 is an aralkyl group; an amino group, a diethylamino group, or a C 1 ⁇ 6 disubstituted dialkylamino group with an alkyl group such as a di-propylamino group, cyano group, a nitro group, an acetyl group And an amino group directly bonded to.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom
  • C 1-4 alkoxy group such as a methoxy
  • R 1 is preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-hexyl, n-dodecyl, fluoromethyl, difluoromethyl.
  • the monoamine compound represented by the general formula (I) is particularly preferably an n-hexylamine compound, an n-dodecylamine compound, a cyclohexylmethylamine compound, or a benzylamine compound.
  • the diamine compound has the general formula (II): (Wherein, R 3 may have a substituent, C 1 ⁇ 20 linear or branched alkylene group, C 1 ⁇ 4 linear alkylene -C 3 ⁇ 20 cycloalkylene -C 1 ⁇ 4 straight alkylene group, C 1 ⁇ 4 linear alkylene -C 6 ⁇ 20 arylene -C 1 ⁇ 4 straight chain alkylene group, C 3 ⁇ 20 cycloalkylene group, or a C 1 ⁇ 4 linear alkylene -C 3 ⁇ 20 cycloalkylene
  • m and p are each independently 0 or 1) Is preferably used.
  • the optionally substituted C 1-20 linear or branched alkylene group for R 3 is a methylene group, an ethylene group, an n-propylene group, an n-butylene group, an n-pentylene group, or n-to.
  • a linear alkylene group such as a xylene group, n-heptylene group, n-octylene group, n-nonylene group, n-decylene group or n-dodecylene group; or 2-methylpropylene group, 2-methylhexylene group, tetra Examples include branched chain alkylene groups such as methylethylene group.
  • a C 1-20 linear alkylene group is preferred, and a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, or dodecylene group is more preferred.
  • R 3 which may have a substituent group C 3 ⁇ 20 cycloalkylene group, a hydrocarbon group of a monocyclic or polycyclic, optionally substituted with C 1 ⁇ 4 straight chain alkyl group, Examples thereof include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, and a bicyclo [2.2.1] heptane-2,6-diyl group.
  • C 3 ⁇ 12 cycloalkylene group, hexylene group or a bicyclo to [2.2.1] heptane-2,6-diyl group are more preferable.
  • C 1 ⁇ 4 straight chain alkylene group which may have a substituent C 1 ⁇ 4 linear alkylene -C 3 ⁇ 20 cycloalkylene -C 1 ⁇ 4 straight chain alkylene group, a methylene group
  • Examples include an ethylene group, a propylene group, or a butylene group.
  • C 1 ⁇ 4 linear alkylene -C 3 ⁇ 20 cycloalkylene -C 1 ⁇ 4 linear alkylene groups are methylene - cyclopentylene - methylene group, an ethylene - cyclopentylene - ethylene or methylene, - cyclohexylene - A methylene group etc. are mentioned.
  • C is preferably 1-4 linear alkylene -C 3 ⁇ 12 cyclohexylene -C 1-4 straight-chain alkylene groups include methylene - cyclohexylene - methylene group is more preferable.
  • R 3 which may have a substituent C 1 ⁇ 4 linear alkylene -C 3 ⁇ 20 cycloalkylene group, substituted with C 1 ⁇ 4 linear alkylene -C 1 ⁇ 4 straight chain alkyl group preferably C 3 ⁇ 12 cycloalkylene groups are, methylene - trimethyl-cyclohexylene group is more preferable.
  • ⁇ optionally C 1 may have a substituent 4 linear alkylene -C 6 ⁇ 20 arylene -C 1 ⁇ 4 straight chain alkylene group, C 1 ⁇ 4 linear alkylene - phenylene -C 1 ⁇ A 4- linear alkylene group is preferred, and a xylylene group is more preferred. These groups include various isomers.
  • the hydrocarbon group for R 3 may have a further substituent.
  • Examples of the further substituent in R 3 include the same group as the substituent of the hydrocarbon group in R 1 .
  • R 3 is, if a C 1 ⁇ 4 linear alkylene -C 6 ⁇ 20 arylene -C 1 ⁇ 4 linear alkylene group, the substituent in R 3 is bonded directly to the aromatic carbon atoms of the arylene group A primary amino group may be mentioned.
  • R 3 is preferably C 1 ⁇ 20 linear or branched alkylene group, C 1 ⁇ 4 linear alkylene -C 3 ⁇ 20 cycloalkylene -C 1 ⁇ 4 straight chain alkylene group, C 1 ⁇ 4 straight alkylene -C 6 ⁇ 20 arylene -C 1 ⁇ 4 straight chain alkylene group, C 3 ⁇ 20 cycloalkylene group, or a C 1 ⁇ 4 linear alkylene -C 3 ⁇ 20 cycloalkylene group; more preferably, C 1-12 linear alkylene group, C 1 ⁇ 4 linear alkylene -C 3 ⁇ 12 cycloalkylene -C 1 ⁇ 4 straight chain alkylene group, C 1 ⁇ 4 linear alkylene - phenylene -C 1 ⁇ 4 linear alkylene group , be a C 3 ⁇ 12 cycloalkylene group, or a C 1 ⁇ 4 straight chain C 3 ⁇ 12 cycloalkylene group substituted with alkylene
  • the diamine compound of the present invention is preferably a compound from which a biscarbamate compound as a diisocyanate raw material can be obtained.
  • the carbonate compound of the present invention has the general formula (III): (In the formula, R 2 represents a hydrocarbon group which may have a substituent, and R 2 may independently form a ring.) Is preferably used.
  • examples of the monovalent hydrocarbon group which may have a substituent of R 2 include the same groups as those defined for R 1 defined in the general formula (I).
  • the hydrocarbon group for R 2 is preferably C 1-20 , preferably C 1-6 linear or branched, such as methyl, ethyl, n-propyl, i-propyl, or n-butyl.
  • An alkyl group, and a particularly preferred group is a methyl group or an ethyl group.
  • the hydrocarbon group for R 2 may have a further substituent.
  • Further substituents include, for example, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom); a C 1-4 alkoxy group such as a methoxyl group, an ethoxyl group, a propoxyl group, or a butoxyl group; a dimethylamino group, Examples thereof include a dialkylamino group disubstituted by a C 1-4 alkyl group such as a diethylamino group or a dipropylamino group; a cyano group; or a nitro group.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom
  • a C 1-4 alkoxy group such as a methoxyl group, an ethoxyl group, a propoxyl group, or
  • the carbonate compound represented by the general formula (III) is preferably a dimethyl carbonate compound or a diethyl carbonate compound.
  • the reaction of the present invention can be performed using an organic solvent or without a solvent.
  • the organic solvent is not particularly limited as long as it is a solvent that can dissolve the amine compound and the carbonate compound and does not inactivate the modified lipase or a mutant thereof.
  • the organic solvent is not limited to saturated cyclic hydrocarbons, unsaturated cyclic hydrocarbons, and acyclic ethers. Or a mixed solvent thereof is preferred.
  • Solvents of saturated cyclic hydrocarbons include C 5-10 unsubstituted cycloalkanes such as cyclopentane, cyclohexane, cycloheptane, or isopropylcyclohexane; C 5-10 cyclo substituted with a halogen such as chlorocyclopentane or chlorocyclohexane. Examples include alkanes. Preferred are C 5-10 unsubstituted cycloalkanes, and more preferred is cyclohexane.
  • solvent for unsaturated cyclic hydrocarbons examples include aromatic hydrocarbons such as benzene, toluene, xylene or mesitylene; C 5-10 cycloalkenes such as cyclopentene or cyclohexene.
  • Aromatic hydrocarbons are preferable, and toluene or xylene is more preferable.
  • Acyclic ethers such as diethyl ether, t- butyl methyl ether or C 2 ⁇ 8 dialkyl ethers such as diisopropyl ether,; C 5 ⁇ 18 cycloalkylalkyl ethers such as cyclopentyl methyl ether or cyclopentyl ether s; benzyl phenyl ether, benzyl methyl ether, alkyl phenyl ether, diphenyl ether, di (p- tolyl) ether or C 7 ⁇ 18 aromatic ethers dibenzyl ether and the like, can be mentioned.
  • the amount of the organic solvent used is preferably 1 to 200 mL, more preferably 1 to 50 mL, and particularly preferably 1 to 20 mL with respect to 1 g of the monoamine compound or diamine compound.
  • the carbamate reaction of the present invention can be performed, for example, by a monoamine compound or diamine compound, a carbonate compound, an organic solvent, and a modified lipase or a mutant thereof (preferably an immobilization). Modified lipase or a mutant thereof) are mixed and reacted with stirring. Alternatively, it is carried out by a continuous flow method or the like in which an organic solvent containing a monoamine compound or a diamine compound and a carbonate compound is passed through a column packed with an immobilized modified lipase or a variant thereof.
  • the concentration of the monoamine compound or diamine compound in the reaction solution is preferably 10 to 50% by mass relative to the total mass of the reaction system.
  • the flow rate of the reaction liquid is preferably 0.5 to 400 mm / min, more preferably 1 to 200 mm / min.
  • the liquid flow rate (mm / min) is the cross-sectional area of the packed bed (mm 2 ) by the amount of liquid fed per minute (mm 3 / min) (or also called the liquid feed rate (10 ⁇ 3 mL / min)). The value expressed by the quotient divided by.
  • the liquid passage speed is 400 mm / min or less. Further, from the viewpoint of productivity, it is preferable that the liquid flow rate is 1 mm / min or more. Since the expression activity of the immobilized enzyme changes depending on the flow rate, the reaction can be performed according to the desired production capacity and manufacturing cost by selecting the optimal flow rate and determining the reaction conditions. it can.
  • the flow time of the reaction solution in the reaction vessel can be in the range of 30 seconds to 6 hours.
  • the temperature in the reaction of the present invention is not particularly limited as long as the modified lipase or a mutant thereof is not inactivated. However, in order to obtain a desired carbamate compound with good yield, it is preferably 30 ° C. to 120 ° C., 60 C. to 90.degree. C. is more preferable, and 65.degree. C. to 90.degree. C. is particularly preferable.
  • the reaction pressure in the batch reaction is not particularly limited, but it is preferably performed under normal pressure or reduced pressure.
  • the reaction time in the batch reaction is not particularly limited, but is preferably 0.5 hours to 120 hours, and more preferably 0.5 hours to 72 hours.
  • the reaction of the present invention is preferably carried out in a range that does not inactivate according to the characteristics of each modified lipase or mutant thereof used.
  • the present invention is advantageous in that the reaction is generally heterogeneous, the catalyst can be reused and the post-treatment is simple. That is, the product can be obtained by removing the catalyst by filtration at the end of the reaction and concentrating the obtained filtrate. The product can also be obtained by crystallization operation from the obtained filtrate.
  • the production apparatus used for the reaction of the present invention is not particularly limited, and examples thereof include general production apparatuses such as a reaction vessel and a heating (cooling) apparatus.
  • a device in which the modified lipase of the present invention or a variant thereof is immobilized on a carrier and is housed in a reaction vessel as a fixed bed is preferable. Therefore, the reaction of the present invention is preferably a reaction including a step of passing a monoamine compound or diamine compound and a carbonate compound through the reaction vessel.
  • the general formula (IV) obtained by the production method of the present invention (In the formula, R 1 , R 2 and n are as defined above.) Or a monocarbamate compound represented by the general formula (V): (Wherein R 2 , R 3 , m and p are as defined above.)
  • the biscarbamate compound represented by can be further purified by general methods such as distillation, liquid separation, extraction, crystallization, recrystallization and column chromatography.
  • the monocarbamate compound and biscarbamate compound obtained by the production method of the present invention are produced using the modified lipase of the present invention or a variant thereof. For this reason, the possibility of contamination by impurities such as metal salts or halides that can occur in the conventional method for producing carbamate compounds is extremely low, and a chemically safer product can be obtained.
  • modified lipase of the present invention or a mutant thereof in the carbamate reaction means that the carbamate reaction is performed by the modified lipase of the present invention or a mutant thereof.
  • the modified lipase or variant thereof is preferably immobilized.
  • Candida antarctica lipase B wild type, SEQ ID NO: 1 by yeast 1) Amplification of a DNA fragment encoding a signal sequence (SEQ ID NO: 6) derived from yeast invertase (SUC2) To clone a signal sequence derived from SUC2 (the nucleic acid sequence of SEQ ID NO: 6 and the amino acid sequence of SEQ ID NO: 7) into a yeast expression vector
  • SUC2-F SEQ ID NO: 8: 5'-gggaatattaagcttggtacc atgcttttgcaagctttccttttc- 3 '(the underlined portion is the sequence homologous to the pYES2 / CT vector, the underlined portion is the N-terminal of the SUC2 signal sequence)
  • SUC2-R SEQ ID NO: 9: 5'-tgctggatatctgcagaattc tgcagatattt
  • the linearized pYES2 / CT vector obtained in 2) obtained with the Cloning Enhancer-treated PCR product was reacted according to the method attached to the kit (reaction at 37 ° C for 15 minutes followed by reaction at 50 ° C for 15 minutes) ). After the reaction, 40 ⁇ L of TE buffer solution was added for dilution, and a part (2.5 ⁇ L) of the solution was used to transform 50 ⁇ L of ECOS E. coli DH5 ⁇ competent cell (Nippon Gene). The total amount of the transformant was applied to an LB agar medium containing 50 ⁇ g / mL carbenicillin and cultured at 37 ° C. for 16 hours.
  • Bacteria were isolated from the obtained colonies, cultured in an LB liquid medium containing 50 ⁇ g / mL carbenicillin for 16 hours, and then the plasmid was extracted using Wizard Plus Minipreps DNA Purification System (Promega). The obtained plasmid was analyzed for nucleotide sequence and confirmed to be the target sequence (SEQ ID NO: 6). The resulting vector into which the SUC2-derived signal sequence has been introduced is referred to as pYES2 / CT-SUC2sig.
  • KOD Plus manufactured by Toyobo Co., Ltd.
  • CALB gene Tekara Bio Inc., a DNA having the sequence of SEQ ID NO: 5 was custom-made and the cloned plasmid was purchased
  • a cycle of 94 ° C. for 15 seconds, 55 ° C. for 30 seconds, and 68 ° C. for 60 seconds was performed 30 times.
  • the obtained plasmid was analyzed for its nucleotide sequence and confirmed to be the target sequence (SEQ ID NO: 5).
  • the obtained vector into which the SUC2-derived signal sequence has been introduced is referred to as pYES2CT / SUC2sig / mCALB (FIG. 1).
  • Transformation of yeast with pYES2CT / SUC2sig / mCALB vector and expression of wild-type CALB Transformation into yeast was performed using S. cerevisiae Direct Transformation Kit Wako (manufactured by Wako Pure Chemical Industries, Ltd.) according to the kit instructions.
  • the cells were cultured at 180 rpm for 27.5 hours.
  • a transformation solution (20 ⁇ l of Sc Transformation Reagent included with the kit plus 2 ⁇ l of Carrier DNA included with the kit and 1 ⁇ g of plasmid DNA) was prepared and incubated at 42 ° C. for 2 hours.
  • SC-Ura agar medium (0.67% yeast nitrogen base (without amino acids), 2% glucose, 0.01% (adenine, arginine, cysteine, leucine, lysine, threonine, tryptophan), 0.005% (aspartic acid, histidine , isoleucine, methionine, phenylalanine, proline, serine, tyrosine, valine), 2% agar, pH 5.6), and cultured at 30 ° C. for 3 days to obtain transformed yeast colonies.
  • the transformed yeast carrying the pYES2CT / SUC2sig / mCALB vector was inoculated into 5 mL of SC-Ura liquid medium and cultured at 30 ° C. and 200 rpm for 16 hours.
  • the obtained preculture was added to 100 mL of YPD liquid medium for expression (1% yeast extract, 4% peptone, 2% glucose), and cultured in a 500 mL Sakaguchi flask at 20 ° C. and 130 rpm for 3 days.
  • 2 mL of YG solution (20% yeast extract, 40% galactose) was added and cultured as it was at 20 ° C. and 130 rpm for 3 days. After centrifuging the culture solution, the supernatant was collected, and the enzyme activity (ester compound decomposition activity) in the culture supernatant was measured by the method shown below.
  • the protein concentration in the lipase solution was measured by the BCA method (reference protein BSA), and the amount of protein decreased by the immobilization treatment was divided by the weight of the obtained immobilized enzyme as the amount of protein immobilized on the carrier. This was defined as the amount of enzyme supported.
  • Q193E modified lipase (SEQ ID NO: 2) 1) Introduction of Q193E mutation
  • site mutation was introduced into the pYES2CT / SUC2sig / mCALB vector.
  • KOD-Plus-Mutagenesis Kit manufactured by Toyobo Co., Ltd.
  • mutation introduction was performed according to the method described in the attached manual.
  • CalB-Q193E-F (SEQ ID NO: 12): 5′-CCT GAG GTGTCCAACTCGCCACTCGACTCATCCTAC-3 ′ (the underlined sequence corresponds to the Q193E mutation) and CalB-Q193E-R (SEQ ID NO: 13): Mutagenesis was carried out using 5′-CTGAACGATCTCGTCGGTCGC-3 ′ and pYES2CT / SUC2sig / mCALB vector as a template (after heating at 94 ° C. for 2 minutes, 10 cycles of 98 ° C. for 10 seconds and 68 ° C. for 7 minutes).
  • the nucleotide sequence of the obtained plasmid was analyzed and confirmed to be the target sequence (SEQ ID NO: 14).
  • the vector into which the mutation has been introduced is referred to as pYES2CT / SUC2sig / mCALB-Q193E.
  • Example 2 2) Yeast transformation, expression of Q193E modified lipase, purification and preparation of immobilized enzyme The same procedure as described in 7) to 9) of Example 1 was performed.
  • W104F modified lipase (SEQ ID NO: 3) 1) Introduction of W104F mutation Site mutation was introduced into the pYES2CT / SUC2sig / mCALB vector to construct a W104F modified lipase.
  • site mutation introduction KOD-Plus-Mutagenesis Kit (manufactured by Toyobo Co., Ltd.) was used, and mutation introduction was performed according to the method described in the attached manual.
  • CalB-W104F-F (SEQ ID NO: 15): 5′-ACC TTT TCCCAGGGTGGTCTGGTTGCACAG-3 ′, the underlined sequence corresponds to the W104F mutation) and CalB-W104F-R (SEQ ID NO: 16): 5 Mutagenesis was carried out using '-GAGCACGGGAAGCTTGTTGTTG-3' and pYES2CT / SUC2sig / mCALB vector as a template (after heating at 94 ° C for 2 minutes, followed by 10 cycles of 98 ° C for 10 seconds and 68 ° C for 7 minutes).
  • the nucleotide sequence of the obtained plasmid was analyzed and confirmed to be the target sequence (SEQ ID NO: 17).
  • the vector into which the mutation has been introduced is referred to as pYES2CT / SUC2sig / mCALB-W104F.
  • Example 2 2) Yeast transformation, expression of W104F modified lipase, purification and preparation of immobilized enzyme The same procedure as described in 7) to 9) of Example 1 was performed.
  • W104F / Q193E modified lipase (SEQ ID NO: 4)
  • a site mutation was introduced into the pYES2CT / SUC2sig / mCALB-Q193E vector.
  • KOD-Plus-Mutagenesis Kit manufactured by Toyobo Co., Ltd. was used, and mutation introduction was performed according to the method described in the attached manual.
  • Coli DH5 ⁇ competent cell (manufactured by Nippon Gene) was transformed. The total amount of the transformant was applied to an LB agar medium containing 50 ⁇ g / mL carbenicillin and cultured at 37 ° C. for 16 hours. Bacteria were isolated from the obtained colonies, cultured for 16 hours in an LB liquid medium containing 50 ⁇ g / mL carbenicillin, and then the plasmid was extracted using Wizard Plus Plus Minipreps DNA Purification System (Promega).
  • the nucleotide sequence of the obtained plasmid was analyzed and confirmed to be the target sequence (SEQ ID NO: 18).
  • the vector into which the mutation has been introduced is referred to as pYES2CT / SUC2sig / mCALB-W104F / Q193E.
  • Example 2 2) Yeast transformation, expression of W104F / Q193E modified lipase, purification and preparation of immobilized enzyme The same procedure as described in 7) to 9) of Example 1 was performed.
  • reaction yield was calculated by quantifying the product amount from a standard product and a calibration curve of the internal standard ratio.
  • Q193E modified lipase improved the carbamate compound synthesis activity by about 1.5 times compared to wild-type lipase (reaction times 3, 6, 8 h).
  • W104F modified lipase was almost as active as wild-type lipase.
  • the W104F / Q193E modified lipase improved the synthesis activity of the carbamate compound by about 2.0 times compared to the wild type lipase (reaction times 3, 6, 8 h).
  • reaction yield was calculated by quantifying the product amount from a standard product and a calibration curve of the internal standard ratio.
  • the Q193E modified lipase improved the carbamate compound synthesis activity by about 1.5 times compared to the wild type lipase (reaction time 24, 48 h).
  • the synthetic activity of W104F modified lipase was slightly reduced compared to wild-type lipase for this substrate.
  • the W104F / Q193E modified lipase improved the synthesis activity of the carbamate compound by about 2.0 times compared to the wild type lipase (reaction time 24, 48 h).
  • reaction yield was calculated by quantifying the product amount from a calibration curve prepared in advance from the peak area of the standard product.
  • Q193E modified lipase improved the synthetic activity of the dicarbamate compound by about 2 times compared to wild-type lipase (reaction time 20, 44 h).
  • the synthetic activity of W104F modified lipase was slightly reduced compared to wild-type lipase for this substrate.
  • the W104F / Q193E modified lipase exceeded the synthetic activity of the dicarbamate compound compared to the Q193E modified lipase.
  • reaction yield was calculated by quantifying the product amount from a standard product and a calibration curve of the internal standard ratio.
  • the synthetic activity of the dicarbamate compound of Q193E modified lipase and W104F modified lipase is 3 times that of the wild type.
  • the W104F / Q193E modified lipase which is a double-modified product, showed an improvement in activity of 5 times or more compared to the wild-type lipase.
  • Bacteria were isolated from the obtained colonies, cultured for 16 hours in an LB liquid medium containing 50 ⁇ g / mL carbenicillin, and then the plasmid was extracted using Wizard (registered trademark) Plus Minipreps DNA Purification System (Promega).
  • the nucleotide sequence of the obtained plasmid was analyzed and confirmed to be the target sequence.
  • the vectors into which the modifications are introduced are referred to as pYES2CT / SUC2sig / mCALB-Q193D, pYES2CT / SUC2sig / mCALB-L278R, pYES2CT / SUC2sig / mCALB-L278K and pYES2CT / SUC2sig / mCALB-A283V, respectively.
  • Q193E / L278R modified lipase (SEQ ID NOs: 23 and 39) 1) Introduction of mutation To construct Q193E / L278R modified lipase, a site relative to the pYES2CT / SUC2sig / mCALB-Q193E vector prepared in Example 2 Mutagenesis was performed. For site mutation introduction, KOD-Plus-Mutagenesis Kit (manufactured by Toyobo Co., Ltd.) was used, and mutation introduction was performed according to the method described in the attached manual.
  • KOD-Plus-Mutagenesis Kit manufactured by Toyobo Co., Ltd.
  • CalB-L278Rf (SEQ ID NO: 53): 5′-CTC AGG GCGCCGGCGGCTGCAGCCATCGTG-3 ′ (underlined portion corresponds to the L278R mutation) and CalB-L278r (SEQ ID NO: 54): 5′- CGCAGCCGCGGCGACCTTTTGCTC-3 ′ was used for mutagenesis reaction (after heating at 94 ° C. for 2 minutes, 10 cycles of 98 ° C. for 10 seconds and 68 ° C. for 7 minutes). 0.8 ⁇ L of restriction enzyme Dpn I was added to 20 ⁇ L of the reaction solution, and reacted at 37 ° C. for 4 hours.
  • the nucleotide sequence of the obtained plasmid was analyzed and confirmed to be the target sequence.
  • the vector into which the mutation has been introduced is referred to as pYES2CT / SUC2sig / mCALB-Q193E / L278R.
  • CalB-L278Kf (SEQ ID NO: 55): 5′-CTC AAG GCGCCGGCGGCTGCAGCCATCGTG-3 ′ (underlined portion corresponds to the L278K mutation) and CalB-L278r (SEQ ID NO: 56): 5′- CGCAGCCGCGGCGACCTTTTGCTC-3 ′ was used for mutagenesis reaction (after heating at 94 ° C. for 2 minutes, 10 cycles of 98 ° C. for 10 seconds and 68 ° C. for 7 minutes).
  • Bacteria were isolated from the obtained colonies and cultured in an LB liquid medium containing 50 ⁇ g / mL carbenicillin for 16 hours, and then the plasmid was extracted using Wizard (registered trademark) Plus Minipreps DNA Purification System (manufactured by Promega).
  • the nucleotide sequence of the obtained plasmid was analyzed and confirmed to be the target sequence.
  • the vector into which the mutation has been introduced is referred to as pYES2CT / SUC2sig / mCALB-Q193E / L278K.
  • site mutation was introduced into the pYES2CT / SUC2sig / mCALB-Q193E / L278K vector.
  • KOD-Plus-Mutagenesis Kit manufactured by Toyobo Co., Ltd.
  • mutagenesis was performed according to the method described in the attached manual.
  • CalB-W104Ff (SEQ ID NO: 15): 5′-ACC TTT TCCCAGGGTGGTCTGGTTGCACAG-3 ′ (underlined portion corresponds to the W104F mutation) and CalB-W104r (SEQ ID NO: 16): 5′- GAGCACGGGAAGCTTGTTGTTG-3 ′ was used for mutagenesis reaction (after heating at 94 ° C. for 2 minutes, 10 cycles of 98 ° C. for 10 seconds and 68 ° C. for 7 minutes).
  • Bacteria were isolated from the obtained colonies, cultured for 16 hours in an LB liquid medium containing 50 ⁇ g / mL carbenicillin, and then the plasmid was extracted using Wizard (registered trademark) Plus Minipreps DNA Purification System (Promega).
  • the nucleotide sequence of the obtained plasmid was analyzed and confirmed to be the target sequence.
  • the vector into which the mutation has been introduced is referred to as pYES2CT / SUC2sig / mCALB-W104F / Q193E / L278K.
  • CalB-W104Ff (SEQ ID NO: 15): 5′-ACC TTT TCCCAGGGTGGTCTGGTTGCACAG-3 ′ (underlined portion corresponds to the W104F mutation) and CalB-W104r (SEQ ID NO: 16): 5′- GAGCACGGGAAGCTTGTTGTTG-3 ′ was used for mutagenesis reaction (after heating at 94 ° C. for 2 minutes, 10 cycles of 98 ° C. for 10 seconds and 68 ° C. for 7 minutes).
  • Bacteria were isolated from the obtained colonies, cultured for 16 hours in an LB liquid medium containing 50 ⁇ g / mL carbenicillin, and then the plasmid was extracted using Wizard (registered trademark) Plus Minipreps DNA Purification System (Promega).
  • the nucleotide sequence of the obtained plasmid was analyzed and confirmed to be the target sequence.
  • the vector into which the mutation has been introduced is referred to as pYES2CT / SUC2sig / mCALB-W104F / L278K.
  • site mutation was introduced into the pYES2CT / SUC2sig / mCALB-W104F / L278K vector.
  • KOD-Plus-Mutagenesis Kit manufactured by Toyobo Co., Ltd.
  • mutagenesis was performed according to the method described in the attached manual.
  • CalB-Q193Df (SEQ ID NO: 51): 5′-CCT GAC GTGTCCAACTCGCCACTCGACTCATCCTAC-3 ′ (underlined portion corresponds to the Q193D mutation) and CalB-Q193r (SEQ ID NO: 52): 5′- CTGAACGATCTCGTCGGTCGC-3 ′ was used for mutagenesis reaction (heating at 94 ° C. for 2 minutes, followed by 10 cycles of 98 ° C. for 10 seconds and 68 ° C. for 7 minutes).
  • Bacteria were isolated from the obtained colonies and cultured in an LB liquid medium containing 50 ⁇ g / mL carbenicillin for 16 hours, and then the plasmid was extracted using Wizard (registered trademark) Plus Minipreps DNA Purification System (manufactured by Promega).
  • the nucleotide sequence of the obtained plasmid was analyzed and confirmed to be the target sequence.
  • the vector into which the mutation has been introduced is referred to as pYES2CT / SUC2sig / mCALB-W104F / Q193D / L278K.
  • CalB-L278R / A283Vf (SEQ ID NO: 59): 5′-CTC AGG GCGCCGGCGGCT GTA GCCATCGTG-3 ′ (underlined portions are sequences corresponding to the L278R mutation and A283V mutation, respectively) and CalB-L278r ( SEQ ID NO: 54): Mutagenesis reaction was carried out using 5′-CGCAGCCGCGGCGACCTTTTGCTC-3 ′ (10 cycles of 98 ° C. for 10 seconds and 68 ° C. for 7 minutes after heating at 94 ° C. for 2 minutes).
  • the nucleotide sequence of the obtained plasmid was analyzed and confirmed to be the target sequence.
  • the vector into which the mutation has been introduced is referred to as pYES2CT / SUC2sig / mCALB-W104F / Q193E / L278R / A283V.
  • Example 5 using the modified lipase prepared in Examples 9 to 13 (W104F / Q193E / L278R / A283V, W104F / Q193D / L278K, W104F / Q193E / L278K, Q193E / L278R, L278R, L278K, Q193D, A283V)
  • the carbamate compound synthesis activity from a carbonate compound (dimethyl carbonate) and a monoamine compound (n-hexylamine compound) was evaluated in the same manner as described above.
  • W104F / Q193E / L278R / A283V, W104F / Q193D / L278K, W104F / Q193E / L278K, and Q193E / L278R modified lipase are more than reactions 3, 6, and 8 than Q193E modified lipase.
  • the yield in time was significantly higher and further reaction rate improvements were observed.
  • the yield of the W104F / Q193E / L278R / A283V modified lipase in the reaction for 3 hours is about 4 times higher than that of the wild type lipase.
  • Example 6 Using the modified lipase prepared in Examples 9 to 13 (W104F / Q193E / L278R / A283V, W104F / Q193D / L278K, W104F / Q193E / L278K, Q193E / L278R, L278R, L278K, Q193D, A283V), Example 6 Similarly, the carbamate compound synthesis activity of 1,3-bisaminomethylcyclohexane (1,3-BAC), which is a carbonate compound and a diamine compound, was evaluated. However, experimental conditions differ in the following points.
  • 1,3-BAC 1,3-bisaminomethylcyclohexane
  • Example 6 1,3-BAC containing 2.0% by weight of water was used, whereas in Example 14, 1,3-BAC containing 0.03% by weight of water was used.
  • the moisture is measured with a Karl Fischer moisture meter.
  • W104F / Q193E / L278R / A283V, W104F / Q193D / L278K, W104F / Q193E / L278K, Q193E / L278R modified lipases have significantly higher yields than Q193E modified lipases, and further reactions An increase in speed was observed. In particular, the improvement in yield and reaction rate in the Q193E / L278R modified lipase is remarkable.
  • Example 8 using the modified lipase prepared in Examples 9 to 13 (W104F / Q193E / L278R / A283V, W104F / Q193D / L278K, W104F / Q193E / L278K, Q193E / L278R, L278R, L278K, Q193D, A283V)
  • the carbamate compound synthesis activity from xylylenediamine (XDA) which is a carbonate compound and a diamine compound was evaluated in the same manner.
  • XDA xylylenediamine
  • W104F / Q193E / L278R / A283V, W104F / Q193D / L278K, W104F / Q193E / L278K, and Q193E / L278R modified lipases showed improved activity over Q193E modified lipase.
  • W104F / Q193E / L278R / A283V and W104F / Q193E modified lipase were the highest. It was shown that the optimal modified lipase differs depending on the substrate.
  • reaction yield was calculated by quantifying the product amount from a standard product and a calibration curve of the internal standard ratio.
  • W104F / L278K modified lipase 1 Introduction of mutation
  • site mutation was introduced into the pYES2CT / SUC2sig / mCALB-L278K vector.
  • KOD-Plus-Mutagenesis Kit Toyobo Co., Ltd. was used, and mutagenesis was performed according to the method described in the attached manual.
  • CalB-W104Ff (SEQ ID NO: 15): 5′-ACC TTT TCCCAGGGTGGTCTGGTTGCACAG-3 ′ (underlined portion corresponds to the W104F mutation) and CalB-W104Fr (SEQ ID NO: 16): 5′- GAGCACGGGAAGCTTGTTGTTG-3 ′ was used for mutagenesis reaction (after heating at 94 ° C. for 2 minutes, 10 cycles of 98 ° C. for 10 seconds and 68 ° C. for 7 minutes).
  • the obtained plasmid was analyzed for nucleotide sequence and confirmed to be the target sequence.
  • the vector into which the mutation has been introduced is referred to as pYES2CT / SUC2sig / mCALB-W104F / L278K.
  • Q193E / L278K modified lipase 1 Introduction of mutation
  • site mutation was introduced into the pYES2CT / SUC2sig / mCALB-Q193E vector.
  • KOD-Plus-Mutagenesis Kit Toyobo Co., Ltd.
  • mutagenesis was performed according to the method described in the attached manual.
  • CalB-L278Kf (SEQ ID NO: 55): 5′-CTC AAG GCGCCGGCGGCTGCAGCCATCGTG-3 ′ (underlined portion corresponds to the L278K mutation) and CalB-L278r (SEQ ID NO: 56): 5′- CGCAGCCGCGGCGACCTTTTGCTC-3 ′ was used for mutagenesis reaction (after heating at 94 ° C. for 2 minutes, 10 cycles of 98 ° C. for 10 seconds and 68 ° C. for 7 minutes).
  • the obtained plasmid was analyzed for nucleotide sequence and confirmed to be the target sequence.
  • the vector into which the mutation has been introduced is referred to as pYES2CT / SUC2sig / mCALB-Q193E / L278K.
  • Q193D / L278K modified lipase 1 Introduction of mutation
  • site mutation was introduced into the pYES2CT / SUC2sig / mCALB-L278K vector.
  • KOD-Plus-Mutagenesis Kit Toyobo Co., Ltd.
  • mutagenesis was performed according to the method described in the attached manual.
  • CalB-Q193Df (SEQ ID NO: 51): 5′-CCT GAC GTGTCCAACTCGCCACTCGACTCATCCTAC-3 ′ (underlined portion corresponds to the Q193D mutation) and CalB-Q193r (SEQ ID NO: 52): 5′- CTGAACGATCTCGTCGGTCGC-3 ′ was used for mutagenesis reaction (heating at 94 ° C. for 2 minutes, followed by 10 cycles of 98 ° C. for 10 seconds and 68 ° C. for 7 minutes).
  • the obtained plasmid was analyzed for nucleotide sequence and confirmed to be the target sequence.
  • the vector into which the mutation has been introduced is referred to as pYES2CT / SUC2sig / mCALB-Q193D / L278K.
  • W104F / Q193E / L278R modified lipase 1 Introduction of mutation
  • L278R site mutation was first introduced into the pYES2CT / SUC2sig / mCALB-W104F / Q193E vector.
  • KOD-Plus-Mutagenesis Kit (Toyobo Co., Ltd.) was used, and mutagenesis was performed according to the method described in the attached manual.
  • CalB-L278Rf (SEQ ID NO: 53): 5′-CTC AGG GCGCCGGCGGCTGCAGCCATCGTG-3 ′ (underlined portion corresponds to the L278R mutation) and CalB-L278r (SEQ ID NO: 54): 5′- CGCAGCCGCGGCGACCTTTTGCTC-3 ′ was used for mutagenesis reaction (after heating at 94 ° C. for 2 minutes, 10 cycles of 98 ° C. for 10 seconds and 68 ° C. for 7 minutes). 0.8 ⁇ L of restriction enzyme Dpn I was added to 20 ⁇ L of the reaction solution, and reacted at 37 ° C. for 4 hours. ECOS E.
  • coli DH5 ⁇ competent cell manufactured by Nippon Gene 50 ⁇ L was transformed with a part (5 ⁇ L) of the reaction solution obtained by this operation.
  • the total amount of the transformant was applied to an LB agar medium containing 50 ⁇ g / mL carbenicillin and cultured at 37 ° C. for 16 hours.
  • Bacteria were isolated from the obtained colonies, cultured for 16 hours in an LB liquid medium containing 50 ⁇ g / mL carbenicillin, and then the plasmid was extracted using WizardR Plus Minipreps DNA Purification System (Promega).
  • the obtained plasmid was analyzed for nucleotide sequence and confirmed to be the target sequence.
  • the vector into which the mutation has been introduced is referred to as pYES2CT / SUC2sig / mCALB-W104F / Q193E / L278R.
  • W104F / Q193E described the data in Table 1 of Example 5
  • W104F / Q193E / L278R / A283V to A283V described the data in Table 6 of Example 14.
  • W104F / Q193E / L278R modified lipase had significantly higher yields in reaction 3, 6 and 8 hours than wild type lipase, and further improvement in reaction rate was observed.
  • the W104F / Q193E / L278R modified lipase was significantly higher in yield than the wild-type lipase, and the reaction rate was improved.
  • the present invention can be used for industrial production of carbamate compounds from carbonate compounds and amine compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、配列番号1に示す野生型リパーゼより高いカルバメート化活性を示す、配列番号1の193位のグルタミンを他のアミノ酸残基に置換した改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有するその変異体、およびそれらを用いたカルバメート化合物の製造方法に関するに関する。また、公知の改変型リパーゼを用いたカルバメート化合物の製造方法に関する。

Description

改変型リパーゼ及びその製造方法、並びに当該酵素を用いた反応
 本発明は、新規な改変型リパーゼ及びその製造方法並びに当該酵素を用いた各種反応に関する。より詳しくは優れたカルバメート化活性を有する改変型リパーゼに関する。さらに、この改変型リパーゼを用いたカルバメート化合物の製造方法に関する。
 また、本発明は、既知の改変型リパーゼを用いたカルバメート化合物の製造方法に関する。
 従来、リパーゼを触媒として用いてカルバメート化合物を得る方法(カルバメート化)は、例えば、リパーゼの存在下、3’,5’-ジアミノヌクレオシド(脂肪族アミン化合物)とジエチルカーボネート化合物との反応によるカルバメート化合物の合成方法が知られている(非特許文献1)。
 しかし、基質に対するリパーゼの添加量は多く、反応に長時間を有し、生成物の収率も低く、リパーゼを用いるカルバメート化合物製造方法は、産業的に満足する製造方法とはいい難い。これらの点から、優れたカルバメート化活性を有するリパーゼが求められていた。
 一方、リパーゼのアミノ酸配列を改変し、活性や安定性を向上させる研究が行われている(非特許文献2および3)。しかし、アミノ酸配列改変によりカルバメート化活性が向上したリパーゼについては知られていない。
 また、特許文献1は、リパーゼ(CALB)のアミノ酸配列改変によるアクリレート活性の増加について記載するが、104位のトリプトファンのフェニルアラニンへの単独置換が活性の減少を生じることを記載する。
WO2009/080676 A1
J.Org.Chem.2004年 69巻 p.1748-1751 ChemBioChem 2010年 11巻 p.789-795 J.Amer.Chem.Soc.,2005年 127巻 p.13466-13467
 本発明の目的は、優れたカルバメート化活性を有する改変型リパーゼ、およびこの改変型リパーゼを用いたカルバメート化合物の製造方法を提供することにある。
 また、本発明の目的は、公知の改変型リパーゼを用いたカルバメート化合物の製造方法を提供することにある。
 本発明者らは、リパーゼとしてCALBを選択し、CALBの変異体を作製し、カルバメート化活性を向上させることでカルバメート化合物の製造に要するコスト削減を目指した。そして、鋭意検討を重ねた結果、野生型より高いカルバメート化活性を有する変異CALBを作製することに成功した。また、本発明者らは、公知の改変型CALBに高いカルバメート化活性があることも見出した。すなわち本発明は、以下の発明を提供するものである。
(1)配列番号1の193位のグルタミンを他のアミノ酸残基に置換した改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有するその変異体であって、配列番号1に示す野生型リパーゼより高いカルバメート化活性を示す変異体。すなわち、Q193X(ここで、Xはグルタミン以外の任意のアミノ酸を示す)の配列番号1を有する単独改変型リパーゼまたはその変異体。
(2)193位のグルタミンをグルタミン酸またはアスパラギン酸に置換した(1)記載の改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すその変異体。すなわち、Q193EまたはQ193Dの配列番号1を有する単独改変型リパーゼまたはその変異体。
(3)更に、104位のトリプトファンがフェニルアラニンに置換される(1)または(2)記載の改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すそれらの変異体。すなわち、[Q193X、Q193EまたはQ193D]+W104Fの配列番号1を有する二重改変型リパーゼまたはその変異体。
(4)更に、278位のロイシンがアルギニンまたはリジンに置換される(1)または(2)記載の改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すそれらの変異体。すなわち、[Q193X、Q193EまたはQ193D]+[L278KまたはL278R] を有する配列番号1の二重改変型リパーゼまたはその変異体。
(5)更に、278位のロイシンがアルギニンまたはリジンに置換される(3)記載の改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すそれらの変異体。すなわち、[Q193X、Q193EまたはQ193D]+W104F+[L278KまたはL278R] を有する配列番号1の三重改変型リパーゼまたはその変異体。
(6)更に、283位のアラニンがバリンに置換される(5)記載の改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すそれらの変異体。すなわち、[Q193X、Q193EまたはQ193D]+W104F+[L278KまたはL278R]+A283Vを有する配列番号1の四重改変型リパーゼまたはその変異体。
(7)(1)から(6)のいずれか1つに記載の改変型リパーゼまたはその変異体をコードするDNA。
(8)(7)記載のDNAを含む形質転換微生物。
(9)(8)記載の形質転換微生物を培地中で培養し、培地中および/又は微生物中に改変型リパーゼまたはその変異体を蓄積させることを特徴とする、改変型リパーゼまたはその変異体の製造方法。
(10)(1)から(6)のいずれか1つに記載の改変型リパーゼまたはその変異体または(9)記載の方法で得られた改変型リパーゼまたはその変異体を担体に固定化した改変型リパーゼまたはその変異体。
(11)(1)から(6)および(10)のいずれか1つ記載の改変型リパーゼまたはその変異体または(9)記載の方法で得られた改変型リパーゼまたはその変異体の、カルバメート化反応における使用。
(12)カルバメート化反応が、カーボネート化合物とアミン化合物とを反応させてカルバメート化合物を製造するものである、(11)記載の使用。
(13)(1)から(6)および(10)のいずれか1つ記載の改変型リパーゼまたはその変異体または(9)記載の方法で得られた改変型リパーゼまたはその変異体の存在下で、ジアルキルカーボネート化合物とアミン化合物を基質として反応させることを特徴とする、カルバメート化合物の製造方法。
(14)ジアルキルカーボネート化合物が、ジメチルカーボネート化合物である、(13)記載のカルバメート化合物の製造方法。
(15)配列番号1の104位のトリプトファンをフェニルアラニンに置換した改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すその変異体の、カルバメート化反応における使用。
(16)カルバメート化反応が、カーボネート化合物とアミン化合物とを反応させてカルバメート化合物を製造するものである、(15)記載の使用。
(17)配列番号1の104位のトリプトファンをフェニルアラニンに置換した改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すその変異体の存在下で、ジアルキルカーボネート化合物とアミン化合物を基質として反応させることを特徴とする、カルバメート化合物の製造方法。
(18)ジアルキルカーボネート化合物が、ジメチルカーボネート化合物である、(17)記載のカルバメート化合物の製造方法。
(19)配列番号1の278位のロイシンを他のアミノ酸残基に置換した改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有するその変異体であって、配列番号1に示す野生型リパーゼより高いカルバメート化活性を示す、改変型リパーゼまたはその変異体。すなわち、L278X(ここで、Xはロイシン以外の任意のアミノ酸を示す)を有する配列番号1の改変型リパーゼまたはその変異体。
(20)278位のロイシンをアルギニンまたはリジンに置換した(19)記載の改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すその変異体。すなわち、L278KまたはL278Rを有する配列番号1の改変型リパーゼまたはその変異体。
(21)更に、193位のグルタミンがグルタミン酸またはアスパラギン酸に置換される(19)または(20)記載の改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すそれらの変異体。すなわち、[Q193EまたはQ193D]+[L278X、L278KまたはL278R]を有する配列番号1の改変型リパーゼまたはその変異体。
(22)(19)から(21)のいずれか1つ記載の改変型リパーゼまたはその変異体をコードするDNA。
(23)(22)記載のDNAを含む形質転換微生物。
(24)(23)記載の形質転換微生物を培地中で培養し、培地中および/又は微生物中に改変型リパーゼまたはその変異体を蓄積させることを特徴とする、改変型リパーゼまたはその変異体の製造方法。
(25)(19)から(21)のいずれか1つ記載の改変型リパーゼまたはその変異体または(24)記載の方法で得られた改変型リパーゼまたはその変異体を担体に固定化した改変型リパーゼまたはその変異体。
(26)(19)から(21)および(25)のいずれか1つ記載の改変型リパーゼまたはその変異体または(24)記載の方法で得られた改変型リパーゼまたはその変異体の、カルバメート化反応における使用。
(27)カルバメート化反応が、カーボネート化合物とアミン化合物とを反応させてカルバメート化合物を製造するものである、(26)記載の使用。
(28)(19)から(21)および(25)のいずれか1つ記載の改変型リパーゼまたはその変異体または(24)記載の方法で得られた改変型リパーゼまたはその変異体の存在下で、ジアルキルカーボネート化合物とアミン化合物を基質として反応させることを特徴とする、カルバメート化合物の製造方法。
(29)ジアルキルカーボネート化合物が、ジメチルカーボネート化合物である、(28)記載のカルバメート化合物の製造方法。
 本発明の改変型リパーゼまたはその変異体は、野生型リパーゼより優れたカルバメート化活性を示す。
SUC2のシグナル配列に連結された成熟野生型CalB遺伝子を含む発現ベクターpYES2CT(pYES2CT/SUC2sig/mCALB)を示す。 pYES2CT/SUC2sig/mCALBベクターを保有する形質転換酵母のエステル化合物分解活性を示す。「-CALB」はCalB遺伝子を有さないpYES2CT/SUC2sigベクターを保有する形質転換酵母(コントロール)を示す。「+CALB」は、CalB遺伝子を有するpYES2CT/SUC2sig/mCALBベクターを保有する形質転換酵母を示す。 W104F、Q193E、W104F/Q193E改変型リパーゼを用いた、炭酸ジメチル(DMC)とn-ヘキシルアミンからのカルバメート化合物合成活性を示す。(A)は、W104F/Q193E改変型リパーゼを用い、8hr後の反応液のGCクロマトを示す。ISは内部標準を示す。(B)はメチルヘキシルカーバメートの収率(%)を示す。w.t.、W104F、Q193EおよびW104F/Q193Eはそれぞれ野生型リパーゼ、W104F改変型リパーゼ、Q193E改変型リパーゼおよびW104F/Q193E改変型リパーゼを示す。 W104F、Q193E、W104F/Q193E改変型リパーゼを用いた、炭酸ジメチル(DMC)と1,3-ビスアミノメチルシクロヘキサン(1,3BAC)からのカルバメート化合物合成活性を示す。 W104F、Q193E、W104F/Q193E改変型リパーゼを用いた、炭酸ジメチル(DMC)と1,12-ジアミノドデカン(DMD)からのカルバメート化合物合成活性を示す。 W104F、Q193E、W104F/Q193E改変型リパーゼを用いた、炭酸ジメチル(DMC)とキシリレンジアミン(XDA)からのカルバメート化合物合成活性を示す。 W104F/Q193E/L278R/A283V、W104F/Q193D/L278K、W104F/Q193E/L278K、Q193E/L278R、L278R、L278K、Q193D、A283V改変型リパーゼを用いた、炭酸ジメチル(DMC)とn-ヘキシルアミンからのカルバメート化合物合成活性を示す。
 本発明のリパーゼは、Candida antarcticaを起源とするリパーゼ(CALB、Genebank ACCESSION No. P41365)を意味する。本発明のCALBは、好ましくは成熟CALBを意味し、そのアミノ酸配列を配列番号1に示す。また、本発明のCALBは、その機能を保持する断片を含んでも良い。そして、本発明の改変型リパーゼまたはその変異体もその機能を保持する断片を含んでも良い。以後、配列番号1のアミノ酸配列を有するリパーゼを、野生型リパーゼと称する。
 本発明の改変型リパーゼは、野生型リパーゼよりも高いカルバメート化活性を示す、配列番号1における193位のグルタミンが他のアミノ酸残基に置換(Q193X、Xはグルタミンを除く任意のアミノ酸)された改変型リパーゼ(以下、Q193X改変型リパーゼと称する)を意味する。また、104位のトリプトファンがフェニルアラニンに置換(W104F)された改変型リパーゼ(以下、W104F改変型リパーゼ(配列番号3))を含んでもよい。
 好適には、前記193位のグルタミンがグルタミン酸またはアスパラギン酸に置換(Q193EまたはQ193D)された単独改変型リパーゼ(以下、Q193E改変型リパーゼ(配列番号2)またはQ193D改変型リパーゼ(配列番号19)と称する)である。
 より好適には、前記193位のグルタミンがグルタミン酸またはアスパラギン酸に置換され、更に104位のトリプトファンがフェニルアラニンに置換された二重改変型リパーゼ(以下、Q193E/W104F改変型リパーゼ(配列番号4)またはQ193D/W104F改変型リパーゼ(配列番号20)と称する)である。
 本発明の改変型リパーゼは、野生型リパーゼよりも高いカルバメート化活性を示す、配列番号1における278位のロイシンが他のアミノ酸残基に置換(L278X、Xはロイシンを除く任意のアミノ酸)された改変型リパーゼ(以下、L278X改変型リパーゼと称する)を意味する。
 好適には、前記278位のロイシンがアルギニンまたはリジンに置換(L278RまたはL278K)された単独改変型リパーゼ(以下、L278R改変型リパーゼ(配列番号21)またはL278K改変型リパーゼ(配列番号22)と称する)である。
 より好適には、前記193位のグルタミンがグルタミン酸またはアスパラギン酸に置換され、更に278位のロイシンがアルギニンまたはリジンに置換された二重改変型リパーゼ(以下、Q193E/L278K改変型リパーゼ(配列番号24)、Q193E/L278R改変型リパーゼ(配列番号23)、Q193D/L278K改変型リパーゼ(配列番号26)またはQ193D/L278R改変型リパーゼ(配列番号25)と称する)である。
 より好適には、前記193位のグルタミンがグルタミン酸またはアスパラギン酸に置換され、104位のトリプトファンがフェニルアラニンに置換され、278位のロイシンがアルギニンまたはリジンに置換された三重改変型リパーゼ(以下、Q193E/W104F/L278K改変型リパーゼ(配列番号28)、Q193E/W104F/L278R改変型リパーゼ(配列番号27)、Q193D/W104F/L278K改変型リパーゼ(配列番号30)またはQ193D/W104F/L278R改変型リパーゼ(配列番号29)と称する)である。
 より好適には、前記193位のグルタミンがグルタミン酸またはアスパラギン酸に置換され、104位のトリプトファンがフェニルアラニンに置換され、278位のロイシンがアルギニンまたはリジンに置換され、283位のアラニンがバリンに置換された四重改変型リパーゼ(以下、Q193E/W104F/L278K/A283V改変型リパーゼ(配列番号32)、Q193E/W104F/L278R/A283V改変型リパーゼ(配列番号31)、Q193D/W104F/L278K/A283V改変型リパーゼ(配列番号34)またはQ193D/W104F/L278R/A283V改変型リパーゼ(配列番号33)と称する)である。
 本発明の改変型リパーゼは、上記193位、104位、278位および/または283位でアミノ酸置換が行われたアミノ酸配列を有することを特徴とするが、上記193位、104位、278位および/または283位以外の位置に、さらにアミノ酸変異を含んでもよい。よって、本発明は、上記193位、104位、278位および/または283位のアミノ酸置換を有する改変型リパーゼと比較した場合にその機能は同等であるが、上記193位、104位、278位および/または283位のアミノ酸置換を有する改変型リパーゼと一部においてアミノ酸配列が相違する変異体も提供する。
 一部においてアミノ酸配列が相違するとは、典型的には、アミノ酸配列を構成する1~数個のアミノ酸の欠失、置換、付加、挿入、逆位、又はこれらの組合せによりアミノ酸配列に変異が生じていることをいう。
 よって、本発明は、193位のグルタミンの他のアミノ酸残基への置換に加え、さらに1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、193改変型リパーゼと同じカルバメート化活性を示すその変異体を含む。
 また、本発明は、W104F置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、W104F改変型リパーゼと同じカルバメート化活性を示すその変異体を含む。
 また、本発明は、Q193E置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193E改変型リパーゼと同じカルバメート化活性を示すその変異体を含む。
 本発明は、Q193D置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193D改変型リパーゼと同じカルバメート化活性を示すその変異体を含む。
 また、本発明は、Q193E/W104F置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193E/W104F改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
 本発明は、Q193D/W104F置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193D/W104F改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
 本発明は、Q193E/L278K置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193E/L278K改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
 本発明は、Q193E/L278R置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193E/L278R改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
 本発明は、Q193D/L278K置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193D/L278K改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
 本発明は、Q193D/L278R置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193D/L278R改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
 本発明は、Q193E/W104F/L278K置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193E/W104F/L278K改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
 本発明は、Q193E/W104F/L278R置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193E/W104F/L278R改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
 本発明は、Q193D/W104F/L278K置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193D/W104F/L278K改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
 本発明は、Q193D/W104F/L278R置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193D/W104F/L278R改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
 本発明は、Q193E/W104F/L278K/A283V置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193E/W104F/L278K/A283V改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
 本発明は、Q193E/W104F/L278R/A283V置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193E/W104F/L278R/A283V改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
 本発明は、Q193D/W104F/L278K/A283V置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193D/W104F/L278K/A283V改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
 本発明は、Q193D/W104F/L278R/A283V置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、Q193D/W104F/L278R/A283V改変型リパーゼと同じカルバメート化活性を示すその変異体も含む。
本発明は、278位のロイシンの他のアミノ酸残基への置換に加え、さらに1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、278改変型リパーゼと同じカルバメート化活性を示すその変異体を含む。
 本発明は、L278R置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、L278R改変型リパーゼと同じカルバメート化活性を示すその変異体を含む。
 本発明は、L278K置換に加え、さらに、1若しくは数個のアミノ酸の置換、欠失、挿入、付加又は逆位を含み、L278K改変型リパーゼと同じカルバメート化活性を示すその変異体を含む。
 アミノ酸配列の相違は、カルバメート化反応に関わる特性が大幅に低下しない限度において(好ましくは実質的に保持される限度において)許容される。したがって、この条件を満たす限りアミノ酸配列が相違する位置は特に限定されなくともよい。また、複数の位置で相違が生じていてもよい。ここで複数とは、例えば全アミノ酸の約30%未満に相当する数であり、好ましくは約20%未満に相当する数であり、さらに好ましくは約10%未満に相当する数であり、より一層好ましくは約5%未満に相当する数であり、最も好ましくは約1%未満に相当する数である。
 したがって、一部においてアミノ酸配列が相違するタンパク質は、上記改変型リパーゼのアミノ酸配列のいずれかと例えば約70%以上、好ましくは約80%以上、さらに好ましくは約90%以上、より一層好ましくは約95%以上、最も好ましくは約99%以上のアミノ酸配列同一性を有する相同タンパク質であってもよい。アミノ酸配列同一性は、当業者に周知のBLASTを用い初期設定値で計算してもよい。BLASTは、ウェブサイト(例えば、http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&BLAST_SPEC=blast2seq&LINK_LOC=blasttab&LAST_PAGE=blastn&BLAST_INIT=blast2seq)で公開されている。
 上記の相同タンパク質は、好ましくは、保存的アミノ酸置換をカルバメート化反応に関与しないアミノ酸残基に生じさせることによって得ることができる。ここで保存的アミノ酸置換とは、あるアミノ酸残基を、同様の性質の側鎖を有するアミノ酸残基に置換することをいう。アミノ酸残基はその側鎖によって塩基性側鎖(例えばリシン、アルギニン、ヒスチジン)、酸性側鎖(例えばアスパルギン酸、グルタミン酸)、非荷電極性側鎖(例えばアスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖(例えばグリシン、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐側鎖(例えばスレオニン、バリン、イソロイシン)、芳香族側鎖(例えばチロシン、フェニルアラニン、トリプトファン)のように、いくつかのファミリーに分類されている。保存的アミノ酸置換は、好ましくは、同一のファミリー内のアミノ酸残基間の置換である。
 よって、Q193X改変型リパーゼの変異体は、Q193X改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、193改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 また、W104F改変型リパーゼの変異体は、W104F改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、W104F改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 また、Q193E改変型リパーゼの変異体は、Q193E改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193E改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193D改変型リパーゼの変異体は、Q193D改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193D改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 また、Q193E/W104F改変型リパーゼの変異体は、Q193E/W104F改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193E/W104F改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193D/W104F改変型リパーゼの変異体は、Q193D/W104F改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193D/W104F改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193E/L278K改変型リパーゼの変異体は、Q193E/L278K改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193E/L278K改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193D/L278K改変型リパーゼの変異体は、Q193D/L278K改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193D/L278K改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193E/L278R改変型リパーゼの変異体は、Q193E/L278R改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193E/L278R改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193D/L278R改変型リパーゼの変異体は、Q193D/L278R改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193D/L278R改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193E/W104F/L278K改変型リパーゼの変異体は、Q193E/W104F/L278K改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193E/W104F/L278K改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193D/W104F/L278K改変型リパーゼの変異体は、Q193D/W104F/L278K改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193D/W104F/L278K改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193E/W104F/L278R改変型リパーゼの変異体は、Q193E/W104F/L278R改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193E/W104F/L278R改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193D/W104F/L278R改変型リパーゼの変異体は、Q193D/W104F/L278R改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193D/W104F/L278R改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193E/W104F/L278K/A283V改変型リパーゼの変異体は、Q193E/W104F/L278K/A283V改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193E/W104F/L278K/A283V改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193D/W104F/L278K/A283V改変型リパーゼの変異体は、Q193D/W104F/L278K/A283V改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193D/W104F/L278K/A283V改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193E/W104F/L278R/A283V改変型リパーゼの変異体は、Q193E/W104F/L278R/A283V改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193E/W104F/L278R/A283V改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 Q193D/W104F/L278R/A283V改変型リパーゼの変異体は、Q193D/W104F/L278R/A283V改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、Q193D/W104F/L278R/A283V改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
L278X改変型リパーゼの変異体は、L278X改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、L278X改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 L278R改変型リパーゼの変異体は、L278R改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、L278R改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 L278K改変型リパーゼの変異体は、L278K改変型リパーゼと約70%以上のアミノ酸配列同一性を有し、L278K改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 改変型リパーゼまたはその変異体をコードするDNAは、改変型リパーゼまたはその変異体のアミノ酸配列をコードする核酸配列を有するDNAを意味し、核酸配列は当業者に周知の遺伝コードに基づいてアミノ酸配列から決定することができる。
 1以上のコドンが同じアミノ酸をコードできる(コドンの縮重)ので、1つのアミノ酸配列を1以上の核酸配列がコードできる。よって、改変型リパーゼまたはその変異体をコードする核酸配列であれば、改変型リパーゼまたはその変異体をコードするDNAは限定されない。
 Q193E改変型リパーゼ(配列番号2)またはQ193D改変型リパーゼ(配列番号19)のアミノ酸配列をコードする核酸配列は、たとえば配列番号14または35の配列が挙げられる。W104F改変型リパーゼ(配列番号3)のアミノ酸配列をコードする核酸配列は、たとえば配列番号17の配列が挙げられる。
 Q193E/W104F改変型リパーゼ(配列番号4)またはQ193D/W104F改変型リパーゼ(配列番号20)のアミノ酸配列をコードする核酸配列は、例えば配列番号18または36の配列が挙げられる。
 Q193E/L278R改変型リパーゼ(配列番号23)、Q193E/L278K改変型リパーゼ(配列番号24)、Q193D/L278R改変型リパーゼ(配列番号25)またはQ193D/L278K改変型リパーゼ(配列番号26)のアミノ酸配列をコードする核酸配列は、例えば配列番号39、40、41または42の配列が挙げられる。
 Q193E/W104F/L278R改変型リパーゼ(配列番号27)、Q193E/W104F/L278K改変型リパーゼ(配列番号28)、Q193D/W104F/L278R改変型リパーゼ(配列番号29)またはQ193D/W104F/L278K改変型リパーゼ(配列番号30)のアミノ酸配列をコードする核酸配列は、例えば配列番号43、44、45または46の配列が挙げられる。
 Q193E/W104F/L278R/A283V改変型リパーゼ(配列番号31)、Q193E/W104F/L278K/A283V改変型リパーゼ(配列番号32)、Q193D/W104F/L278R/A283V改変型リパーゼ(配列番号33)またはQ193D/W104F/L278K/A283V改変型リパーゼ(配列番号34)のアミノ酸配列をコードする核酸配列は、例えば配列番号47、48、49または50の配列が挙げられる。
 L278R改変型リパーゼ(配列番号21)またはL278K改変型リパーゼ(配列番号22)のアミノ酸配列をコードする核酸配列は、たとえば配列番号37または38の配列が挙げられる。
 改変型リパーゼの変異体は、改変型リパーゼ遺伝子とハイブリダイズし、改変型リパーゼと同等のカルバメート化活性を示すものであってもよい。
 ハイブリダイズとは、好ましくは、ストリンジェントな条件下のハイブリダイゼーションを意味する。特に好ましくは、下記:ハイブリダイゼーション緩衝液:2×SSC;10×Denhardt溶液(フィコール400+PEG+BSA;比率=1:1:1);0.1%SDS;5mMEDTA;50mMNa2HPO4;250μg/mlニシン精子DNA;50μg/ml tRNA;または25Mリン酸ナトリウム緩衝液pH7.2;1mM EDTA;7%SDS)、ハイブリダイゼーション温度:T=65~68℃、洗浄緩衝液:0.1×SSC;0.1%SDS、洗浄温度:T=65~68℃、の条件下のハイブリダイゼーションを意味する。
 改変型リパーゼまたはその変異体をコードするDNAを含む形質転換微生物とは、改変型リパーゼまたはその変異体をコードするDNAを微生物に導入して、改変型リパーゼまたはその変異体を生産するように形質転換された微生物を意味する。改変型リパーゼまたはその変異体をコードするDNAは、微生物中でプラスミドで存在しても染色体に組み込まれても良い。
 微生物は、限定されないが、例えば、細菌、酵母、糸状菌などが挙げられる。好ましくは、大腸菌(Escherichia)、コリネバクテリウム(Corynebacterium)、バチルス(Bacillus)、乳酸菌(Lactobacillus、Bifidobacterium)、酵母(Saccharomyces、Pichia、Schizosaccharomyces、Kluyveromyces、Hansenula、Yarrowia)、糸状菌(Aspergillus)等が挙げられる。これらの中でも大腸菌(Escherichia coli)、酵母(Saccharomyces、Pichia、Schizosaccharomyces、Kluyveromyces、Hansenula、Yarrowia)、糸状菌(Aspergillus)がより好ましい。これらの微生物は、市場より入手できる。
 微生物に形質転換される改変型リパーゼまたはその変異体をコードするDNAは、ベクターにあることが好ましい。ベクターは、ファージ、プラスミドなどが挙げられるが、プラスミドが好ましい。プラスミドは、発現のためのプロモーター、開始コドン、停止コドン、ポリアデニィレーションシグナル配列、マルチクローニングサイト、複製オリジン、選択マーカー等を有する発現用プラスミドが、より好ましい。
 大腸菌由来のプラスミドとしては、例えば、pBR322、pBR325、pUC18、pUC118が挙げられる。酵母由来プラスミドとしては、例えば、pSH19、pSH15、pYES2、糸状菌由来プラスミドとしては、例えば、pAUR316が挙げられる。これらのプラスミドは、市場より入手できる。
 微生物に形質転換される改変型リパーゼまたはその変異体をコードするDNAは、微生物での発現を可能とするプロモーターと作動可能的に連結していることが好ましい。
 プロモーターは、微生物において、連結している改変型リパーゼまたはその変異体を発現させるものであれば限定されない。微生物が大腸菌である場合には、trpプロモーター、lacプロモーター、rec Aプロモーター、λPLプロモーター、lppプロモーター、T7プロモーターなど、微生物が酵母である場合には、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、GAL1プロモーターなどが好ましい。微生物が糸状菌である場合には、グルコアミラーゼ遺伝子のプロモーター、α-アミラーゼ遺伝子のプロモーター、アルコールデヒドロゲナーゼI遺伝子のプロモーター、エノラーゼ遺伝子のプロモーターなどが好ましい。
 プロモーターに作動的に連結するとは、プロモーターの制御下で改変型リパーゼまたはその変異体を生産するようにプロモーターの下流に改変型リパーゼまたはその変異体を連結することを意味する。
 微生物の形質転換は、当該技術分野で公知の方法に従って行うことが出来る。例えば、エレクトロポレーション法やコンピテントセルとした微生物にカルシウム法によってDNAを導入する方法などがある。
 本発明の改変型リパーゼまたはその変異体の製造は、好ましくは上記形質転換体を培地中で培養し、培地中および/又は形質転換体中に前記改変型リパーゼを蓄積させる方法によって行われる。
 形質転換体を培養するための培地は、該微生物が生育する培地であれば特に制限はなく、当該技術分野で公知の方法に従って培養することが出来る。例えば、グルコース、シュークロースなどの糖類を炭素源として、アンモニウム塩や硝酸塩などの無機窒素源、あるいは酵母エキスなどの有機窒素源、さらに各種無機塩やビタミン類などを含有した培養液で、場合により、誘導剤(IPTG等)や選択剤(アンピシリン、クロラムフェニコール、カルベニシリンなど抗生物質等)などを含んでもよい。培養条件(温度、時間、振とう、好気または嫌気)は、微生物が生育する条件であれば特に限定されない。
 培地中に改変型リパーゼまたはその変異体を分泌する場合、改変型リパーゼまたはその変異体をコードするDNAは、分泌のためのシグナル配列と連結してもよい。シグナル配列は、例えばアルカリホスファターゼ、インベルターゼ等のシグナル配列を使用することができる。また、精製を容易にするためのタグ配列、例えばヒスチジンタグ配列、フラッグタグ配列等と連結しても良い。また、タグ配列、シグナル配列と改変型リパーゼまたはその変異体の間に切断配列、たとえばエンドペプチダーゼの認識配列を連結してもよい。
 形質転換体により生産された改変型リパーゼまたはその変異体は、培養培地および/または培養形質転換体をそのまま用いてもよいし、さらに精製してもよい。培養培地および/または培養形質転換体からの精製は、従来のタンパク質の精製方法に従って、例えばクロマトグラフィー(ゲルろ過グロマトグラフィー、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィー等)等を用いて行うことができる。
 本発明の改変型リパーゼまたはその変異体は、不溶性の担体に結合させた固定化改変型リパーゼまたはその変異体が好ましい。
 担体は、担体結合法(物理的吸着法、イオン結合法、共有結合法、生化学的特異結合法)のためには、例えば、多糖(セルロース、アガロース等)、無機物質(多孔質ガラス、金属酸化物等)、合成高分子(ポリアクリルアミド化合物、ポリスチレン樹脂、イオン交換樹脂等)が挙げられる。架橋法のためには、例えば、OHC-(CH-CHO(グルタルアルデヒド)、O=N=C-(CH-C=N=Oが挙げられる。包括法のためには、例えば、多糖(アルギン酸、カラギーナン等)、ポリアクリルアミド化合物、ENT、PU、ナイロンが挙げられる。
 担体への改変型リパーゼまたはその変異体の固定化は、タンパク質のための従来の固定化方法に従って行うことができる。
 本発明で使用する、微生物、組換えDNA、変異体作製、PCR、発現、培養、精製、固定化等の実験技術は、当業者に周知であり、一般的な教科書(例えば、MOLECULAR CLONING: A LABORATORY MANUAL, second edition (Sambrook et al., 1989) Cold Spring Harbor Laboratory Press; CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (F. M. Ausubel et al., eds., 1987 and annual updates); PCR PROTOCOLS: A GUIDE TO METHODS AND APPLICATIONS (Innis et al., 1990, Academic Press, San Diego, CA); PCR: THE POLYMERASE CHAIN REACTION(Mullis et al., eds. , 1994); MANUAL OF INDUSTRIAL MICROBIOLOGY AND BIOTECHNOLOGY, Second Edition (A. L. Demain, et al., eds. 1999); 及び BIOTECHNOLOGY: A TEXTBOOK OF INDUSTRIAL MICROBIOLOGY, (Thomas D. Brock) Second Edition (1989)Sinauer Associates, Inc., Sunderland, Massなど)に詳細に記載されている。
 カルバメート化反応における、本発明の改変型リパーゼまたはその変異体の使用は、本発明の改変型リパーゼまたはその変異体によってカルバメート化反応が行われることを意味する。改変型リパーゼまたはその変異体は、固定化されているものが好ましい。
 カルバメート化反応は、下記反応式(A):
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、水素原子又は置換基を有していても良い炭化水素基を示す)
で示されるとおり、アミン化合物とカーボネート化合物をカルバメート結合を形成させる反応を意味する。
 アミン化合物は、カーボネート化合物と反応させることによってカルバメート化合物を合成するものであれば特に限定されないが、本発明においては、モノアミン化合物又はジアミン化合物が好適に使用される。脂肪族モノアミン化合物又は脂肪族ジアミン化合物がより好適に使用される。脂肪族アミンとは、直鎖状炭化水素の水素原子が、アミノ基、-NH2と置換した化合物を意味する。
 モノアミン化合物は、一般式(I):
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、置換基を有していてもよい、C1~20直鎖又は分岐鎖アルキル基、C2~20直鎖又は分岐鎖アルケニル基、C2~20直鎖又は分岐鎖アルキニル基、C4~24シクロアルキルアルキル基、C7~21アラルキル基、又はC3~20シクロアルキル基であり、nは、0又は1である)
で示される化合物が好適に使用される。
 Rにおける、置換基を有していてもよいC1~20直鎖又は分岐鎖アルキル基は、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、イソプロピル基、イソブチル基、またはt-ブチル基等が挙げられる。C1~12直鎖又は分岐鎖アルキル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ヘキシル基、n-ドデシル基、イソプロピル基またはt-ブチル基がより好ましい。
 Rにおける、置換基を有していてもよいC2~20直鎖又は分岐鎖アルケニル基は、アリル基、1-プロペニル基、1-ブテニル基、1-ペンテニル基、またはイソプロパニル基等が挙げられる。C2~12直鎖又は分岐鎖アルケニル基が好ましく、アリル基がより好ましい。
 Rにおける、置換基を有していてもよいC2~20直鎖又は分岐鎖アルキニル基は、エチニル基、プロパルギル基、ブテニル基、または1-メチル-2-プロピニル基等が挙げられる。C2~12直鎖又は分岐鎖アルキニル基が好ましく、エチニル基またはプロパルギル基がより好ましい。
 Rにおける、置換基を有していてもよいC3~20シクロアルキル基は、C1~4直鎖アルキル基で置換されていても良い単環又は多環の脂環式炭化水素基であり、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、ビシクロ[2.2.1]ヘプチル基、メチルシクロヘキシル基、ジメチルシクロヘキシル基、またはエチルシクロヘキシル基等が挙げられる。C3~12シクロアルキル基が好ましく、シクロヘキシル基またはビシクロ[2.2.1]ヘプチル基がより好ましい。ここで、C1~4の直鎖アルキル基は、メチル基、エチル基、n-プロピル基、またはn-ブチル基等が挙げられる。
 Rにおける、置換基を有していてもよいC4~24シクロアルキルアルキル基は、上記で定義されたC3~20シクロアルキル基で置換されたC1~4直鎖アルキル基であり、例えばシクロヘキシルメチル基、シクロヘキシルエチル基、トリメチルシクロヘキシルメチル基、またはノルボルニルメチル基等が挙げられる。C3~10シクロアルキル基で置換されたC1~4直鎖アルキル基であるC4~14シクロアルキルアルキル基が好ましく、シクロヘキシルメチル基がより好ましい。
 Rにおける、置換基を有していてもよいC7~21アラルキル基は、C6~20アリール基で置換されたアルキル基が挙げられる。C6~20アリール基は、単環又は多環の芳香環を有する基であり、フェニル基、ナフチル基、ビフェニルイル基、またはターフェニルイル基(例えば、p-ターフェニル-4-イル基、m-ターフェニル-3-イル基)等が挙げられる。また、アルキル基の炭素原子数は、アラルキル基の炭素原子数から、アリール基の炭素原子数を減じた数である。よって、C7~21アラルキル基は、ベンジル基、フェネチル基、ナフチルメチル基、またはm-ターフェニル-3-イル-メチル基等が挙げられ、C7~13アラルキル基が好ましく、ベンジル基がより好ましい。なお、Rとして挙げられた基は各種異性体を含む。
 前記Rとして挙げられた基は、さらなる置換基を有していても良い。Rにおけるさらなる置換基は、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、またはヨウ素原子);メトキシ基、エトキシ基、プロポキシ基、またはブトキシ基等のC1~4のアルコキシ基;ジメチルアミノ基、ジエチルアミノ基、またはジプロピルアミノ基等のC1~6のアルキル基で二置換されたジアルキルアミノ基;シアノ基;ニトロ基;アセチル基;及びRがアラルキル基である場合のベンゼン環に直接結合するアミノ基等が挙げられる。
 上記より、Rは、好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、n-ドデシル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、シアノメチル基、ニトロメチル基、フルオロエチル基、トリフルオロエチル基、トリクロロエチル基、シアノエチル基、ニトロエチル基、メトキシエチル基、エトキシエチル基、またはt-ブトキシエチル基等の置換基を有していても良い、C1~12直鎖又は分岐鎖アルキル基、C3~12シクロアルキル基、C4~14シクロアルキルアルキル基、ベンジル基、フルオロベンジル基、クロロベンジル基、ブロモベンジル基、ヨードベンジル基、メトキシベンジル基、ジメトキシベンジル基、ニトロベンジル基、ジニトロベンジル基、またはシアノベンジル基;及びアミノベンジル基等の置換基を有していても良いC7~13のアラルキル基であり;特に好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、n-ドデシル基、シクロヘキシル基、シクロヘキシルメチル基、またはベンジル基である。
 以上より、一般式(I)で示されるモノアミン化合物は、n-ヘキシルアミン化合物、n-ドデシルアミン化合物、シクロヘキシルメチルアミン化合物、またはベンジルアミン化合物が特に好ましい。
 ジアミン化合物は、一般式(II):
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、置換基を有していてもよい、C1~20直鎖又は分岐鎖アルキレン基、C1~4直鎖アルキレン-C3~20シクロアルキレン-C1~4直鎖アルキレン基、C1~4直鎖アルキレン-C6~20アリーレン-C1~4直鎖アルキレン基、C3~20シクロアルキレン基、又はC1~4直鎖アルキレン-C3~20シクロアルキレン基であり、m及びpは、互いに独立して、0又は1である)
で示される化合物が好適に使用される。
 Rにおける、置換基を有していてもよいC1~20直鎖又は分岐鎖アルキレン基は、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基、n-へキシレン基、n-ヘプチレン基、n-オクチレン基、n-ノニレン基、n-デシレン基、またはn-ドデシレン基等の直鎖アルキレン基;または2-メチルプロピレン基、2-メチルへキシレン基、テトラメチルエチレン基等の分岐鎖アルキレン基が挙げられる。C1~20直鎖アルキレン基が好ましく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、またはドデシレン基がより好ましい。
 Rにおける、置換基を有していてもよいC3~20シクロアルキレン基は、単環又は多環の炭化水素基であり、C1~4直鎖アルキル基で置換されていてもよい、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、またはビシクロ[2.2.1]ヘプタン-2,6-ジイル基が挙げられる。C3~12シクロアルキレン基が好ましく、シクロへキシレン基またはビシクロ[2.2.1]ヘプタン-2,6-ジイル基がより好ましい。
 Rにおける、置換基を有していてもよいC1~4直鎖アルキレン-C3~20シクロアルキレン-C1~4直鎖アルキレン基のC1~4直鎖アルキレン基は、メチレン基、エチレン基、プロピレン基、またはブチレン基が挙げられる。C1~4直鎖アルキレン-C3~20シクロアルキレン-C1~4直鎖アルキレン基は、メチレン-シクロペンチレン-メチレン基、エチレン-シクロペンチレン-エチレン基、またはメチレン-シクロへキシレン-メチレン基等が挙げられる。C1~4直鎖アルキレン-C3~12シクロヘキシレン-C1~4直鎖アルキレン基が好ましく、メチレン-シクロヘキシレン-メチレン基がより好ましい。
 Rにおける、置換基を有していてもよいC1~4直鎖アルキレン-C3~20シクロアルキレン基は、C1~4直鎖アルキレン-C1~4直鎖アルキル基で置換されているC3~12シクロアルキレン基が好ましく、メチレン-トリメチルシクロヘキシレン基がより好ましい。
 Rにおける、置換基を有していてもよいC1~4直鎖アルキレン-C6~20アリーレン-C1~4直鎖アルキレン基は、C1~4直鎖アルキレン-フェニレン-C1~4直鎖アルキレン基が好ましく、キシリレン基がより好ましい。なお、これらの基は各種異性体を含む。
 Rにおける炭化水素基は、さらなる置換基を有していても良い。Rにおけるさらなる置換基は、Rにおける炭化水素基の置換基と同義の基が挙げられる。また、Rが、C1~4直鎖アルキレン-C6~20アリーレン-C1~4直鎖アルキレン基である場合、Rにおける置換基は、アリーレン基の芳香族炭素原子に直接結合する第1級アミノ基が挙げられる。
 以上より、Rは、好ましくはC1~20直鎖又は分岐鎖アルキレン基、C1~4直鎖アルキレン-C3~20シクロアルキレン-C1~4直鎖アルキレン基、C1~4直鎖アルキレン-C6~20アリーレン-C1~4直鎖アルキレン基、C3~20シクロアルキレン基、又はC1~4直鎖アルキレン-C3~20シクロアルキレン基であり;より好ましくは、C1~12直鎖アルキレン基、C1~4直鎖アルキレン-C3~12シクロアルキレン-C1~4直鎖アルキレン基、C1~4直鎖アルキレン-フェニレン-C1~4直鎖アルキレン基、C3~12シクロアルキレン基、またはC1~4直鎖アルキレン-C1~4直鎖アルキル基で置換されているC3~12シクロアルキレン基であり;特に好ましくは、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、シクロヘキシレン基、メチレン-トリメチルシクロヘキシレン基、シクロヘキシレンジメチレン基、またはキシリレン基である。
 本発明のジアミン化合物は、ジイソシアネートの原料となるビスカルバメート化合物が得られる化合物が好ましい。本発明において、1,6-ヘキサメチレンジアミン化合物、1,12-ドデカメチレンジアミン化合物、イソホロンジアミン化合物、1,3-ビス(アミノメチルシクロヘキサン)、1,4-ビス(アミノメチルシクロヘキサン)、4,4’-メチレンビス(シクロヘキサンアミン化合物)、2,5-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン、2,6-ビス(アミノメチル)ビシクロ[2,2,1]ヘプタン、1,3-ビス(アミノメチル)ベンゼン、1,4-ビス(アミノメチル)ベンゼンからなる群より選ばれる少なくとも1種であることがより好ましい。
 本発明のカーボネート化合物は、一般式(III):
Figure JPOXMLDOC01-appb-C000004
(式中、Rは、置換基を有していても良い炭化水素基を示し、Rは互いに独立して環を形成していても良い。)
で示される化合物が好適に使用される。
 一般式(III)において、Rの置換基を有していても良い一価の炭化水素基は、一般式(I)で定義されたRと同義の基が挙げられる。Rにおける炭化水素基として、好ましくは、メチル基、エチル基、n-プロピル基、i-プロピル基、またはn-ブチル基等のC1~20、好ましくはC1~6直鎖又は分岐鎖アルキル基であり、特に好ましい基は、メチル基又はエチル基である。
 前記Rにおける炭化水素基は、さらなる置換基を有していても良い。さらなる置換基は、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、またはヨウ素原子);メトキシル基、エトキシル基、プロポキシル基、またはブトキシル基等のC1~4アルコキシ基;ジメチルアミノ基、ジエチルアミノ基、またはジプロピルアミノ基等のC1~4のアルキル基で二置換されたジアルキルアミノ基;シアノ基;またはニトロ基が挙げられる。
 以上より、一般式(III)で示されるカーボネート化合物は、好ましくはジメチルカーボネート化合物又はジエチルカーボネート化合物である。
 本発明の反応は、有機溶媒を使用して、又は無溶媒で行なうことができる。有機溶媒は、アミン化合物およびカーボネート化合物を溶解でき、かつ、改変型リパーゼまたはその変異体を失活させない溶媒であれば特に限定されないが、飽和環状炭化水素、不飽和環状炭化水素類、非環状エーテル類またはそれらの混合溶媒が好適である。
 飽和環状炭化水素類の溶媒は、シクロペンタン、シクロヘキサン、シクロヘプタン、またはイソプロピルシクロヘキサン等のC5~10非置換シクロアルカン類;クロロシクロペンタンまたはクロロシクロヘキサン等のハロゲンで置換されたC5~10シクロアルカン類等が挙げられる。好ましくは、C5~10非置換シクロアルカン類であり、より好ましくは、シクロヘキサンである。
 不飽和環状炭化水素類の溶媒は、ベンゼン、トルエン、キシレンまたはメシチレン等の芳香族炭化水素類;シクロペンテンまたはシクロヘキセン等のC5~10シクロアルケン類等が挙げられる。好ましくは、芳香族系炭化水素類であり、より好ましくは、トルエンまたはキシレンである。
 非環状エーテルは、脂肪族エーテル類、例えばジエチルエーテル、t-ブチルメチルエーテル、またはジイソプロピルエーテル等のC2~8ジアルキルエーテル類;シクロペンチルメチルエーテルまたはシクロペンチルエチルエーテル等のC5~18シクロアルキルアルキルエーテル類;ベンジルフェニルエーテル、ベンジルメチルエーテル、アルキルフェニルエーテル、ジフェニルエーテル、ジ(p-トリル)エーテル、またはジベンジルエーテル等のC7~18芳香族エーテル類等が挙げられる。好ましくは、脂肪族エーテル類、あるいは芳香族エーテル類であり、より好ましくはジイソプロピルエーテルまたはアニソールである。これらの有機溶媒は、単独又は二種以上を混合して使用しても良い。
 前記有機溶媒の使用量は、モノアミン化合物又はジアミン化合物1gに対して、好ましくは1~200mL、より好ましくは1~50mL、特に好ましくは1~20mLである。
 本発明のカルバメート化反応は、下記反応式(B)および(C)で示されるように、例えば、モノアミン化合物又はジアミン化合物、カーボネート化合物、有機溶媒及び改変型リパーゼまたはその変異体(好ましくは、固定化改変型リパーゼまたはその変異体)を混合して、攪拌しながら反応させる。あるいは固定化改変型リパーゼまたはその変異体を充填したカラムに、モノアミン化合物又はジアミン化合物およびカーボネート化合物を含む有機溶媒を通過させる流通連続式等の方法によって行われる。
 流通連続式にて反応を行う場合、反応溶液中のモノアミン化合物又はジアミン化合物の濃度は、反応系の全質量に対して10~50質量%とすることが好ましい。また、反応液の通液線速度は、好ましくは0.5~400mm/分、更に1~200mm/分であるのが好ましい。この通液線速度(mm/分)は、1分間当りの送液量(mm/分)(又は送液速度(10-3mL/分)ともいう)を充填層断面積(mm)で除した商で表わされる値をいう。通液線速度を上げることによる充填塔内圧力の増大に伴い、通液が困難となり、耐圧性の高い酵素充填塔が必要となる他に、固定化酵素が塔内圧力増加により破砕される場合が生じることもあるため、通液線速度は400mm/分以下とすることが好ましい。また、生産性の点から通液線速度は1mm/分以上とすることが好ましい。固定化酵素の発現活性は、通液線速度により変化するため、最適な通液線速度を選定して反応条件を決定することで、所望の生産能力、製造コストに見合った反応を行うことができる。反応容器中の反応溶液の流通時間は、30秒~6時間の範囲とすることができる。
 反応式(B):
Figure JPOXMLDOC01-appb-C000005
(式中、R、R、m、nは前記と同義である。)
 反応式(C):
Figure JPOXMLDOC01-appb-C000006
(式中、R、R、m、n、pは前記と同義である。)
 本発明の反応における温度は、改変型リパーゼまたはその変異体が失活しない温度であれば特に制限されないが、収率良く、所望のカルバメート化合物を得るために、30℃~120℃が好ましく、60℃~90℃がより好ましく、65℃~90℃が特に好ましい。また、バッチ式反応における反応圧力は、特に制限されないが、常圧下又は減圧下で行なうことが好ましい。バッチ式反応における反応時間は、特に限定されないが0.5時間~120時間が好ましく、0.5時間~72時間がより好ましい。
 本発明の反応は、使用するそれぞれの改変型リパーゼまたはその変異体の特性に合わせ、これが失活しない範囲にて行うことが望ましい。
 本発明は、反応が一般に不均一系であり、触媒再利用が可能かつ後処理が簡便であるという点で有利である。即ち、反応終了時にろ過により触媒を取り除き、得られた濾液を濃縮することにより生成物を取得できる。また得られた濾液からの晶析操作によって生成物を得ることもできる。
 本発明の反応のために用いられる製造装置は、特に制限されず、例えば、反応容器、加熱(冷却)装置等、一般的な製造装置が挙げられる。本発明の改変型リパーゼまたはその変異体が担体に固定化され、固定床として反応容器に内装されている装置が好ましい。よって、本発明の反応は、モノアミン化合物又はジアミン化合物と、カーボネート化合物とを、該反応容器に通す工程を含む反応であるのが好ましい。
 更に、本発明の製造方法によって得られた、一般式(IV):
Figure JPOXMLDOC01-appb-C000007
(式中、R、R、nは前記と同義である。)
で示されるモノカルバメート化合物、又は、一般式(V):
Figure JPOXMLDOC01-appb-C000008
(式中、R、R、m、pは前記と同義である。)
で示されるビスカルバメート化合物
は、蒸留、分液、抽出、晶析、再結晶及びカラムクロマトグラフィー等の一般的な方法によって、更に精製することも出来る。
 本発明の製造方法にて得られるモノカルバメート化合物、ビスカルバメート化合物は、本発明の改変型リパーゼまたはその変異体を使用して製造される。このため、従来のカルバメート化合物の製造方法において起こりうる、製品への金属塩又はハロゲン化物等の不純物混入の可能性は極めて低く、化学的により安全な製品が得られる。
 カルバメート化反応における、本発明の改変型リパーゼまたはその変異体の使用は、本発明の改変型リパーゼまたはその変異体によってカルバメート化反応が行われることを意味する。改変型リパーゼまたはその変異体は、固定化されているものが好ましい。
 以下に本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
Candida antarctica由来リパーゼB(野生型、配列番号1)の酵母による発現
1)酵母インベルターゼ(SUC2)由来シグナル配列(配列番号6)をコードするDNA断片の増幅
 SUC2由来シグナル配列(配列番号6の核酸配列および配列番号7のアミノ酸配列)を酵母発現用ベクターにクローニングするために、以下の二種類のプライマー、すなわちSUC2-F(配列番号8):5'-gggaatattaagcttggtaccatgcttttgcaagctttccttttc-3'(下線なし部はpYES2/CTベクターに相同な配列、下線部はSUC2シグナル配列のN末端側をコードする塩基配列)およびSUC2-R(配列番号9:5'-tgctggatatctgcagaattctgcagatattttggctgcaaaac-3'(下線なし部はpYES2/CTベクターに相同な配列、下線部はSUC2シグナル配列のC末端側をコードする塩基配列)を用いてPCRにてDNA断片の増幅を行った。Saccharomyces serevisiae S288C株(Open Biosystems社製)の染色体DNAを鋳型として、KOD Plus(東洋紡社製)を用いて94℃ 5分加熱した後、94℃ 15秒、54℃ 30秒、68℃ 18秒のサイクルを30回行った。プライマーなどオリゴヌクレオチドは、株式会社ファスマックから入手した。
2)pYES2/CTベクターの制限酵素による線状化
 pYES2/CTベクター(Invitrogen社製)をGAL1プロモーター下流の位置で制限酵素Kpn I(東洋紡社製)で切断した(37℃、5時間)。切断されたDNA断片はQIAquick Gel Extraction Kit(QIAGEN社製)を用いて精製した。KpnI切断後のDNA断片をさらに制限酵素EcoR I(東洋紡社製)で切断し(37℃、16時間)、DNA断片をQIAquick Gel Extraction Kit(QIAGEN社製)を用いて精製した。これにより線状化されたpYES2/CTベクターを得た。
3)SUC2由来シグナル配列をコードするDNA断片のベクターへのクローニング
 1)で得られたPCR産物5μLに、相同配列を利用したクローニング法であるIn-Fusion Advantage PCR Cloning Kit w/Cloning Enhancer(クロンテック社製)に添付のCloning Enhancerを2μL加え、37℃、15分の処理後、80℃、15分の処理を行い、Cloning Enhancer処理PCR産物を得た。得られたCloning Enhancer処理PCR産物と2)で得られた線状化されたpYES2/CTベクターをキットに添付の方法に従って反応した(37℃、15分の反応後、50℃、15分の反応)。反応後、TE緩衝液を40μL加えて希釈後、液の一部(2.5μL)を用いてECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50μLを形質転換した。形質転換液全量を50μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizard Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。得られたプラスミドについては塩基配列を分析し、目的の配列(配列番号6)であることを確認した。得られたSUC2由来シグナル配列が導入されたベクターをpYES2/CT-SUC2sigと称す。
4)Candida antarctica由来リパーゼB遺伝子(配列番号5)をコードするDNA断片の増幅
 Candida antarctica由来リパーゼB(CALB)遺伝子(配列番号5)をコードするDNA断片を発現ベクターであるpYES2/CT-SUC2sigにクローニングするために、以下の二種類のプライマー、SUC2-mCALBf(配列番号10):5'-gccaaaatatctgcactaccttccggttcggac-3'(下線なし部はSUC2シグナル配列のC末端側をコードする塩基配列に相同な配列、下線部は成熟型CALBのN末端側をコードする塩基配列)およびCalBterminal-r(配列番号11):5'-cttaccttcgaagggccctctagactcgagtcagggggtgacgatg-3'(下線なし部はpYES2/CT-SUC2sigに相同な配列、下線部は成熟型CALBのC末端側をコードする塩基配列)を用いてPCRにてDNA断片の増幅を行った。CALB遺伝子((株)タカラバイオにおいて配列番号5の配列のDNAをオーダーメイドにて合成し、クローニングされたプラスミドを購入した)がクローニングされたベクターを鋳型として、KOD Plus(東洋紡社製)を用いて94℃ 2分加熱した後、94℃ 15秒、55℃ 30秒、68℃ 60秒のサイクルを30回行った。
5)pYES2/CT-SUC2sigベクターの制限酵素による線状化
 pYES2/CT-SUC2sigベクターを制限酵素EcoR I(東洋紡社製)で切断した(37℃、15時間)。切断されたDNA断片はQIAquick Gel Extraction Kit(QIAGEN社製)を用いて精製した。EcoR I切断後のDNA断片をさらに制限酵素Xba I(東洋紡社製)で切断し(37℃、16時間)、DNA断片をQIAquick Gel Extraction Kit(QIAGEN社製)を用いて精製した。これにより線状化されたpYES2/CT-SUC2sigベクターを得た。
6)Candida antarctica由来リパーゼB遺伝子のpYES2/CT-SUC2sigベクターへのクローニング
 4)で得られたPCR産物5μLに、In-Fusion Advantage PCR Cloning Kit w/Cloning Enhancer(クロンテック社製)に添付のCloning Enhancerを2μL加え、37℃、15分の処理後、80℃、15分の処理を行い、Cloning Enhancer処理PCR産物を得た。得られたCloning Enhancer処理PCR産物と5)で得られた線状化されたpYES2/CT-SUC2sigベクターをキットに添付の方法に従って反応した(37℃、15分の反応後、50℃、15分の反応)。反応後、TE緩衝液を40μL加えて希釈後、液の一部(2.5μL)を用いてECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50μLを形質転換した。形質転換液全量を50μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizard Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。得られたプラスミドについては塩基配列を分析し、目的の配列(配列番号5)であることを確認した。得られたSUC2由来シグナル配列が導入されたベクターをpYES2CT/SUC2sig/mCALBと称す(図1)。
7)pYES2CT/SUC2sig/mCALBベクターによる酵母の形質転換及び野生型CALB発現
 酵母への形質転換は、S. cerevisiae Direct Transformation Kit Wako(和光純薬社製)を用いて、キット説明書に従って行った。酵母S. cerevisiae BY4742株(Open Biosystems,Inc.より購入)を、OD600=0.01になるようにYPD液体培地(1% yeast extract, 2% peptone, 2% glucose)で懸濁し、1mLを30℃、180rpmで27.5時間培養した。形質転換液(キット付属のSc Transformation Reagent 20μlにキット付属Carrier DNA 2μlと、プラスミドDNA 1μgを加えたもの)を調製し、42℃で2時間保温した。pYES2CT/SUC2sig/mCALBベクターと酵母培養液を含む混合液を調製し、形質転換を行った。形質転換液をSC-Ura寒天培地(0.67% yeast nitrogen base (アミノ酸不含)、2% グルコース、0.01% (adenine, arginine, cysteine, leucine, lysine, threonine, tryptophan)、0.005% (aspartic acid, histidine, isoleucine, methionine, phenylalanine, proline, serine, tyrosine, valine)、2% agar、pH 5.6)に塗布後、30℃で3日間培養し、形質転換された酵母コロニーを取得した。
 pYES2CT/SUC2sig/mCALBベクターを保有する形質転換酵母を5mLのSC-Ura液体培地に接種し、30℃、200rpmで16時間培養した。得られた前培養液を100mLの発現用YPD液体培地(1% yeast extract, 4% peptone, 2% glucose)に加え、500mLの坂口フラスコを用いて20℃、130rpmで3日間培養した。YG溶液(20% yeast extract, 40% galactose)を2mL加え、そのまま20℃、130rpmで3日間培養した。培養液を遠心分離後、上清を回収し、培養上清中の酵素活性(エステル化合物分解活性)を下記に示す方法にて測定した。
 560μLの基質溶液(50mM Tris-HCl, 1% DMSO, 2.1mM p-nitrophenyl butyrate, pH7.0)をセルに入れて25℃で3分間プレインキュベーションした。次に培養上清を140μLを加えて撹拌し、405nmの吸光度を経時的に分光光度計で測定し、反応の初速を算出した。その結果、pYES2CT/SUC2sig/mCALBベクターを保有する形質転換酵母に高いエステル化合物分解活性が確認された(図2)。
8)リパーゼの精製
 10mLのSC-Ura液体培地に菌を接種し、30℃、180rpmで一晩(16時間)振とう培養した。2Lのバッフルフラスコに準備したYPD培地(1% yeast extract, 4% tryptone, 2% glucose)500mLに前培養液10mLを加え、30℃、95rpmで8時間振とう培養した。20% yeast extract 25mL及び40% galactose 25mLを添加し、20℃、95rpmで3日間(約72時間)振とう培養し、発現を誘導した。遠心分離(8000g、10分間)により培養上清を回収後、20mM Tris-HCl緩衝液(pH7.5)で平衡化したButyl-TOYOPEARL 650M(東ソー製)に培養上清を通し、リパーゼを担体に吸着させた。同緩衝液で洗浄後、50%(v/v) EtOHを含む20mM Tris-HCl緩衝液(pH7.5)でリパーゼを溶出した。溶出液を20mM Tris-HCl緩衝液(pH7.5)で平衡化したSuperQ-650S(東ソー製)に通し、素通りした溶液を回収した。
 リパーゼを含む溶液を遠心式限外ろ過フィルター(Amicon(登録商標) Ultra-15 Centrifugal Filter Devices、10000MWCO、Millipore製)を用いて1.0mLまで濃縮後、20mM Tris-HCl緩衝液(pH7.5)を10mL加えて混合し、さらに1.0mLまで濃縮した。この操作を計3回実施し、溶媒を緩衝液に置換したリパーゼ濃縮液を得た。20mM Tris-HCl緩衝液(pH7.5)で平衡化したSuperQ-650S(東ソー製)にリパーゼ濃縮液を通し、素通りした溶液を精製リパーゼ溶液とした。
9)リパーゼ固定化酵素の調製
 担体としてイオン交換樹脂のLewatitt VPOC 1600(LANXESS社製)0.60gを試験管に準備し、3mLのエタノールを加えて撹はん後、ピペットを用いてエタノールを除去した。蒸留水を3mL加えて撹はん後、同様に水を除去した。水洗浄をさらに2回行い、1.5mg/mLの精製リパーゼ溶液6mL(20mM Tris-HCl緩衝液、pH7.0)に加え、10℃、180rpmで19時間撹はんした。溶液と担体を分離後、回収した担体を3mLの蒸留水で洗浄後、16時間の減圧乾燥を行い、担体重量比担持酵素量3wt%の固定化酵素を取得した。
 固定化処理前後で、リパーゼ溶液中のタンパク質濃度をBCA法(基準タンパクBSA)により測定し、固定化処理により減少したタンパク量を担体への固定化タンパク量として、取得固定化酵素重量で除したものを酵素担持量とした。
Q193E改変型リパーゼ(配列番号2)の作製
1)Q193E変異の導入
 Q193E改変型リパーゼを構築するために、pYES2CT/SUC2sig/mCALBベクターに対して部位変異導入を行った。部位変異導入はKOD-Plus-Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
 以下の二種類のプライマー、CalB-Q193E-F(配列番号12):5'-CCTGAGGTGTCCAACTCGCCACTCGACTCATCCTAC-3'(下線部はQ193E変異に相当する配列)およびCalB-Q193E-R(配列番号13):5'-CTGAACGATCTCGTCGGTCGC-3'と鋳型としてpYES2CT/SUC2sig/mCALBベクターを用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。反応液20μLに制限酵素Dpn Iを0.8μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50μLを形質転換した。形質転換液全量を50μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizard Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
 得られたプラスミドについて塩基配列を分析し、目的の配列(配列番号14)であることを確認した。変異が導入されたベクターをpYES2CT/SUC2sig/mCALB-Q193Eと称す。
2)酵母形質転換、Q193E改変型リパーゼの発現、精製及び固定化酵素の調製
 実施例1の7)~9)に記載の方法と同様に行った。
W104F改変型リパーゼ(配列番号3)の作製
1)W104F変異の導入
 W104F改変型リパーゼを構築するために、pYES2CT/SUC2sig/mCALBベクターに対して部位変異導入を行った。部位変異導入はKOD-Plus-Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
 以下の二種類のプライマー、CalB-W104F-F(配列番号15):5'-ACCTTTTCCCAGGGTGGTCTGGTTGCACAG-3'下線部はW104F変異に相当する配列)およびCalB-W104F-R(配列番号16):5'-GAGCACGGGAAGCTTGTTGTTG-3'と鋳型としてpYES2CT/SUC2sig/mCALBベクターを用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。反応液20μLに制限酵素Dpn Iを0.8μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50μLを形質転換した。形質転換液全量を50μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizard Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
 得られたプラスミドについて塩基配列を分析し、目的の配列(配列番号17)であることを確認した。変異が導入されたベクターをpYES2CT/SUC2sig/mCALB-W104Fと称す。
2)酵母形質転換、W104F改変型リパーゼの発現、精製及び固定化酵素の調製
 実施例1の7)~9)に記載の方法と同様に行った。
W104F/Q193E改変型リパーゼ(配列番号4)の作製
1)W104F/Q193E変異の導入
 W104F/Q193E改変型リパーゼを構築するために、pYES2CT/SUC2sig/mCALB-Q193Eベクターに対して部位変異導入を行った。部位変異導入はKOD-Plus-Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
 以下の二種類のプライマー、CalB-W104F-F(配列番号15)およびCalB-W104F-R(配列番号16)と鋳型としてpYES2CT/SUC2sig/mCALB-Q193Eベクターを用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。反応液20μLに制限酵素Dpn Iを0.8μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50μLを形質転換した。形質転換液全量を50μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizard Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
 得られたプラスミドについて塩基配列を分析し、目的の配列(配列番号18)であることを確認した。変異が導入されたベクターをpYES2CT/SUC2sig/mCALB-W104F/Q193Eと称す。
2)酵母形質転換、W104F/Q193E改変型リパーゼの発現、精製及び固定化酵素の調製
 実施例1の7)~9)に記載の方法と同様に行った。
 改変型リパーゼ(W104F、Q193E、W104F/Q193E)を用い、カーボネート化合物とモノアミン化合物であるn-ヘキシルアミンからのカルバメート化合物合成活性を評価した。
Figure JPOXMLDOC01-appb-C000009
 攪拌装置、温度調節及び上部冷却装置を備えた内容積約19mlのガラス製容器に、n-ヘキシルアミン200mg(1.97mmol)、炭酸ジメチル0.536g(5.95mmol)、内部標準物質として、テトラエチレングリコールジメチルエーテル20.0mgを加えた後トルエンを加えて2.0mlに定容した反応液に、実施例1~4で調製した固定化リパーゼ(担持酵素量3wt%)10.0mgを混合し、攪拌しながら70℃にて24時間反応させた。反応中、経時的に反応液50μlを採取し、150μlメタノールを加えたものをろ過し、1.0μlをガスクロマト分析に供した(図3A)。反応収率は、生成物標準品と内標比の検量線から、生成物量を定量して算出した。
 ガスクロマト分析条件
 カラム:DB-5 30m×0.25mmID 0.25μm
 カラム温度:80℃(2min)→10℃/min→250℃(2min)
 INJ:200℃  DET:FID at 250℃
 Carrier Gas :He、線速度30cm/sec
 Sprit ratio 50:1、注入量 : 1.0μ
 保持時間:テトラエチレングリコールジメチルエーテル:12.3min,
 n-ヘキシルアミン:3.15min
 n-ヘキシルカーバメート:8.84min 
 結果
Figure JPOXMLDOC01-appb-T000010
 上記表1および図3Bに示すとおり、Q193E改変型リパーゼは、野生型リパーゼと比較して、カルバメート化合物の合成活性が約1.5倍向上した(反応時間3、6、8h)。一方、W104F改変型リパーゼは、野生型リパーゼとほぼ同等の活性であった。驚くべきことに、W104F/Q193E改変型リパーゼでは、野生型リパーゼと比較して、カルバメート化合物の合成活性が約2.0倍向上した(反応時間3、6、8h)。
 改変型リパーゼ(W104F、Q193E、W104F/Q193E)を用い、カーボネート化合物とジアミン化合物である1,3-ビスアミノメチルシクロヘキサン(1,3-BAC)からのカルバメート化合物合成活性を評価した。
Figure JPOXMLDOC01-appb-C000011
 攪拌装置、温度調節及び上部冷却装置を備えた内容積約19mlのガラス製容器に、1,3-ビスアミノメチルシクロヘキサン(1,3-BAC)200mg(1.41mmol)、炭酸ジメチル760mg(8.43mmol)、内部標準物質として、テトラデカン20.0mgを加えた後トルエンを加えて2.0mlに定容した反応液に実施例1~4で調製した固定化リパーゼ(担持酵素量3wt%)10.0mgを混合し、攪拌しながら70℃にて48時間反応させた。反応中、経時的に反応液50μlを採取し、150μlDMFを加えたものをろ過し、1.0μlをガスクロマト分析に供した。反応収率は、生成物標準品と内標比の検量線から、生成物量を定量して算出した。
 ガスクロマト分析条件
 カラム:DB-5 30m×0.25mmID 0.25μm
 カラム温度:80℃(2min)→10℃/min→250℃(2min)
 INJ:200℃  DET:FID at 250℃
 Carrier Gas:He、線速度30cm/sec
 Sprit ratio 50:1、注入量:1.0μ
 保持時間:テトラデカン:11.0min,
 1,3BAC-モノカルバメート(異性体混合物):14.9min,
 1,3BAC-ジカルバメート(異性体混合物):18.9,19.2min, 
結果
Figure JPOXMLDOC01-appb-T000012
 上記表2および図4に示すとおり、Q193E改変型リパーゼは、野生型リパーゼと比較して、カルバメート化合物の合成活性が約1.5倍向上した(反応時間24、48h)。一方、W104F改変型リパーゼは、本基質に対しては、野生型リパーゼと比べて合成活性がやや低下した。驚くべきことに、W104F/Q193E改変型リパーゼでは、野生型リパーゼと比較して、カルバメート化合物の合成活性が約2.0倍向上した(反応時間24、48h)。
 改変型リパーゼ(W104F、Q193E、W104F/Q193E)を用い、カーボネート化合物とジアミン化合物である1,12-ジアミノドデカンからのカルバメート化合物合成活性を評価した。
Figure JPOXMLDOC01-appb-C000013
 攪拌装置、温度調節及び上部冷却装置を備えた内容積約19mlのガラス製容器に、1,12-ジアミノドデカン200mg(1.0mmol)、炭酸ジメチル540mg(6.0mmol)を加えた後トルエンを加えて2.0mlに定容した反応液に実施例1~4で調製した固定化リパーゼ(担持酵素量3wt%)10mgを混合し、攪拌しながら70℃にて44時間反応させた。反応中、経時的に反応液50μlを採取し、反応停止のために150μlメタノールを加えた。次いで、遠心濃縮器にて減圧濃縮した後、メタノール1.0mlを加え溶解させたのち、0.45μmフィルターでろ過してHPLC分析に供した。反応収率は、あらかじめ生成物標準品のピーク面積から作製した検量線より、生成物量を定量して算出した。
HPLC分析条件
 Column:Inertsil ODS-3V 4.6mm×250 mm(GLScienceInc)
 Mobile Phase:MeOH/H2O(20mM KH2PO4, pH7.0) =70/30
 Flow Rate:1.0ml/min
 Detecter:RI
 Column Temp:40℃
 Injection Vol.  10μl
 保持時間:DMD-ジカルバメート:17.4min, 
結果
Figure JPOXMLDOC01-appb-T000014
 上記表3および図5に示すとおり、Q193E改変型リパーゼは、野生型リパーゼと比較して、ジカルバメート化合物の合成活性が約2倍向上した(反応時間20、44h)。一方、W104F改変型リパーゼは、本基質に対しては、野生型リパーゼと比べて合成活性がやや低下した。驚くべきことに、W104F/Q193E改変型リパーゼでは、Q193E改変型リパーゼと比較して、ジカルバメート化合物の合成活性が上回った。
 改変型リパーゼ(W104F、Q193E、W104F/Q193E)を用い、カーボネート化合物とジアミン化合物であるキシリレンジアミン(XDA)からのカルバメート化合物合成活性を評価した。
Figure JPOXMLDOC01-appb-C000015
 攪拌装置、温度調節及び上部冷却装置を備えた内容積約19mlのガラス製容器に、キシリレンジアミン化合物200mg(1.46mmol)、炭酸ジメチル0.79g(8.81mmol)、内部標準物質として、テトラデカン20.0mgを加えた後トルエンを加えて2.0mlに定容した反応液に、実施例1~4で調製した固定化リパーゼ(担持酵素量3wt%)10mgを混合し、攪拌しながら70℃にて24時間反応させた。反応中、経時的に反応液50μlを採取し、150μlDMFを加えたものをろ過し、1.0μlをガスクロマト分析に供した。反応収率は、生成物標準品と内標比の検量線から、生成物量を定量して算出した。
 ガスクロマト分析条件
 カラム:DB-5 30m×0.25mmID 0.25μm
 カラム温度:80℃(2min)→10℃/min→250℃(2min)
 INJ:200℃  DET:FID at 250℃
 Carrier Gas :He、線速度30cm/sec
 Sprit ratio 50:1、注入量 : 1.0μ
 保持時間:テトラデカン:11.0min,
 XDA-モノカルバメート:15.5min,
 XDA-ジカルバメート:19.6min, 
結果
Figure JPOXMLDOC01-appb-T000016
 上記表4および図6に示すとおり、ジアミン化合物としてキシリレンジアミン化合物を基質とした場合、野生型と比較して、Q193E改変型リパーゼとW104F改変型リパーゼのジカルバメート化合物の合成活性は、3倍程度向上し、さらに2重改変体であるW104F/Q193E改変型リパーゼでは、野生型リパーゼと比較して5倍以上の活性の向上が認められた。
 Q193D(配列番号19および35)、L278R(配列番号21および37)、L278K(配列番号22および38)及びA283V(配列番号60および61)改変型リパーゼの合成
1)改変の導入
 各改変型リパーゼを構築するために、実施例1で作成したpYES2CT/SUC2sig/mCALBベクター(図1)に対して部位変異導入を行った。部位変異導入はKOD-Plus-Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
下表5に記載のプライマー(下線部は変異に相当する配列)を用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。
Figure JPOXMLDOC01-appb-T000017
 反応液20 μLに制限酵素Dpn Iを0.8μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50μLを形質転換した。形質転換液全量を50μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizard(登録商標) Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
 得られたプラスミドについては塩基配列を分析し、目的の配列であることを確認した。改変が導入されたベクターをそれぞれpYES2CT/SUC2sig/mCALB-Q193D、pYES2CT/SUC2sig/mCALB-L278R、pYES2CT/SUC2sig/mCALB-L278K及びpYES2CT/SUC2sig/mCALB-A283Vと称す。
2)酵母形質転換、Q193D、L278R、L278K及びA283V改変型リパーゼの発現、精製及び固定化酵素の調製
 実施例1に記載の方法と同様に行った。
 Q193E/L278R改変型リパーゼ(配列番号23および39)の合成
1)変異の導入
 Q193E/L278R改変型リパーゼを構築するために、実施例2で作成したpYES2CT/SUC2sig/mCALB-Q193Eベクターに対して部位変異導入を行った。部位変異導入はKOD-Plus-Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
 以下の二種類のプライマー、すなわちCalB-L278Rf(配列番号53):5'-CTCAGGGCGCCGGCGGCTGCAGCCATCGTG-3’(下線部はL278R変異に相当する配列)およびCalB-L278r(配列番号54):5'-CGCAGCCGCGGCGACCTTTTGCTC-3’を用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。反応液20μLに制限酵素Dpn Iを0.8μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50μLを形質転換した。形質転換液全量を50μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizard(登録商標) Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
 得られたプラスミドについては塩基配列を分析し、目的の配列であることを確認した。変異が導入されたベクターをpYES2CT/SUC2sig/mCALB-Q193E/L278Rと称す。
2)酵母形質転換、Q193E/L278R改変型リパーゼの発現、精製及び固定化酵素の調製
 実施例1に記載の方法と同様に行った。
 Q193E/W104F/L278K改変型リパーゼ(配列番号28および44)の合成
1)改変の導入
 改変型リパーゼを構築するために、まず実施例9で作成したpYES2CT/SUC2sig/mCALB-Q193Eベクターに対してL278K部位変異導入を行った。部位変異導入はKOD-Plus-Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
 以下の二種類のプライマー、すなわちCalB-L278Kf(配列番号55):5'-CTCAAGGCGCCGGCGGCTGCAGCCATCGTG-3’(下線部はL278K変異に相当する配列)およびCalB-L278r(配列番号56):5'-CGCAGCCGCGGCGACCTTTTGCTC-3’を用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。
 反応液20μLに制限酵素Dpn Iを0.8μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50 μLを形質転換した。形質転換液全量を50μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50 μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizard(登録商標) Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
 得られたプラスミドについては塩基配列を分析し、目的の配列であることを確認した。変異が導入されたベクターをpYES2CT/SUC2sig/mCALB-Q193E/L278Kと称す。
 次に、W104F変異を導入するために、pYES2CT/SUC2sig/mCALB-Q193E/L278Kベクターに対して部位変異導入を行った。部位変異導入はKOD-Plus-Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
 以下の二種類のプライマー、すなわちCalB-W104Ff(配列番号15):5'-ACCTTTTCCCAGGGTGGTCTGGTTGCACAG-3’(下線部はW104F変異に相当する配列)およびCalB-W104r(配列番号16):5'-GAGCACGGGAAGCTTGTTGTTG-3’を用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。
 反応液20μLに制限酵素Dpn Iを0.8μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50μLを形質転換した。形質転換液全量を50μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizard(登録商標) Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
 得られたプラスミドについては塩基配列を分析し、目的の配列であることを確認した。変異が導入されたベクターをpYES2CT/SUC2sig/mCALB-W104F/Q193E/L278Kと称す。
2)酵母形質転換、W104F/Q193E/L278K改変型リパーゼの発現、精製及び固定化酵素の調製
 実施例1に記載の方法と同様に行った。
 Q193D/W104F/L278K改変型リパーゼ(配列番号30および46)の合成
1)改変の導入
 改変型リパーゼを構築するために、まず実施例9で作成したpYES2CT/SUC2sig/mCALB-L278Kベクターに対してW104F部位変異導入を行った。部位変異導入はKOD-Plus-Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
 以下の二種類のプライマー、すなわちCalB-W104Ff(配列番号15):5'-ACCTTTTCCCAGGGTGGTCTGGTTGCACAG-3’(下線部はW104F変異に相当する配列)およびCalB-W104r(配列番号16):5'-GAGCACGGGAAGCTTGTTGTTG-3’を用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。
 反応液20μLに制限酵素Dpn Iを0.8 μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50μLを形質転換した。形質転換液全量を50μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizard(登録商標) Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
 得られたプラスミドについては塩基配列を分析し、目的の配列であることを確認した。変異が導入されたベクターをpYES2CT/SUC2sig/mCALB-W104F/L278Kと称す。
 次に、Q193D変異を導入するために、pYES2CT/SUC2sig/mCALB-W104F/L278Kベクターに対して部位変異導入を行った。部位変異導入はKOD-Plus-Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
 以下の二種類のプライマー、すなわちCalB-Q193Df(配列番号51):5'-CCTGACGTGTCCAACTCGCCACTCGACTCATCCTAC-3’(下線部はQ193D変異に相当する配列)およびCalB-Q193r(配列番号52):5'-CTGAACGATCTCGTCGGTCGC-3’を用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。
 反応液20μLに制限酵素Dpn Iを0.8μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50μLを形質転換した。形質転換液全量を50μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50 μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizard(登録商標) Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
 得られたプラスミドについては塩基配列を分析し、目的の配列であることを確認した。変異が導入されたベクターをpYES2CT/SUC2sig/mCALB-W104F/Q193D/L278Kと称す。
2)酵母形質転換、W104F/Q193D/L278K改変型リパーゼの発現、精製及び固定化酵素の調製
 実施例1に記載の方法と同様に行った。
 Q193E/W104F/L278R/A283V変異型リパーゼ(配列番号31および47)の合成
1)改変の導入
 各改変型リパーゼを構築するために、実施例4で作成したpYES2CT/SUC2sig/mCALB-W104F/Q193Eベクターに対して部位変異導入を行った。部位変異導入はKOD-Plus-Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
 以下の二種類のプライマー、すなわちCalB-L278R/A283Vf(配列番号59):5'-CTCAGGGCGCCGGCGGCTGTAGCCATCGTG-3’(下線部はそれぞれL278R変異およびA283V変異に相当する配列)およびCalB-L278r(配列番号54):5'-CGCAGCCGCGGCGACCTTTTGCTC-3’を用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。反応液20μLに制限酵素Dpn Iを0.8μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50μLを形質転換した。形質転換液全量を50μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizard Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
 得られたプラスミドについては塩基配列を分析し、目的の配列であることを確認した。変異が導入されたベクターをpYES2CT/SUC2sig/mCALB-W104F/Q193E/L278R/A283Vと称す。
2)酵母形質転換、W104F/Q193E/L278R/A283V改変型リパーゼの発現、精製及び固定化酵素の調製
 実施例1に記載の方法と同様に行った。
 実施例9から13で調製した改変型リパーゼ(W104F/Q193E/L278R/A283V、W104F/Q193D/L278K、W104F/Q193E/L278K、Q193E/L278R、L278R、L278K、Q193D、A283V)を用い、実施例5と同様にカーボネート化合物(炭酸ジメチル)とモノアミン化合物(n-ヘキシルアミン化合物)からのカルバメート化合物合成活性を評価した。
結果
Figure JPOXMLDOC01-appb-T000018
野生型~W104F/Q193Eは、比較のために実施例5の表1のデータを記載した。
 上記表6および図7に示すとおり、W104F/Q193E/L278R/A283V、W104F/Q193D/L278K、W104F/Q193E/L278K、Q193E/L278R改変型リパーゼは、Q193E改変型リパーゼより、反応3、6、8時間における収率が有意に高く、さらなる反応速度の向上が認められた。
 W104F/Q193E/L278R/A283V改変型リパーゼの反応3時間における収率は、野生型リパーゼと比較して、約4倍高い。
 実施例9から13で調製した改変型リパーゼ(W104F/Q193E/L278R/A283V、W104F/Q193D/L278K、W104F/Q193E/L278K、Q193E/L278R、L278R、L278K、Q193D、A283V)を用い、実施例6と同様にカーボネート化合物とジアミン化合物である1,3-ビスアミノメチルシクロヘキサン(1,3-BAC)のカルバメート化合物合成活性を評価した。但し、実験条件が、以下の点で異なる。
 実施例6では、2.0重量%の水分を含む1,3-BACを用いたのに対して、実施例14では、0.03重量%の水分を含む1,3-BACを用いた。なお、水分の測定はカールフィッシャー水分計による。
結果
Figure JPOXMLDOC01-appb-T000019
 上記表7に示すとおり、W104F/Q193E/L278R/A283V、W104F/Q193D/L278K、W104F/Q193E/L278K、Q193E/L278R改変型リパーゼは、Q193E改変型リパーゼより、収率が有意に高く、さらなる反応速度の向上が認められた。特に、Q193E/L278R改変型リパーゼにおける収率および反応速度の向上は著しい。
 実施例9から13で調製した改変型リパーゼ(W104F/Q193E/L278R/A283V、W104F/Q193D/L278K、W104F/Q193E/L278K、Q193E/L278R、L278R、L278K、Q193D、A283V)を用い、実施例8と同様にカーボネート化合物とジアミン化合物であるキシリレンジアミン(XDA)からのカルバメート化合物合成活性を評価した。
結果
Figure JPOXMLDOC01-appb-T000020
 上記表8に示すとおり、W104F/Q193E/L278R/A283V、W104F/Q193D/L278K、W104F/Q193E/L278K、Q193E/L278R改変型リパーゼは、Q193E改変型リパーゼより、活性の向上が認められた。しかし、W104F/Q193E/L278R/A283V とW104F/Q193E 改変型リパーゼが最も高かった。基質によって、最適な改変型リパーゼは異なることが示された。
 実施例9から13で調製した改変型リパーゼ(W104F/Q193E/L278R/A283V、W104F/Q193D/L278K、W104F/Q193E/L278K、Q193E/L278R、L278R、L278K、Q193D、A283V)を用い、エステル化合物とアルコール化合物からのエステル交換活性を評価した。
Figure JPOXMLDOC01-appb-C000021
攪拌装置、温度調節及び上部冷却装置を備えた内容積約19mlのガラス製容器に、n-ブタノール200mg(2.69mmol)、酢酸ビニル0.463g(5.38mmol)、内部標準物質として、テトラエチレングリコールジメチルエーテル20.0mgを加えた後トルエンを加えて2.0mlに定容した反応液に実施例1および実施例9から13で調製した固定化リパーゼ(担持酵素量3wt%)10.0mgを混合し、攪拌しながら30℃にて3時間反応させた。反応中、経時的に反応液50μlを採取し、150μlアセトンを加えたものをろ過し、1.0μlをガスクロマト分析に供した。
反応収率は、生成物標準品と内標比の検量線から、生成物量を定量して算出した。
 ガスクロマト分析条件
   GC Analysis(GC-1700)
   カラム:DB-1701 30m×0.25mmID 0.25μm
   Oven:40℃(2min)→10℃/min→250℃(2min)
   INJ:Sprit at 250℃  DET:FID 250℃
   Carrier Gas :He
   線速度30cm/sec
   Sprit ratio 50:1
   注入量 : 1.0μ
   保持時間:テトラエチレングリコールジメチルエーテル:17.3min,
    n-ブチルアミン:3.2min
    プロピオン酸ブチル:5.6min 
結果
Figure JPOXMLDOC01-appb-T000022
上記表9に示すとおり、Q193E/L278R、L278R、L278K改変型リパーゼは、野生型リパーゼより、顕著な反応速度の向上が認められた。
W104F/L278K改変型リパーゼの合成
1)変異の導入
W104F/L278K(配列番号62と63)改変型リパーゼを構築するために、pYES2CT/SUC2sig/mCALB-L278Kベクターに対して部位変異導入を行った。部位変異導入はKOD -Plus- Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
以下の二種類のプライマー、すなわちCalB-W104Ff(配列番号15):5'-ACCTTTTCCCAGGGTGGTCTGGTTGCACAG-3’(下線部はW104F変異に相当する配列)およびCalB-W104Fr(配列番号16):5'-GAGCACGGGAAGCTTGTTGTTG-3’を用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。
反応液20 μLに制限酵素Dpn Iを0.8 μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5 μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50 μLを形質転換した。形質転換液全量を50 μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50 μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizardR Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
得られたプラスミドについては塩基配列を分析し、目的の配列であることを確認した。変異が導入されたベクターをpYES2CT/SUC2sig/mCALB-W104F/L278Kと称す。
2)酵母形質転換、W104F/L278K改変型リパーゼの発現、精製及び固定化酵素の調製
 実施例1に記載の方法と同様に行った。
 Q193E/L278K改変型リパーゼの合成
1)変異の導入
Q193E/L278K(配列番号24と40)改変型リパーゼを構築するために、pYES2CT/SUC2sig/mCALB-Q193Eベクターに対して部位変異導入を行った。部位変異導入はKOD -Plus- Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
以下の二種類のプライマー、すなわちCalB-L278Kf(配列番号55):5'- CTCAAGGCGCCGGCGGCTGCAGCCATCGTG-3’(下線部はL278K変異に相当する配列)およびCalB-L278r(配列番号56):5'-CGCAGCCGCGGCGACCTTTTGCTC-3’を用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。
反応液20 μLに制限酵素Dpn Iを0.8 μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5 μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50 μLを形質転換した。形質転換液全量を50 μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50 μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizardR Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
得られたプラスミドについては塩基配列を分析し、目的の配列であることを確認した。変異が導入されたベクターをpYES2CT/SUC2sig/mCALB-Q193E/L278Kと称す。
2)酵母形質転換、Q193E/L278K改変型リパーゼの発現、精製及び固定化酵素の調製
 実施例1に記載の方法と同様に行った。
 Q193D/L278K改変型リパーゼの合成
1)変異の導入
Q193D/L278K(配列番号26と42)改変型リパーゼを構築するために、pYES2CT/SUC2sig/mCALB-L278Kベクターに対して部位変異導入を行った。部位変異導入はKOD -Plus- Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
以下の二種類のプライマー、すなわちCalB-Q193Df(配列番号51):5'- CCTGACGTGTCCAACTCGCCACTCGACTCATCCTAC-3’(下線部はQ193D変異に相当する配列)およびCalB-Q193r(配列番号52):5'-CTGAACGATCTCGTCGGTCGC-3’を用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。
反応液20 μLに制限酵素Dpn Iを0.8 μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5 μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50 μLを形質転換した。形質転換液全量を50 μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50 μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizardR Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
得られたプラスミドについては塩基配列を分析し、目的の配列であることを確認した。変異が導入されたベクターをpYES2CT/SUC2sig/mCALB-Q193D/L278Kと称す。
2)酵母形質転換、Q193D/L278K改変型リパーゼの発現、精製及び固定化酵素の調製
 実施例1に記載の方法と同様に行った。
 W104F/Q193E/L278R改変型リパーゼの合成
1)変異の導入
 W104F/Q193E/L278R(配列番号27と43)改変型リパーゼを構築するために、まずpYES2CT/SUC2sig/mCALB-W104F/Q193Eベクターに対してL278R部位変異導入を行った。部位変異導入はKOD -Plus- Mutagenesis Kit(東洋紡社製)を用い、添付マニュアル記載の方法に従って変異導入操作を行った。
以下の二種類のプライマー、すなわちCalB-L278Rf(配列番号53):5'- CTCAGGGCGCCGGCGGCTGCAGCCATCGTG-3’(下線部はL278R変異に相当する配列)およびCalB-L278r(配列番号54):5'-CGCAGCCGCGGCGACCTTTTGCTC-3’を用いて変異導入反応(94℃ 2分加熱した後、98℃ 10秒、68℃ 7分のサイクルを10回)を行った。
反応液20 μLに制限酵素Dpn Iを0.8 μL加え、37℃で4時間反応した。この操作で得られた反応液の一部(5 μL)を用い、ECOS E. coli DH5αコンピテントセル(ニッポンジーン社製)50 μLを形質転換した。形質転換液全量を50 μg/mLカルベニシリン含有LB寒天培地に塗布し、37℃で16時間培養した。得られたコロニーから菌を単離し、50 μg/mLカルベニシリン含有LB液体培地にて16時間培養後、プラスミドをWizardR Plus Minipreps DNA Purification System(プロメガ社製)を用いて抽出した。
得られたプラスミドについては塩基配列を分析し、目的の配列であることを確認した。変異が導入されたベクターをpYES2CT/SUC2sig/mCALB-W104F/Q193E/L278Rと称す。
2)酵母形質転換、W104F/Q193E/L278R改変型リパーゼの発現、精製及び固定化酵素の調製
 実施例1に記載の方法と同様に行った。
 実施例18から21で調製した改変型リパーゼ(W104F/Q193E/L278R、W104F/L278K、Q193E/L278K、Q193D/L278K)を用い、実施例5と同様にカーボネート化合物(炭酸ジメチル)とモノアミン化合物(n-ヘキシルアミン化合物)からのカルバメート化合物合成活性を評価した。
結果
Figure JPOXMLDOC01-appb-T000023
比較のために、野生型~W104F/Q193Eは、実施例5の表1のデータ、W104F/Q193E/L278R/A283V~A283Vは実施例14の表6のデータを記載した。
 上記表10に示すとおり、W104F/Q193E/L278R改変型リパーゼは、野生型リパーゼより、反応3、6、8時間における収率が有意に高く、さらなる反応速度の向上が認められた。
 実施例18から21で調製した改変型リパーゼ(W104F/Q193E/L278R、W104F/L278K、Q193E/L278K、Q193D/L278K)を用い、実施例15と同様にカーボネート化合物とジアミン化合物である1,3-ビスアミノメチルシクロヘキサン(1,3-BAC)のカルバメート化合物合成活性を評価した。実施例14と同様に、0.03重量%の水分を含む1,3-BACを用いた。なお、水分の測定はカールフィッシャー水分計による。
結果
Figure JPOXMLDOC01-appb-T000024
比較のために、野生型~A283Vは実施例15の表7のデータを記載した。
上記表11に示すとおり、W104F/Q193E/L278R改変型リパーゼは、野生型リパーゼより、収率が有意に高く、反応速度の向上が認められた。
 実施例18から21で調製した改変型リパーゼ(W104F/Q193E/L278R、W104F/L278K、Q193E/L278K、Q193D/L278K)を用い、実施例17と同様にエステル化合物とアルコール化合物からのエステル交換活性を評価した。
結果
Figure JPOXMLDOC01-appb-T000025
比較のために、野生型~A283Vは実施例17の表9のデータを記載した。
上記表12に示すとおり、Q193D/L278K改変型リパーゼは、野生型リパーゼより、収率が有意に高く、反応速度の向上が認められた。
 本発明は、カーボネート化合物とアミン化合物からカルバメート化合物の工業的製造に利用することができる。

Claims (18)

  1.  配列番号1の193位のグルタミンを他のアミノ酸残基に置換した改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有するその変異体であって、配列番号1に示す野生型リパーゼより高いカルバメート化活性を示す変異体。
  2.  193位のグルタミンをグルタミン酸またはアスパラギン酸に置換した、請求項1記載の改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すその変異体。
  3.  更に、104位のトリプトファンがフェニルアラニンに置換される請求項1または2記載の改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すそれらの変異体。
  4.  更に、278位のロイシンがアルギニンまたはリジンに置換される請求項1または2記載の改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すそれらの変異体。
  5.  更に、278位のロイシンがアルギニンまたはリジンに置換される請求項3記載の改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すそれらの変異体。
  6.  更に、283位のアラニンがバリンに置換される請求項5記載の改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すそれらの変異体。
  7.  請求項1から6のいずれか1項記載の改変型リパーゼまたはその変異体をコードするDNA。
  8.  請求項7記載のDNAを含む形質転換微生物。
  9.  請求項8記載の形質転換微生物を培地中で培養し、培地中および/又は微生物中に改変型リパーゼまたはその変異体を蓄積させることを特徴とする、改変型リパーゼまたはその変異体の製造方法。
  10.  請求項1から6のいずれか1項記載の改変型リパーゼまたはその変異体または請求項9記載の方法で得られた改変型リパーゼまたはその変異体を担体に固定化した改変型リパーゼまたはその変異体。
  11.  請求項1から6および10のいずれか1項記載の改変型リパーゼまたはその変異体または請求項9記載の方法で得られた改変型リパーゼまたはその変異体の、カルバメート化反応における使用。
  12.  カルバメート化反応が、カーボネート化合物とアミン化合物とを反応させてカルバメート化合物を製造するものである、請求項11記載の使用。
  13.  請求項1から6および10のいずれか1項記載の改変型リパーゼまたはその変異体または請求項9記載の方法で得られた改変型リパーゼまたはその変異体の存在下で、ジアルキルカーボネート化合物とアミン化合物を基質として反応させることを特徴とする、カルバメート化合物の製造方法。
  14.  ジアルキルカーボネート化合物が、ジメチルカーボネート化合物である、請求項13記載のカルバメート化合物の製造方法。
  15.  配列番号1の104位のトリプトファンをフェニルアラニンに置換した改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すその変異体の、カルバメート化反応における使用。
  16.  カルバメート化反応が、カーボネート化合物とアミン化合物とを反応させてカルバメート化合物を製造するものである、請求項15記載の使用。
  17.  配列番号1の104位のトリプトファンをフェニルアラニンに置換した改変型リパーゼ、または、さらに1もしくは数個のアミノ酸の置換、欠失、挿入、付加または逆位を有し、該改変型リパーゼと同じカルバメート化活性を示すその変異体の存在下で、ジアルキルカーボネート化合物とアミン化合物を基質として反応させることを特徴とする、カルバメート化合物の製造方法。
  18.  カーボネート化合物が、ジメチルカーボネート化合物である、請求項17記載のカルバメート化合物の製造方法。
PCT/JP2012/061326 2011-05-02 2012-04-27 改変型リパーゼ及びその製造方法、並びに当該酵素を用いた反応 WO2012150696A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013513081A JP5987824B2 (ja) 2011-05-02 2012-04-27 改変型リパーゼ及びその製造方法、並びに当該酵素を用いた反応
CN201280021484.7A CN103517987B (zh) 2011-05-02 2012-04-27 改变型脂肪酶及其制造方法、以及使用该酶的反应

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011103091 2011-05-02
JP2011-103091 2011-05-02
JP2011-256937 2011-11-25
JP2011256937 2011-11-25

Publications (1)

Publication Number Publication Date
WO2012150696A1 true WO2012150696A1 (ja) 2012-11-08

Family

ID=47107882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061326 WO2012150696A1 (ja) 2011-05-02 2012-04-27 改変型リパーゼ及びその製造方法、並びに当該酵素を用いた反応

Country Status (3)

Country Link
JP (1) JP5987824B2 (ja)
CN (1) CN103517987B (ja)
WO (1) WO2012150696A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904073B (zh) * 2019-05-31 2020-12-01 江南大学 一种脂肪酶突变体及其在去污方面的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080676A1 (en) * 2007-12-20 2009-07-02 Basf Se New calb muteins and their use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080676A1 (en) * 2007-12-20 2009-07-02 Basf Se New calb muteins and their use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LAVANDERA I. ET AL.: "First Regioselective Enzymatic Alkoxycarbonylation of Primary Amines. Synthesis of Novel 5'- and 3'-Carbamates of Pyrimidine 3',5'-Diaminonucleoside Derivatives Including BVDU Analogues", J.ORG.CHEM., vol. 69, no. 5, 2004, pages 1748 - 51 *
POZO M. ET AL.: "Chiral carbamates through an enzymatic alkoxycarbonylation reaction", TETRAHEDRON, vol. 49, no. 20, 1993, pages 4321 - 6 *

Also Published As

Publication number Publication date
CN103517987A (zh) 2014-01-15
JP5987824B2 (ja) 2016-09-07
CN103517987B (zh) 2016-10-12
JPWO2012150696A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
EP3858987B1 (en) A novel isopropylmalate synthase variant and a method of producing l-leucine using the same
EP3508580A1 (en) Novel promoter and use thereof
KR101869432B1 (ko) 케톤에 대한 활성이 증대된 오메가 트랜스아미네이즈의 변이체 및 이것을 이용한 광학활성 아민의 제조방법
US8093346B2 (en) Method for producing an aminohydroxybenzoic acid-type compound
US20110262977A1 (en) Process for production of optically active amine derivative
JP2021531749A (ja) 操作されたフェニルアラニンアンモニアリアーゼポリペプチド
JP2021530216A (ja) 操作されたパントテン酸キナーゼ改変体酵素
CN107858384B (zh) 一种利用活性包涵体制备光学纯l-叔亮氨酸的方法
JP6539212B2 (ja) 光学活性環状イミノ酸の製造方法
JP5953763B2 (ja) 改変型リパーゼ及びその製造方法、並びに当該酵素を用いた反応
JP5987824B2 (ja) 改変型リパーゼ及びその製造方法、並びに当該酵素を用いた反応
CN107109446B (zh) 顺式-5-羟基-l-哌可酸的制造方法
EP3666893B1 (en) D type amino acid dehydrogenase
JP2013046572A (ja) 光学活性2−ヒドロキシシクロアルカンカルボン酸エステルの製造方法
US20080003640A1 (en) Deinococcus N-acylamino acid racemase and use of preparing L-amino acid
JP2013053080A (ja) ペンタメチレンジアミンの製造方法
TWI756604B (zh) 鳥胺酸脫羧酶變異體、使用其製造丁二胺之方法、聚核苷酸、微生物、聚醯胺的製備方法以及聚醯胺製備用組成物
JP2011177029A (ja) 光学活性なアミン誘導体の製造方法
KR20230084485A (ko) 카다베린염으로부터 1,5-펜타메틸렌 디이소시아네이트를 제조하기 위한 개선된 방법
CN116987687A (zh) 卤醇脱卤酶突变体及其应用
CN116837043A (zh) 一种还原胺化酶在不对称合成手性胺中的应用
IL301857A (en) Transgenic enzymes of phosphopantomutase variants
CN117701523A (zh) 一种溶剂耐受型转氨酶突变体、工程菌及在制备西他列汀中间体中的应用
JP2005027552A (ja) 新規な光学活性2−ヒドロキシメチル−3−アリールプロピオン酸の製造方法
CN113755462A (zh) β-氨基酸脱氢酶突变体及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12779334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513081

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12779334

Country of ref document: EP

Kind code of ref document: A1