WO2012147661A1 - 車両用操舵装置 - Google Patents

車両用操舵装置 Download PDF

Info

Publication number
WO2012147661A1
WO2012147661A1 PCT/JP2012/060770 JP2012060770W WO2012147661A1 WO 2012147661 A1 WO2012147661 A1 WO 2012147661A1 JP 2012060770 W JP2012060770 W JP 2012060770W WO 2012147661 A1 WO2012147661 A1 WO 2012147661A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
value
torque
upper limit
electric
Prior art date
Application number
PCT/JP2012/060770
Other languages
English (en)
French (fr)
Inventor
飯島 健
佳史 伴野
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to BR112013027386-0A priority Critical patent/BR112013027386B1/pt
Priority to US14/114,005 priority patent/US8978814B2/en
Priority to CN201280019897.1A priority patent/CN103502082B/zh
Priority to MX2013012420A priority patent/MX2013012420A/es
Priority to JP2013512334A priority patent/JP5575981B2/ja
Priority to EP12776955.2A priority patent/EP2703253B1/en
Priority to CA2834211A priority patent/CA2834211C/en
Publication of WO2012147661A1 publication Critical patent/WO2012147661A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/04Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to forces disturbing the intended course of the vehicle, e.g. forces acting transversely to the direction of vehicle travel

Definitions

  • the present invention relates to a vehicle steering apparatus that generates a steering assist torque that reduces a steering force of a driver and a steering reaction torque that suppresses vehicle behavior.
  • the vehicle steering device is configured to use an electric motor and assist with the electric torque in order to reduce the driver's steering force. Increase or decrease the electric torque according to the vehicle speed. Further, if the vehicle receives a strong crosswind or travels on a narrow road while traveling, the vehicle may behave in such a way that the vehicle is deflected in a direction away from the target travel line. Therefore, the vehicle steering device detects the vehicle behavior based on yaw rate, lateral acceleration, and the like, and generates a steering reaction force torque that suppresses the vehicle behavior based on the detected value.
  • the steering reaction force torque is set to an upper limit value in order to cope with a failure of each sensor such as yaw rate and lateral acceleration, and the steering reaction force torque exceeding the upper limit value is not generated ( (See Patent Document 1).
  • the upper limit value is constant. For this reason, if the upper limit value is set large, a large steering reaction torque can be generated and the control performance for suppressing the vehicle behavior can be improved, but a large steering reaction force that reaches the large upper limit value due to a sensor failure. When force torque was generated, it was thought that the driver felt uncomfortable. Conversely, if the upper limit value is set small, a small steering reaction force torque limited to the small upper limit value is generated even if the sensor fails, so that the driver does not feel uncomfortable, but the steering reaction force torque Therefore, the control performance for suppressing the vehicle behavior is limited. As described above, when the upper limit value is set to a large value, the driver feels uncomfortable. When the upper limit value is set to a small value, the control performance for controlling the vehicle behavior is limited. In the setting of the upper limit value, it is desirable to control the suppression of the vehicle behavior with high performance while reducing the uncomfortable feeling given to the driver.
  • an object of the present invention is to provide a vehicle steering device that can alleviate the uncomfortable feeling given to the driver and control the suppression of vehicle behavior with high performance.
  • the present invention comprises a manual steering means for manually steering a steering wheel of a vehicle; Steering torque detection means for detecting steering torque applied to the manual steering means; First electric torque determining means for determining a first electric torque value based on the detected steering torque; Vehicle behavior detecting means for detecting the behavior of the vehicle; Second electric torque determining means for determining a second electric torque value based on the detected value detected by the vehicle behavior detecting means; An electric motor for applying a total electric torque to the steering wheel; A vehicle steering apparatus having current control means for controlling a current flowing to the motor with the total electric torque value obtained by adding the second electric torque value to the first electric torque value; The second electric torque determining means resets the second electric torque value larger than an upper limit value below the upper limit value, and sets the upper limit value to the direction of the second electric torque value and the turning direction of the manual steering means. It is characterized in that it is changed depending on the combination.
  • the upper limit value can be changed by a combination of the direction of the second electric torque value and the steering direction of the manual steering means, so that a large second electric torque value can be generated in the electric motor.
  • a large upper limit value can be set, and in the combination corresponding to a scene where the second electric torque value generated by the electric motor is small enough, a small upper limit value can be set.
  • a combination (scene) in which the upper limit value is set to a large value a large steering reaction torque can be generated, and control performance for suppressing vehicle behavior can be improved. Even if the vehicle breaks down, a small steering reaction torque limited to the small upper limit value is generated, so that the driver does not feel uncomfortable.
  • the upper limit value set when the direction of the second electric torque value and the turning direction (steering direction) of the manual steering means are the same is the same as the direction of the second electric torque value and the manual It is preferably smaller than the upper limit value set when the steering direction of the steering means is different.
  • the second electric torque value works in the suppression direction with respect to the turning direction of the manual steering means, so a large upper limit
  • a small second electric torque value is set on the basis of a small upper limit value, so that excessive assist can be prevented.
  • the vehicle behavior detection means (yaw rate sensor, lateral acceleration sensor, etc.) fails and the second electric torque value is set to the upper limit value, the direction of the second electric torque value and the manual steering means If the turning direction is reversed, the direction of the large second electric torque value is directed to a stable direction opposite to the turning direction of the manual steering means, so that the steering by the manual steering means can be controlled to be suppressed. It prevents over-assist and does not give the driver a sense of incongruity. Further, even when the direction of the second electric torque value and the turning direction of the manual steering means are the same direction, the second electric torque value is limited by a low upper limit value, so that over-assist can be prevented and the driver feels uncomfortable. There is nothing.
  • the second electric torque determining means changes the upper limit value based on a turning speed (steering angular speed) of the manual steering means.
  • the upper limit value that is set when the direction of the second electric torque value and the turning direction of the manual steering means are the same increases as the turning speed (steering angular speed) decreases. It is preferable to become.
  • the upper limit value set when the direction of the second electric torque value is different from the turning direction of the manual steering means is such that the turning speed (steering angular speed) is small. It is preferable to become smaller.
  • This also makes it possible to provide an intermediate value between the large upper limit value and the small upper limit value when the steering direction (steering direction) (steering angular speed) switches between left and right (positive and negative), and the large upper limit value and small Switching to the upper limit value can be performed smoothly. And the driver does not feel uncomfortable.
  • the present invention it is possible to provide a vehicle steering apparatus that can relieve a sense of discomfort given to the driver and can control the suppression of vehicle behavior with high performance.
  • FIG. 1 is a configuration diagram of a vehicle steering device (vehicle) according to an embodiment of the present invention. It is a block diagram of the steering control unit mounted in the vehicle steering device which concerns on embodiment of this invention. It is a block diagram of the disturbance detection means (the 1) used with a steering control unit. It is a block diagram of the disturbance detection means (the 2) used with a steering control unit. It is a flowchart of the steering method which the vehicle steering device (vehicle) which concerns on embodiment of this invention implements. It is a graph (data table) of the 2nd electric torque value with respect to a yaw rate, and is a graph for demonstrating the setting method of a 2nd electric torque value.
  • FIG. 1 shows a configuration diagram of a vehicle steering apparatus 1 (and a vehicle 100 equipped with the same) according to an embodiment of the present invention.
  • a steering shaft 3 is integrally coupled to the steering wheel 2.
  • a pinion 4 is connected to the steering shaft 3 via a connecting shaft 13 having a universal joint.
  • a rack shaft 8 meshes with the pinion 4.
  • the rack shaft 8 can reciprocate in the vehicle width direction (the axial direction of the rack shaft 8) according to the rotation of the pinion 4.
  • the pinion 4 and the rack shaft 8 form a rack and pinion mechanism.
  • a tie rod 5 is integrally coupled to both ends of the rack shaft 8. Connected to the tie rod 5 are knuckle arms of left and right front wheels 6 as steering wheels.
  • manual steering means 10 is configured in which the front wheel (steering wheel) 6 is steered (turned) when the driver manually steers (turns) the steering wheel 2.
  • the vehicle steering device 1 is configured as an electric power steering device.
  • the motor 9 is used to assist the driver's steering force with the electric torque.
  • the electric motor 9 is coaxially disposed in an intermediate portion of the rack shaft 8, and the rack shaft 8 can reciprocate in the vehicle width direction according to the rotation of the electric motor 9. .
  • the vehicle steering apparatus 1 includes a steering angular velocity sensor 11 for detecting a steering angular velocity ⁇ from the rotation angle of the steering wheel 2 and a steering torque applied to the steering wheel 2 and acting on the pinion 4 in the vicinity of the pinion 4.
  • a torque sensor (steering torque detection means) 12 for detecting T is provided.
  • the steering angular speed ⁇ can also be detected by a resolver (steering angular speed sensor) 9a directly connected to the electric motor 9.
  • a yaw rate sensor (vehicle behavior detecting means) 15 for detecting the yaw rate (yaw angular velocity, vehicle behavior) ⁇ of the vehicle 100 and a vehicle speed sensor (vehicle speed, vehicle behavior) V for detecting the traveling speed (vehicle speed, vehicle behavior) V of the vehicle 100 ( Vehicle behavior detecting means) 16 is provided.
  • the steering control unit 7 acquires the detected steering angular speed ⁇ , steering torque T, yaw rate ⁇ , and vehicle speed V.
  • the steering control unit 7 controls the output (total electric torque) of the electric motor 9 based on the detected and acquired steering angular velocity ⁇ , steering torque T, yaw rate ⁇ , and vehicle speed V.
  • FIG. 2 shows a configuration diagram of the steering control unit 7 mounted on the vehicle steering apparatus 1 according to the embodiment of the present invention.
  • the steering control unit 7 includes first electric torque determination means 7a, second electric torque determination means 7b, addition means 35, and current control means 36.
  • the first electric torque determining means 7a determines a first electric torque value (steering assist torque) T10 based on the detected and acquired steering torque T in order to reduce the driver's steering force.
  • the second electric torque determining means 7b receives a strong crosswind while the vehicle 100 is traveling or travels along a narrow road, and when the vehicle behavior is deflected away from the target travel line, Based on the detected and acquired vehicle behavior such as yaw rate ⁇ , a second electric torque value (steering reaction torque) TA that suppresses the vehicle behavior is determined.
  • the adding means 35 adds the second electric torque value (steering reaction force torque) TA to the first electric torque value (steering assist torque) T10 to calculate a total electric torque value.
  • the current control means 36 determines a target current that should flow through the electric motor 9 so that the electric motor 9 can output the total electric torque corresponding to the total electric torque value.
  • the driver 37 is provided outside the steering control unit 7 and includes a semiconductor switching circuit or the like.
  • the driver 37 causes an output current corresponding to the target current to flow through the electric motor 9 based on the determined target current.
  • the electric motor 9 can output the total electric torque corresponding to the total electric torque value Tt, which is the sum of the first electric torque value T10 and the second electric torque value TA, and apply it to the front wheels 6 (see FIG. 1).
  • the second electric torque value TA determined by the second electric torque determining means 7b is calculated by the adding means 34 as the sum of the first torque value T1, the second torque value T2, and the third torque value T3. .
  • the first torque value T1 is determined by the data table 21 and the limiter 22.
  • the data table 21 can determine the first torque value T1 according to the steering angular speed ⁇ . Specifically, as shown in the data table 21 of FIG. 2, the first torque value T1 is set to increase as the steering angular speed ⁇ increases. According to this, the first torque value T1 can be made to function as the steering reaction force torque. Further, the data table 21 can increase / decrease (correct) the first torque value T1 according to the vehicle speed V. Specifically, as shown in FIG. 2, the first torque value T1 is set to increase as the vehicle speed V increases. According to this, at the time of high speed traveling, the first torque value T1 (steering reaction force torque) is increased, and the driver can steer without a sense of incongruity.
  • the upper limit value is set in advance in the limiter 22.
  • the first torque value T1 determined by the data table 21 is input to the limiter 22.
  • the limiter 22 determines whether or not the input first torque value T1 is larger than the upper limit value. When it is determined that the input first torque value T1 is larger than the upper limit value, the upper limit value is reset as the first torque value T1, and the first torque value T1 with the upper limit value set is output. If it is determined that the input first torque value T1 is not greater than the upper limit value, the input first torque value T1 is output as it is.
  • the second torque value T2 is mainly determined by the data table 26 and the limiter 27.
  • the data table 26 can determine the second torque value T2 according to the yaw rate ⁇ . Specifically, as shown in the data table 26 of FIG. 2, the second torque value T2 is set to increase as the yaw rate ⁇ increases. According to this, for example, when the vehicle 100 receives a crosswind during traveling, the stronger the crosswind, the larger the yaw rate ⁇ , and the larger second torque value T2 can be set.
  • the second torque value T2 can be made to function as a steering reaction torque, and the driver can steer without a sense of incongruity because the steering wheel 2 is not removed even in a strong crosswind.
  • the data table 26 can increase / decrease (correct) the second torque value T2 according to the vehicle speed V. Specifically, as shown in FIG. 2, the second torque value T2 is set to increase as the vehicle speed V increases.
  • a fixed upper limit value is not set in advance.
  • the upper limit value set in the limiter 27 is determined by the direction extraction means 23 and 24 and the upper limit value setting means 25.
  • the steering angular speed ⁇ is based on the steering angular speed ⁇ in the direction in which the steering wheel 2 is rotated to the right (+ (positive) direction) or the direction in which the steering wheel 2 is rotated to the left ( ⁇ (negative) direction). Extract something. Thereby, the direction extraction means 23 equivalently extracted the steering direction of the manual steering means 10.
  • the direction extracting means 24 determines whether the yaw rate ⁇ is in the direction of rotating the vehicle 100 to the right (+ (positive) direction) or the direction of rotating the vehicle 100 to the left ( ⁇ (negative) direction). Extract. Thereby, the direction extraction means 24 equivalently extracted the direction in which the vehicle 100 having the second torque value T2 and further the second electric torque value TA is rotated.
  • the upper limit value is set by a combination of the direction of the second electric torque value TA (second torque value T2, yaw rate ⁇ ) and the steering direction of the manual steering means 10 (direction of the steering angular speed ⁇ ).
  • the upper limit value (same direction upper limit value, reverse direction upper limit value) that differs depending on the combination is set in the limiter 27.
  • the upper limit in the same direction If the value is set in the limiter 27 and the combination is in the opposite direction, the reverse upper limit value is set in the limiter 27.
  • the upper limit setting means 25 corrects (changes) the upper limit values (same direction upper limit value, reverse direction upper limit value) based on the steering angular speed ⁇ (the turning speed of the manual steering means 10). Specifically, when the direction of the second electric torque value TA (second torque value T2, yaw rate ⁇ ) and the steering direction of the manual steering means 10 (direction of the steering angular velocity ⁇ ) are in the same direction. The set same direction upper limit value is corrected so as to increase as the steering angular speed ⁇ decreases. Further, the reverse upper limit value set in the case of the combination in the reverse direction is corrected so as to decrease as the steering angular speed ⁇ decreases.
  • the second torque value T2 determined by the data table 26 is input to the limiter 27.
  • the limiter 27 determines whether or not the input second torque value T2 is larger than the upper limit value (same direction upper limit value, reverse direction upper limit value, or intermediate value therebetween) set by the upper limit value setting means 25.
  • the upper limit value (same direction upper limit value, reverse direction upper limit value, or intermediate value therebetween) is reset as the second torque value T2, and the upper limit value is set.
  • the second torque value T2 in which (the same direction upper limit value, the reverse direction upper limit value, or an intermediate value thereof) is set is output. If it is determined that the input second torque value T2 is not greater than the upper limit value (same direction upper limit value, reverse direction upper limit value, or intermediate value thereof), the input second torque value T2 is output as it is.
  • the third torque value T3 is mainly determined by the disturbance detection means 28, the data table 29, and the limiter 31.
  • the disturbance detection means 28 detects the occurrence of a disturbance such as kickback.
  • the disturbance detection unit 28 transmits a disturbance determination (signal) to the data table 29.
  • the configuration of the disturbance detection means 28 will be described in detail later.
  • the data table 29 can determine the third torque value T3 according to the steering torque T or the steering angular velocity ⁇ at the time of detecting the disturbance.
  • the data table 29 determines the third torque value T3 at the timing when the disturbance determination (signal) is received. Specifically, as shown in the data table 29 of FIG. 2, the third torque value T3 is set to increase as the steering torque T or the steering angular speed ⁇ at the time of disturbance detection increases. According to this, for example, when the vehicle 100 is subjected to a disturbance such as kickback while traveling, the stronger the disturbance (kickback), the larger the steering torque T or the steering angular velocity ⁇ at the time of detecting the disturbance. Three torque values T3 can be set.
  • the third torque value T3 can be made to function as a steering reaction torque, and the driver can steer without a sense of incongruity because the steering wheel 2 is not removed even by a strong disturbance (kickback). Further, the data table 29 can increase / decrease (correct) the third torque value T3 according to the vehicle speed V. Specifically, as shown in the data table 29 of FIG. 2, the third torque value T3 is set to increase as the vehicle speed V increases.
  • the fixed upper limit value is not set in advance in the limiter 31.
  • the upper limit value set in the limiter 31 is determined by the direction extraction means 23 and 32 and the upper limit value setting means 33. Since the direction extracting means 23 has been described above, description thereof is omitted here.
  • the steering torque T rotates in the clockwise direction (+ (positive) direction) based on the steering torque T or the steering angular velocity ⁇ at the time of detecting the disturbance, and in the example of FIG. ) Or the direction to rotate counterclockwise (-(negative) direction).
  • the direction extracting means 32 equivalently extracts the direction in which the vehicle 100 having the third torque value T3 and further the second electric torque value TA is rotated.
  • the direction of the second electric torque value TA (third torque value T3, steering torque T or steering angular velocity ⁇ ) at the time of detecting the disturbance and the steering direction of the manual steering means 10 before and after the detection of the disturbance (
  • the upper limit value is changed according to the combination with the direction of the steering angular velocity ⁇ , that is, the upper limit value (the same direction upper limit value and the reverse direction upper limit value) that differs depending on the combination is set in the limiter 31.
  • the direction of the second electric torque value TA (third torque value T3, steering torque T or steering angular speed ⁇ ) at the time of disturbance detection, and the steering direction (direction of steering angular speed ⁇ ) of the manual steering means 10 before and after the disturbance detection If the combinations are in the same direction, the upper limit value in the same direction is set in the limiter 31, and if the combinations are in the opposite direction, the upper limit value in the reverse direction is set in the limiter 31.
  • the upper limit setting means 33 corrects (changes) the upper limit values (same direction upper limit value, reverse direction upper limit value) based on the steering angular speed ⁇ (the turning speed of the manual steering means 10). Specifically, the direction of the second electric torque value TA (the third torque value T3, the steering torque T or the steering angular speed ⁇ ) and the steering direction of the manual steering means 10 (the direction of the steering angular speed ⁇ ) are in the same direction. The upper limit value in the same direction set in the case of the combination is corrected so as to increase as the steering angular speed ⁇ decreases.
  • the reverse upper limit value set in the case of the combination in the reverse direction is corrected so as to decrease as the steering angular speed ⁇ decreases. According to this, when the left and right (positive / negative) rotation of the steering angular speed ⁇ is switched, an intermediate value between the reverse direction upper limit value and a smaller same direction upper limit value can be provided, and the reverse direction upper limit value and the same direction can be provided. Switching to the upper limit value can be performed smoothly. And the driver does not feel uncomfortable.
  • the third torque value T3 determined by the data table 29 is input to the limiter 31.
  • the limiter 27 determines whether or not the input third torque value T3 is greater than a set upper limit value (same direction upper limit value, reverse direction upper limit value, or intermediate value thereof).
  • the upper limit value (the upper limit value in the same direction, the upper limit value in the reverse direction, or an intermediate value thereof) is reset as the third torque value T3, and the upper limit value
  • the third torque value T3 in which (the same direction upper limit value, the reverse direction upper limit value, or an intermediate value thereof) is set is output.
  • the input third torque value T3 is output as it is.
  • the adding means 34 the first torque value T1, the second torque value T2, and the third torque value T3 are added together to calculate the second electric torque value TA.
  • FIG. 3 shows a configuration diagram of the disturbance detection means (No. 1, at the time of steering), and FIG. 4 shows a configuration diagram of the disturbance detection means (No. 2, when released). Both are used as the disturbance detection means 28 shown in FIG. 3 is used when the driver holds and steers the steering wheel 2 and controls (limits) its rotation. . 4 is used when the driver does not release the steering wheel 2 and does not restrict the rotation.
  • the 3 includes a differentiating means 41, an LPF (low pass filter) 42, and a filter 43.
  • the differentiating means 41 calculates a (time) differential value of the detected steering torque T.
  • the LPF 42 performs filtering to pass a low frequency component from the (time) derivative value of the steering torque T.
  • the filter 43 performs filtering that passes a large amplitude waveform from the (time) differential value of the steering torque T composed of a low frequency component. According to these filtering, it is possible to extract the steering torque T that changes suddenly due to kickback or the like.
  • the disturbance detection means (No. 1, at the time of steering) 28 in FIG. 3 has an LPF 44 and a filter 45.
  • the LPF 44 performs filtering that passes a low-frequency component from the steering angular velocity ⁇ .
  • the filter 45 performs filtering that passes a large amplitude waveform from the rudder angular velocity ⁇ composed of a low frequency component. According to these filterings, it is possible to extract a high-speed rudder angular velocity ⁇ caused by kickback or the like.
  • the disturbance detection means (No. 1, at the time of steering) in FIG. 3 has a sign determination means 46.
  • the sign determination unit 46 acquires the steering torque T that changes suddenly from the filter 43, and acquires the high steering angular velocity ⁇ from the filter 45. Then, the direction of rotation of the steering torque T that changes suddenly (right rotation (positive sign) and left rotation (negative sign)) and the direction of rotation of the high-speed steering angular speed ⁇ detected at the same timing as the steering torque T that changes suddenly (right It is determined whether the rotation (positive sign) and the left rotation (negative sign) are in the same direction (same sign) or in the opposite direction (different sign).
  • the same direction (same sign) is determined, it is considered that the rotational direction of the steering angular velocity ⁇ by the steering is the same as the rotational direction of the steering torque T by the steering (abrupt change), and disturbance has occurred.
  • the reverse direction (different sign) is determined, the rotational direction of the steering torque T that changes suddenly does not coincide with the rotational direction of the steering angular speed ⁇ by the steering, because the torque due to disturbance (such as kickback) Considering that it is occurring, it is determined (detected) that a disturbance has occurred, and the disturbance determination (signal) is transmitted to the data table 29.
  • the disturbance detection means (part 2, when letting go) in FIG. 4 includes a hand release time detecting means 47, a determining means 48, and a logical product means (AND) 49.
  • the hand release time detecting means 47 detects a state (at the time of hand release) where the steering torque T is equal to or less than a threshold over a specified time.
  • the determination unit 48 determines whether or not the steering angular speed ⁇ is greater than a threshold value.
  • the AND 49 is a disturbance when the steering torque T is equal to or less than the (torque) threshold for a specified time (when released) and the steering angular speed ⁇ is greater than the (speed) threshold when released at the same timing. Therefore, it is determined (detected) that a disturbance has occurred, and the disturbance determination (signal) is transmitted to the data table 29.
  • FIG. 5 shows a flowchart of the steering method performed by the vehicle steering apparatus 1 (vehicle 100) according to the embodiment of the present invention.
  • step S1 the torque sensor (steering torque detecting means) 12 detects the steering torque T.
  • the first electric torque determining means 7 a and the second electric torque determining means 7 b of the steering control unit 7 obtain the detected steering torque T from the torque sensor (steering torque detecting means) 12.
  • step S2 the yaw rate sensor (vehicle behavior detecting means) 15 detects the yaw rate ⁇ .
  • the vehicle speed sensor (vehicle behavior detecting means) 16 detects the vehicle speed V.
  • the second electric torque determining means 7b of the steering control unit 7 acquires the yaw rate ⁇ , the vehicle speed V and the like in order to detect the behavior of the vehicle (crosswind, hail, disturbance (kickback)).
  • step S3 the steering angular velocity sensor 11 or the resolver (steering angular velocity sensor) 9a detects the steering angular velocity ⁇ .
  • the second electric torque determining means 7b of the steering control unit 7 acquires the detected steering angular speed ⁇ from the steering angular speed sensor 11 or the resolver (steering angular speed sensor) 9a.
  • step S4 the first electric torque determining means 7a determines a first electric torque value T10 (so-called auxiliary torque) based on the steering torque T.
  • step S5 the data table 21 and the limiter 22 of the second electric torque determining means 7b temporarily determine the first torque value T1 constituting the second electric torque value TA based on the vehicle speed V and the steering angular speed ⁇ . Further, the data table 26 of the second electric torque determining means 7b temporarily determines the second torque value T2 constituting the second electric torque value TA based on the vehicle speed V and the yaw rate ⁇ .
  • FIG. 6 shows a data table 26 (see FIG. 2) that can determine the second torque value T2 constituting the second electric torque value TA with respect to the acquired yaw rate ⁇ .
  • the data table 26 shows a data table at the vehicle speed V1 as an example.
  • the second torque value T2 increases as the yaw rate ⁇ (lateral acceleration (lateral G)) increases.
  • the second torque value T21 is temporarily determined based on the vehicle speed V1 and yaw rate ⁇ 1, as shown in FIG.
  • step S5 the disturbance detection means 28 of the second electric torque determination means 7b detects a disturbance.
  • the disturbance detection method (part 1 and part 2) by the disturbance detection means 28 will be described in detail later.
  • the data table 29 of the second electric torque determining means 7b configures the second electric torque value TA based on the vehicle speed V, the steering torque T, and the steering angular speed ⁇ when the disturbance occurs.
  • the third torque value T3 to be determined is temporarily determined.
  • FIG. 7 shows a data table 29 (FIG. 7) that can determine the third torque value T3 constituting the second electric torque value TA with respect to the steering torque T (steering angular velocity ⁇ ) acquired at the time of disturbance (kickback). 2).
  • the data table 29 is a data table at the vehicle speed V1 as an example.
  • the third torque value T3 increases as the steering torque T (steering angular velocity ⁇ ) during disturbance increases.
  • the third torque value T31 is based on the vehicle speed V1 and the steering torque T11 (steering angular velocity ⁇ 1). Is temporarily determined.
  • step S6 shown in FIG. 5 the direction extracting means 24 of the second electric torque determining means 7b extracts the direction of the second torque value T2 constituting the second electric torque value TA based on the yaw rate ⁇ . . Further, the direction extracting means 32 of the second electric torque determining means 7b extracts the direction of the third torque value T3 constituting the second electric torque value TA based on the steering torque T at the time of detecting the disturbance.
  • step S7 the direction extracting means 23 of the second electric torque determining means 7b detects the direction of the steering angular speed ⁇ (the turning direction of the manual steering means 10) based on the steering angular speed ⁇ .
  • step S8 the upper limit value setting means 25 of the second electric torque determining means 7b changes the upper limit value (the upper limit value in the same direction, the upper limit value in the reverse direction, or an intermediate value thereof) that is currently applied, and the limiter 27 Set to.
  • the upper limit value setting means 33 of the second electric torque determining means 7b changes to the upper limit value (the same direction upper limit value, the reverse direction upper limit value, or an intermediate value thereof) that is currently applied, and sets it in the limiter 31. Step S8 will be described in more detail.
  • step S8a the upper limit value setting means 25 determines the direction of the second torque value T2 constituting the second electric torque value TA extracted in step S6 and the direction of the steering angular speed ⁇ detected in step S7 (manual steering means). 10 steering directions) is determined to be in the same direction. If it is determined that the direction is the same (step S8a, Yes), the process proceeds to step S8b. If it is determined that the direction is not the same direction (the reverse direction) (step S8a, No), the process proceeds to step S8c.
  • step S8a the upper limit setting means 33 determines the direction of the third torque value T3 constituting the second electric torque value TA extracted in step S6 and the direction of the steering angular speed ⁇ detected in step S7 (manual steering means). 10 steering directions) is determined to be in the same direction.
  • step S8a Yes
  • step S8b If it is determined that the direction is not the same direction (the reverse direction) (step S8a, No), the process proceeds to step S8c.
  • step S8b the upper limit value setting unit 25 sets the upper limit value in the same direction in the limiters 27 and 31. Specifically, as shown in FIG. 6, the same direction upper limit value Tms is set to the second torque value T2 constituting the second electric torque value TA. Further, as shown in FIG. 7, the same direction upper limit value Tms is set to the third torque value T3 constituting the second electric torque value TA.
  • FIG. 8 shows a graph of the second electric torque value TA (second torque value T2, third torque value T3) against the steering angular speed ⁇ .
  • the direction of the second electric torque value TA (the second torque value T2, the third torque value T3) and the direction of the steering angular speed ⁇ are both rotated clockwise (+ Direction) and the same direction (first quadrant of the graph of FIG. 8), and when both are counterclockwise ( ⁇ direction) and are in the same direction (third quadrant of the graph of FIG. 8),
  • an upper limit value Tms in the same direction having a size of about 3 (+3 in the first quadrant, ⁇ 3 in the third quadrant) on an arbitrary scale is set.
  • the upper limit value setting means 25 sets the reverse upper limit value in the limiters 27 and 31. Specifically, as shown in FIG. 6, the reverse upper limit value Tmr is set to the second torque value T2 constituting the second electric torque value TA. Further, as shown in FIG. 7, the reverse direction upper limit value Tmr is set to the third torque value T3 constituting the second electric torque value TA.
  • one of the direction of the second electric torque value TA (second torque value T2 and third torque value T3) and the direction of the steering angular speed ⁇ corresponds to No in step S8a and step S8c.
  • the reverse upper limit value Tmr is set to an arbitrary scale of about 10 (+10 in the second quadrant, ⁇ 10 in the fourth quadrant) and larger than the same direction upper limit value Tms.
  • step S8d of FIG. 5 the upper limit value setting means 25 determines whether or not the steering speed ⁇ is near zero. If the steering speed ⁇ is near zero (step S8d, Yes), the process proceeds to step S8e. If the steering speed ⁇ is not near zero (step S8d, No), the process proceeds to step S9.
  • step S8e the upper limit value setting means 25 changes the upper limit value in the same direction and the upper limit value in the reverse direction around the steering angular speed ⁇ based on the steering angular speed ⁇ to change the upper limit value in the same direction and the upper limit value in the reverse direction.
  • An intermediate value is set so that the steps are connected gently. Specifically, as shown in FIG. 8, the absolute value of the same direction upper limit value Tms is corrected so as to increase as the steering angular velocity ⁇ decreases in the vicinity of zero of the steering angular velocity ⁇ . Further, the absolute value of the reverse direction upper limit value Tmr is corrected so as to decrease as the steering angular speed ⁇ decreases.
  • the limiter 27 sets the second torque value T2 constituting the second electric torque value TA to an upper limit value (the upper limit value in the same direction, the upper limit value in the reverse direction, or an intermediate value thereof) or less. Reset it. Specifically, as shown in FIG. 6, the second torque value T21 temporarily set for the second torque value T2 constituting the second electric torque value TA is changed to the same direction upper limit value Tms or the reverse direction. The upper limit value Tmr or an intermediate value thereof is reset.
  • the limiter 31 resets the third torque value T3 constituting the second electric torque value TA to be equal to or less than the upper limit value (same direction upper limit value, reverse direction upper limit value, or intermediate value thereof). Specifically, as shown in FIG. 7, the third torque value T31 temporarily set with respect to the third torque value T3 constituting the second electric torque value TA is changed to the same direction upper limit value Tms or the reverse direction. The upper limit value Tmr or an intermediate value thereof is reset.
  • the steering angular speed ⁇ becomes the right rotation (+ direction) and the left rotation ( ⁇ direction).
  • a small same direction upper limit value Tms to a gentle intermediate value, and then a large reverse direction upper limit value Tmr is sequentially provided and is limited by the second electric torque value TA (second torque value T2).
  • the third torque value T3 (corresponding to a broken line arrow) can be set smoothly. And the driver does not feel uncomfortable.
  • step S11 the current control means 36 determines a target current to be supplied to the electric motor 9 based on the total electric torque value Tt.
  • the driver 37 causes the output current to flow through the electric motor 9 based on the determined target current.
  • the electric motor 9 outputs a total electric torque corresponding to a total electric torque value Tt that is the sum of the first electric torque value T10 and the second electric torque value TA.
  • FIG. 9 shows a flowchart of the disturbance detection method (part 1, corresponding to part of step S5 shown in FIG. 5) performed by the disturbance detection means (part 1) 28 shown in FIG.
  • step S21 the differentiating means 41 calculates a torque (time) differential value of the steering torque T.
  • the LPF 42 passes (filters) low frequency components from the torque (time) differential value.
  • step S22 the filter 43 determines whether or not the absolute value of the torque (time) differential value is greater than or equal to a predetermined value. Then, the filter 43 performs filtering that determines and extracts a torque (time) differential value that is equal to or greater than a predetermined value (Yes in step S22). Thereby, the filter 43 functions as a filter that passes a large amplitude waveform from the (time) differential value of the steering torque T composed of a low frequency component, and extracts the steering torque T that changes suddenly due to kickback or the like. If step S22 is No, the process returns to step S21.
  • step S23 the LPF 44 passes a low frequency component from the rudder angular velocity ⁇ (filtering is performed).
  • the filter 45 determines whether or not the absolute value of the steering angular velocity ⁇ is equal to or greater than a predetermined value. Then, the filter 45 performs filtering that determines and extracts a filter having a predetermined value or more (Yes in step S23). As a result, the filter 45 functions as a filter that passes a large amplitude waveform from the steering angular velocity ⁇ composed of a low-frequency component, and extracts a high-speed steering angular velocity ⁇ caused by kickback or the like. If step S23 is No, the process returns to step S21.
  • step S24 the sign determination means 46 rotates the rotation direction (positive / negative sign) of the steering torque T rapidly changed by the filter 43 in step S22 and the rotation direction (positive / negative) of the high-speed steering angular speed ⁇ passed by the filter 45 in step S23. Whether the same direction (same sign). If the same direction (same sign) is determined, it is considered that the rotational direction of the steering angular velocity ⁇ by the steering is the same as the rotational direction of the steering torque T by the steering (abrupt change), and there is no disturbance. Judge that there is no.
  • the rotational direction of the steering torque T that changes suddenly does not coincide with the rotational direction of the steering angular speed ⁇ by the steering, because the torque due to disturbance (such as kickback) Considering that it is occurring, it is determined (detected) that a disturbance has occurred, and the disturbance determination (signal) is transmitted to the data table 29. This is the end of the disturbance detection method (part 1).
  • FIG. 10 shows a flowchart of the disturbance detection method (part 2, corresponding to part of step S5 shown in FIG. 5) performed by the disturbance detection means (part 2) 28 shown in FIG.
  • step S31 the hand release time detection means 47 starts time measurement when the absolute value of the steering torque T becomes equal to or less than a threshold value.
  • step S32 when the absolute value of the steering torque T exceeds the threshold value, the hand release time detection means 47 stops time measurement. By this time measurement, it is possible to measure a hand release time (measurement time) in which the driver releases his hand from the steering wheel 2 and keeps the steering wheel 2 rotating.
  • step S33 the hand release time detection means 47 determines whether or not the measurement time (hand release time) has reached a specified time. If it is determined that the measurement time has reached the specified time (step S33, Yes), the AND 49 sets “1” and proceeds to step S34. If it is determined that the measurement time has not reached the specified time (No at Step S33), the AND 49 sets “0” and returns to Step S31.
  • step S34 the determination means 48 determines whether or not the absolute value of the steering angular velocity ⁇ is equal to or greater than a threshold value. If it is determined that the absolute value of the steering angular velocity ⁇ is equal to or greater than the threshold value (step S34, Yes), the AND 49 sets “1” and proceeds to step S35. If it is determined that the absolute value of the steering angular velocity ⁇ is not equal to or greater than the threshold value (No at Step S34), the AND 49 sets “0” and returns to Step S31.
  • step S35 the AND 49 increases the rudder angular velocity ⁇ in spite of the release state due to disturbance (kickback or the like) based on “1” set in step S33 and “1” set in step S34. Therefore, it is determined (detected) that a disturbance has occurred, and a disturbance determination (signal) is transmitted to the data table 29. This is the end of the disturbance detection method (No. 2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

手動操舵手段(10)に加えられた操舵トルクを検出する操舵トルク検出手段(12)と、検出された操舵トルクに基づいて第1電動トルク値を決定する第1電動トルク決定手段と、車両(100)の挙動を検出する車両挙動検出手段(15)によって検出された検出値に基づいて第2電動トルク値を決定する第2電動トルク決定手段と、操向車輪(6)に総合電動トルクを加えるための電動機(9)と、第1電動トルク値に第2電動トルク値を加えた総合電動トルク値をもって電動機へ流す電流を制御する電流制御手段とを有し、第2電動トルク決定手段は、上限値より大きい第2電動トルク値を上限値以下に再設定し、上限値を第2電動トルク値の方向と手動操舵手段(10)の転舵方向との組合せによって変更する。これにより、運転者に与える違和感を和らげ、車両挙動の抑制を高性能に制御できる車両用操舵装置(1)を提供する。

Description

車両用操舵装置
 本発明は、運転者の操舵力を軽減する操舵補助トルクと、車両挙動を抑制する操舵反力トルクを発生させる車両用操舵装置に関する。
 車両用操舵装置は、運転者の操舵力を軽減するために、電動機を用い、その電動トルクにて補助するように構成されている。車速等に応じて電動トルクを増減する。また、走行中に車両が強い横風を受けたり、轍路を走行したりすると、目標走行ラインから外れる向きに車両が偏向してしまうような車両挙動をすることがある。そこで、車両用操舵装置は、ヨーレイト、横加速度などによってその車両挙動を検出し、その検出値に基づいて、車両挙動を抑制する操舵反力トルクを発生させている。そして、操舵反力トルクは、ヨーレイト、横加速度などの各センサの故障時等に対処するために、上限値が定められ、その上限値を越えた操舵反力トルクは発生しないようにしている(特許文献1等参照)。
特許3103049号公報
 従来の車両用操舵装置では、前記上限値が一定であった。このため、前記上限値を大きく設定すると、大きな操舵反力トルクを発生することができ、車両挙動の抑制の制御性能を高めることができるが、センサの故障によってその大きな上限値に達する大きな操舵反力トルクが発生すると、運転者に違和感を与えると考えられた。逆に、前記上限値を小さく設定すると、センサが故障してもその小さな上限値に制限された小さな操舵反力トルクが発生するので、運転者に違和感を与えることはないが、操舵反力トルクが小さいので、車両挙動の抑制の制御性能が制限されてしまう。このように、前記上限値の設定では、大きく設定すると運転者に違和感を与え、小さく設定すると車両挙動の抑制の制御性能が制限されるトレードオフの関係になっている。前記上限値の設定で、望ましいのは、運転者に与える違和感を和らげつつ、車両挙動の抑制を高性能に制御することである。
 そこで、本発明は、運転者に与える違和感を和らげ、車両挙動の抑制を高性能に制御できる車両用操舵装置を提供することを目的とする。
 本発明は、車両の操向車輪を手動により転舵するための手動操舵手段と、
 前記手動操舵手段に加えられた操舵トルクを検出する操舵トルク検出手段と、
 検出された前記操舵トルクに基づいて第1電動トルク値を決定する第1電動トルク決定手段と、
 前記車両の挙動を検出する車両挙動検出手段と、
 前記車両挙動検出手段によって検出された検出値に基づいて第2電動トルク値を決定する第2電動トルク決定手段と、
 前記操向車輪に総合電動トルクを加えるための電動機と、
 前記第1電動トルク値に前記第2電動トルク値を加えた前記総合電動トルク値をもって前記電動機へ流す電流を制御する電流制御手段とを有する車両用操舵装置において、
 前記第2電動トルク決定手段は、上限値より大きい前記第2電動トルク値を前記上限値以下に再設定し、前記上限値を前記第2電動トルク値の方向と前記手動操舵手段の転舵方向との組合せによって変更することを特徴としている。
 これによれば、前記上限値を、第2電動トルク値の方向と手動操舵手段の転舵方向との組合せによって変更することができるので、大きな第2電動トルク値を電動機で発生させたいシーンに対応する前記組合せにおいては、大きな上限値を設定し、電動機で発生させる第2電動トルク値が小さくても十分であるシーンに対応する前記組合せにおいては、小さな上限値を設定することができる。上限値を大きく設定した組合せ(シーン)では、大きな操舵反力トルクを発生することができ、車両挙動の抑制の制御性能を高めることができ、上限値を小さく設定した組合せ(シーン)では、センサが故障してもその小さな上限値に制限された小さな操舵反力トルクが発生するので、運転者に違和感を与えることはない。
 また、本発明では、前記第2電動トルク値の方向と前記手動操舵手段の転舵方向(操舵方向)が同じ場合に設定される前記上限値は、前記第2電動トルク値の方向と前記手動操舵手段の転舵方向が異なる場合に設定される前記上限値よりも小さいことが好ましい。
 これによれば、第2電動トルク値の方向と手動操舵手段の転舵方向が逆であれば、第2電動トルク値は手動操舵手段の転舵方向に対して抑制方向に働くので、大きな上限値に基づいて大きな第2電動トルク値を設定することで、確実に手動操舵手段の転舵を抑制できる。一方で、方向が同じ場合であれば、小さな上限値に基づいて小さな第2電動トルク値が設定されるので、過大アシストを防げる。また、仮に車両挙動検出手段(ヨーレイトセンサや、横加速度センサ等)の故障が発生して、第2電動トルク値が上限値に設定されても、第2電動トルク値の方向と手動操舵手段の転舵方向が逆であれば、大きな第2電動トルク値の方向は、手動操舵手段の転舵方向とは逆方向の安定方向に向かうため、手動操舵手段による転舵を抑制する制御ができ、過大アシストを防げ、運転者に違和感を与えることはない。また、第2電動トルク値の方向と手動操舵手段の転舵方向が同じ方向の場合も、第2電動トルク値は低い上限値でリミットされるので、過大アシストを防げ、運転者に違和感を与えることはない。
 また、本発明では、前記第2電動トルク決定手段は、前記上限値を前記手動操舵手段の転舵速度(舵角速度)に基づいて変更することが好ましい。
 これによれば、舵角速度に応じたシーンの細かい上限値の設定により、より適切な操舵反力トルク発生の制御が可能となる。
 具体的には、本発明では、前記第2電動トルク値の方向と前記手動操舵手段の転舵方向が同じ場合に設定される前記上限値は、前記転舵速度(舵角速度)が小さくなると大きくなることが好ましい。
 これによれば、(舵角速度の)転舵方向(操舵方向)が、左右(正負)切り替る際に、大きな上限値と小さな上限値の中間の中間値を設けることができ、大きな上限値と小さな上限値との切り替えを、スムーズに実施することができる。そして、運転者に違和感を与えることがない。
 また、具体的には、本発明では、前記第2電動トルク値の方向と前記手動操舵手段の転舵方向が異なる場合に設定される前記上限値は、前記転舵速度(舵角速度)が小さくなると小さくなることが好ましい。
 これによっても、(舵角速度の)転舵方向(操舵方向)が、左右(正負)切り替る際に、大きな上限値と小さな上限値の中間の中間値を設けることができ、大きな上限値と小さな上限値との切り替えを、スムーズに実施することができる。そして、運転者に違和感を与えることがない。
 本発明によれば、運転者に与える違和感を和らげ、車両挙動の抑制を高性能に制御できる車両用操舵装置を提供できる。
本発明の実施形態に係る車両用操舵装置(車両)の構成図である。 本発明の実施形態に係る車両用操舵装置に搭載される操舵制御ユニットの構成図である。 操舵制御ユニットで使用される外乱検知手段(その1)の構成図である。 操舵制御ユニットで使用される外乱検知手段(その2)の構成図である。 本発明の実施形態に係る車両用操舵装置(車両)が実施する操舵方法のフローチャートである。 ヨーレイトに対する第2電動トルク値のグラフ(データテーブル)であり、第2電動トルク値の設定方法を説明するためのグラフである。 外乱時の操舵トルク(舵角速度)に対する第2電動トルク値のグラフ(データテーブル)であり、第2電動トルク値の設定方法を説明するためのグラフである。 舵角速度に対する第2電動トルク値のグラフであり、舵角速度の正負と第2電動トルク値の正負の組合せに応じて異なった第2電動トルク値の上限値の設定方法を説明するためのグラフである。 外乱検知手段(その1)が実施する外乱検知方法(その1)のフローチャートである。 外乱検知手段(その2)が実施する外乱検知方法(その2)のフローチャートである。
 次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
 図1に、本発明の実施形態に係る車両用操舵装置1(及び、それを搭載する車両100)の構成図を示す。ステアリングホイール2には、ステアリングシャフト3が一体結合されている。ステアリングシャフト3には、自在継手を有する連結軸13を介して、ピニオン4が連結されている。ピニオン4には、ラック軸8が噛合している。ラック軸8は、ピニオン4の回動に応じて、車幅方向(ラック軸8の軸方向)に往復動することができる。ピニオン4とラック軸8等で、ラック・アンド・ピニオン機構が構成されている。ラック軸8の両端にはそれぞれ、タイロッド5が一体結合されている。タイロッド5には、操向車輪としての左右の前輪6のナックルアームが連結されている。これらにより、運転者が、手動によりステアリングホイール2を操舵する(回動させる)と、前輪(操向車輪)6が転舵(回動)する手動操舵手段10が構成されている。
 また、車両用操舵装置1は、電動パワーステアリング装置として構成されている。車両用操舵装置1では、運転者の操舵力を軽減するために、電動機9を用い、その電動トルクにて運転者の操舵力を補助している。電動機9は、例えば、図1に示すように、ラック軸8の中間部に同軸的に配設され、電動機9の回動に応じて、ラック軸8が車幅方向に往復動することができる。
 また、車両用操舵装置1には、ピニオン4の近傍に、ステアリングホイール2の回転角から舵角速度ωを検出するための舵角速度センサ11と、ステアリングホイール2に加えられピニオン4に作用する操舵トルクTを検出するためのトルクセンサ(操舵トルク検出手段)12とが設けられている。なお、舵角速度ωは、電動機9の直結するレゾルバ(舵角速度センサ)9aによっても検出することができる。また、車両100のヨーレイト(ヨーイング角速度、車両挙動)γを検出するためのヨーレイトセンサ(車両挙動検出手段)15と、車両100の走行速度(車速、車両挙動)Vを検出するための車速センサ(車両挙動検出手段)16とが設けられている。
 操舵制御ユニット7は、検出された、舵角速度ωと、操舵トルクTと、ヨーレイトγと、車速Vとを、取得している。操舵制御ユニット7は、検出され取得した舵角速度ωと、操舵トルクTと、ヨーレイトγと、車速Vとに基づいて、電動機9の出力(総合電動トルク)を制御している。
 図2に、本発明の実施形態に係る車両用操舵装置1に搭載される操舵制御ユニット7の構成図を示す。操舵制御ユニット7は、第1電動トルク決定手段7aと、第2電動トルク決定手段7bと、加算手段35と、電流制御手段36とを有している。
 第1電動トルク決定手段7aは、運転者の操舵力を軽減するために、検出され取得した操舵トルクTに基づいて、第1電動トルク値(操舵補助トルク)T10を決定している。
 また、第2電動トルク決定手段7bは、車両100が走行中に強い横風を受けたり、轍路を走行したりして、目標走行ラインから外れる向きに偏向するような車両挙動をする際に、検出され取得したヨーレイトγ等の車両挙動に基づいて、その車両挙動を抑制する第2電動トルク値(操舵反力トルク)TAを決定している。
 加算手段35は、第1電動トルク値(操舵補助トルク)T10に、第2電動トルク値(操舵反力トルク)TAを加算し、総合電動トルク値を算出している。
 電流制御手段36は、電動機9が、総合電動トルク値に相当する総合電動トルクを出力できるように、電動機9に流すべき目標電流を決定する。
 ドライバ37は、操舵制御ユニット7の外部に設けられ、半導体スイッチング回路等により構成される。ドライバ37は、決定された目標電流に基づいて、目標電流相当の出力電流を、電動機9に流す。
 電動機9は、第1電動トルク値T10と第2電動トルク値TAの和の総合電動トルク値Ttに相当する総合電動トルクを出力し、前輪6(図1参照)に加えることができる。
 次に、第2電動トルク決定手段7bについて、詳細に説明する。第2電動トルク決定手段7bによって決定される第2電動トルク値TAは、加算手段34において、第1トルク値T1と、第2トルク値T2と、第3トルク値T3との和として算出される。
 まず、第1トルク値T1は、データテーブル21と、リミッタ22とによって決定されている。データテーブル21は、舵角速度ωに応じて、第1トルク値T1を決定することができる。具体的には、図2のデータテーブル21に示すように、舵角速度ωが大きくなる程、第1トルク値T1が大きくなるように設定されている。これによれば、第1トルク値T1を操舵反力トルクとして機能させることができる。また、データテーブル21は、車速Vに応じて、第1トルク値T1を増減(補正)することができる。具体的には、図2に示すように、車速Vが大きくなる程、第1トルク値T1が大きくなるように設定されている。これによれば、高速走行時には、第1トルク値T1(操舵反力トルク)を大きくして、運転者は違和感なく操舵することができる。
 リミッタ22には、上限値が予め設定されている。リミッタ22には、データテーブル21で決定された第1トルク値T1が入力する。リミッタ22は、入力した第1トルク値T1が上限値より大きいか否か判定する。入力した第1トルク値T1が上限値より大きいと判定した場合は、第1トルク値T1として上限値を再設定し、上限値が設定された第1トルク値T1を出力する。入力した第1トルク値T1が上限値より大きくないと判定した場合は、入力した第1トルク値T1を、そのまま出力する。
 次に、第2トルク値T2は、主として、データテーブル26と、リミッタ27とによって決定されている。データテーブル26は、ヨーレイトγに応じて、第2トルク値T2を決定することができる。具体的には、図2のデータテーブル26に示すように、ヨーレイトγが大きくなる程、第2トルク値T2が大きくなるように設定されている。これによれば、例えば、車両100が走行中に横風を受けた場合に、横風が強い程、ヨーレイトγも大きくなり、大きな第2トルク値T2を設定できる。第2トルク値T2を操舵反力トルクとして機能させることができ、運転者は、強い横風でもステアリングホイール2を取られることがないので、違和感なく操舵することができる。また、データテーブル26は、車速Vに応じて、第2トルク値T2を増減(補正)することができる。具体的には、図2に示すように、車速Vが大きくなる程、第2トルク値T2が大きくなるように設定されている。
 リミッタ27には、予め、一定の上限値が設定されているわけではない。リミッタ27に設定される上限値は、方向抽出手段23、24と、上限値設定手段25とによって決定される。
 方向抽出手段23では、舵角速度ωに基づいて、その舵角速度ωが、ステアリングホイール2を右回転させる方向(+(正)方向)のものか、左回転させる方向(-(負)方向)のものかを抽出する。これにより、方向抽出手段23は、等価的に、手動操舵手段10の転舵方向を抽出したことになる。
 方向抽出手段24では、ヨーレイトγに基づいて、そのヨーレイトγが、車両100を右回転させる方向(+(正)方向)のものか、左回転させる方向(-(負)方向)のものかを抽出する。これにより、方向抽出手段24は、等価的に、第2トルク値T2、さらには、第2電動トルク値TAの車両100を回転させる方向を抽出したことになる。
 上限値設定手段25では、第2電動トルク値TA(第2トルク値T2、ヨーレイトγ)の方向と、手動操舵手段10の転舵方向(舵角速度ωの方向)との組合せによって、上限値を変更し、すなわち、その組合せによって異なった上限値(同方向上限値、逆方向上限値)を、リミッタ27に設定する。第2電動トルク値TA(第2トルク値T2、ヨーレイトγ)の方向と、手動操舵手段10の転舵方向(舵角速度ωの方向)とが、互いに同方向の組合せであれば、同方向上限値をリミッタ27に設定し、互いに逆方向の組合せであれば、逆方向上限値をリミッタ27に設定する。
 また、上限値設定手段25には、舵角速度ωが入力されている。上限値設定手段25は、上限値(同方向上限値、逆方向上限値)を、舵角速度ω(手動操舵手段10の転舵速度)に基づいて補正(変更)する。具体的には、第2電動トルク値TA(第2トルク値T2、ヨーレイトγ)の方向と、手動操舵手段10の転舵方向(舵角速度ωの方向)とが互いに同方向の組合せの場合に設定される同方向上限値は、舵角速度ωが小さくなると大きくなるように補正される。また、逆方向の組合せの場合に設定される逆方向上限値は、舵角速度ωが小さくなると小さくなるように補正される。これによれば、舵角速度ωが、右回転(正方向)と左回転(負方向)とで切り替る際に、逆方向上限値とそれより小さな同方向上限値の中間の中間値を設けることができ、逆方向上限値と同方向上限値との切り替えを、スムーズに実施することができる。そして、運転者に違和感を与えることがない。
 リミッタ27には、データテーブル26で決定された第2トルク値T2を入力する。リミッタ27は、入力した第2トルク値T2が、上限値設定手段25によって設定された上限値(同方向上限値、逆方向上限値、又はそれらの中間値)より大きいか否か判定する。入力した第2トルク値T2が上限値より大きいと判定した場合は、第2トルク値T2として上限値(同方向上限値、逆方向上限値、又はそれらの中間値)を再設定し、上限値(同方向上限値、逆方向上限値、又はそれらの中間値)が設定された第2トルク値T2を出力する。入力した第2トルク値T2が上限値(同方向上限値、逆方向上限値、又はそれらの中間値)より大きくないと判定した場合は、入力した第2トルク値T2を、そのまま出力する。
 次に、第3トルク値T3は、主として、外乱検知手段28と、データテーブル29と、リミッタ31とによって決定されている。外乱検知手段28は、キックバック等の外乱の発生を検知している。外乱検知手段28は、外乱の発生を検知すると、外乱判定(信号)を、データテーブル29へ送信する。外乱検知手段28の構成は、後記で詳述する。
 データテーブル29は、外乱検知時の操舵トルクT又は舵角速度ωに応じて、第3トルク値T3を決定することができる。データテーブル29は、外乱判定(信号)を受信したタイミングで、第3トルク値T3を決定する。具体的には、図2のデータテーブル29に示すように、外乱検知時の操舵トルクT又は舵角速度ωが大きくなる程、第3トルク値T3が大きくなるように設定されている。これによれば、例えば、車両100が走行中にキックバック等の外乱を受けた場合に、外乱(キックバック)が強い程、外乱検知時の操舵トルクT又は舵角速度ωも大きくなり、大きな第3トルク値T3を設定できる。第3トルク値T3を操舵反力トルクとして機能させることができ、運転者は、強い外乱(キックバック)でもステアリングホイール2を取られることがないので、違和感なく操舵することができる。また、データテーブル29は、車速Vに応じて、第3トルク値T3を増減(補正)することができる。具体的には、図2のデータテーブル29に示すように、車速Vが大きくなる程、第3トルク値T3が大きくなるように設定されている。
 リミッタ31には、予め、一定の上限値が設定されているわけではない。リミッタ31に設定される上限値は、方向抽出手段23、32と、上限値設定手段33とによって決定される。方向抽出手段23は、前記で説明したので、ここでの説明を省略する。
 方向抽出手段32では、外乱検知時の操舵トルクT又は舵角速度ω、図2の例では操舵トルクTに基づいて、その操舵トルクTが、ステアリングホイール2を右回転させる方向(+(正)方向)のものか、左回転させる方向(-(負)方向)のものかを抽出する。これにより、方向抽出手段32は、等価的に、第3トルク値T3、さらには、第2電動トルク値TAの車両100を回転させる方向を抽出したことになる。
 上限値設定手段33では、外乱検知時の第2電動トルク値TA(第3トルク値T3、操舵トルクT又は舵角速度ω)の方向と、外乱検知時前後の手動操舵手段10の転舵方向(舵角速度ωの方向)との組合せによって、上限値を変更し、すなわち、その組合せによって異なった上限値(同方向上限値、逆方向上限値)を、リミッタ31に設定する。外乱検知時の第2電動トルク値TA(第3トルク値T3、操舵トルクT又は舵角速度ω)の方向と、外乱検知時前後の手動操舵手段10の転舵方向(舵角速度ωの方向)とが互いに同方向の組合せであれば、同方向上限値をリミッタ31設定し、互いに逆方向の組合せであれば、逆方向上限値をリミッタ31に設定する。
 また、上限値設定手段33には、舵角速度ωが入力されている。上限値設定手段33は、上限値(同方向上限値、逆方向上限値)を、舵角速度ω(手動操舵手段10の転舵速度)に基づいて補正(変更)する。具体的には、第2電動トルク値TA(第3トルク値T3、操舵トルクT又は舵角速度ω)の方向と、手動操舵手段10の転舵方向(舵角速度ωの方向)とが互いに同方向の組合せの場合に設定される同方向上限値は、舵角速度ωが小さくなると大きくなるように補正される。また、逆方向の組合せの場合に設定される逆方向上限値は、舵角速度ωが小さくなると小さくなるように補正される。これによれば、舵角速度ωの左右(正負)回転が切り替る際に、逆方向上限値とそれより小さな同方向上限値の中間の中間値を設けることができ、逆方向上限値と同方向上限値との切り替えを、スムーズに実施することができる。そして、運転者に違和感を与えることがない。
 リミッタ31には、データテーブル29で決定された第3トルク値T3を入力する。リミッタ27は、入力した第3トルク値T3が設定された上限値(同方向上限値、逆方向上限値、又はそれらの中間値)より大きいか否か判定する。入力した第3トルク値T3が上限値より大きいと判定した場合は、第3トルク値T3として上限値(同方向上限値、逆方向上限値、又はそれらの中間値)を再設定し、上限値(同方向上限値、逆方向上限値、又はそれらの中間値)が設定された第3トルク値T3を出力する。入力した第3トルク値T3が上限値(同方向上限値、逆方向上限値、又はそれらの中間値)より大きくないと判定した場合は、入力した第3トルク値T3を、そのまま出力する。
 そして、加算手段34において、第1トルク値T1と、第2トルク値T2と、第3トルク値T3とが足し合わされ、第2電動トルク値TAが算出される。
 図3に、外乱検知手段(その1、保舵時)28の構成図を示し、図4に、外乱検知手段(その2、手放し時)28の構成図を示す。どちらも、図2に示す外乱検知手段28として用いられる。図3の外乱検知手段(その1、保舵時)28は、運転者が、ステアリングホイール2を、握って保舵し、その回動を制御(制限)している場合に用いられるものである。図4の外乱検知手段(その2、手放し時)28は、運転者が、ステアリングホイール2を手放して握らず、回動を制限しない場合に用いられるものである。
 図3の外乱検知手段(その1、保舵時)28は、微分手段41と、LPF(ロウ・パス・フィルタ)42と、フィルタ43とを有している。微分手段41は、検出された操舵トルクTの(時間)微分値を算出する。LPF42は、操舵トルクTの(時間)微分値から、低周波数成分を通すフィルタリングを行う。フィルタ43は、低周波成分からなる操舵トルクTの(時間)微分値から、大振幅波形を通すフィルタリングを行う。これらのフィルタリングによれば、キックバック等に起因する急変する操舵トルクTを抽出することができる。
 また、図3の外乱検知手段(その1、保舵時)28は、LPF44と、フィルタ45とを有している。LPF44は、舵角速度ωから、低周波数成分を通すフィルタリングを行う。フィルタ45は、低周波成分からなる舵角速度ωから、大振幅波形を通すフィルタリングを行う。これらのフィルタリングによれば、キックバック等に起因する高速の舵角速度ωを抽出することができる。
 また、図3の外乱検知手段(その1、保舵時)28は、符号判定手段46を有している。符号判定手段46では、フィルタ43から急変する操舵トルクTを取得し、フィルタ45から高速の舵角速度ωを取得する。そして、急変する操舵トルクTの回転方向(右回転(正符号)と左回転(負符合))と、その急変する操舵トルクTと同じタイミングで検出された高速の舵角速度ωの回転方向(右回転(正符号)と左回転(負符合))が、同じ方向(同符号)か、逆方向(異符号)か判定する。同じ方向(同符号)と判定した場合は、保舵による舵角速度ωの回転方向が、保舵による(急変する)操舵トルクTの回転方向と一致していると考えて、外乱は発生していないと判定する。逆方向(異符号)と判定した場合は、保舵による舵角速度ωの回転方向に対して、急変する操舵トルクTの回転方向が一致していないのは、外乱(キックバック等)によるトルクが発生しているためと考えて、外乱が発生していると判定(検知)し、外乱判定(信号)を、データテーブル29へ送信する。
 次に、図4の外乱検知手段(その2、手放し時)28は、運転者が、ステアリングホイール2を手放して握らず、回動を制限しない場合に用いられる。図4の外乱検知手段(その2、手放し時)28は、手放し時間検出手段47と、判定手段48と、論理積手段(AND)49とを有している。手放し時間検出手段47は、規定時間に亘って、操舵トルクTが閾値以下である状態(手放し時)を検出する。判定手段48は、舵角速度ωが閾値より大きいか否か判定する。AND49は、規定時間に亘って操舵トルクTが(トルク)閾値以下である状態(手放し時)であって、かつ、同じタイミングのその手放し時に舵角速度ωが(速度)閾値より大きい場合に、外乱によって舵角速度が大きくなっていると考えて、外乱が発生していると判定(検知)し、外乱判定(信号)を、データテーブル29へ送信する。
 図5に、本発明の実施形態に係る車両用操舵装置1(車両100)が実施する操舵方法のフローチャートを示す。
 まず、ステップS1で、トルクセンサ(操舵トルク検出手段)12は、操舵トルクTを検出する。操舵制御ユニット7の第1電動トルク決定手段7aと第2電動トルク決定手段7bは、検出された操舵トルクTを、トルクセンサ(操舵トルク検出手段)12から取得する。
 ステップS2で、ヨーレイトセンサ(車両挙動検出手段)15は、ヨーレイトγを検出する。車速センサ(車両挙動検出手段)16は、車速Vを検出する。操舵制御ユニット7の第2電動トルク決定手段7bは、車両の挙動(横風、轍、外乱(キックバック))を検出するために、ヨーレイトγや車速V等を取得する。
 ステップS3で、舵角速度センサ11又はレゾルバ(舵角速度センサ)9aは、舵角速度ωを検出する。操舵制御ユニット7の第2電動トルク決定手段7bは、検出された舵角速度ωを、舵角速度センサ11又はレゾルバ(舵角速度センサ)9aから取得する。
 ステップS4で、第1電動トルク決定手段7aは、操舵トルクTに基づいて、第1電動トルク値T10(いわゆる補助トルク)を決定する。
 ステップS5で、第2電動トルク決定手段7bのデータテーブル21とリミッタ22は、車速Vと舵角速度ωに基づいて、第2電動トルク値TAを構成する第1トルク値T1を仮に決定する。また、第2電動トルク決定手段7bのデータテーブル26は、車速Vとヨーレイトγに基づいて、第2電動トルク値TAを構成する第2トルク値T2を仮に決定する。
 図6に、取得されたヨーレイトγに対して、第2電動トルク値TAを構成する第2トルク値T2を決定することができるデータテーブル26(図2参照)を示す。なお、このデータテーブル26は一例として車速V1におけるデータテーブルを示している。このデータテーブル26では、ヨーレイトγ(横加速度(横G))が大きくなるほど、第2トルク値T2は大きくなる。データテーブル26では、検出された車速V1とヨーレイトγ1を取得すると、図6に示すように、車速V1とヨーレイトγ1に基づいて、第2トルク値T21が仮に決定される。
 また、ステップS5で、第2電動トルク決定手段7bの外乱検知手段28は、外乱を検知する。外乱検知手段28による外乱検知方法(その1とその2)は、後記で詳述する。外乱が検知された場合には、第2電動トルク決定手段7bのデータテーブル29は、その外乱の発生時における車速Vと操舵トルクTと舵角速度ωに基づいて、第2電動トルク値TAを構成する第3トルク値T3を仮に決定する。
 図7に、外乱(キックバック)時に取得された操舵トルクT(舵角速度ω)に対して、第2電動トルク値TAを構成する第3トルク値T3を決定することができるデータテーブル29(図2参照)を示す。なお、このデータテーブル29は一例として車速V1におけるデータテーブルを示している。このデータテーブル29では、外乱時の操舵トルクT(舵角速度ω)が大きくなるほど、第3トルク値T3は大きくなる。データテーブル29では、検出された車速V1と操舵トルクT11(舵角速度ω1)を取得すると、図7に示すように、車速V1と操舵トルクT11(舵角速度ω1)に基づいて、第3トルク値T31が仮に決定される。
 次に、図5に示すステップS6で、第2電動トルク決定手段7bの方向抽出手段24は、ヨーレイトγに基づいて、第2電動トルク値TAを構成する第2トルク値T2の方向を抽出する。また、第2電動トルク決定手段7bの方向抽出手段32は、外乱検出時の操舵トルクTに基づいて、第2電動トルク値TAを構成する第3トルク値T3の方向を抽出する。
 ステップS7で、第2電動トルク決定手段7bの方向抽出手段23は、舵角速度ωに基づいて、舵角速度ωの方向(手動操舵手段10の転舵方向)を検出する。
 ステップS8で、第2電動トルク決定手段7bの上限値設定手段25は、今適用される上限値(同方向上限値、逆方向上限値、またはこれらの中間値)に変更し、それをリミッタ27に設定する。第2電動トルク決定手段7bの上限値設定手段33は、今適用される上限値(同方向上限値、逆方向上限値、またはこれらの中間値)に変更し、それをリミッタ31に設定する。ステップS8をより詳細に説明する。
 まず、ステップS8aで、上限値設定手段25は、ステップS6で抽出した第2電動トルク値TAを構成する第2トルク値T2の方向と、ステップS7で検出した舵角速度ωの方向(手動操舵手段10の転舵方向)とが、同方向か否か判定する。同方向であると判定された場合(ステップS8a、Yes)は、ステップS8bへ進み、同方向でない(逆方向である)と判定された場合(ステップS8a、No)は、ステップS8cへ進む。
 また、ステップS8aで、上限値設定手段33は、ステップS6で抽出した第2電動トルク値TAを構成する第3トルク値T3の方向と、ステップS7で検出した舵角速度ωの方向(手動操舵手段10の転舵方向)とが、同方向か否か判定する。同方向であると判定された場合は(ステップS8a、Yes)、ステップS8bへ進み。同方向でない(逆方向である)と判定された場合は(ステップS8a、No)、ステップS8cへ進む。
 ステップS8bで、上限値設定手段25は、同方向上限値を、リミッタ27、31に設定する。具体的には、図6に示すように、第2電動トルク値TAを構成する第2トルク値T2に、同方向上限値Tmsが設定される。また、図7に示すように、第2電動トルク値TAを構成する第3トルク値T3に、同方向上限値Tmsが設定される。
 図8に、舵角速度ωに対する第2電動トルク値TA(第2トルク値T2、第3トルク値T3)のグラフを示す。ステップS8aのYesと、ステップS8bとに対応して、第2電動トルク値TA(第2トルク値T2、第3トルク値T3)の方向と、舵角速度ωの方向とが、共に右回転(+方向)であって同方向である場合(図8のグラフの第1象限)と、共に左回転(-方向)であって同方向である場合(図8のグラフの第3象限)とに、例えば任意目盛りで3程度(第1象限では+3、第3象限では-3)の大きさの、同方向上限値Tmsが設定される。
 また、図5のステップS8cで、上限値設定手段25は、逆方向上限値を、リミッタ27、31に設定する。具体的には、図6に示すように、第2電動トルク値TAを構成する第2トルク値T2に、逆方向上限値Tmrが設定される。また、図7に示すように、第2電動トルク値TAを構成する第3トルク値T3に、逆方向上限値Tmrが設定される。
 図8においては、ステップS8aのNoと、ステップS8cとに対応して、第2電動トルク値TA(第2トルク値T2、第3トルク値T3)の方向と、舵角速度ωの方向との一方が、右回転(+方向)であり、他方が、左回転(-方向)であるように同方向でない(逆方向である)場合(図8のグラフの第2象限又は第4象限)に、例えば任意目盛りで10程度(第2象限では+10、第4象限では-10)の大きさで同方向上限値Tmsより大きい、逆方向上限値Tmrが設定される。
 また、図5のステップS8dで、上限値設定手段25は、操舵速度ωがゼロ付近か否か判定する。操舵速度ωがゼロ付近であれば(ステップS8d、Yes)、ステップS8eへ進む。操舵速度ωがゼロ付近でなければ(ステップS8d、No)、ステップS9へ進む。
 ステップS8eで、上限値設定手段25は、舵角速度ωに基づいて、舵角速度ωのゼロ付近において、同方向上限値と逆方向上限値を変更して、同方向上限値と逆方向上限値の段差をなだらかに接続するように、中間値を設定する。具体的には、図8に示すように、同方向上限値Tmsの絶対値は、舵角速度ωのゼロ付近において、舵角速度ωが小さくなると大きくなるように補正される。また、逆方向上限値Tmrの絶対値は、舵角速度ωが小さくなると小さくなるように補正される。
 また、図5のステップS9で、リミッタ27は、第2電動トルク値TAを構成する第2トルク値T2を、上限値(同方向上限値、逆方向上限値、またはこれらの中間値)以下に再設定する。具体的には、図6に示すように、第2電動トルク値TAを構成する第2トルク値T2に対して仮に設定されていた第2トルク値T21を、同方向上限値Tmsや、逆方向上限値Tmrや、またはこれらの中間値に再設定する。
 また、リミッタ31は、第2電動トルク値TAを構成する第3トルク値T3を、上限値(同方向上限値、逆方向上限値、またはこれらの中間値)以下に再設定する。具体的には、図7に示すように、第2電動トルク値TAを構成する第3トルク値T3に対して仮に設定されていた第3トルク値T31を、同方向上限値Tmsや、逆方向上限値Tmrや、またはこれらの中間値に再設定する。
 これらにより、図8の第2電動トルク値TAの右回転側と左回転側の2本の破線矢印で示すように、舵角速度ωが、右回転(+方向)と左回転(-方向)とで切り替る際に、小さな同方向上限値Tmsから、なだらかな中間値を経て、大きな逆方向上限値Tmrが、逐次設けられ、それらによって制限される第2電動トルク値TA(第2トルク値T2、第3トルク値T3;破線矢印に相当)を滑らかに設定することができる。そして、運転者に違和感を与えることがない。
 ステップS10で、加算手段34は、第1トルク値T1と、第2トルク値T2と、第3トルク値T3とを足し合わせて、第2電動トルク値TAを算出する(TA=T1+T2+T3)。加算手段35は、第1電動トルク値T10と、第2電動トルク値TAとを足し合わせて、総合電動トルク値Ttを算出する(Tt=T10+TA)。
 ステップS11で、電流制御手段36は、総合電動トルク値Ttに基づいて、電動機9に流すべき目標電流を決定する。ドライバ37は、決定された目標電流に基づいて、出力電流を電動機9に流す。電動機9は、第1電動トルク値T10と第2電動トルク値TAの和の総合電動トルク値Ttに相当する総合電動トルクを出力する。
 図9に、図3に示した外乱検知手段(その1)28が実施する外乱検知方法(その1、図5に示すステップS5の一部に相当)のフローチャートを示す。
 まず、ステップS21で、微分手段41は、操舵トルクTのトルク(時間)微分値を算出する。LPF42は、トルク(時間)微分値から、低周波数成分を通す(フィルタリングする)。
 ステップS22で、フィルタ43は、トルク(時間)微分値の絶対値が所定値以上か否か判定する。そして、フィルタ43は、所定値以上のトルク(時間)微分値を判定・抽出して通すフィルタリングを行う(ステップS22、Yes)。これにより、フィルタ43は、低周波成分からなる操舵トルクTの(時間)微分値から、大振幅波形を通すようなフィルタとして機能し、キックバック等に起因する急変する操舵トルクTを抽出する。ステップS22が、Noの場合は、ステップS21へ戻る。
 ステップS23で、LPF44は、舵角速度ωから、低周波数成分を通す(フィルタリングを行う)。フィルタ45は、舵角速度ωの絶対値が所定値以上か否か判定する。そして、フィルタ45は、所定値以上のものを判定・抽出して通すフィルタリングを行う(ステップS23、Yes)。これにより、フィルタ45は、低周波成分からなる舵角速度ωから、大振幅波形を通すようなフィルタとして機能し、キックバック等に起因する高速の舵角速度ωを抽出する。ステップS23が、Noの場合は、ステップS21へ戻る。
 ステップS24で、符号判定手段46は、ステップS22でフィルタ43が通した急変する操舵トルクTの回転方向(正負符号)と、ステップS23でフィルタ45が通した高速の舵角速度ωの回転方向(正負符号)とが、同方向(同符号)か否か判定する。同方向(同符号)と判定した場合は、保舵による舵角速度ωの回転方向が、保舵による(急変する)操舵トルクTの回転方向と一致していると考えて、外乱は発生していないと判定する。逆方向(異符号)と判定した場合は、保舵による舵角速度ωの回転方向に対して、急変する操舵トルクTの回転方向が一致していないのは、外乱(キックバック等)によるトルクが発生しているためと考えて、外乱が発生していると判定(検知)し、外乱判定(信号)を、データテーブル29へ送信する。前記で、外乱検知方法(その1)は終了する。
 図10に、図4に示した外乱検知手段(その2)28が実施する外乱検知方法(その2、図5に示すステップS5の一部に相当)のフローチャートを示す。
 まず、ステップS31で、手放し時間検出手段47は、操舵トルクTの絶対値が閾値以下になったら、時間計測をスタートさせる。
 ステップS32で、手放し時間検出手段47は、操舵トルクTの絶対値が閾値を超えたら、時間計測をストップさせる。この時間計測により、運転者がステアリングホイール2から手を離して、ステアリングホイール2が回動するままにしている手放し時間(計測時間)が計測できる。
 ステップS33で、手放し時間検出手段47は、計測時間(手放し時間)が規定時間に達したか否か判定する。計測時間が規定時間に達したと判定した場合(ステップS33、Yes)は、AND49は「1」を立て、ステップS34へ進む。計測時間が規定時間に達していないと判定した場合(ステップS33、No)は、AND49は「0」を立て、ステップS31へ戻る。
 ステップS34で、判定手段48は、舵角速度ωの絶対値が閾値以上か否か判定する。舵角速度ωの絶対値が閾値以上と判定した場合(ステップS34、Yes)は、AND49は「1」を立て、ステップS35へ進む。舵角速度ωの絶対値が閾値以上でないと判定した場合(ステップS34、No)は、AND49は「0」を立て、ステップS31へ戻る。
 ステップS35で、AND49は、ステップS33で立てられた「1」と、ステップS34で立てられた「1」とに基づいて、外乱(キックバック等)によって手放し状態にも関わらず舵角速度ωが大きくなっていると考えて、外乱が発生していると判定(検知)し、外乱判定(信号)を、データテーブル29へ送信する。前記で、外乱検知方法(その2)は終了する。
 1   車両用操舵装置
 2   ステアリングホイール
 3   ステアリングシャフト
 4   ピニオン
 5   タイロッド
 6   前輪(操向車輪)
 7   操舵制御ユニット
 7a  第1電動トルク決定手段
 7b  第2電動トルク決定手段
 8   ラック軸
 9   電動機
 9a  レゾルバ(舵角速度センサ)
 10  手動操舵手段
 11  舵角速度センサ
 12  トルクセンサ(操舵トルク検出手段)
 13  連結軸
 15  ヨーレイトセンサ(車両挙動検出手段)
 16  車速センサ(車両挙動検出手段)
 21、26、29 データテーブル
 22、27、31 リミッタ
 23、24、32 方向抽出手段
 25、33 上限値設定手段
 34、35 加算手段
 36  電流制御手段
 37  ドライバ
 100 車両

Claims (5)

  1.  車両の操向車輪を手動により転舵するための手動操舵手段と、
     前記手動操舵手段に加えられた操舵トルクを検出する操舵トルク検出手段と、
     検出された前記操舵トルクに基づいて第1電動トルク値を決定する第1電動トルク決定手段と、
     前記車両の挙動を検出する車両挙動検出手段と、
     前記車両挙動検出手段によって検出された検出値に基づいて第2電動トルク値を決定する第2電動トルク決定手段と、
     前記操向車輪に総合電動トルクを加えるための電動機と、
     前記第1電動トルク値に前記第2電動トルク値を加えた前記総合電動トルク値をもって前記電動機へ流す電流を制御する電流制御手段とを有する車両用操舵装置において、
     前記第2電動トルク決定手段は、上限値より大きい前記第2電動トルク値を前記上限値以下に再設定し、前記上限値を前記第2電動トルク値の方向と前記手動操舵手段の転舵方向との組合せによって変更することを特徴とする車両用操舵装置。
  2.  前記第2電動トルク値の方向と前記手動操舵手段の転舵方向が同じ場合に設定される前記上限値は、前記第2電動トルク値の方向と前記手動操舵手段の転舵方向が異なる場合に設定される前記上限値よりも小さいことを特徴とする請求の範囲第1項に記載の車両用操舵装置。
  3.  前記第2電動トルク決定手段は、前記上限値を前記手動操舵手段の転舵速度に基づいて変更することを特徴とする請求の範囲第1項に記載の車両用操舵装置。
  4.  前記第2電動トルク値の方向と前記手動操舵手段の転舵方向が同じ場合に設定される前記上限値は、前記転舵速度が小さくなると大きくなることを特徴とする請求の範囲第3項に記載の車両用操舵装置。
  5.  前記第2電動トルク値の方向と前記手動操舵手段の転舵方向が異なる場合に設定される前記上限値は、前記転舵速度が小さくなると小さくなることを特徴とする請求の範囲第3項に記載の車両用操舵装置。
PCT/JP2012/060770 2011-04-27 2012-04-20 車両用操舵装置 WO2012147661A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112013027386-0A BR112013027386B1 (pt) 2011-04-27 2012-04-20 Dispositivo de direção de veículo
US14/114,005 US8978814B2 (en) 2011-04-27 2012-04-20 Vehicle steering device
CN201280019897.1A CN103502082B (zh) 2011-04-27 2012-04-20 车辆用转向装置
MX2013012420A MX2013012420A (es) 2011-04-27 2012-04-20 Dispositivo para direccion de vehiculo.
JP2013512334A JP5575981B2 (ja) 2011-04-27 2012-04-20 車両用操舵装置
EP12776955.2A EP2703253B1 (en) 2011-04-27 2012-04-20 Vehicle steering device
CA2834211A CA2834211C (en) 2011-04-27 2012-04-20 Vehicle steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011100065 2011-04-27
JP2011-100065 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012147661A1 true WO2012147661A1 (ja) 2012-11-01

Family

ID=47072181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060770 WO2012147661A1 (ja) 2011-04-27 2012-04-20 車両用操舵装置

Country Status (8)

Country Link
US (1) US8978814B2 (ja)
EP (1) EP2703253B1 (ja)
JP (1) JP5575981B2 (ja)
CN (1) CN103502082B (ja)
BR (1) BR112013027386B1 (ja)
CA (1) CA2834211C (ja)
MX (1) MX2013012420A (ja)
WO (1) WO2012147661A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088274A (ja) * 2014-11-04 2016-05-23 株式会社ジェイテクト 電動パワーステアリング装置
JP2016088311A (ja) * 2014-11-05 2016-05-23 株式会社ジェイテクト 電動パワーステアリング装置
JP2016107903A (ja) * 2014-12-09 2016-06-20 株式会社ジェイテクト 電動パワーステアリング装置
JP2017124648A (ja) * 2016-01-12 2017-07-20 いすゞ自動車株式会社 保舵状態検出装置及び保舵状態検出方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102333B2 (en) * 2013-06-13 2015-08-11 Ford Global Technologies, Llc Enhanced crosswind estimation
US9132835B2 (en) 2013-08-02 2015-09-15 Ford Global Technologies, Llc Enhanced crosswind compensation
WO2015163051A1 (ja) * 2014-04-25 2015-10-29 三菱電機株式会社 操舵制御装置およびその操舵補助トルク制御方法
JP6379907B2 (ja) * 2014-09-16 2018-08-29 株式会社ジェイテクト 電動パワーステアリング装置
DE102015002686B4 (de) * 2015-03-04 2020-07-16 Thyssenkrupp Ag Einteilige Eingangswelle
US10464598B2 (en) * 2017-07-18 2019-11-05 GM Global Technology Operations LLC Overload and overspeed detection of electric power steering systems
DE102018201609B4 (de) 2018-02-02 2019-12-05 Ford Global Technologies, Llc Verfahren zum Betrieb eines Kraftfahrzeugs mit einer elektrisch unterstützten Lenkung
JP7135380B2 (ja) * 2018-03-29 2022-09-13 マツダ株式会社 車両用制御装置
JP2020100274A (ja) * 2018-12-21 2020-07-02 株式会社ジェイテクト 操舵システム
US11724732B2 (en) * 2019-09-26 2023-08-15 Jtekt Corporation Steering control device
CN112849227B (zh) * 2021-01-28 2022-06-03 武汉大学 基于imu判断高铁作业车转向的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3103049B2 (ja) 1997-11-17 2000-10-23 本田技研工業株式会社 車両用操舵装置
JP2009143484A (ja) * 2007-12-17 2009-07-02 Toyota Motor Corp 車両制御装置
JP2010036720A (ja) * 2008-08-05 2010-02-18 Mitsubishi Electric Corp 車両用操舵制御装置
JP2010137621A (ja) * 2008-12-10 2010-06-24 Honda Motor Co Ltd 電動パワーステアリング装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229074B2 (ja) * 1993-06-04 2001-11-12 本田技研工業株式会社 車両用操舵装置
JP3649119B2 (ja) * 2000-12-12 2005-05-18 日産自動車株式会社 レーンキープアシスト制御装置
JP4349309B2 (ja) * 2004-09-27 2009-10-21 日産自動車株式会社 車両用操舵制御装置
GB0620962D0 (en) 2006-10-21 2006-11-29 Trw Lucasvarity Electric Steer Steering control during split MU braking

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3103049B2 (ja) 1997-11-17 2000-10-23 本田技研工業株式会社 車両用操舵装置
JP2009143484A (ja) * 2007-12-17 2009-07-02 Toyota Motor Corp 車両制御装置
JP2010036720A (ja) * 2008-08-05 2010-02-18 Mitsubishi Electric Corp 車両用操舵制御装置
JP2010137621A (ja) * 2008-12-10 2010-06-24 Honda Motor Co Ltd 電動パワーステアリング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2703253A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088274A (ja) * 2014-11-04 2016-05-23 株式会社ジェイテクト 電動パワーステアリング装置
JP2016088311A (ja) * 2014-11-05 2016-05-23 株式会社ジェイテクト 電動パワーステアリング装置
JP2016107903A (ja) * 2014-12-09 2016-06-20 株式会社ジェイテクト 電動パワーステアリング装置
JP2017124648A (ja) * 2016-01-12 2017-07-20 いすゞ自動車株式会社 保舵状態検出装置及び保舵状態検出方法

Also Published As

Publication number Publication date
US20140041958A1 (en) 2014-02-13
CA2834211A1 (en) 2012-11-01
EP2703253B1 (en) 2015-09-30
EP2703253A4 (en) 2015-01-21
EP2703253A1 (en) 2014-03-05
CN103502082B (zh) 2015-05-27
JPWO2012147661A1 (ja) 2014-07-28
US8978814B2 (en) 2015-03-17
MX2013012420A (es) 2013-12-06
BR112013027386B1 (pt) 2021-09-21
CA2834211C (en) 2015-02-24
CN103502082A (zh) 2014-01-08
BR112013027386A2 (pt) 2017-01-17
JP5575981B2 (ja) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5575981B2 (ja) 車両用操舵装置
JP5327331B2 (ja) 車両の電動パワーステアリング装置
WO2018051838A1 (ja) 車両制御装置、車両制御方法および電動パワーステアリング装置
US10099721B2 (en) Electric power steering apparatus
WO2014021369A1 (ja) 電動パワーステアリングシステムを制御する装置及びその方法
US20110029200A1 (en) Pull drift compensation using active front steering system
JP4120570B2 (ja) 電動パワーステアリング装置
JP6028575B2 (ja) 車両用操舵制御装置及び車両用操舵制御方法
WO2009020233A1 (ja) 電動パワ-ステアリング装置
JP2006273185A (ja) 車両用操舵装置
JP3176899B2 (ja) 車両用操舵装置
JP4517810B2 (ja) 車両用操舵制御装置
JP5085510B2 (ja) 電動パワーステアリング装置
JP3176900B2 (ja) 車両用操舵装置
JP4226169B2 (ja) 車両用操舵装置
JP5141382B2 (ja) 電動パワーステアリング装置
CN113474236B (zh) 车辆用转向装置
JP6311589B2 (ja) パワーステアリング制御装置
JP5966684B2 (ja) 車両の操舵制御装置
JP2016107764A (ja) パワーステアリング装置
JP2007283954A (ja) 操舵装置
JP3884843B2 (ja) 車両用操舵装置
JP2015074355A (ja) 操舵制御装置
JP3884844B2 (ja) 車両用操舵装置
JP3884842B2 (ja) 車両用操舵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013512334

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2834211

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/012420

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14114005

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012776955

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013027386

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013027386

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131024