WO2012150631A1 - 放射ノイズ低減方法、及び充電ケーブル - Google Patents
放射ノイズ低減方法、及び充電ケーブル Download PDFInfo
- Publication number
- WO2012150631A1 WO2012150631A1 PCT/JP2011/060538 JP2011060538W WO2012150631A1 WO 2012150631 A1 WO2012150631 A1 WO 2012150631A1 JP 2011060538 W JP2011060538 W JP 2011060538W WO 2012150631 A1 WO2012150631 A1 WO 2012150631A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wire
- charging cable
- electric vehicle
- charging
- charger
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0069—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/11—DC charging controlled by the charging station, e.g. mode 4
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
- B60L53/16—Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
- B60L53/18—Cables specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/305—Communication interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/31—Charging columns specially adapted for electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/147—Emission reduction of noise electro magnetic [EMI]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Definitions
- the present invention relates to a radiation noise reduction method and a charging cable, and more particularly to a technique for reducing noise radiated from a charging cable that supplies a charging current from a charger to an electric vehicle.
- the first insulation is provided in order to provide a shielded cable that has a good shielding characteristic even when a large current flows, and that can reduce the amount of heat generated by reducing eddy current generated in the conductive member.
- Covering the outside of the signal line covered with the material with a magnetically permeable member, covering the outer side of the magnetically permeable member with a conductive member, and further covering the outer side of the conductive member with a second insulating material to constitute a shielded cable Is described.
- Patent Document 2 in order to provide an electric wire for a wire harness that has excellent shielding properties and can be manufactured at low cost and can be easily connected to a connector or the like, the conductor is formed on the outside of the conductor.
- a wire harness electric wire having an insulating layer and a shield layer formed outside the insulating layer, it is described that a semiconductive paint layer is used for the shield layer.
- Patent Document 3 in an electrical system of a plug-in hybrid vehicle equipped with a vehicle charging device, high-frequency noise is generated from the electrical system of the plug-in hybrid vehicle to the power source outside the vehicle when the power storage device is charged from the power source outside the vehicle.
- An LC filter for preventing output is described.
- Patent Document 4 discloses a radio wave composed of a conductive material that is easy to handle and is configured to prevent scattering of radio wave noise generated from the charger as a charger or a cover of a device equipped with a charger.
- a noise preventing cover including a noise absorbing sheet and a cable for grounding the radio noise absorbing sheet is described.
- noise generated from the charger becomes a problem.
- a method for reducing noise emitted from the charger for example, it is conceivable to shield the charger body.
- the noise radiated from the charger main body through the charging cable for supplying the charging current to the electric vehicle cannot be reduced only by shielding the charger main body.
- the present invention has been made based on such a background, and provides a radiation noise reduction method and a charging cable that can reduce noise radiated from a charging cable that supplies a charging current from a charger to an electric vehicle.
- the purpose is to do.
- one aspect of the present invention is a method for reducing radiation noise of a charging cable that supplies a charging current from a charger to an electric vehicle.
- the noise radiated from the charging cable can be reliably reduced by short-circuiting the shield wire and the ground wire on the electric vehicle side.
- Another aspect of the present invention is the above-described radiation noise reduction method, wherein a toroidal core is provided on the charger side of the charging cable.
- Another aspect of the present invention is the above radiation noise reduction method, wherein the ground wire is not grounded on the electric vehicle side.
- the charging cable uses the current supply line, the ground line, and the shield line covered with an insulating outer sheath, and the charging cable.
- a connector connected to the charging port of the electric vehicle and an insulating grip formed integrally with the connector, and strips the outer skin in the vicinity of the grip The shield wire and the ground wire are short-circuited on the electric vehicle side by bringing the shield wire and the ground wire into contact with each other.
- the outer cover is peeled in the vicinity of the insulating grip formed integrally with the connector connected to the charging port, and the shield wire is formed at that portion.
- the shield wire and the ground wire can be easily short-circuited on the electric vehicle side.
- Another aspect of the present invention is the above-described method for reducing radiation noise, wherein a grounded tape-shaped conductor is brought into surface contact with a charger side portion of the shield wire, whereby the shield wire is placed on the charger side. It shall be grounded.
- the shield wire on the charger side is grounded by bringing the tape-shaped conductor into surface contact with the charger side portion of the shield wire, so that the shield wire is securely grounded on the charger side. be able to. And thereby, the noise radiated
- noise radiated from a charging cable that supplies a charging current from a charger to an electric vehicle can be reduced.
- FIG. 1 is a diagram illustrating a schematic configuration of a charging system 1.
- FIG. 3 is a block diagram of a quick charger shown as an example of a charger 2.
- FIG. 3 is a side view showing an example of a connection unit 41.
- FIG. FIG. 6 is a view of a gripping part 412 as viewed from the direction of a terminal group 4111.
- 3 is a schematic diagram illustrating the structure of a charging cable 4.
- FIG. It is the measurement system 6 used for verification. It is a figure which shows the measurement result of the attenuation amount of radiation noise. It is a figure which shows the measurement result of the attenuation amount of radiation noise. It is the figure which put together the measurement conditions and the measurement result. It is a figure explaining the measurement system 7 used for the measurement of electric field strength. It is a figure which shows the measurement result of electric field strength. It is a figure which shows the measurement result of electric field strength. It is the figure which put together the measurement conditions and the measurement result.
- FIG. 1 shows an example of a charging system 1 for an electric vehicle provided in a charging stand, a parking lot of various facilities, or the like.
- the charging system 1 supplies a charging current to the electric vehicle 3 from the charger 2, the electric vehicle 3 such as an electric vehicle on which the storage battery 32 charged by the charger 2 is mounted, and the electric vehicle 3.
- Charging cable 4 to be included.
- the charger 2 is a quick charger, for example, and generates switching noise from a switching circuit or the like constituting a power source.
- FIG. 2 is a block diagram of a quick charger shown as an example of the charger 2. As shown in the figure, the quick charger includes a rectifier circuit 201, a PWM control circuit 202 (PWM: Pluse Width Modulation), a high-frequency transformer 203, and a rectifier circuit 204.
- PWM Puls: Pluse Width Modulation
- the rectifier circuit 201 is a circuit that converts alternating current supplied from an alternating current power source such as a commercial power system into direct current, and is configured using a rectifier bridge or the like.
- the PWM control circuit 202 is a circuit that converts the output of the rectifier circuit 201 into a high-frequency pulse, and is configured using a switching element whose on / off timing is controlled by a circuit that controls the output voltage.
- the high frequency transformer 203 transmits the energy of the high frequency pulse generated by the PWM control circuit 202 to the rectifier circuit 204.
- the rectifier circuit 204 is a circuit that converts alternating current input via the high-frequency transformer 203 into direct current, and is configured using a rectifier diode, a smoothing capacitor, or the like.
- One end of the charging cable 4 is connected to the output stage of the rectifier circuit 204, for example.
- FIG. 3 is a side view of the connection unit 41 provided at the other end of the charging cable 4.
- the connection unit 41 includes a charging connector 411 provided with a terminal group 4111 connected to the charging port 31, an insulating grip 412 formed integrally with the charging connector 411, A handle 413 extending from the grip portion 412 for controlling the supply of the charging current.
- the grip portion 412 is made of, for example, resin, and is integrally formed with the charging connector 411 by molding or the like.
- the charger 2 side of the grip portion 412 is cylindrical, and the end portion of the charging cable 4 on the electric vehicle 3 side is accommodated in the cylindrical portion 4121.
- a current supply line 41, a ground line 42, a control line 43, and a shield line 44 of the charging cable 4 to be described later are connected to the terminal group 4111 inside the grip portion 412.
- FIG. 4 is a view of the grip portion 412 as viewed from the direction of the terminal group 4111.
- the terminal group 4111 includes a power supply terminal 41111 to which a later-described current supply line 41 is connected, a ground terminal 41112 to which a later-described ground line 42 is connected, and a terminal to which a later-described control line 43 is connected. 41113 is included.
- FIG. 5 is a schematic diagram for explaining the structure of the charging cable 4.
- the charging cable 4 includes a current supply line 41 through which a charging current supplied from the charger 2 is energized, a ground line 42, and between the charger 2 and the electric vehicle 3 when controlling the charging current.
- a control line 43 through which control signals to be transmitted and received flow and a shield line 44 that includes these lines and extends in the longitudinal direction of the charging cable 4 are bundled.
- a bundle of the current supply line 41, the ground line 42, the control line 43, and the shield line 44 is covered with an outer skin 45 made of an insulating resin or the like.
- the shield wire 44 is, for example, a braided lead wire or aluminum foil.
- the ground wire 42 and the shield wire 44 are both grounded on the charger 2 side.
- the ground wire 42 and the shield wire 44 are short-circuited on the electric vehicle 3 side (reference numeral 441).
- the short circuit between the ground wire 42 and the shield wire 44 is performed by, for example, peeling the outer skin 45 in the vicinity of the grip portion 412 of the connection unit 41 and bringing the ground wire 42 and the shield wire 44 into contact with each other.
- the ground wire 42 may be grounded on the electric vehicle 3 side or may not be grounded on the electric vehicle 3 side (for example, when the storage battery 32 of the electric vehicle 3 is not grounded) Is higher than the ground potential).
- FIG. 6 shows the measurement system 6 used for this measurement.
- the measurement system 6 includes a network analyzer 140 corresponding to the charger 2, an EM clamp 130 (electromagnetic (EM) clamp) covering the charging cable 4, and an end point resistance 160 ( 50 ⁇ in this example), and a toroidal core 150 provided on the network analyzer 140 side (charger 2 side) of the charging cable 4 is included.
- EM electromagnetic
- the end of the charging cable 4 on the network analyzer 140 side is inserted into the ring of the toroidal core 150. Further, on the network analyzer 140 side (charger 2 side) of the charging cable 4, both the ground wire 42 and the shield wire 44 are grounded. Among these, for the shield wire 44, the outer cover 45 of the charging cable 4 is peeled to expose the shield wire 44, and the tape-like copper tape 120 (conductor) is brought into surface contact (winding) on the outer periphery of the exposed shield wire 44, The copper tape 120 is grounded by grounding. As described above, on the end point resistance 160 side (electric vehicle 3 side), the ground wire 42 and the shield wire 44 are brought into contact with each other to be short-circuited (reference numeral 441).
- the amount of attenuation of radiation noise when a direct current was applied to the charging cable 4 was measured for each of the cases where the toroidal core 150 was provided and not provided.
- a predetermined current was supplied from the network analyzer 140 to the current supply line 41 as a signal corresponding to the charging current.
- the attenuation was measured by inputting a signal leaking from the outer skin 45 to the network analyzer 140 and detecting it.
- the toroidal core 150 In the case where the toroidal core 150 is not provided, a plurality of cases ((1)) in which the lengths of conductive wires (hereinafter referred to as short-circuit wires) used to connect (short-circuit) the ground wire 42 and the shield wire 44 are changed. In the case of 50 cm, (2) 25 cm, and (3) 5 cm) were performed. For comparison, measurement was also performed for the case (4) in which the ground wire 42 and the shield wire 44 were not short-circuited. In this measurement, calibration was performed based on the attenuation amount with the shield wire 44 removed.
- short-circuit wires hereinafter referred to as short-circuit wires
- FIG. 7 is a graph showing measurement results when the toroidal core 150 is not provided.
- the horizontal axis of this graph is the frequency (MHz), and the vertical axis is the attenuation amount (dB) of noise radiated from the charging cable 4.
- FIG. 8 is a graph showing measurement results when the toroidal core 150 is provided.
- the horizontal axis of this graph is the frequency (MHz), and the vertical axis is the attenuation amount (dB) of noise radiated from the charging cable 4.
- (6) is a case where RC1060 (manufactured by Soshin Electric Co., Ltd.) (one) is provided as the toroidal core 150
- (7) is RC1045Y (manufactured by Soshin Electric Co., Ltd.) as the toroidal core 150
- (8) is a case where TFT274015S (manufactured by Takachi Electric Co., Ltd.) (1) is provided as the toroidal core 150.
- TFT274015S manufactured by Takachi Electric Co., Ltd.
- FIG. 9 summarizes the above measurement results (FIGS. 7 and 8) in a table format. As shown in FIGS. 7 and 9 (1) to (3), it was confirmed that the shorter the length of the short-circuit wire, the greater the attenuation effect of the radiation noise. When the short-circuit line was not provided (4), almost no radiation noise attenuation effect was observed in the frequency range of 0.01 MHz to 30 MHz.
- the inventors use the charging cable 4 as a line connecting the AC motor and the inverter that supplies an AC current to the AC motor in order to verify the effect of reducing the radiation noise in the charging system 1 (that is, With respect to the current supply line 41 of the charging cable 4 as the U-phase, V-phase, W-phase, and PE-phase lines of the inverter, the radiation field intensity was measured using a spectrum analyzer.
- FIG. 10 shows the measurement system 7 used for this measurement.
- this measurement system 7 includes an AC motor 250 (output 0.4 kW), an inverter 230 that supplies an AC current to the AC motor 250 (corresponding to the charger 2), and an electric power (single phase 100V) AC power supply 210 that supplies (frequency 50 Hz AC current), a noise filter 220 for cutting noise included in the AC power supply 210 (HF2010A-UP (Soshin Electric Co., Ltd.)), and a spectrum analyzer that receives radiation noise
- a biconical antenna 260 (not shown) is included.
- the entire power cable 215 connecting the AC power supply 210 and the noise filter 220 and the entire charging cable 4 were shielded with aluminum foil.
- the noise filter 220 and the inverter 230 were both grounded by being directly placed on the base 285 of a grounded conductor (iron plate 280).
- the AC motor 250 was placed on the table 285 with the insulating paper 290 interposed.
- the noise filter 220, the inverter 230, and the AC motor 250 were provided at a height of 0.8 m from the ground (reference surface 270).
- the biconical antenna 260 was provided at a height of 1 m from the reference plane 270.
- the distance from the biconical antenna 260 to the noise filter 220 was 1 m.
- FIG. 11 shows the measurement results.
- the horizontal axis of this graph is the frequency (MHz), and the vertical axis is the level of noise radiated from the charging cable 4 (dB ⁇ V / m).
- FIG. 12 is a graph showing the measurement results.
- the horizontal axis of this graph is the frequency (MHz), and the vertical axis is the level of noise radiated from the charging cable 4 (dB ⁇ V / m).
- (14) is a case where the toroidal core 150 is not provided
- (15) is a case where RC1060 (one piece) is provided as the toroidal core 150
- (16) is RC1045Y (one piece) as the toroidal core 150.
- Is provided and (17) is a case where TFT 274015S (one piece) is provided as the toroidal core 150. In either case, the length of the short-circuit wire was 5 cm.
- FIG. 13 summarizes the above measurement results (FIGS. 11 and 12) in a table format.
- the charging cable 4 when the charging cable 4 is used and the ground wire 42 and the shield wire 44 are not short-circuited (12), the charging cable having no shield wire 44 is used.
- noise is reduced in the region of 100 MHz or higher, but the level of radiation noise is higher in the frequency range of 30 MHz to 100 MHz.
- the charging cable 4 when the charging cable 4 is used and the ground wire 42 and the shield wire 44 are short-circuited (13), the charging cable having no shield wire 44 is used in the entire frequency of 30 MHz to 300 MHz (11). Compared with the radiation noise.
- the charging cable 4 As described above, as the charging cable 4, the current supply line 41 through which the charging current is passed, the ground wire 42, and the shield wire 44 are used, and the ground wire 42 and the shield wire 44 are connected to the charger 2 side. It has been found that noise radiated from the charging cable 4 can be reliably reduced by grounding at 1 and grounding the ground wire 42 and the shield wire 44 on the electric vehicle 3 side. It was also found that noise radiated from the charging cable 4 can be more reliably reduced by providing the toroidal core 150 on the charger 2 side of the charging cable. Further, it has been found that even when the ground wire 42 is not grounded on the electric vehicle 3 side or when it is difficult to ground the ground wire 42 on the electric vehicle 3 side, noise radiated from the charging cable 4 can be reliably reduced. .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Insulated Conductors (AREA)
- Secondary Cells (AREA)
Abstract
【課題】電動車両の充電ケーブルから発せられる放射ノイズを低減する。 【解決手段】充電器2から電動車両3に充電電流を供給する充電ケーブル4として、少なくとも、充電電流が通電される電流供給線41、アース線42、及びシールド線44が結束されたものを用い、アース線42及びシールド線44を充電器側2で接地し、かつ、シールド線44とアース線42とを電動車両3側で短絡させる。また充電ケーブル4の充電器2側にトロイダルコア150を設ける。アース線42は電動車両3側で接地されていなくてもよい。シールド線44は、接地されたテープ状の導体120を面接触させることにより充電器2側で接地する。
Description
この発明は、放射ノイズ低減方法、及び充電ケーブルに関し、特に充電器から電動車両に充電電流を供給する充電ケーブルから放射されるノイズを低減する技術に関する。
特許文献1には、大電流を流した場合でも、良好なシールド特性を備えるとともに、導電性部材に発生する渦電流を減少させて発熱量を低減できるシールドケーブルを提供すべく、第1の絶縁材で被覆された信号線の外側を透磁性部材で覆い、透磁性部材の外側を導電性部材で覆い、更に導電性部材の外側を第2の絶縁材で覆うことによりシールドケーブルを構成することが記載されている。
特許文献2には、シールド性に優れ、かつ低コストで製造することができ、コネクタなどとの接続作業が容易に行えるワイヤハーネス用電線を提供すべく、導体と、導体の外方に形成される絶縁層と、絶縁層の外方に形成されるシールド層とを有するワイヤハーネス用電線において、シールド層に半導電性塗料層が用いることが記載されている。
特許文献3には、車両用充電装置を搭載したプラグインハイブリッド車の電気システムにおいて、車両外部の電源から蓄電装置の充電時、プラグインハイブリッド車の電気システムから車両外部の電源へ高周波のノイズが出力されるのを防止するためのLCフィルタについて記載されている。
特許文献4には、充電器または充電器を搭載した機器のカバーとして、取り扱いが容易であり、かつ充電器から発生する電波雑音の散乱を防ぐべく構成された、導電性材料から構成される電波雑音吸収シートと、電波雑音吸収シートを接地するためのケーブルを具備する雑音防止カバーが記載されている。
急速充電器等の充電器を用いて電気自動車を充電する場合には、充電器から発せられるノイズ(とくに電源のスイッチング回路から発せられる高周波ノイズ)が問題となる。充電器から発せられるノイズを低減する方法としては、例えば、充電器本体をシールドすることが考えられる。しかし充電器本体から電気自動車に充電電流を供給する充電ケーブルを伝って放射されるノイズについては、充電器本体をシールドしただけでは低減することができない。
本発明はこのような背景に基づいてなされたもので、充電器から電動車両に充電電流を供給する充電ケーブルから放射されるノイズを低減することが可能な放射ノイズ低減方法、及び充電ケーブルを提供することを目的とする。
上記目的を達成するための本発明の一つは、充電器から電動車両に充電電流を供給する充電ケーブルの放射ノイズ低減方法であって、充電ケーブルとして、少なくとも、充電電流が通電される電流供給線、アース線、及びシールド線が結束されたものを用い、前記アース線及び前記シールド線を充電器側で接地し、かつ、前記シールド線と前記アース線とを電動車両側で短絡させることとする。
このように、シールド線とアース線を電動車両側で短絡させることで、充電ケーブルから放射されるノイズを確実に低減することができる。
本発明の他の一つは、上記放射ノイズ低減方法であって、前記充電ケーブルの前記充電器側にトロイダルコアを設けることとする。
このように充電ケーブルの充電器側にトロイダルコアを設けることで、充電ケーブルから放射されるノイズをより確実に低減することができる。
本発明の他の一つは、上記放射ノイズ低減方法であって、前記アース線が電動車両側で接地されていないこととする。
本発明によれば、このようにアース線が電動車両側で接地されていない場合やアース線を電動車両側で接地することが難しい場合であっても、充電ケーブルから放射されるノイズを確実に低減することができる。
本発明の他の一つは、上記放射ノイズ低減方法であって、前記充電ケーブルとして、前記電流供給線、前記アース線、及び前記シールド線を絶縁性の外皮で被覆したものを用い、前記充電ケーブルの電動車両側の端部に、電動車両の充電口に接続されるコネクタと当該コネクタと一体に形成された絶縁性の把持部とを設け、前記把持部の近傍の前記外皮を剥いて前記シールド線と前記アース線とを接触させることにより、前記シールド線と前記アース線とを電動車両側で短絡させることとする。
このように充電ケーブルとして絶縁性の外皮で被覆したものを用いる場合は、充電口に接続されるコネクタと一体に形成された絶縁性の把持部の近傍において外皮を剥き、その部分でシールド線とアース線とを接触させるようにすることで、シールド線とアース線とを電動車両側で容易に短絡させることができる。
本発明の他の一つは、上記放射ノイズ低減方法であって、接地されたテープ状の導体を前記シールド線の充電器側の部分に面接触させることにより、前記シールド線を充電器側で接地することとする。
このように充電器側のシールド線の接地を、テープ状の導体をシールド線の充電器側の部分に面接触させることにより行うようにすることで、充電器側でシールド線を確実に接地することができる。そしてこれにより充電ケーブルから放射されるノイズを確実に低減することができる。
その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。
本発明によれば、充電器から電動車両に充電電流を供給する充電ケーブルから放射されるノイズを低減することができる。
以下、図面を参照しつつ発明を実施するための形態について説明する。
図1は充電スタンドや各種施設の駐車場等に設けられる電気自動車の充電システム1の一例である。同図に示すように、充電システム1は、充電器2、充電器2によって充電される蓄電池32が搭載された電気自動車等の電動車両3、及び充電器2から電動車両3に充電電流を供給する充電ケーブル4を含む。
充電器2は、例えば急速充電器であり、電源を構成しているスイッチング回路等からスイッチングノイズを発生する。図2は充電器2の一例として示す急速充電器のブロック図である。同図に示すように、この急速充電器は、整流回路201、PWM制御回路202(PWM:Pluse Width Modulation)、高周波トランス203、及び整流回路204を備えている。
整流回路201は、商用電力系統等の交流電源から供給される交流を直流に変換する回路であり、整流ブリッジ等を用いて構成される。PWM制御回路202は、整流回路201の出力を高周波のパルスに変換する回路であり、出力電圧を制御する回路によってオンオフタイミングが制御されるスイッチング素子を用いて構成されている。高周波トランス203は、PWM制御回路202によって生成された高周波パルスのエネルギーを整流回路204に伝達する。整流回路204は、高周波トランス203を介して入力される交流を直流に変換する回路であり、整流ダイオードや平滑コンデンサ等を用いて構成されている。充電ケーブル4の一端は、例えば整流回路204の出力段に接続される。
図3は充電ケーブル4の他端に設けられる接続ユニット41の側面図である。同図に示すように、この接続ユニット41は、充電口31と接続される端子群4111が設けられた充電コネクタ411と、この充電コネクタ411と一体に形成された絶縁性の把持部412と、把持部412から延出し充電電流の供給を制御するためのハンドル413とを有する。
把持部412は、例えば樹脂製であり、モールド成形等によって充電コネクタ411と一体に形成されている。把持部412の充電器2側は円筒状になっており、この円筒状の部分4121の内部には、充電ケーブル4の電動車両3側の端部が収容されている。後述する充電ケーブル4の、電流供給線41、アース線42、制御線43、及びシールド線44は、把持部412の内部で端子群4111に接続されている。
図4は、把持部412を端子群4111の方向から眺めた図である。同図に示すように、端子群4111は、後述する電流供給線41が接続される給電端子41111、後述するアース線42が接続されるアース端子41112、及び後述する制御線43が接続される端子41113を含む。
図5は充電ケーブル4の構造を説明する模式図である。同図に示すように、充電ケーブル4は、充電器2から供給される充電電流が通電される電流供給線41、アース線42、充電電流の制御に際して充電器2と電動車両3との間で送受信される制御信号が流れる制御線43、及び、これら各線を内包し、充電ケーブル4の長手方向に延出するシールド線44を結束した構造になっている。そして電流供給線41、アース線42、制御線43、及びシールド線44の束は、絶縁性の樹脂等からなる外皮45によって被覆されている。尚、シールド線44は、例えば、編組された導線やアルミ箔等である。
同図に示すように、アース線42及びシールド線44は、いずれも充電器2側で接地されている。またアース線42とシールド線44は電動車両3側で短絡されている(符号441)。このアース線42とシールド線44の短絡は、例えば、接続ユニット41の把持部412の近傍の外皮45を剥いてアース線42とシールド線44を接触させることによって行われる。尚、電動車両3側でアース線42は接地されていてもよいし、電動車両3側で接地されていなくてもよい(例えば、電動車両3の蓄電池32が接地されていない場合、アース線42は接地電位に対して高電位になる)。
<減衰量の検証>
発明者らは、以上の構成からなる充電システム1における放射ノイズの低減効果を検証すべく、ネットワークアナライザを用いて放射ノイズの減衰量を測定した。図6はこの測定に用いた測定系6である。同図に示すように、この測定系6は、充電器2に相当するネットワークアナライザ140、充電ケーブル4を覆うEMクランプ130(electromagnetic (EM) clamp))、電動車両3に相当する終点抵抗160(本例では50Ω)、及び充電ケーブル4のネットワークアナライザ140側(充電器2側)に設けられるトロイダルコア150を含む。
発明者らは、以上の構成からなる充電システム1における放射ノイズの低減効果を検証すべく、ネットワークアナライザを用いて放射ノイズの減衰量を測定した。図6はこの測定に用いた測定系6である。同図に示すように、この測定系6は、充電器2に相当するネットワークアナライザ140、充電ケーブル4を覆うEMクランプ130(electromagnetic (EM) clamp))、電動車両3に相当する終点抵抗160(本例では50Ω)、及び充電ケーブル4のネットワークアナライザ140側(充電器2側)に設けられるトロイダルコア150を含む。
同図に示すように、充電ケーブル4のネットワークアナライザ140側(充電器2側)の端部は、トロイダルコア150のリング内に挿通されている。また充電ケーブル4のネットワークアナライザ140側(充電器2側)において、アース線42とシールド線44をいずれも接地させている。このうちシールド線44については、充電ケーブル4の外皮45を剥いてシールド線44を露出させ、露出したシールド線44の外周にテープ状の銅テープ120(導体)を面接触(巻回)させ、銅テープ120を接地することにより接地させている。また前述したように、終点抵抗160側(電気自動車3側)では、アース線42とシールド線44とを接触させて短絡させている(符号441)。
以上の構成からなる測定系6において、トロイダルコア150を設けた場合と設けない場合の夫々について、充電ケーブル4に直流電流を印加した場合における放射ノイズの減衰量を測定した。この測定に際し、ネットワークアナライザ140から充電電流に相当する信号として所定の電流を電流供給線41に供給した。また減衰量の測定は、外皮45から漏れる信号をネットワークアナライザ140に入力して検出することにより行った。
トロイダルコア150を設けない場合の測定は、アース線42とシールド線44を接続(短絡)するのに用いる導線(以下、短絡線と称する。)の長さを変えた複数のケース((1)50cmとした場合、(2)25cmとした場合、(3)5cmとした場合)の夫々について行った。また比較のため、アース線42とシールド線44を短絡させない場合(4)についても測定を行った。尚、この測定では、シールド線44を取り外した状態での減衰量を基準として較正(キャリブレーション)を行った。
図7は、トロイダルコア150を設けない場合における測定結果を示すグラフである。このグラフの横軸は周波数(MHz)であり、縦軸は充電ケーブル4から放射されるノイズの減衰量(dB)である。
一方、図8は、トロイダルコア150を設けた場合における測定結果を示すグラフである。このグラフの横軸は周波数(MHz)であり、縦軸は充電ケーブル4から放射されるノイズの減衰量(dB)である。同図中、(6)はトロイダルコア150としてRC1060(双信電機株式会社製)(1個)を設けた場合であり、(7)はトロイダルコア150としてRC1045Y(双信電機株式会社製)(1個)を設けた場合であり、(8)はトロイダルコア150としてTFT274015S(株式会社タカチ電機工業製)(1個)を設けた場合である。また比較のためにトロイダルコア150を設けない場合(5)についても測定を行った。いずれの場合も短絡線の長さは5cmとした。
図9は以上の測定結果(図7、図8)を表形式に纏めたものである。図7及び図9の(1)~(3)に示すように、短絡線の長さが短いほど、放射ノイズの減衰効果が大きいことが確認された。尚、短絡線を設けない場合(4)は、0.01MHz~30MHzの周波数範囲で放射ノイズの減衰効果が殆ど認められなかった。
また図8及び図9の(5)~(8)に示すように、トロイダルコア150としてRC1045Y、又はTFT274015Sを用いた場合は30MHz~300MHz(特に30MHz~70MHz)の周波数帯における放射ノイズに約5dBの減衰が認められた。
<電界強度の測定>
発明者らは、充電システム1における放射ノイズの低減効果を検証すべく、充電ケーブル4を、交流モータと該交流モータに交流電流を供給するインバータとの間を接続する線として用いた場合(即ち充電ケーブル4の電流供給線41をインバータのU相、V相、W相、及びPE相の各線として用いた場合)について、スペクトラムアナライザを用いて放射電界強度の測定を行った。
発明者らは、充電システム1における放射ノイズの低減効果を検証すべく、充電ケーブル4を、交流モータと該交流モータに交流電流を供給するインバータとの間を接続する線として用いた場合(即ち充電ケーブル4の電流供給線41をインバータのU相、V相、W相、及びPE相の各線として用いた場合)について、スペクトラムアナライザを用いて放射電界強度の測定を行った。
図10はこの測定に用いた測定系7である。同図に示すように、この測定系7は、交流モータ250(出力0.4kW)、交流モータ250に交流電流を供給するインバータ230(充電器2に相当)、インバータ230に電力(単相100V/周波数50Hzの交流電流)を供給する交流電源210、交流電源210に含まれるノイズをカットするためのノイズフィルタ220(HF2010A-UP(双信電機株式会社))、放射ノイズを受信してスペクトラムアナライザ(不図示)に供給するバイコニカルアンテナ260を含む。
尚、測定に際し、交流電源210とノイズフィルタ220とを接続する電源ケーブル215の全体、及び充電ケーブル4の全体をアルミ箔でシールドした。またノイズフィルタ220及びインバータ230は、いずれも接地された導体(鉄板280)の台285上に直接載置することにより接地した。また電動車両3が接地されていない状態とするために、交流モータ250は絶縁紙290を介在させて台285上に載置した。
尚、ノイズフィルタ220、インバータ230、及び交流モータ250は、地面(基準面270)から0.8mの高さに設けた。またバイコニカルアンテナ260は基準面270から1mの高さに設けた。バイコニカルアンテナ260からノイズフィルタ220までの距離は1mとした。
以上の構成からなる測定系7において、シールド線44を有しない充電ケーブルを使用した場合(11)、充電ケーブル4を使用しアース線42とシールド線44を短絡させない場合(12)、及び充電ケーブル4を使用しアース線42とシールド線44を短絡させた場合(短絡線の長さは5cm)(13)の夫々について電界強度を測定した。図11にその測定結果を示す。このグラフの横軸は周波数(MHz)であり、縦軸は充電ケーブル4から放射されるノイズのレベル(dBμV/m)である。
また測定系7において、電流供給線41にトロイダルコア150を設けた場合の効果について検証した。図12はその測定結果を示すグラフである。このグラフの横軸は周波数(MHz)であり、縦軸は充電ケーブル4から放射されるノイズのレベル(dBμV/m)である。同図において、(14)はトロイダルコア150を設けない場合であり、(15)はトロイダルコア150としてRC1060(1個)を設けた場合であり、(16)はトロイダルコア150としてRC1045Y(1個)を設けた場合であり、(17)はトロイダルコア150としてTFT274015S(1個)を設けた場合である。尚、いずれの場合も短絡線の長さは5cmとした。
図13は以上の測定結果(図11、図12)を表形式に纏めたものである。図11及び図13の(11)~(13)に示すように、充電ケーブル4を使用しアース線42とシールド線44を短絡させない場合(12)は、シールド線44を有しない充電ケーブルを使用した場合(11)に比べて、100MHz以上の領域ではノイズが低減されているが、30MHz~100MHzの周波数範囲では放射ノイズのレベルが高くなる。一方、充電ケーブル4を使用しアース線42とシールド線44を短絡させた場合(13)には、30MHz~300MHzの周波数全体において、シールド線44を有しない充電ケーブルを使用した場合(11)に比べて放射ノイズが低減されている。
図12及び図13の(15)~(17)に示すように、(15)~(17)のいずれの場合(トロイダルコア150を設けた場合)も一定のノイズ低減効果が認められた。またRC1045Y又はTFT274015Sを設けた場合((16)、(17))は、30MHz~300MHzの周波数全体においてノイズの低減効果(約10dB)があることが知見された。
以上に説明したように、充電ケーブル4として充電電流が通電される電流供給線41、アース線42、及びシールド線44が結束されたものを用い、アース線42及びシールド線44を充電器2側で接地し、かつ、アース線42とシールド線44とを電動車両3側で短絡させるようにすることで、充電ケーブル4から放射されるノイズを確実に低減できることが知見された。また充電ケーブルの充電器2側にトロイダルコア150を設けることにより、より確実に充電ケーブル4から放射されるノイズを低減できることが知見された。さらにアース線42が電動車両3側で接地されていない場合やアース線42を電動車両3側で接地することが難しい場合でも、充電ケーブル4から放射されるノイズを確実に低減できることが知見された。
尚、以上に説明した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは勿論である。
2 充電器
3 電動車両
31 充電口
32 蓄電池
4 充電ケーブル
41 電流供給線
42 アース線
43 制御線
44 シールド線
45 外皮
411 充電コネクタ
412 把持部
150 トロイダルコア
3 電動車両
31 充電口
32 蓄電池
4 充電ケーブル
41 電流供給線
42 アース線
43 制御線
44 シールド線
45 外皮
411 充電コネクタ
412 把持部
150 トロイダルコア
Claims (10)
- 充電器から電動車両に充電電流を供給する充電ケーブルの放射ノイズ低減方法であって、
充電ケーブルとして、少なくとも、充電電流が通電される電流供給線、アース線、及びシールド線が結束されたものを用い、
前記アース線及び前記シールド線を充電器側で接地し、かつ、前記シールド線と前記アース線とを電動車両側で短絡させる
ことを特徴とする放射ノイズ低減方法。 - 請求項1に記載の放射ノイズ低減方法であって、
前記充電ケーブルの前記充電器側にトロイダルコアを設けることを特徴とする放射ノイズ低減方法。 - 請求項1又は2のいずれかに記載の放射ノイズ低減方法であって、
前記アース線が電動車両側で接地されていないことを特徴とする放射ノイズ低減方法。 - 請求項1乃至3のいずれか一項記載の放射ノイズ低減方法であって、
前記充電ケーブルとして、前記電流供給線、前記アース線、及び前記シールド線を絶縁性の外皮で被覆したものを用い、
前記充電ケーブルの電動車両側の端部に、電動車両の充電口に接続されるコネクタと当該コネクタと一体に形成された絶縁性の把持部とを設け、
前記把持部の近傍の前記外皮を剥いて前記シールド線と前記アース線とを接触させることにより、前記シールド線と前記アース線とを電動車両側で短絡させる
ことを特徴とする放射ノイズ低減方法。 - 請求項1乃至4のいずれか一項記載の放射ノイズ低減方法であって、
接地されたテープ状の導体を前記シールド線の充電器側の部分に面接触させることにより、前記シールド線を充電器側で接地することを特徴とする放射ノイズ低減方法。 - 充電器から電動車両に充電電流を供給する充電ケーブルであって、
少なくとも、充電器から電動車両に供給される充電電流が通電される電流供給線、アース線、及びシールド線が結束され、
前記アース線及び前記シールド線が充電器側で接地され、かつ、前記シールド線と前記アース線とが電動車両側で短絡されている
ことを特徴とする充電ケーブル。 - 請求項6に記載の充電ケーブルであって、前記充電器側にトロイダルコアが設けられていることを特徴とする充電ケーブル。
- 請求項6又は7のいずれかに記載の充電ケーブルであって、
前記アース線が電動車両側で接地されないことを特徴とする充電ケーブル。 - 請求項6乃至8のいずれか一項記載の充電ケーブルであって、
前記電流供給線、前記アース線、及び前記シールド線が絶縁性の外皮で被覆され、
前記充電ケーブルの電動車両側の端部に、電動車両の充電口に接続されるコネクタと当該コネクタと一体に形成された絶縁性の把持部とを有し、
前記把持部の近傍の前記外皮を剥いて前記シールド線と前記アース線とを接触させることにより、前記シールド線と前記アース線とが電動車両側で短絡されている
ことを特徴とする充電ケーブル。 - 請求項6乃至9のいずれか一項記載の充電ケーブルであって、
接地されているテープ状の導体を前記シールド線の充電器側の部分に面接触させることにより、前記シールド線が充電器側で接地されていることを特徴とする充電ケーブル。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11864833.6A EP2711936A4 (en) | 2011-05-02 | 2011-05-02 | METHOD FOR MINIMIZING RADIATION NOISE AND LOAD CABLE |
PCT/JP2011/060538 WO2012150631A1 (ja) | 2011-05-02 | 2011-05-02 | 放射ノイズ低減方法、及び充電ケーブル |
JP2012524435A JP5048888B1 (ja) | 2011-05-02 | 2011-05-02 | 放射ノイズ低減方法、及び充電ケーブル |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/060538 WO2012150631A1 (ja) | 2011-05-02 | 2011-05-02 | 放射ノイズ低減方法、及び充電ケーブル |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012150631A1 true WO2012150631A1 (ja) | 2012-11-08 |
Family
ID=47107824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/060538 WO2012150631A1 (ja) | 2011-05-02 | 2011-05-02 | 放射ノイズ低減方法、及び充電ケーブル |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2711936A4 (ja) |
JP (1) | JP5048888B1 (ja) |
WO (1) | WO2012150631A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014147225A (ja) * | 2013-01-29 | 2014-08-14 | Sumitomo Electric Ind Ltd | 給電装置及び給電システム |
JP2014150639A (ja) * | 2013-01-31 | 2014-08-21 | Chugoku Electric Power Co Inc:The | 放射ノイズ低減方法、及びケーブル |
JP2014161154A (ja) * | 2013-02-20 | 2014-09-04 | Fuji Electric Co Ltd | ノイズ対策フィルタ |
CN108932992A (zh) * | 2018-07-20 | 2018-12-04 | 安徽德源电缆集团有限公司 | 一种充电桩用抗拉屏蔽绝缘电缆 |
JP2022123143A (ja) * | 2018-03-26 | 2022-08-23 | 住友電装株式会社 | 複合ケーブル |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016149095A1 (en) * | 2015-03-13 | 2016-09-22 | Ergotron, Inc. | Cable assembly with electromagnetic interference control for device chargers |
CN109130933A (zh) * | 2018-08-09 | 2019-01-04 | 安徽宇锋仓储设备有限公司 | 一种智能电动叉车的充电装置 |
CN113173087B (zh) * | 2021-04-27 | 2022-12-23 | 奇瑞新能源汽车股份有限公司 | 电动汽车的充电插座及具有其的电动汽车 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0730455U (ja) | 1993-11-12 | 1995-06-06 | 株式会社東京アールアンドデー | 電波雑音防止カバー |
JP2003068151A (ja) | 2001-08-29 | 2003-03-07 | Toyota Industries Corp | シールドケーブル |
JP2005235716A (ja) | 2004-02-23 | 2005-09-02 | Sumitomo Electric Ind Ltd | ワイヤハーネス用電線 |
JP2007082385A (ja) * | 2005-09-12 | 2007-03-29 | Masaki Tada | バッテリー非常用充電器 |
WO2009034877A1 (ja) | 2007-09-10 | 2009-03-19 | Toyota Jidosha Kabushiki Kaisha | 車両用充電装置および車両の充電方法 |
JP2009087870A (ja) * | 2007-10-02 | 2009-04-23 | Toyota Motor Corp | 車両充電用コネクタ |
JP2009296793A (ja) * | 2008-06-05 | 2009-12-17 | Toyota Motor Corp | 蓄電装置を搭載する車両および充電ケーブル |
JP2010124538A (ja) * | 2008-11-17 | 2010-06-03 | Toyota Motor Corp | 電動車両用の充電ケーブルおよびその管理方法 |
JP2010142088A (ja) * | 2008-12-15 | 2010-06-24 | Denso Corp | プラグイン車両用充電システム及び充電制御装置 |
JP2010166756A (ja) * | 2009-01-19 | 2010-07-29 | Toyota Motor Corp | 電動車両の充電口 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006120950A (ja) * | 2004-10-22 | 2006-05-11 | Toyota Industries Corp | 車両の電力線のノイズ低減方法及び車両の電力線に使用されるコネクタ |
DE102009029091B4 (de) * | 2009-09-02 | 2024-09-12 | Robert Bosch Gmbh | Starthilfeverfahren und Einrichtung für die Durchführung des Verfahrens |
-
2011
- 2011-05-02 WO PCT/JP2011/060538 patent/WO2012150631A1/ja active Application Filing
- 2011-05-02 JP JP2012524435A patent/JP5048888B1/ja active Active
- 2011-05-02 EP EP11864833.6A patent/EP2711936A4/en not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0730455U (ja) | 1993-11-12 | 1995-06-06 | 株式会社東京アールアンドデー | 電波雑音防止カバー |
JP2003068151A (ja) | 2001-08-29 | 2003-03-07 | Toyota Industries Corp | シールドケーブル |
JP2005235716A (ja) | 2004-02-23 | 2005-09-02 | Sumitomo Electric Ind Ltd | ワイヤハーネス用電線 |
JP2007082385A (ja) * | 2005-09-12 | 2007-03-29 | Masaki Tada | バッテリー非常用充電器 |
WO2009034877A1 (ja) | 2007-09-10 | 2009-03-19 | Toyota Jidosha Kabushiki Kaisha | 車両用充電装置および車両の充電方法 |
JP2009087870A (ja) * | 2007-10-02 | 2009-04-23 | Toyota Motor Corp | 車両充電用コネクタ |
JP2009296793A (ja) * | 2008-06-05 | 2009-12-17 | Toyota Motor Corp | 蓄電装置を搭載する車両および充電ケーブル |
JP2010124538A (ja) * | 2008-11-17 | 2010-06-03 | Toyota Motor Corp | 電動車両用の充電ケーブルおよびその管理方法 |
JP2010142088A (ja) * | 2008-12-15 | 2010-06-24 | Denso Corp | プラグイン車両用充電システム及び充電制御装置 |
JP2010166756A (ja) * | 2009-01-19 | 2010-07-29 | Toyota Motor Corp | 電動車両の充電口 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2711936A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014147225A (ja) * | 2013-01-29 | 2014-08-14 | Sumitomo Electric Ind Ltd | 給電装置及び給電システム |
JP2014150639A (ja) * | 2013-01-31 | 2014-08-21 | Chugoku Electric Power Co Inc:The | 放射ノイズ低減方法、及びケーブル |
JP2014161154A (ja) * | 2013-02-20 | 2014-09-04 | Fuji Electric Co Ltd | ノイズ対策フィルタ |
JP2022123143A (ja) * | 2018-03-26 | 2022-08-23 | 住友電装株式会社 | 複合ケーブル |
CN108932992A (zh) * | 2018-07-20 | 2018-12-04 | 安徽德源电缆集团有限公司 | 一种充电桩用抗拉屏蔽绝缘电缆 |
Also Published As
Publication number | Publication date |
---|---|
EP2711936A4 (en) | 2016-04-20 |
JP5048888B1 (ja) | 2012-10-17 |
JPWO2012150631A1 (ja) | 2014-07-28 |
EP2711936A1 (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5048888B1 (ja) | 放射ノイズ低減方法、及び充電ケーブル | |
US11264834B2 (en) | Coil apparatus | |
US10381135B2 (en) | Charging cable assembly | |
CN108063044B (zh) | 一种无线充电线圈和无线充电系统 | |
US10014105B2 (en) | Coil unit and wireless power transmission device | |
EP3487030A1 (en) | Output device for wireless charging | |
EP2924842B1 (en) | Coil unit and wireless power transmission device | |
US20100294531A1 (en) | Motor Vehicle Power Cable | |
US10530193B2 (en) | Passive magnetic field attenuation | |
RU2667147C1 (ru) | Устройство для приёма электроэнергии и устройство для передачи электроэнергии | |
US20120181059A1 (en) | High voltage cable design for electric and hybrid electric vehicles | |
WO2015083531A1 (ja) | 伝送ケーブル | |
WO2012144639A1 (ja) | 共鳴式非接触給電システム | |
JP5198497B2 (ja) | 電力装置 | |
WO2014156014A1 (ja) | 非接触充電装置 | |
EP1160801B1 (en) | High-frequency current multiconductor cable and power feeding equipment for one or more movable bodies using said cable | |
JP2007259578A (ja) | 電力変換装置 | |
JP2009027089A (ja) | シールド構造 | |
JP2014150639A (ja) | 放射ノイズ低減方法、及びケーブル | |
JP5721772B2 (ja) | 電力変換装置 | |
CN203562749U (zh) | 带绝缘套的高压电缆接头附件 | |
KR102428491B1 (ko) | 차량용 고전압 코어 전선 연결장치 | |
CN103151615B (zh) | 一种抗干扰天线装置 | |
CN212785915U (zh) | 一种用于地面供暖系统的发热电缆 | |
JP3198620U (ja) | 節電材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012524435 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11864833 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011864833 Country of ref document: EP |