WO2012147756A1 - マルチ接合光電変換素子 - Google Patents

マルチ接合光電変換素子 Download PDF

Info

Publication number
WO2012147756A1
WO2012147756A1 PCT/JP2012/061003 JP2012061003W WO2012147756A1 WO 2012147756 A1 WO2012147756 A1 WO 2012147756A1 JP 2012061003 W JP2012061003 W JP 2012061003W WO 2012147756 A1 WO2012147756 A1 WO 2012147756A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
thin film
conversion element
organic thin
film photoelectric
Prior art date
Application number
PCT/JP2012/061003
Other languages
English (en)
French (fr)
Inventor
上谷 保則
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012147756A1 publication Critical patent/WO2012147756A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a multijunction photoelectric conversion cell and a method for manufacturing the same.
  • An organic thin film photoelectric conversion element that converts light energy into electric energy includes a pair of electrodes and an active layer provided between the electrodes.
  • This active layer is composed of an organic thin film semiconductor (see, for example, Thin Solid Films, 491, 298-300 (2005)).
  • This organic thin film photoelectric conversion element is capable of forming an active layer or the like by a coating method, and is expected as an element that can be easily manufactured as compared with silicon solar cells and dye-sensitized solar cells. Has been.
  • the organic thin film photoelectric conversion element is required to improve photoelectric conversion efficiency.
  • the present invention provides a multi-junction photoelectric conversion element having a configuration that improves photoelectric conversion efficiency.
  • the present invention has a configuration in which a plurality of organic thin film photoelectric conversion elements are stacked, and each organic thin film photoelectric conversion element includes a pair of electrodes and an active layer provided between the electrodes, Of the pair of electrodes of the organic thin film photoelectric conversion element, the other organic thin film photoelectric conversion element side electrode is composed of an electrode exhibiting light transparency, and the other organic thin film photoelectric conversion excluding the organic thin film photoelectric conversion element at the one end
  • the element relates to a multi-junction photoelectric conversion element in which a pair of electrodes is configured by electrodes each exhibiting optical transparency.
  • the organic thin film photoelectric conversion element at one end of the above layer is the first organic thin film photoelectric conversion element, and the other organic thin film photoelectric conversion elements are 2 to m (the symbol “m” represents an integer of 2 or more). It demonstrates as an organic thin film photoelectric conversion element.
  • the multi-junction photoelectric conversion element of the present embodiment has a configuration in which 1 to m m organic thin film photoelectric conversion elements are stacked in the order of numbers, and each organic thin film photoelectric conversion element includes a pair of electrodes, An electrode on the second organic thin film photoelectric conversion element side of the pair of electrodes of the first organic thin film photoelectric conversion element is constituted by an electrode exhibiting optical transparency, Of the m organic thin film photoelectric conversion elements, the remaining organic photoelectric conversion elements other than the first organic thin film photoelectric conversion element are each composed of electrodes having a pair of light-transmitting electrodes.
  • the second to m organic thin film photoelectric conversion elements each include a pair of electrodes and an active layer provided between the electrodes, and the pair of electrodes includes an anode and a cathode.
  • Each of the pair of electrodes is constituted by an electrode exhibiting optical transparency.
  • “showing light transmittance” means “transparent or translucent”.
  • “showing light transmittance” is simply described as “transparent” including transparent and translucent.
  • An organic thin film photoelectric conversion element may be provided on a transparent substrate.
  • the organic thin film photoelectric conversion element includes not only a pair of electrodes and an active layer but also a predetermined layer. May have.
  • an electron transport layer may be provided between the cathode and the active layer
  • a hole transport layer may be provided between the active layer and the anode.
  • the element (a) is a so-called forward structure element
  • the element (b) is a so-called reverse structure element.
  • the pair of electrodes are each composed of electrodes exhibiting light transmittance, and thus the elements themselves exhibit light transmittance.
  • a transparent structure is implement
  • the transparent substrate may be any one that is transparent and does not chemically change when the organic thin film photoelectric conversion element is formed. Examples of the material for the transparent substrate include glass, plastic, and a polymer film.
  • the active layer may take the form of a single layer or a stacked form of a plurality of layers.
  • the active layer having a single layer structure is composed of a layer containing an electron accepting compound and an electron donating compound.
  • the active layer having a structure in which a plurality of layers are laminated is composed of, for example, a laminate in which a first active layer containing an electron donating compound and a second active layer containing an electron accepting compound are laminated.
  • the first active layer is disposed on the anode side with respect to the second active layer.
  • the active layer is preferably formed by a coating method.
  • the active layer preferably contains a polymer compound, and at least one of the electron donating compound and the electron accepting compound is preferably a polymer compound.
  • the polymer compound may be contained alone or two or more polymer compounds may be contained.
  • the electron-accepting compound suitably used for the organic photoelectric conversion element is a compound whose HOMO energy is higher than that of the electron-donating compound and whose LUMO energy is higher than that of the electron-donating compound.
  • the electron donating compound contained in the active layer may be a low molecular compound or a high molecular compound. Examples of the low molecular weight compound include phthalocyanine, metal phthalocyanine, porphyrin, metal porphyrin, oligothiophene, tetracene, pentacene, and rubrene.
  • polymer compound examples include polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine residue in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene Examples include vinylene and its derivatives, polythienylene vinylene and its derivatives, polyfluorene and its derivatives, and the like.
  • the electron-accepting compound contained in the active layer may be a low molecular compound or a high molecular compound.
  • Low molecular weight compounds include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and its derivatives, polyfluorene and its derivatives, fullerene and derivatives thereof such as C 60, 2,9-dimethyl - Examples thereof include phenanthroline derivatives such as 4,7-diphenyl-1,10-phenanthroline (basocuproin).
  • polymer compound examples include polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine residue in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene Examples include vinylene and its derivatives, polythienylene vinylene and its derivatives, polyfluorene and its derivatives, and the like. Among these, fullerene and its derivatives are preferable. Fullerenes and derivatives thereof include C 60 , C 70 , C 84 and derivatives thereof. A fullerene derivative represents a compound in which at least a part of fullerene is modified.
  • Examples of the fullerene derivative include a compound represented by the formula (I), a compound represented by the formula (II), a compound represented by the formula (III), and a compound represented by the formula (IV).
  • R a is an alkyl group, aryl group, heteroaryl group or group having an ester structure. A plurality of R a may be the same or different.
  • R b represents an alkyl group or an aryl group, and a plurality of R b may be the same or different.
  • Examples of the alkyl group represented by R a and R b include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a hexyl group, and an octyl group. And an alkyl group having 1 to 20 carbon atoms.
  • Examples of the aryl group represented by R a and R b include a phenyl group, a naphthyl group, an anthryl group, and a fluorenyl group.
  • Examples of the heteroaryl group represented by R a and R b include thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidyl group, quinolyl group, and isoquinolyl group.
  • the group having an ester structure represented by R a is, for example, a group represented by the formula (V).
  • u1 represents an integer of 1 to 6
  • u2 represents an integer of 0 to 6
  • R c represents an alkyl group, an aryl group, or a heteroaryl group.
  • the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R c are the same as the definitions and specific examples of the alkyl group, aryl group and heteroaryl group represented by R a and R b .
  • Specific examples of the C 60 derivative include the following.
  • Specific examples of the C 70 derivative include the following.
  • the proportion of fullerenes and fullerene derivatives is 100 parts by weight of the electron-donating compound.
  • the amount is preferably 10 to 1000 parts by weight, and more preferably 50 to 500 parts by weight.
  • the organic photoelectric conversion element preferably includes the active layer having the above-described single layer structure, and from the viewpoint of including many heterojunction interfaces, an electron-accepting compound composed of fullerenes and / or derivatives of fullerenes, It is more preferable to provide an active layer having a single layer structure containing an electron donating compound.
  • the active layer preferably contains a conjugated polymer compound and fullerenes and / or derivatives of fullerenes.
  • the conjugated polymer compound used in the active layer include an unsubstituted or substituted fluorenediyl group, an unsubstituted or substituted benzofluorenediyl group, an unsubstituted or substituted dibenzofurandiyl group, an unsubstituted or substituted dibenzo.
  • Thiophenediyl group unsubstituted or substituted carbazolediyl group, unsubstituted or substituted thiophenediyl group, unsubstituted or substituted furandyl group, unsubstituted or substituted pyrroldiyl group, unsubstituted or substituted benzothiadiazolediyl group, non A polymer comprising one or more groups selected from the group consisting of a substituted or substituted vinylene group and an unsubstituted or substituted triphenylaminediyl group as a repeating unit, wherein the repeating units are bonded directly or via a linking group Compounds.
  • conjugated polymer compound when the repeating units are bonded via a linking group, examples of the linking group include a phenylene group, a biphenylene group, a naphthalenediyl group, and an anthracenediyl group.
  • the conjugated polymer compound include a polymer in which one or more groups selected from the group consisting of a fluorenediyl group and a thiophenediyl group are included as a repeating unit, and the repeating units are bonded directly or via a linking group.
  • the thickness of the active layer is usually 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
  • the active layer is preferably formed by a coating method, for example, a method by film formation from a composition containing a solvent, a conjugated polymer compound, and a fullerene derivative.
  • Examples of the solvent include toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, unsaturated hydrocarbon solvents such as n-butylbenzene, sec-butylbezen, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, Halogenated saturated hydrocarbon solvents such as chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, trichlorobenzene, tetrahydrofuran, tetrahydro Examples include ether solvents such as pyran.
  • spin coating method for coating film formation, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method Coating methods such as a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, and a capillary coating method can be used.
  • a spin coating method it is preferable to use a spin coating method, a flexographic printing method, an ink jet printing method, or a dispenser printing method.
  • transparent electrode transparent anode or transparent cathode
  • a conductive metal oxide film a metal thin film, a conductive film containing an organic substance, or the like is used.
  • indium oxide, zinc oxide, tin oxide, indium tin oxide (Indium Tin Oxide: abbreviated as ITO), indium zinc oxide (Indium Zinc Oxide: abbreviated as IZO), gold, platinum, silver, copper, aluminum, Thin films such as polyaniline and derivatives thereof, and polythiophene and derivatives thereof are used.
  • a thin film of ITO, IZO or tin oxide is preferably used for the transparent electrode.
  • a transparent or translucent electrode in which the thickness of the thin film constituting the transparent electrode is set to a thickness that allows light to pass through is used as the transparent electrode.
  • the transparent electrode can take the form of a single layer or a stack of a plurality of layers.
  • At least one transparent electrode of the pair of electrodes is preferably formed by a coating method.
  • the coating liquid used when forming the transparent electrode by a coating method includes a constituent material of the transparent electrode and a solvent.
  • the transparent electrode preferably contains a polymer compound exhibiting conductivity, and is preferably composed of a polymer compound substantially exhibiting conductivity.
  • Examples of the constituent material of the transparent electrode include organic materials such as polyaniline and derivatives thereof, polythiophene and derivatives thereof, and polypyrrole and derivatives thereof.
  • the transparent electrode formed by the coating method is preferably composed of polythiophene and / or a polythiophene derivative, and is preferably substantially composed of polythiophene and / or a polythiophene derivative.
  • the transparent electrode preferably includes polyaniline and / or a polyaniline derivative, and preferably includes polyaniline and / or a polyaniline derivative.
  • polythiophene and derivatives thereof include compounds containing one or more structural formulas shown below as repeating units.
  • n represents an integer of 2 or more.
  • polypyrrole and derivatives thereof include compounds containing one or more of the following structural formulas as a repeating unit.
  • n represents an integer of 2 or more.
  • Specific examples of polyaniline and derivatives thereof include compounds containing one or more of the following structural formulas as a repeating unit.
  • n an integer of 2 or more.
  • PEDOT / PSS composed of poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (4-styrenesulfonic acid) (PSS) exhibits high photoelectric conversion efficiency. Therefore, it is suitably used as a constituent material of the transparent electrode.
  • the transparent electrode is not limited to the coating liquid containing the organic material, but is a dispersion liquid such as an emulsion, a suspension, or a metal paste containing a nanoparticle of a conductive substance, a nanowire of a conductive substance, or a nanotube of a conductive substance. You may form by the apply
  • the transparent electrode may be composed only of nanoparticles of a conductive substance or a fiber of the name. However, as shown in WO2008 / 131304, the transparent electrode is composed of conductive substance nanoparticles or nanofibers. You may have the structure disperse
  • the organic photoelectric conversion element preferably has an electron transport layer containing an electron transport material between the active layer and the cathode.
  • the electron transport layer is preferably formed by a coating method, for example, preferably by coating a coating solution containing an electron transport material and a solvent on the surface of the layer on which the electron transport layer is provided.
  • the coating solution also includes dispersions such as emulsions and suspensions.
  • the electron transporting material include zinc oxide, titanium oxide, zirconium oxide, tin oxide, indium oxide, ITO (indium tin oxide), FTO (fluorine-doped tin oxide), GZO (gallium-doped zinc oxide), and ATO ( Antimony-doped tin oxide) and AZO (aluminum-doped zinc oxide).
  • zinc oxide is preferable.
  • an electron carrying layer it is preferable to form the said electron carrying layer by forming into a film the coating liquid containing a particulate zinc oxide.
  • an electron transporting material it is preferable to use so-called zinc oxide nanoparticles, and it is more preferable to form an electron transporting layer using an electron transporting material composed only of zinc oxide nanoparticles.
  • the average particle diameter corresponding to zinc oxide spheres is preferably 1 nm to 1000 nm, more preferably 10 nm to 100 nm. The average particle diameter is measured by a laser light scattering method or an X-ray diffraction method.
  • an electron transporting layer containing an electron transporting material between the cathode and the active layer, it is possible to prevent peeling of the cathode and to increase the efficiency of electron injection from the active layer to the cathode.
  • the electron transport layer is preferably provided in contact with the active layer, and more preferably provided in contact with the cathode.
  • the electron transport layer containing an electron transport material it is possible to prevent the cathode from being peeled off and to further increase the efficiency of electron injection from the active layer to the cathode.
  • an organic photoelectric conversion element with high reliability and high photoelectric conversion efficiency can be realized.
  • the efficiency of electron injection into the cathode is increased, hole injection from the active layer is prevented, the electron transport capability is increased, and the active layer is formed.
  • the active layer can be protected from erosion by the coating solution used when the cathode is formed by a coating method, and deterioration of the active layer can be suppressed.
  • the electron transport layer containing an electron transport material is preferably composed of a material having high wettability with respect to a coating solution used when a cathode or an active layer is formed by coating after the electron transport layer is formed.
  • the electron transport layer containing an electron transport material preferably has higher wettability with respect to a coating solution used when a cathode or an active layer is formed by coating.
  • a coating solution used when a cathode or an active layer is formed by coating.
  • the coating solution wets and spreads well on the surface of the electron transport layer, and the film thickness is uniform.
  • an active layer can be formed. Examples of the method for forming the coating liquid include the same method as that for the active layer.
  • the organic photoelectric conversion element preferably has a hole transport layer containing a hole transport material between the active layer and the anode.
  • the hole transport layer is preferably formed by a coating method.
  • the hole transport layer is formed by coating a coating liquid containing a hole transport material and a solvent on the surface of the layer on which the hole transport layer is provided.
  • the coating solution also includes dispersions such as emulsions and suspensions.
  • the function of the hole transport layer is to increase the efficiency of hole injection into the active layer, to prevent the injection of electrons from the active layer, to increase the hole transport capability, to increase flatness, and to the active layer.
  • a polymer compound having a function of transporting holes can be given.
  • the polymer compound having a function of transporting holes include a polymer compound containing a thiophene diyl group, a polymer compound containing an aniline diyl group, and a polymer compound containing a pyrrole diyl group.
  • a polymer compound having high conductivity is preferable.
  • the conductivity of the polymer compound having high conductivity is usually 10 ⁇ 5 to 10 5 S / cm, preferably 10 ⁇ 3 to 10 4 S / cm.
  • the polymer compound showing the function of transporting holes may have an acid group such as a sulfonic acid group.
  • Examples of the polymer compound having an acid group include poly (thiophene) having an acid group and poly (aniline) having an acid group.
  • the poly (thiophene) having an acid group and the poly (aniline) having an acid group may further have a substituent other than the acid group.
  • the hole transport layer may contain another polymer compound as a binder in addition to the polymer compound having a function of transporting holes.
  • Examples of the binder include polystyrene sulfonic acid, polyvinyl phenol, novolac resin, and polyvinyl alcohol.
  • Examples of the method for forming the coating liquid include the same method as that for the active layer. Next, the first organic thin film photoelectric conversion element will be described.
  • the first organic thin film photoelectric conversion element has the same configuration as the organic thin film photoelectric conversion elements other than the first described above, or has a different electrode configuration from the organic thin film photoelectric conversion elements other than the first.
  • the pair of electrodes are each composed of a light transmissive electrode.
  • the photoelectric conversion element is a transparent element. Accordingly, a multi-junction photoelectric conversion element in which the first to m organic thin film photoelectric conversion elements are stacked is also a transparent element.
  • the electrode closer to the second organic thin film photoelectric conversion element is an electrode exhibiting optical transparency.
  • the electrode disposed apart from the second organic thin film photoelectric conversion element may be an opaque electrode.
  • this electrode is constituted by a reflective electrode that reflects light, reflected light is incident on the first organic thin film photoelectric conversion element through the second organic thin film photoelectric conversion element.
  • the electrode itself as a reflective electrode
  • a predetermined reflective layer that reflects light, a substrate that reflects light, or the like is used as the second of the pair of electrodes of the first organic thin film photoelectric conversion element. You may arrange
  • the outer side means that the reflective electrode is a predetermined material selected from the materials exemplified as the material of the transparent electrode described above, and this material is formed to have a film thickness that is sufficient to reflect light. It is realized by.
  • the method for producing a multi-junction photoelectric conversion element of the present invention is a method for producing a multi-junction photoelectric conversion element having a configuration in which m organic thin film photoelectric conversion elements of 1 to m are stacked in the order of numbers, Has a step of sequentially forming the m organic thin film photoelectric conversion elements each having a pair of electrodes and an active layer provided between the electrodes.
  • the active layer Is a manufacturing method of a multi-junction photoelectric conversion element.
  • the multi-junction photoelectric conversion element is manufactured, for example, by sequentially manufacturing each organic thin film photoelectric conversion element individually and superposing the prepared m organic thin film photoelectric conversion elements.
  • Each organic thin film photoelectric conversion element is produced by sequentially depositing each constituent element on a transparent substrate by the method described above.
  • Each organic thin film photoelectric conversion element may be formed on a transparent substrate. For example, on one transparent substrate, each component of the organic thin film photoelectric conversion element is first formed on one surface of the transparent substrate.
  • Each organic thin film photoelectric conversion element is manufactured by sequentially forming the film by the above-described method, and then each component of the organic thin film photoelectric conversion element is sequentially applied by the above-described method on the other surface of the transparent substrate.
  • One organic thin film photoelectric conversion element may be produced by forming a film, and as a result, two organic thin film photoelectric conversion elements may be produced on one transparent substrate.
  • each organic thin film photoelectric conversion element is not prepared in advance and laminated, but m organic thin film photoelectric conversion elements 1 to m are replaced with, for example, the first organic thin film photoelectric conversion element.
  • the respective constituent elements may be sequentially formed by the above-described method so as to be sequentially stacked.
  • each organic thin film photoelectric conversion element is preferably formed with an electrode in advance on a transparent substrate, and all remaining components other than the electrode on the substrate are formed on the electrode by a coating method.
  • At least one electrode of each pair of electrodes of organic thin film photoelectric conversion elements other than the first is formed by a coating method. Furthermore, it is more preferable that all the constituent elements of the organic thin film photoelectric conversion element are sequentially formed by a coating method on a transparent substrate on which no electrode is formed. Thus, productivity is improved by forming each component by a coating method. Thereby, a multi-junction photoelectric conversion element can be easily obtained.
  • the multi-junction photoelectric conversion element of the present invention can be obtained by overlapping the first to m organic thin film photoelectric conversion elements and wiring them so as to connect predetermined electrodes.
  • the first to m organic thin film photoelectric conversion elements may be elements having exactly the same structure, but light having a broad range of wavelengths out of incident light having a wide range of wavelengths has different absorption spectra. Can be used for power generation.
  • what is necessary is just to change the material of an active layer suitably, for example, in order to implement
  • the multi-junction photoelectric conversion element is a tandem junction photoelectric conversion element.
  • the multi-junction photoelectric conversion element is a normal multi-junction photoelectric conversion element.
  • the junction photoelectric conversion element is also referred to as a multi-junction photoelectric conversion element.
  • the first photoelectric conversion element is also preferably an organic photoelectric conversion element from the viewpoint of productivity. In that case, it is more preferable from the viewpoint of productivity that the active layer of the first organic photoelectric conversion element is also formed by a coating method.
  • the anodes and cathodes of each organic thin film photoelectric conversion element are connected, they are connected in parallel, and the current value of each organic thin film photoelectric conversion element is added.
  • the cathodes and anodes of the organic thin film photoelectric conversion elements having adjacent numbers are connected, and current is taken out between the anode of the first organic thin film photoelectric conversion element and the cathode of the mth organic thin film photoelectric conversion element.
  • the voltage values of the organic thin film photoelectric conversion elements are added in series. As a result, it is possible to obtain Jsc (short circuit current density) or Voc (open circuit voltage), which is higher than that of a single photoelectric conversion element, and thus high photoelectric conversion efficiency.
  • the polystyrene equivalent weight average molecular weight of the polymer compound was determined by size exclusion chromatography (SEC). Column: TOSOH TSKgel SuperHM-H (2) + TSKgel SuperH2000 (4.6 mm Id ⁇ 15 cm); Detector: RI (SHIMADZU RID-10A); Mobile phase: Tetrahydrofuran (THF) Reference Example 1 (Synthesis of Compound 1) A 1000 mL four-necked flask in which the gas in the flask was replaced with argon was charged with 13.0 g (80.0 mmol) of 3-bromothiophene and 80 mL of diethyl ether to obtain a uniform solution.
  • reaction solution was cooled again to ⁇ 78 ° C., and 62 mL (161 mmol) of 2.6 M n-BuLi in hexane was added dropwise over 15 minutes. After dropping, the reaction solution was stirred at ⁇ 25 ° C. for 2 hours, and further stirred at room temperature (25 ° C.) for 1 hour. Thereafter, the reaction solution was cooled to ⁇ 25 ° C., and a solution in which 60 g of iodine (236 mmol) was dissolved in 1000 mL of diethyl ether was added dropwise over 30 minutes.
  • reaction solution was stirred at room temperature (25 ° C.) for 2 hours, and 50 mL of 1N aqueous sodium thiosulfate solution was added to stop the reaction. Diethyl ether was added to the reaction solution to extract the organic layer containing the reaction product, and then the organic layer containing the reaction product was dried over magnesium sulfate and concentrated to obtain 35 g of a crude product.
  • the crude product was purified by recrystallization using chloroform to obtain 28 g of Compound 1.
  • the solution was kept at ⁇ 78 ° C., and 4.37 mL (11.4 mmol) of a 2.6M n-butyllithium hexane solution was added dropwise to the solution over 10 minutes. After the addition, the reaction solution was stirred at -78 ° C for 30 minutes, and then stirred at room temperature (25 ° C) for 2 hours. Thereafter, the flask was cooled to ⁇ 78 ° C., and 4.07 g (12.5 mmol) of tributyltin chloride was added to the reaction solution. After the addition, the reaction solution was stirred at ⁇ 78 ° C. for 30 minutes, and then stirred at room temperature (25 ° C.) for 3 hours.
  • the weight average molecular weight in terms of polystyrene of the polymer compound 1 was 1.1 ⁇ 10 5 .
  • Reference Example 9 (Synthesis of polymer compound 2) In a 200 ml separable flask, methyl trioctyl ammonium chloride (trade name: aliquat 336 (registered trademark), manufactured by Aldrich, CH 3 N [(CH 2 ) 7 CH 3 ] 3 Cl, density 0.884 g / ml, 25 ° C.) 0.65 g, compound (G) 1.5779 g and compound (I) 1.1454 g, and the gas in the flask was replaced with nitrogen.
  • aliquat 336 registered trademark
  • the obtained toluene solution was passed through a silica gel-alumina column, and the obtained toluene solution was added dropwise to 3000 ml of methanol to reprecipitate the polymer compound.
  • the polymer compound was filtered and dried under reduced pressure to obtain 3.00 g of polymer compound 2.
  • the obtained polymer compound 2 had a polystyrene equivalent weight average molecular weight of 257,000 and a number average molecular weight of 87,000.
  • the polymer compound 2 is a block copolymer represented by the following formula.
  • the flask was cooled to room temperature (25 ° C.) and diluted with 100 mL of chloroform.
  • the obtained solution was poured into 300 mL of 5 wt% aqueous sodium sulfite solution and stirred for 1 hour.
  • the organic layer of the obtained mixture was separated with a separatory funnel, and the aqueous layer was extracted with chloroform three times.
  • the obtained extract was combined with the organic layer separated earlier, dried over sodium sulfate, and concentrated with an evaporator to distill off the organic solvent.
  • the obtained yellow solid was dissolved in 90 mL of methanol heated to 55 ° C., and then cooled to 25 ° C.
  • the precipitated polymer was collected by filtration, and the obtained polymer was put into a cylindrical filter paper and extracted with methanol, acetone and hexane for 5 hours each using a Soxhlet extractor.
  • the polymer remaining in the cylindrical filter paper was dissolved in 100 mL of toluene, 2 g of sodium diethyldithiocarbamate and 40 mL of water were added, and the mixture was stirred under reflux for 8 hours.
  • the organic layer is washed twice with 50 ml of water, then twice with 50 mL of a 3 wt% aqueous acetic acid solution, then twice with 50 mL of water, and then 50 mL of 5% aqueous potassium fluoride solution. And then washed twice with 50 mL of water, and the resulting solution was poured into methanol to precipitate a polymer. The polymer was filtered and dried, and the obtained polymer was dissolved again in 50 mL of o-dichlorobenzene and passed through an alumina / silica gel column.
  • polymer compound 3 25 parts by weight of [6,6] -phenyl C71-butyric acid methyl ester (C70PCBM) (ADS71BFA) as fullerene derivative and 2.5 parts by weight of polymer compounds 1 and 2 as electron donor compounds .5 parts by weight of the polymer compound 2 and 1000 parts by weight of o-dichlorobenzene as a solvent were mixed.
  • the liquid obtained by mixing was filtered through a Teflon (registered trademark) filter having a pore diameter of 1.0 ⁇ m to produce a coating solution 1.
  • coating solution 2 5 parts by weight of [6,6] -phenyl C71-butyric acid methyl ester (C70PCBM) (ADS71BFA) as fullerene derivative, 2.5 parts by weight of polymer compound 1 as an electron donor compound, 500 parts by weight of o-dichlorobenzene was mixed as a solvent. Thereafter, the liquid obtained by mixing was filtered through a Teflon (registered trademark) filter having a pore diameter of 1.0 ⁇ m to produce a coating solution 2.
  • Reference Example 13 (Production and Measurement of Translucent Organic Thin Film Solar Cell (Element 1)) A glass substrate on which an ITO thin film that functions as an anode of a solar cell was formed was prepared.
  • the ITO thin film was formed by sputtering, and the thickness was 150 nm.
  • This glass substrate was treated with ozone UV to treat the surface of the ITO thin film.
  • PEDOT: PSS solution manufactured by HC Starck, CleviosP VP AI4083
  • PEDOT PSS solution (manufactured by HC Starck, CleviosP VP AI4083) is applied on the ITO film by spin coating, and heated at 120 ° C. in the atmosphere for 10 minutes to inject holes with a thickness of 50 nm. A layer was formed.
  • the coating solution 1 was applied by spin coating to form an active layer (film thickness of about 180 nm).
  • a 45 wt% isopropyl alcohol dispersion (HTD-711Z, manufactured by Teika) of zinc oxide nanoparticles (particle size 20-30 nm) is diluted with isopropyl alcohol 5 times by weight of the dispersion to obtain a coating solution.
  • This coating solution was applied on the active layer with a film thickness of 220 nm by spin coating to form an electron transport layer.
  • a wire-shaped conductor dispersion liquid (ClearOhm (registered trademark) Ink-NAQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent is applied by a spin coater and dried to form a conductive wire layer having a thickness of 120 nm.
  • a transparent cathode was obtained.
  • the translucent organic photoelectric conversion element was obtained by sealing with UV curable sealing agent. This is element 1.
  • the obtained organic thin film solar cell is irradiated with constant light using a solar simulator (trade name: OTENTO-SUNII: AM1.5G filter, irradiance: 100 mW / cm 2 , manufactured by Spectrometer Co., Ltd.), and the generated current and voltage are measured. did.
  • the element area was 4 mm square and 16 mm 2 .
  • Table 1 shows the obtained solar cell performance: Jsc (short circuit current density), open circuit voltage (Voc), FF (fill factor), and photoelectric conversion efficiency.
  • Reference Example 14 Provide and Measurement of Translucent Organic Thin Film Solar Cell (Element 2)) A glass substrate on which an ITO thin film that functions as an anode of a solar cell was formed was prepared. The ITO thin film was formed by sputtering, and the thickness was 150 nm. This glass substrate was treated with ozone UV to treat the surface of the ITO thin film.
  • PEDOT PSS solution (manufactured by HC Starck, CleviosP VP AI4083) is applied on the ITO film by spin coating, and heated at 120 ° C. in the atmosphere for 10 minutes to inject holes with a thickness of 50 nm. A layer was formed. On this hole injection layer, the coating solution 2 was applied by spin coating to form an active layer (film thickness of about 100 nm).
  • HTD-711Z isopropyl alcohol dispersion
  • This coating solution was applied on the active layer with a film thickness of 220 nm by spin coating to form an electron transport layer.
  • a wire-shaped conductor dispersion liquid (ClearOhm (registered trademark) Ink-NAQ: manufactured by Cambrios Technologies Corporation) in an aqueous solvent is applied by a spin coater and dried to form a conductive wire layer having a thickness of 120 nm.
  • a transparent cathode was obtained.
  • the translucent organic photoelectric conversion element was obtained by sealing with UV curable sealing agent. This is element 2.
  • the solar cell performance of the obtained device was measured in the same manner as in Reference Example 13, and the results are shown in Table 1.
  • Reference Example 15 (Production and Measurement of Opaque Organic Thin Film Solar Cell (Element 3)) A glass substrate on which an ITO thin film that functions as an anode of a solar cell was formed was prepared.
  • the ITO thin film was formed by sputtering, and the thickness was 150 nm.
  • This glass substrate was treated with ozone UV to treat the surface of the ITO thin film.
  • PEDOT: PSS solution manufactured by HC Starck, CleviosP VP AI4083
  • PEDOT PSS solution (manufactured by HC Starck, CleviosP VP AI4083) is applied on the ITO film by spin coating, and heated at 120 ° C. in the atmosphere for 10 minutes to inject holes with a thickness of 50 nm.
  • a layer was formed.
  • the coating solution 1 was applied by spin coating to form an active layer (film thickness of about 180 nm). Then, the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 1 to 9 ⁇ 10 ⁇ 3 Pa in all cases. Then, the opaque organic photoelectric conversion element was obtained by sealing with UV curable sealing agent. This is element 3. The solar cell performance of the obtained device was measured in the same manner as in Reference Example 13, and the results are shown in Table 1.
  • Reference Example 16 (Production and Measurement of Opaque Organic Thin Film Solar Cell (Element 4)) A glass substrate on which an ITO thin film that functions as an anode of a solar cell was formed was prepared.
  • the ITO thin film was formed by sputtering, and the thickness was 150 nm.
  • This glass substrate was treated with ozone UV to treat the surface of the ITO thin film.
  • PEDOT: PSS solution manufactured by HC Starck, CleviosP VP AI4083
  • PEDOT PSS solution (manufactured by HC Starck, CleviosP VP AI4083) is applied on the ITO film by spin coating, and heated at 120 ° C. in the atmosphere for 10 minutes to inject holes with a thickness of 50 nm.
  • a layer was formed.
  • the coating solution 2 was applied by spin coating to form an active layer (film thickness of about 100 nm). Then, the organic thin film solar cell was produced by vapor-depositing calcium with a film thickness of 4 nm with a vacuum evaporation machine, and vapor-depositing aluminum with a film thickness of 100 nm. The degree of vacuum at the time of vapor deposition was 1 to 9 ⁇ 10 ⁇ 3 Pa in all cases. Then, the opaque organic photoelectric conversion element was obtained by sealing with UV curable sealing agent. This is element 4. The solar cell performance of the obtained device was measured in the same manner as in Reference Example 13, and the results are shown in Table 1.
  • Example 1 (Production and measurement of parallel tandem organic thin film solar cell (element 5)) The element 1 and the element 4 were overlapped so that the glass substrates were combined, and the parallel tandem type organic thin film solar cell was created by connecting the anodes and cathodes of each element and wiring. This is element 5.
  • the solar cell performance of the obtained device was measured in the same manner as in Reference Example 13, and the results are shown in Table 1.
  • Example 2 (Production and Measurement of Series Tandem Organic Thin Film Solar Cell (Element 6))
  • the element 1 and the element 4 are overlapped so that the glass substrates are combined, and the cathode of the element 1 and the anode of the element 4 are connected and wired, and the anode of the element 1 and the cathode of the element 4 are taken out as an extraction electrode.
  • An organic thin film solar cell was prepared. This is element 6.
  • the solar cell performance of the obtained device was measured in the same manner as in Reference Example 13, and the results are shown in Table 1.
  • Example 3 (Production and measurement of parallel tandem organic thin film solar cell (element 7)) The element 1 and the element 2 were overlapped so that the glass substrates were combined, and the anodes and cathodes of each element were connected and wired, thereby creating a parallel tandem organic thin film solar cell. This is element 7.
  • the solar cell performance of the obtained device was measured in the same manner as in Reference Example 13, and the results are shown in Table 1.
  • Example 4 (Production and measurement of parallel tandem organic thin film solar cell (element 7))
  • the element 1 and the element 3 were overlapped so that the glass substrates were combined, and the parallel tandem type organic thin film solar cell was created by connecting the anodes and cathodes of each element and wiring. This is referred to as an element 8.
  • the solar cell performance of the obtained device was measured in the same manner as in Reference Example 13, and the results are shown in Table 1. As can be seen from Table 1, the tandem solar cell obtained by overlaying the thin-film solar cells showed higher efficiency than the individual solar cells.
  • the present invention is useful because it provides a multi-junction structure photoelectric conversion element with high photoelectric conversion efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

複数の有機薄膜光電変換素子が積層された構成を有し、各有機薄膜光電変換素子はそれぞれ、一対の電極と、該電極間に設けられる活性層とを備え、層の一端の有機薄膜光電変換素子の一対の電極の内、他の有機薄膜光電変換素子側の電極は、光透過性を示す電極によって構成され、該一端の有機薄膜光電変換素子を除く他の有機薄膜光電変換素子は、一対の電極がそれぞれ光透過性を示す電極によって構成されるマルチ接合光電変換素子は、光電変換効率の向上されたマルチ接合光電変換素子である。

Description

マルチ接合光電変換素子
 本発明はマルチ接合光電変換素子(multijunction photovoltaic cell)及びその製造方法に関する。
 光エネルギーを電気エネルギーに変換する有機薄膜光電変換素子は、一対の電極と、該電極間に設けられる活性層とを備える。この活性層は、有機薄膜半導体によって構成される(例えば、Thin Solid Films,491,298−300(2005)参照)。この有機薄膜光電変換素子は、活性層などを塗布法によって形成することが可能であり、シリコン系の太陽電池や色素増感太陽電池などと比べて、簡易に作製することが可能な素子として期待されている。
 上記有機薄膜光電変換素子には光電変換効率の向上が求められている。本発明は、光電変換効率が向上する構成のマルチ接合光電変換素子を提供する。
 本発明は、複数の有機薄膜光電変換素子が積層された構成を有し、各有機薄膜光電変換素子はそれぞれ、一対の電極と、該電極間に設けられる活性層とを備え、層の一端の有機薄膜光電変換素子の一対の電極の内、他の有機薄膜光電変換素子側の電極は、光透過性を示す電極によって構成され、該一端の有機薄膜光電変換素子を除く他の有機薄膜光電変換素子は、一対の電極がそれぞれ光透過性を示す電極によって構成されるマルチ接合光電変換素子に関する。
 以下、上記の層の一端の有機薄膜光電変換素子を第1の有機薄膜光電変換素子、他の有機薄膜光電変換素子を第2~m(記号「m」は2以上の整数を表す。)の有機薄膜光電変換素子として説明する。
 本実施のマルチ接合光電変換素子は、第1~mのm個の有機薄膜光電変換素子がその番号順に積層された構成を有し、各有機薄膜光電変換素子はそれぞれ、一対の電極と、該電極間に設けられる活性層とを備え、第1の有機薄膜光電変換素子の一対の電極の内の、第2の有機薄膜光電変換素子側の電極は、光透過性を示す電極によって構成され、m個の有機薄膜光電変換素子のうちの、第1の有機薄膜光電変換素子を除く残余の有機光電変換素子は、一対の電極がそれぞれ光透過性を示す電極によって構成される。
 まずm個の有機薄膜光電変換素子のうちの、第1の有機薄膜光電変換素子を除く他の有機光電変換素子(第2~mの有機薄膜光電変換素子)について説明する。
 第2~mの有機薄膜光電変換素子は、一対の電極と、該電極間に設けられる活性層とを備え、その一対の電極は、陽極と陰極とから構成される。当該一対の電極はそれぞれ光透過性を示す電極によって構成される。なお本明細書において「光透過性を示す」とは、「透明又は半透明」を意味する。以下では「光透過性を示す」ことを、透明及び半透明を含めて単に「透明」と記載する。
 有機薄膜光電変換素子は透明基板上に設けられることがある。以下に、本発明における第2~mの有機光電変換素子の素子構造の一例を示す。
 (a)透明基板/透明陽極/活性層/透明陰極
 (b)透明基板/透明陰極/活性層/透明陽極
 有機薄膜光電変換素子は、一対の電極及び活性層のみならず、さらに所定の層を備えることがある。例えば、陰極と活性層との間に電子輸送層が設けられることがあり、また活性層と陽極との間に、正孔輸送層が設けられることがある。
 (a)の素子はいわゆる順構造の素子であり、(b)の素子はいわゆる逆構造の素子である。
 このように、第2~mの有機光電変換素子は、一対の電極がそれぞれ光透過性を示す電極によって構成されるため、素子自体が光透過性を示す。また透明基板上に第1以外の有機薄膜光電変換素子を形成する場合には、基板に透明基板を用いることによって、透明基板と有機薄膜光電変換素子とを含めて、透明な構造体を実現することができる。ここで、透明基板は、透明であって、かつ有機薄膜光電変換素子を形成する際に化学的に変化しないものであればよい。透明基板の材料としては、例えば、ガラス、プラスチック、および高分子フィルムが挙げられる。
 まず、第2~mの有機光電変換素子の各構成要素及びそれらの製法について説明する。
 活性層は、単層の形態又は複数の層が積層された形態をとりうる。単層構成の活性層は、電子受容性化合物及び電子供与性化合物を含有する層から構成される。
 また複数の層が積層された構成の活性層は、例えば電子供与性化合物を含有する第一の活性層と、電子受容性化合物を含有する第二の活性層とを積層した積層体から構成される。この場合、第一の活性層が、第二の活性層に対して陽極側に配置される。
 活性層は塗布法により形成されることが好ましい。活性層は、高分子化合物を含むことが好ましく、電子供与性化合物及び電子受容性化合物の少なくとも一方は、高分子化合物であることが好ましく、電子供与性化合物又は電子受容性化合物として、一種類の高分子化合物を単独で含んでいても、二種類以上の高分子化合物を含んでいてもよい。
 有機光電変換素子に好適に用いられる電子受容性化合物は、そのHOMOエネルギーが電子供与性化合物のHOMOエネルギーよりも高く、かつ、そのLUMOエネルギーが電子供与性化合物のLUMOエネルギーよりも高い化合物である。
 活性層に含まれる電子供与性化合物は、低分子化合物であっても高分子化合物であってもよい。低分子化合物としては、フタロシアニン、金属フタロシアニン、ポルフィリン、金属ポルフィリン、オリゴチオフェン、テトラセン、ペンタセン、ルブレン等が挙げられる。高分子化合物としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。
 活性層に含まれる電子受容性化合物は、低分子化合物であっても高分子化合物であってもよい。低分子化合物としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン及びその誘導体、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(バソクプロイン)等のフェナントロリン誘導体等が挙げられる。高分子化合物としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。これらの中でもフラーレン及びその誘導体が好ましい。
 フラーレン及びその誘導体としては、C60、C70、C84及びその誘導体が挙げられる。フラーレン誘導体とは、フラーレンの少なくとも一部が修飾された化合物を表す。
 フラーレン誘導体としては、例えば、式(I)で表される化合物、式(II)で表される化合物、式(III)で表される化合物、式(IV)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000001
(式(I)~(IV)中、Rは、アルキル基、アリール基、ヘテロアリール基又はエステル構造を有する基である。複数個あるRは、同一であっても相異なってもよい。Rはアルキル基又はアリール基を表す。複数個あるRは、同一であっても相異なってもよい。)
 R及びRで表されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ヘキシル基、オクチル基等の炭素数1~20のアルキル基が挙げられる。R及びRで表されるアリール基としては、フェニル基、ナフチル基、アントリル基、フルオレニル基等が挙げられる。R及びRで表されるヘテロアリール基としては、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基、イソキノリル基等が挙げられる。
 Rで表されるエステル構造を有する基は、例えば、式(V)で表される基である。
Figure JPOXMLDOC01-appb-I000002
(式中、u1は、1~6の整数を表す、u2は、0~6の整数を表す、Rは、アルキル基、アリール基又はヘテロアリール基を表す。)
 Rで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例は、R及びRで表されるアルキル基、アリール基及びヘテロアリール基の定義及び具体例と同じである。
 C60の誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
 C70の誘導体の具体例としては、以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-I000005
 活性層が、フラーレン類及び/又はフラーレン類の誘導体からなる電子受容性化合物と、電子供与性化合物とを含有する構成では、フラーレン類及びフラーレン類の誘導体の割合が、電子供与性化合物100重量部に対して、10~1000重量部であることが好ましく、50~500重量部であることがより好ましい。また有機光電変換素子としては、前述の単層構成の活性層を備えることが好ましく、ヘテロ接合界面を多く含むという観点からは、フラーレン類及び/又はフラーレン類の誘導体からなる電子受容性化合物と、電子供与性化合物とを含有する単層構成の活性層を備えることがより好ましい。
 中でも活性層は、共役高分子化合物と、フラーレン類及び/又はフラーレン類の誘導体とを含むことが好ましい。活性層に用いられる共役高分子化合物としては、例えば、非置換又は置換のフルオレンジイル基、非置換又は置換のベンゾフルオレンジイル基、非置換又は置換のジベンゾフランジイル基、非置換又は置換のジベンゾチオフェンジイル基、非置換又は置換のカルバゾールジイル基、非置換又は置換のチオフェンジイル基、非置換又は置換のフランジイル基、非置換又は置換のピロールジイル基、非置換又は置換のベンゾチアジアゾールジイル基、非置換又は置換のビニレン基、及び非置換又は置換のトリフェニルアミンジイル基からなる群から選ばれる一種以上の基を繰り返し単位として含み、該繰り返し単位同士が直接又は連結基を介して結合した高分子化合物が挙げられる。
 前記共役高分子化合物において、前記繰り返し単位同士が連結基を介して結合している場合、該連結基としては、例えば、フェニレン基、ビフェニレン基、ナフタレンジイル基、アントラセンジイル基が挙げられる。
 共役高分子化合物の好ましい例としては、フルオレンジイル基及びチオフェンジイル基からなる群から選ばれる一種以上の基を繰り返し単位として含み、該繰り返し単位同士が直接又は連結基を介して結合した高分子化合物が挙げられる。
 活性層の膜厚は、通常、1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらに好ましくは20nm~200nmである。
 活性層は、塗布法によって形成されることが好ましく、例えば、溶媒と共役高分子化合物とフラーレン誘導体とを含む組成物からの成膜による方法が挙げられる。溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、sec−ブチルベゼン、tert−ブチルベンゼン等の不飽和炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル溶媒が挙げられる。
 塗布液の成膜には、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができる。塗布法の中でも、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法を用いることが好ましい。
 透明電極(透明陽極又は透明陰極)には、導電性の金属酸化物膜、金属薄膜、および有機物を含む導電膜等が用いられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、銅、アルミニウム、ポリアニリン及びその誘導体、並びにポリチオフェン及びその誘導体等の薄膜が用いられる。これらのなかでも透明電極には、ITO、IZO、酸化スズの薄膜が好適に用いられる。例えば、上述の透明電極を構成する薄膜の膜厚を、光が透過する程度の厚さにした透明又は半透明な電極が透明電極として用いられる。
 透明電極は、単層の形態または複数の層が積層された形態をとりうる。一対の電極のうちの少なくとも一方の透明電極は塗布法により形成されることが好ましい。透明電極を塗布法により形成する際に用いられる塗布液は、透明電極の構成材料と溶媒とを含む。透明電極は導電性を示す高分子化合物を含むことが好ましく、実質的に導電性を示す高分子化合物から成ることが好ましい。透明電極の構成材料としては、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体等の有機材料が挙げられる。
 塗布法により形成される透明電極は、ポリチオフェン及び/又はポリチオフェンの誘導体を含んで構成されることが好ましく、実質的にポリチオフェン及び/又はポリチオフェンの誘導体から成ることが好ましい。また透明電極は、ポリアニリン及び/又はポリアニリンの誘導体を含んで構成されることが好ましく、ポリアニリン及び/又はポリアニリンの誘導体から成ることが好ましい。
 ポリチオフェン及びその誘導体の具体例としては、以下に示す複数の構造式のうちの1つ以上を繰り返し単位として含む化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000006
 (式中、nは、2以上の整数を表す。)
 ポリピロール及びその誘導体の具体例としては、以下に示す複数の構造式の内の1以上を繰り返し単位として含む化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000007
 (式中、nは、2以上の整数を表す。)
 ポリアニリン及びその誘導体の具体例としては、以下に示す複数の構造式のうちの1以上を繰り返し単位として含む化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000008
 (式中、nは、2以上の整数を表す。)
 上記透明電極の構成材料のなかでも、ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)とポリ(4−スチレンスルホン酸)(PSS)からなるPEDOT/PSSは、高い光電変換効率を示す点から、透明電極の構成材料として好適に用いられる。
 透明電極は、上記有機材料を含む塗布液に限らずに、導電性物質のナノ粒子、導電性物質のナノワイヤ、または導電性物質のナノチューブを含む、エマルションやサスペンション、金属ペーストなどの分散液、溶融状態の低融点金属等を用いて塗布法により形成してもよい。導電性物質としては、金、銀、等の金属、ITO(インジウムスズ酸化物)等の酸化物、カーボンナノチューブ等が挙げられる。なお透明電極は、導電性物質のナノ粒子または名のファイバーのみから構成されていてもよいが、透明電極は、WO2008/131304に示されるように、導電性物質のナノ粒子またはナノファイバーが、導電性ポリマーなどの所定の媒体中に分散して配置された構成を有していてもよい。
 塗布液の成膜方法には、前記活性層と同様の方法が挙げられる。
 有機光電変換素子は、活性層と陰極との間に、電子輸送性材料を含む電子輸送層を有することが好ましい。
 電子輸送層は、塗布法により形成することが好ましく、たとえば電子輸送性材料と溶媒とを含む塗布液を、当該電子輸送層が設けられる層の表面上に塗布することにより形成することが好ましい。なお本発明において、塗布液は、エマルション、サスペンション等の分散液も含む。
 電子輸送性材料としては、例えば、酸化亜鉛、酸化チタン、酸化ジルコニウム、酸化スズ、酸化インジウム、ITO(インジウムスズ酸化物)、FTO(フッ素ドープ酸化スズ)、GZO(ガリウムドープ酸化亜鉛)、ATO(アンチモンドープ酸化スズ)、AZO(アルミニウムドープ酸化亜鉛)が挙げられ、これらの中でも、酸化亜鉛が好ましい。なお電子輸送層を形成するさいには、粒子状の酸化亜鉛を含む塗布液を成膜して、当該電子輸送層を形成することが好ましい。このような電子輸送材料としては、いわゆる酸化亜鉛のナノ粒子を用いることが好ましく、酸化亜鉛のナノ粒子のみからなる電子輸送性材料を用いて、電子輸送層を形成することがより好ましい。なお酸化亜鉛の球相当の平均粒子径は、1nm~1000nmが好ましく、10nm~100nmが好ましい。平均粒子径はレーザー光散乱法やX線回折法によって測定される。
 陰極と活性層との間に、電子輸送性材料を含む電子輸送層を設けることによって、陰極の剥離を防ぐとともに、活性層から陰極への電子注入効率を高めることができる。なお電子輸送層は、活性層に接して設けることが好ましく、さらには陰極にも接して設けられることが好ましい。このように電子輸送性材料を含む電子輸送層を設けることによって、陰極の剥離を防ぐとともに、活性層から陰極への電子注入効率をさらに高めることができる。このような電子輸送層を設けることによって、信頼性が高く、光電変換効率の高い有機光電変換素子を実現することができる。
 電子輸送性材料を含む電子輸送層を設けることによって、陰極への電子の注入効率を高めたり、活性層からの正孔の注入を防いだり、電子の輸送能を高めたり、活性層形成のあとに陰極を塗布法で形成する際に用いられる塗布液による侵食から活性層を保護したり、活性層の劣化を抑制したりすることができる。
 また電子輸送性材料を含む電子輸送層は、電子輸送層形成後に陰極または活性層を塗布形成する際に用いられる塗布液に対して濡れ性が高い材料によって構成されることが好ましい。具体的には電子輸送性材料を含む電子輸送層は、陰極または活性層を塗布形成する際に用いられる塗布液に対する濡れ性が高い方が好ましい。このような電子輸送層上に陰極または活性層を塗布形成することにより、陰極または活性層を形成する際に、塗布液が電子輸送層の表面上に良好に濡れ広がり、膜厚が均一な陰極または活性層を形成することができる。
 塗布液の成膜方法には、前記活性層と同様の方法が挙げられる。
 有機光電変換素子は、活性層と陽極との間に正孔輸送性材料を含む正孔輸送層を有することが好ましい。
 正孔輸送層は、塗布法により形成することが好ましく、たとえば正孔輸送性材料と溶媒とを含む塗布液を、当該正孔輸送層が設けられる層の表面上に塗布することにより形成することが好ましい。なお本発明において、塗布液は、エマルション、サスペンション等の分散液も含む。
 正孔輸送層の機能としては、活性層への正孔の注入効率を高める機能、活性層からの電子の注入を防ぐ機能、正孔の輸送能を高める機能、平坦性を高める機能、活性層形成のあとに陽極を塗布法で作製する場合に、陽極を成膜するための塗布液による侵食から活性層を保護する機能、活性層の劣化を抑制する機能等が挙げられる。
 正孔輸送性材料としては、例えば、正孔を輸送する機能を示す高分子化合物が挙げられる。正孔を輸送する機能を示す高分子化合物の例としては、チオフェンジイル基を含む高分子化合物、アニリンジイル基を含む高分子化合物、ピロールジイル基を含む高分子化合物が挙げられる。正孔を輸送する機能を示す高分子化合物の中でも、導電性の高い高分子化合物が好ましい。導電性が高い高分子化合物の導電率は、通常、10−5~10S/cmであり、好ましくは10−3~10S/cmである。
 正孔を輸送する機能を示す高分子化合物は、スルホン酸基等の酸基を有していてもよい。酸基を有する高分子化合物の例としては、酸基を有するポリ(チオフェン)、酸基を有するポリ(アニリン)が挙げられる。該酸基を有するポリ(チオフェン)及び酸基を有するポリ(アニリン)は、さらに、酸基以外の置換基を有していてもよい。
 正孔輸送層には、上記正孔を輸送する機能を示す高分子化合物に加えて、バインダーとして他の高分子化合物を含んでいてもよい。バインダーとしては、例えば、ポリスチレンスルホン酸、ポリビニルフェノール、ノボラック樹脂、ポリビニルアルコールが挙げられる。
 塗布液の成膜方法には、前記活性層と同様の方法が挙げられる。
 次に、第1の有機薄膜光電変換素子について説明する。第1の有機薄膜光電変換素子は、上述した第1以外の有機薄膜光電変換素子と同様の構成を有するか、又は第1以外の有機薄膜光電変換素子とは、電極の構成が異なる。
 第1の有機薄膜光電変換素子が、上述した第1以外の有機薄膜光電変換素子と同様の構成を有する場合、一対の電極がそれぞれ光透過性の電極によって構成されるため、第1の有機薄膜光電変換素子は透明な素子となる。したがって、第1~mの有機薄膜光電変換素子を積層したマルチ接合光電変換素子もまた透明な素子となる。
 第1の有機薄膜光電変換素子の一対の電極の内、第1~mの有機薄膜光電変換素子を積層した場合に、第2の有機薄膜光電変換素子寄りの電極は、光透過性を示す電極によって構成されるが、第2の有機薄膜光電変換素子から離間して配置される電極は、不透明な電極であってもよい。特に、この電極を、光を反射する反射電極によって構成した場合には、第2の有機薄膜光電変換素子を通って第1の有機薄膜光電変換素子に入射する光を反射するため、反射光が有機薄膜光電変換素子によって光電変換されることにより、発電効率を高めることができる。さらには、電極自体を反射電極とするのではなく、光を反射する所定の反射層や光を反射する基板などを、第1の有機薄膜光電変換素子の一対の電極のうちの、第2の有機薄膜光電変換素子から離間して配置される電極に対して、さらに第2の有機薄膜光電変換素子から離間する位置に配置してもよい。なおこの外側とは、なお反射電極は、上述の透明電極の材料として例示した材料のなかから、所定の材料を選択し、この材料を、光が反射する程度の膜厚以上に成膜することにより実現される。
 本発明のマルチ接合光電変換素子の製造方法は、第1~mのm個の有機薄膜光電変換素子が、その番号順に積層された構成を有するマルチ接合光電変換素子の製造方法であって、それぞれが一対の電極と、該電極間に設けられる活性層とを備える前記m個の有機薄膜光電変換素子を、順次形成する工程を有し、有機薄膜光電変換素子を順次形成する工程では、活性層を塗布法によって形成する、マルチ接合光電変換素子の製造方法である。
 マルチ接合光電変換素子は、例えば各有機薄膜光電変換素子を順次個別に作製し、作製したm個の有機薄膜光電変換素子を重ね合わせることによって作製される。各有機薄膜光電変換素子は、透明基板上に、各構成要素を順次上述の方法によってそれぞれ成膜することによって作製される。
 なお各有機薄膜光電変換素子は、それぞれ透明基板上に形成してもよいが、例えば1枚の透明基板上において、まず透明基板の一方の表面上に、有機薄膜光電変換素子の各構成要素を順次上述の方法によってそれぞれ成膜することによって1個の有機薄膜光電変換素子を作製し、次に透明基板の他方の表面上に、有機薄膜光電変換素子の各構成要素を順次上述の方法によってそれぞれ成膜することによって1個の有機薄膜光電変換素子を作製し、その結果として1枚の透明基板上に、2個の有機薄膜光電変換素子を作製してもよい。
 またマルチ接合光電変換素子は、各有機薄膜光電変換素子を予め作製しこれらを積層するのではなく、第1~mのm個の有機薄膜光電変換素子を、例えば第1の有機薄膜光電変換素子から順次積層するように、各構成要素を順次上述の方法によってそれぞれ成膜することによって作製してもよい。
 またm個の有機薄膜光電変換素子のうちの第1の有機薄膜光電変換素子を除く残余の有機光電変換素子の各一対の電極の内の、少なくとも一方の電極を塗布法によって形成することが好ましい。例えば各有機薄膜光電変換素子は、透明基板上にあらかじめ電極を形成しておき、この電極上に、基板上の電極以外の残り全ての構成要素を塗布法によって形成することが好ましい。このようにすることで、第1以外の有機薄膜光電変換素子の各一対の電極のうちの少なくとも一方の電極が塗布法によって形成される。さらには、電極が形成されていない透明基板上に、有機薄膜光電変換素子の各構成要素を順次全て塗布法によって形成することがさらに好ましい。このように塗布法によって各構成要素を形成することにより、生産性が向上する。これによって簡便にマルチ接合光電変換素子が得られる。
 なお本発明のマルチ接合光電変換素子は、第1~mの有機薄膜光電変換素子を重ね合わせ、所定の電極を接続するように配線することで得られる。第1~mの有機薄膜光電変換素子は、互いに全く同じ構成の素子であってもよいが、それぞれ吸収スペクトルが異なるほうが、広い範囲の波長をもつ入射光のうちの、広い範囲の波長の光を発電に利用できるので好ましい。なお吸収スペクトルが異なる有機薄膜光電変換素子を実現するには、例えば活性層の材料を適宜異ならせればよい。
 mが2の場合は、マルチ接合光電変換素子の内でも特にタンデム接合光電変換素子となり、またmが3以上の場合には、通常のマルチ接合光電変換素子となるが、本出願においては、タンデム接合光電変換素子も含めてマルチ接合光電変換素子と称する。
 なお第1の光電変換素子も有機光電変換素子であるほうが、生産性の点で好ましい。その場合、第1の有機光電変換素子の活性層も塗布法で作られるほうが生産性の点でより好ましい。
 各有機薄膜光電変換素子の陽極同士、陰極同士を繋いだ場合は並列接続となり、各有機薄膜光電変換素子の電流値が加算されることとなる。またたとえば番号が隣り合う有機薄膜光電変換素子の陰極と陽極とを繋いで、第1の有機薄膜光電変換素子の陽極と、第mの有機薄膜光電変換素子の陰極との間で電流を取り出した場合は直列接続となり、各有機薄膜光電変換素子の電圧値が加算されることとなる。その結果、単独の光電変換素子に比べて高い、Jsc(短絡電流密度)またはVoc(開放端電圧)を得ることができ、ひいては高い光電変換効率を得ることができる。
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
 高分子化合物のポリスチレン換算の重量平均分子量はサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
 カラム: TOSOH TSKgel SuperHM−H(2本)+ TSKgel SuperH2000(4.6mm I.d.× 15cm);検出器:RI (SHIMADZU RID−10A);移動相:テトラヒドロフラン(THF)
参考例1(化合物1の合成)
Figure JPOXMLDOC01-appb-I000009
 フラスコ内の気体をアルゴンで置換した1000mLの4つ口フラスコに、3−ブロモチオフェンを13.0g(80.0mmol)、ジエチルエーテルを80mL入れて均一な溶液とした。該溶液を−78℃に保ったまま、2.6Mのブチルリチウム(n−BuLi)のヘキサン溶液を31mL(80.6mmol)滴下した。−78℃で2時間反応させた後、8.96gの3−チオフェンアルデヒド(80.0mmol)を20mLのジエチルエーテルに溶解させた溶液を反応液に滴下した。滴下後、反応液を−78℃で30分攪拌し、さらに室温(25℃)で30分攪拌した。反応液を再度−78℃に冷却し、2.6Mのn−BuLiのヘキサン溶液62mL(161mmol)を15分かけて滴下した。滴下後、反応液を−25℃で2時間攪拌し、さらに室温(25℃)で1時間攪拌した。その後、反応液を−25℃に冷却し、60gのヨウ素(236mmol)を1000mLのジエチルエーテルに溶解させた溶液を30分かけて滴下した。滴下後、反応液を室温(25℃)で2時間攪拌し、1規定のチオ硫酸ナトリウム水溶液50mLを加えて反応を停止させた。反応液にジエチルエーテルを加え、反応生成物を含む有機層を抽出した後、硫酸マグネシウムで反応生成物を含む有機層を乾燥し、濃縮して35gの粗生成物を得た。クロロホルムを用いて粗生成物を再結晶することにより精製し、化合物1を28g得た。
参考例2(化合物2の合成)
Figure JPOXMLDOC01-appb-I000010
 300mLの4つ口フラスコに、ビスヨードチエニルメタノール(化合物1)を10g(22.3mmol)、塩化メチレンを150mL加えて均一な溶液とした。該溶液にクロロクロム酸ピリジニウムを7.50g(34.8mmol)加え、室温(25℃)で10時間攪拌した。反応液をろ過して不溶物を除去後、ろ液を濃縮し、化合物2を10.0g(22.4mmol)得た。
参考例3(化合物3の合成)
Figure JPOXMLDOC01-appb-I000011
 フラスコ内の気体をアルゴンで置換した300mLフラスコに、化合物2を10.0g(22.3mmol)、銅粉末を6.0g(94.5mmol)、脱水N,N−ジメチルホルムアミド(以下、DMFと呼称することもある)を120mL加えて、120℃で4時間攪拌した。反応後、フラスコを室温(25℃)まで冷却し、反応液をシリカゲルカラムに通して不溶成分を除去した。その後、反応液に水500mLを加え、さらにクロロホルムを加え、反応生成物を含む有機層を抽出した。クロロホルム溶液である有機層を硫酸マグネシウムで乾燥し、濃縮して粗製物を得た。粗製物を展開液がクロロホルムであるシリカゲルカラムで精製し、化合物3を3.26g得た。
参考例4(化合物4の合成)
Figure JPOXMLDOC01-appb-I000012
 メカニカルスターラーを備え、フラスコ内の気体をアルゴンで置換した300mL4つ口フラスコに、化合物3を3.85g(20.0mmol)、クロロホルムを50mL、トリフルオロ酢酸を50mL入れて均一な溶液とした。該溶液に過ホウ酸ナトリウム1水和物を5.99g(60mmol)加え、室温(25℃)で45分間攪拌した。その後、反応液に水200mLを加え、さらにクロロホルムを加え、反応生成物を含む有機層を抽出した。クロロホルム溶液である有機層をシリカゲルカラムに通し、エバポレーターでろ液の溶媒を留去した。メタノールを用いて残渣を再結晶し、化合物4を534mg得た。
H NMR in CDCl(ppm):7.64(d、1H)、7.43(d、1H)、7.27(d、1H)、7.10(d、1H)
参考例5(化合物5の合成)
Figure JPOXMLDOC01-appb-I000013
 フラスコ内の気体をアルゴンで置換した100mL四つ口フラスコに、化合物4を1.00g(4.80mmol)と脱水THFを30ml入れて均一な溶液とした。フラスコを−20℃に保ちながら、反応液に1Mの3,7−ジメチルオクチルマグネシウムブロミドのエーテル溶液を12.7mL加えた。その後、30分かけて温度を−5℃まで上げ、そのままの温度で反応液を30分攪拌した。その後、10分かけて温度を0℃に上げ、そのままの温度で反応液を1.5時間攪拌した。その後、反応液に水を加えて反応を停止し、さらに酢酸エチルを加え、反応生成物を含む有機層を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、シリカゲルカラムに通した後、溶出液の溶媒を留去して、化合物5を1.50g得た。
H NMR in CDCl(ppm):8.42(b、1H)、7.25(d、1H)、7.20(d、1H)、6.99(d、1H)、6.76(d、1H)、2.73(b、1H)、1.90(m、4H)、1.58−1.02(b、20H)、0.92(s、6H)、0.88(s、12H)
参考例6(化合物6の合成)
Figure JPOXMLDOC01-appb-I000014
 フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物5を1.50g、トルエンを30mL入れて均一な溶液とした。該溶液にp−トルエンスルホン酸ナトリウム1水和物を100mg入れ、100℃で1.5時間攪拌を行った。反応液を室温(25℃)まで冷却後、水50mLを加え、さらにトルエンを加えて反応生成物を含む有機層を抽出した。トルエン溶液である有機層を硫酸ナトリウムで乾燥し、有機溶媒を留去した。得られた粗生成物を、展開溶媒がヘキサンであるシリカゲルカラムで生成し、化合物6を1.33g得た。ここまでの操作を複数回行った。
H NMR in CDCl(ppm):6.98(d、1H)、6.93(d、1H)、6.68(d、1H)、6.59(d、1H)、1.89(m、4H)、1.58−1.00(b、20H)、0.87(s、6H)、0.86(s、12H)
参考例7(化合物7の合成)
Figure JPOXMLDOC01-appb-I000015
 フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物6を2.16g(4.55mmol)、脱水THFを100mL入れて均一な溶液とした。該溶液を−78℃に保ち、該溶液に2.6Mのn−ブチルリチウムのヘキサン溶液4.37mL(11.4mmol)を10分かけて滴下した。滴下後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で2時間攪拌した。その後、フラスコを−78℃に冷却し、反応液にトリブチルスズクロリドを4.07g(12.5mmol)加えた。添加後、反応液を−78℃で30分攪拌し、次いで、室温(25℃)で3時間攪拌した。その後、反応液に水200mlを加えて反応を停止し、酢酸エチルを加えて反応生成物を含む有機層を抽出した。酢酸エチル溶液である有機層を硫酸ナトリウムで乾燥し、エバポレーターで濃縮することにより、有機溶媒を留去した。得られたオイル状の物質を、展開溶媒がヘキサンであるシリカゲルカラムで精製した。シリカゲルカラムのシリカゲルには、あらかじめ5重量(wt)%のトリエチルアミンを含むヘキサンに5分間浸し、その後、ヘキサンで濯いだシリカゲルを用いた。精製後、化合物7を3.52g(3.34mmol)得た。
参考例8(高分子化合物1の合成)
Figure JPOXMLDOC01-appb-I000016
 フラスコ内の気体をアルゴンで置換した2L四つ口フラスコに、化合物(E)を7.928g(16.72mmol)、化合物(F)を13.00g(17.60mmol)、トリオクチルメチルアンモニウムクロリド(商品名Aliquat336(登録商標)、アルドリッチ社製、CHN[(CHCHCl、density 0.884g/ml、25℃)を4.979g、及びトルエンを405ml入れ、撹拌しながら反応系内を30分間アルゴンバブリングした。フラスコ内にジクロロビス(トリフェニルホスフィン)パラジウム(II)を0.02g加え、105℃に昇温し、撹拌しながら2mol/Lの炭酸ナトリウム水溶液42.2mlを滴下した。滴下終了後5時間反応させ、その後、フェニルボロン酸2.6gとトルエン1.8mlとを加え、105℃で16時間撹拌した。その後、反応液にトルエン700ml及び7.5wt%のジエチルジチオカルバミン酸ナトリウム三水和物水溶液200mlを加え、85℃で3時間撹拌した。反応液の水層を除去後、有機層を60℃のイオン交換水300mlで2回、60℃の3wt%酢酸300mlで1回、さらに60℃のイオン交換水300mlで3回洗浄した。有機層をセライト、アルミナ及びシリカを充填したカラムに通し、溶出液を得た。その後、熱トルエン800mlでカラムを洗浄し、トルエン溶液を溶出液に加えた。得られた溶液を700mlまで濃縮した後、濃縮した溶液を2Lのメタノールに加え、高分子化合物を再沈殿させた。高分子化合物をろ過して回収し、500mlのメタノール、500mlのアセトン、500mlのメタノールで高分子化合物を洗浄した。高分子化合物を50℃で一晩真空乾燥することにより、ペンタチエニル−フルオレンコポリマー(高分子化合物1)12.21gを得た。高分子化合物1のポリスチレン換算の重量平均分子量は1.1×10であった。
参考例9(高分子化合物2の合成)
Figure JPOXMLDOC01-appb-I000017
 200mlのセパラブルフラスコに、メチルトリオクチルアンモニウムクロライド(商品名:aliquat336(登録商標)、Aldrich製、CHN[(CHCHCl、density 0.884g/ml、25℃)を0.65g、化合物(G)を1.5779g、化合物(I)を1.1454g入れ、フラスコ内の気体を窒素で置換した。フラスコに、アルゴンバブリングしたトルエンを35ml加え、撹拌溶解後、さらに40分アルゴンバブリングした。フラスコを加熱するバスの温度を85℃まで昇温後、反応液に、酢酸パラジウム1.6mg、トリスo−メトキシフェニルフォスフィンを6.7mg加え、つづいてバスの温度を105℃まで昇温しながら、17.5重量%の炭酸ナトリウム水溶液9.5mlを6分かけて滴下した。滴下後、バスの温度を105℃に保った状態で1.7時間攪拌し、その後、反応液を室温まで冷却した。
 次に、当該反応液に、化合物(G)を1.0877g、化合物(H)を0.9399g加え、さらに、アルゴンバブリングしたトルエンを15ml加え、撹拌溶解後、さらに30分アルゴンバブリングした。反応液に、酢酸パラジウムを1.3mg、トリスo−メトキシフェニルフォスフィンを4.7mg加え、つづいてバスの温度を105℃まで昇温しながら、17.5重量%の炭酸ナトリウム水溶液6.8mlを5分かけて滴下した。滴下後、バスの温度を105℃に保った状態で3時間攪拌した。撹拌後、反応液に、アルゴンバブリングしたトルエンを50ml、酢酸パラジウムを2.3mg、トリスo−メトキシフェニルフォスフィンを8.8mg、フェニルホウ酸を0.305g加え、バスの温度を105℃に保った状態で8時間攪拌した。次に、反応液の水層を除去した後、ナトリウムN,N−ジエチルジチオカルバメート3.1gを30mlの水に溶解した水溶液を加え、バスの温度を85℃に保った状態で2時間攪拌した。つづいて、反応液にトルエン250mlを加えて反応液を分液し、有機層を65mlの水で2回、65mlの3重量%酢酸水で2回、65mlの水で2回洗浄した。洗浄後の有機層にトルエン150mlを加えて希釈し、2500mlのメタノールに滴下し、高分子化合物を再沈殿させた。高分子化合物をろ過し、減圧乾燥後、500mlのトルエンに溶解させた。得られたトルエン溶液を、シリカゲル−アルミナカラムに通し、得られたトルエン溶液を3000mlのメタノールに滴下し、高分子化合物を再沈殿させた。高分子化合物をろ過し、減圧乾燥後、3.00gの高分子化合物2を得た。得られた高分子化合物2のポリスチレン換算の重量平均分子量は、257,000であり、数平均分子量は87,000であった。
 高分子化合物2は、下記式で表されるブロック共重合体である。
Figure JPOXMLDOC01-appb-I000018
参考例10(化合物9の合成)
Figure JPOXMLDOC01-appb-I000019
 500mlフラスコに、4,5−ジフルオロ−1,2−ジアミノベンゼン(東京化成工業製)を10.2g(70.8mmol)、ピリジンを150mL入れて均一溶液とした。フラスコを0℃に保ったまま、フラスコ内に塩化チオニル16.0g(134mmol)を滴下した。滴下後、フラスコを25℃に温めて、6時間反応を行った。その後、水250mlを加え、クロロホルムで反応生成物を抽出した。クロロホルム溶液である有機層を硫酸ナトリウムで乾燥し、エバポレーターで濃縮して析出した固体を再結晶により精製した。再結晶の溶媒には、メタノールを用いた。精製後、化合物9を10.5g(61.0mmol)得た。
参考例11(化合物10の合成)
Figure JPOXMLDOC01-appb-I000020
 100mLフラスコに、化合物9を2.00g(11.6mmol)、鉄粉0.20g(3.58mmol)をいれ、フラスコを90℃に加熱した。このフラスコに臭素31g(194mmol)を1時間かけて滴下した。滴下後、90℃で38時間攪拌した。その後、フラスコを室温(25℃)まで冷却し、クロロホルム100mLを入れて希釈した。得られた溶液を、5wt%の亜硫酸ナトリウム水溶液300mLに注ぎ込み、1時間攪拌した。得られた混合液の有機層を分液ロートで分離し、水層をクロロホルムで3回抽出した。得られた抽出液を先ほど分離した有機層と合わせて硫酸ナトリウムで乾燥し、エバポレーターで濃縮することにより有機溶媒を留去した。得られた黄色の固体を、55℃に熱したメタノール90mLに溶解させ、その後、25℃まで冷却した。析出した結晶をろ過して取得し、その後、室温(25℃)で減圧乾燥して化合物10を1.50g得た。
19F NMR(CDCl、ppm):−118.9(s、2F)
参考例12(高分子化合物3の合成)
Figure JPOXMLDOC01-appb-I000021
 フラスコ内の気体をアルゴンで置換した200mLフラスコに、化合物7を500mg(0.475mmol)、化合物10を141mg(0.427mmol)、トルエンを32ml入れて均一溶液とした。得られたトルエン溶液を、アルゴンで30分バブリングした。その後、トルエン溶液に、トリス(ジベンジリデンアセトン)ジパラジウムを6.52mg(0.007mmol)、トリス(2−トルイル)ホスフィンを13.0mg加え、100℃で6時間攪拌した。その後、反応液にフェニルブロミドを500mg加え、さらに5時間攪拌した。その後、フラスコを25℃に冷却し、反応液をメタノール300mLに注いだ。析出したポリマーをろ過して回収し、得られたポリマーを、円筒ろ紙に入れ、ソックスレー抽出器を用いて、メタノール、アセトン及びヘキサンでそれぞれ5時間抽出した。円筒ろ紙内に残ったポリマーを、トルエン100mLに溶解させ、ジエチルジチオカルバミン酸ナトリウム2gと水40mLを加え、8時間還流下で攪拌を行った。水層を除去後、有機層を水50mlで2回洗浄し、次いで、3wt%の酢酸水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、次いで、5%フッ化カリウム水溶液50mLで2回洗浄し、次いで、水50mLで2回洗浄し、得られた溶液をメタノールに注いでポリマーを析出させた。ポリマーをろ過後、乾燥し、得られたポリマーをo−ジクロロベンゼン50mLに再度溶解し、アルミナ/シリカゲルカラムを通した。得られた溶液をメタノールに注いでポリマーを析出させ、ポリマーをろ過後、乾燥し、精製された重合体185mgを得た。以下、この重合体を高分子化合物3と呼称する。
(塗布溶液1の製造)
 フラーレン誘導体として25重量部の[6,6]−フェニルC71−酪酸メチルエステル(C70PCBM)(アメリカンダイソース社製、ADS71BFA)と、電子供与体化合物として2.5重量部の高分子化合物1及び2.5重量部の高分子化合物2と、溶媒として1000重量部のo−ジクロロベンゼンとを混合した。その後、混合して得られた液を孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液1を製造した。
(塗布溶液2の製造)
 フラーレン誘導体として5重量部の[6,6]−フェニルC71−酪酸メチルエステル(C70PCBM)(アメリカンダイソース社製、ADS71BFA)と、電子供与体化合物として2.5重量部の高分子化合物1と、溶媒として500重量部のo−ジクロロベンゼンとを混合した。その後、混合して得られた液を孔径1.0μmのテフロン(登録商標)フィルターで濾過し、塗布溶液2を製造した。
参考例13(半透明有機薄膜太陽電池(素子1)の作製、測定)
 太陽電池の陽極として機能するITO薄膜が形成されたガラス基板を用意した。ITO薄膜はスパッタ法によって形成されたものであり、その厚みは150nmであった。このガラス基板をオゾンUV処理し、ITO薄膜の表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製、CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中120℃で10分間加熱することにより、膜厚50nmの正孔注入層を形成した。この正孔注入層上に、塗布溶液1をスピンコートにより塗布し、活性層(膜厚約180nm)を形成した。
 次に、酸化亜鉛ナノ粒子(粒径20~30nm)の45重量%イソプロピルアルコール分散液(HTD−711Z、テイカ社製)を、当該分散液の5倍重量部のイソプロピルアルコールで希釈し、塗布液を調製した。この塗布液を、スピンコートにより活性層上に220nmの膜厚で塗布し、電子輸送層を形成した。
 次に、水溶媒のワイヤー状導電体分散液(ClearOhm(登録商標)Ink−N AQ:Cambrios Technologies Corporation社製)をスピンコーターによって塗布し、乾燥させることで、膜厚120nmの導電性ワイヤー層の透明陰極を得た。その後、UV硬化性封止剤で封止することで半透明の有機光電変換素子を得た。これを素子1とする。
 得られた有機薄膜太陽電池にソーラシミュレーター(分光計器製、商品名OTENTO−SUNII:AM1.5Gフィルター、放射照度100mW/cm)を用いて一定の光を照射し、発生する電流と電圧を測定した。素子面積は4mm角の16mmであった。得られた太陽電池性能:Jsc(短絡電流密度)、開放端電圧(Voc)、FF(フィルファクター)、光電変換効率を表1に示した。
参考例14(半透明有機薄膜太陽電池(素子2)の作製、測定)
 太陽電池の陽極として機能するITO薄膜が形成されたガラス基板を用意した。ITO薄膜はスパッタ法によって形成されたものであり、その厚みは150nmであった。このガラス基板をオゾンUV処理し、ITO薄膜の表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製、CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中120℃で10分間加熱することにより、膜厚50nmの正孔注入層を形成した。この正孔注入層上に、塗布溶液2をスピンコートにより塗布し、活性層(膜厚約100nm)を形成した。
 次に、酸化亜鉛ナノ粒子(粒径20~30nm)の45重量%イソプロピルアルコール分散液(HTD−711Z、テイカ社製)を、当該分散液の5倍重量部のイソプロピルアルコールで希釈し、塗布液を調製した。この塗布液を、スピンコートにより活性層上に220nmの膜厚で塗布し、電子輸送層を形成した。
 次に、水溶媒のワイヤー状導電体分散液(ClearOhm(登録商標)Ink−N AQ:Cambrios Technologies Corporation社製)をスピンコーターによって塗布し、乾燥させることで、膜厚120nmの導電性ワイヤー層の透明陰極を得た。その後、UV硬化性封止剤で封止することで半透明の有機光電変換素子を得た。これを素子2とする。
 得られた素子を参考例13と同様にして太陽電池性能を測定し、結果を表1に示した。
参考例15(不透明有機薄膜太陽電池(素子3)の作製、測定)
 太陽電池の陽極として機能するITO薄膜が形成されたガラス基板を用意した。ITO薄膜はスパッタ法によって形成されたものであり、その厚みは150nmであった。このガラス基板をオゾンUV処理し、ITO薄膜の表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製、CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中120℃で10分間加熱することにより、膜厚50nmの正孔注入層を形成した。この正孔注入層上に、塗布溶液1をスピンコートにより塗布し、活性層(膜厚約180nm)を形成した。
 その後、真空蒸着機によりカルシウムを膜厚4nmで蒸着し、次いで、アルミニウムを膜厚100nmで蒸着することにより、有機薄膜太陽電池を作製した。蒸着のときの真空度は、すべて1~9×10−3Paであった。その後、UV硬化性封止剤で封止することで不透明の有機光電変換素子を得た。これを素子3とする。
 得られた素子を参考例13と同様にして太陽電池性能を測定し、結果を表1に示した。
参考例16(不透明有機薄膜太陽電池(素子4)の作製、測定)
 太陽電池の陽極として機能するITO薄膜が形成されたガラス基板を用意した。ITO薄膜はスパッタ法によって形成されたものであり、その厚みは150nmであった。このガラス基板をオゾンUV処理し、ITO薄膜の表面処理を行った。次に、PEDOT:PSS溶液(H.C.スタルク社製、CleviosP VP AI4083)をスピンコートによりITO膜上に塗布し、大気中120℃で10分間加熱することにより、膜厚50nmの正孔注入層を形成した。この正孔注入層上に、塗布溶液2をスピンコートにより塗布し、活性層(膜厚約100nm)を形成した。
 その後、真空蒸着機によりカルシウムを膜厚4nmで蒸着し、次いで、アルミニウムを膜厚100nmで蒸着することにより、有機薄膜太陽電池を作製した。蒸着のときの真空度は、すべて1~9×10−3Paであった。その後、UV硬化性封止剤で封止することで不透明の有機光電変換素子を得た。これを素子4とする。
 得られた素子を参考例13と同様にして太陽電池性能を測定し、結果を表1に示した。
実施例1(並列タンデム型有機薄膜太陽電池(素子5)の作製、測定)
 素子1と素子4とを、上記ガラス基板が合わさるように重ね合わせ、各素子の陽極同士、陰極同士を繋いで配線することで、並列タンデム型有機薄膜太陽電池を作成した。これを素子5とする。
 得られた素子を参考例13と同様にして太陽電池性能を測定し、結果を表1に示した。
実施例2(直列タンデム型有機薄膜太陽電池(素子6)の作製、測定)
 素子1と素子4とを、上記ガラス基板が合わさるように重ね合わせ、素子1の陰極と素子4の陽極を繋いで配線し、素子1の陽極と素子4の陰極を取り出し電極として、直列タンデム型有機薄膜太陽電池を作成した。これを素子6とする。
 得られた素子を参考例13と同様にして太陽電池性能を測定し、結果を表1に示した。
実施例3(並列タンデム型有機薄膜太陽電池(素子7)の作製、測定)
 素子1と素子2とを、上記ガラス基板が合わさるように重ね合わせ、各素子の陽極同士、陰極同士を繋いで配線することで、並列タンデム型有機薄膜太陽電池を作成した。これを素子7とする。
 得られた素子を参考例13と同様にして太陽電池性能を測定し、結果を表1に示した。
実施例4(並列タンデム型有機薄膜太陽電池(素子7)の作製、測定)
 素子1と素子3とを、上記ガラス基板が合わさるように重ね合わせ、各素子の陽極同士、陰極同士を繋いで配線することで、並列タンデム型有機薄膜太陽電池を作成した。これを素子8とする。
 得られた素子を参考例13と同様にして太陽電池性能を測定し、結果を表1に示した。
Figure JPOXMLDOC01-appb-T000022
 表1からわかるように、機薄膜太陽電池を重ね合わせることで得られたタンデム型太陽電池は、各単独の太陽電池よりも高い効率を示した。
 本発明は、光電変換効率成の高いマルチ接合構造光電変換素子を提供することから、有用である。

Claims (5)

  1.  複数の有機薄膜光電変換素子が積層された構成を有し、各有機薄膜光電変換素子はそれぞれ、一対の電極と、該電極間に設けられる活性層とを備え、層の一端の有機薄膜光電変換素子の一対の電極の内、他の有機薄膜光電変換素子側の電極は、光透過性を示す電極によって構成され、該一端の有機薄膜光電変換素子を除く他の有機薄膜光電変換素子は、一対の電極がそれぞれ光透過性を示す電極によって構成されるマルチ接合光電変換素子。
  2.  一端の有機薄膜光電変換素子以外の有機光電変換素子は、一対の電極の内の少なくともいずれか一方の電極が、導電性物質のナノ粒子、又は導電性物質のナノファイバーを含む、請求項1記載のマルチ接合光電変換素子。
  3.  活性層が、共役高分子化合物とフラーレン誘導体とを含む、請求項1又は2記載のマルチ接合光電変換素子。
  4.  複数の有機薄膜光電変換素子が積層された構成を有するマルチ接合光電変換素子の製造方法であって、一対の電極と該電極間に設けられる活性層とを備える有機薄膜光電変換素子を順次形成する工程を有し、その有機薄膜光電変換素子を順次形成する工程では、活性層を塗布法によって形成する、マルチ接合光電変換素子の製造方法。
  5.  一端の有機薄膜光電変換素子以外の有機薄膜光電変換素子の一対の電極の内の各々の少なくとも一方の電極を塗布法によって形成する、請求項4記載の製造方法。
PCT/JP2012/061003 2011-04-26 2012-04-18 マルチ接合光電変換素子 WO2012147756A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011097977A JP2012230992A (ja) 2011-04-26 2011-04-26 マルチ接合構造光電変換素子およびその製造方法
JP2011-097977 2011-04-26

Publications (1)

Publication Number Publication Date
WO2012147756A1 true WO2012147756A1 (ja) 2012-11-01

Family

ID=47072274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061003 WO2012147756A1 (ja) 2011-04-26 2012-04-18 マルチ接合光電変換素子

Country Status (2)

Country Link
JP (1) JP2012230992A (ja)
WO (1) WO2012147756A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012003A (ja) * 2013-06-26 2015-01-19 三菱化学株式会社 光電変換素子及びその製造方法、並びに該光電変換素子を有する太陽電池
JP2015099810A (ja) * 2013-11-18 2015-05-28 住友化学株式会社 有機光電変換素子の製造方法
JP6372900B2 (ja) * 2014-04-30 2018-08-15 エルジー・ケム・リミテッド 有機太陽電池およびその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115849A (ja) * 2005-10-19 2007-05-10 Matsushita Electric Works Ltd 積層型有機太陽電池
JP2010109227A (ja) * 2008-10-31 2010-05-13 Konica Minolta Holdings Inc 有機光電変換素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273753A (ja) * 1998-03-25 1999-10-08 Sekisui Chem Co Ltd 色素増感型光電池
JP2004349657A (ja) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd 有機太陽電池
JP2007005620A (ja) * 2005-06-24 2007-01-11 Dainippon Printing Co Ltd 有機薄膜太陽電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115849A (ja) * 2005-10-19 2007-05-10 Matsushita Electric Works Ltd 積層型有機太陽電池
JP2010109227A (ja) * 2008-10-31 2010-05-13 Konica Minolta Holdings Inc 有機光電変換素子

Also Published As

Publication number Publication date
JP2012230992A (ja) 2012-11-22

Similar Documents

Publication Publication Date Title
JP5359173B2 (ja) 光起電力素子用電子供与性有機材料、光起電力素子用材料および光起電力素子
JP5034818B2 (ja) 有機光電変換素子
WO2012132828A1 (ja) 有機光電変換素子の製造方法
EP2067806A1 (en) Organic photoelectric conversion device and polymer useful for producing the same
WO2012096359A1 (ja) 有機光電変換素子
JP5691628B2 (ja) 光起電力素子用材料および光起電力素子
JP2010062550A (ja) 光電変換素子
KR20110063486A (ko) 유기 광전 변환 소자 및 그의 제조 방법
JP2010206146A (ja) 有機光電変換素子
WO2009142330A1 (ja) 有機光電変換素子およびその製造方法
JP2008106239A (ja) 有機光電変換素子及びその製造に有用な重合体
CN106796992B (zh) 有机光电转换元件及其制造方法
WO2012147756A1 (ja) マルチ接合光電変換素子
JP5476660B2 (ja) 有機光電変換素子及びその製造に有用な重合体
JP5740823B2 (ja) 化合物及びそれを用いた素子
JP6032284B2 (ja) 有機光電変換素子の製造方法
JP2015099810A (ja) 有機光電変換素子の製造方法
JP2014003255A (ja) 有機薄膜およびそれを用いた光電変換素子
JP2013207252A (ja) 光電変換素子
JP5428670B2 (ja) 光起電力素子用材料および光起電力素子
JP2012241099A (ja) 共役系重合体、これを用いた電子供与性有機材料、光起電力素子用材料および光起電力素子
EP2280433A1 (en) Organic photoelectric conversion element and manufacturing method thereof
WO2013047293A1 (ja) 光電変換素子
KR101306070B1 (ko) 전도성 고분자 화합물 및 이를 포함하는 유기태양전지
WO2013141328A1 (ja) 有機無機ハイブリッド光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777543

Country of ref document: EP

Kind code of ref document: A1