WO2012147164A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2012147164A1
WO2012147164A1 PCT/JP2011/060173 JP2011060173W WO2012147164A1 WO 2012147164 A1 WO2012147164 A1 WO 2012147164A1 JP 2011060173 W JP2011060173 W JP 2011060173W WO 2012147164 A1 WO2012147164 A1 WO 2012147164A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
correction amount
driving output
target
vehicle
Prior art date
Application number
PCT/JP2011/060173
Other languages
English (en)
French (fr)
Inventor
及川善貴
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/821,652 priority Critical patent/US8935030B2/en
Priority to CN201180005042.9A priority patent/CN102883906B/zh
Priority to JP2012504583A priority patent/JP5206902B1/ja
Priority to PCT/JP2011/060173 priority patent/WO2012147164A1/ja
Publication of WO2012147164A1 publication Critical patent/WO2012147164A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Definitions

  • the present invention relates to a vehicle control device, and more particularly, to a vehicle control device that controls driving output of a vehicle and controls display of driving output status.
  • the driving force of the vehicle is controlled according to the driving operation of the driver, and is controlled according to the situation of the vehicle.
  • vehicle controls for controlling the driving force of a vehicle in accordance with the situation of the vehicle the vehicle predicts vibration on the splash of the vehicle based on the driving operation of the driver and suppresses the vibration on the splash
  • the sprung mass damping control for controlling the driving force is already known.
  • An example of the sprung mass damping control is described in, for example, Patent Document 1 below, and the target driving force of the vehicle based on the driving operation of the driver is corrected by the correction amount of the sprung mass damping control.
  • the electric motor acts as a regenerative generator during deceleration braking of the vehicle and is generated by power generation. Electricity is charged to the battery.
  • the operation mode of the electric motor is a driving mode in which driving force is generated when electricity is supplied from the battery or a charging mode in which electricity is supplied to the battery by power generation. It is often displayed on an indoor display device.
  • the operation mode of the electric motor displayed on the display device is controlled based on the sign of the target driving force of the vehicle corrected by the correction amount of the sprung mass damping control. That is, the displayed operation mode is the drive mode when the corrected target driving force of the vehicle is a positive value, and the charging mode when the corrected target driving force of the vehicle is a negative value.
  • the correction amount of the sprung mass damping control includes a feedforward control amount based on the driving operation of the driver and a feedback control amount based on a disturbance on the road surface. It is rare that the sign of the feedforward control amount repeatedly varies between positive and negative, but the sign of the feedback control amount repeatedly varies with a small amplitude over both positive and negative.
  • the sign of the feedback control variable is repeatedly changed over both positive and negative, particularly in a situation where the magnitude of the feedforward control quantity is small, the sign of the correction amount for the sprung mass damping control is also repeatedly changed over the positive and negative. For this reason, in this situation, the sign of the corrected target driving force of the vehicle repeatedly fluctuates positively and negatively, so that the operation mode of the electric motor displayed on the display device is repeated between the driving mode and the charging mode. The vehicle occupant may feel annoyed.
  • the main object of the present invention is to calculate a target driving output value of a vehicle, correct the target driving output value with a driving output correction amount for suppressing vibration accompanying acceleration / deceleration of the vehicle, and perform the target driving after the correction.
  • the driving output status of the vehicle is corrected due to repeated fluctuations in the sign of the target driving force of the vehicle after correction. It is to suppress the display from fluctuating repeatedly.
  • the target driving output value calculating means for calculating the target driving output value of the vehicle based on the driving operation amount of the driver, and the driving output correction for calculating the driving output correction amount for suppressing the vibration of the vehicle.
  • Amount calculation means control means for controlling the driving output means of the vehicle based on the target driving output correction value obtained by correcting the target driving output value with the driving output correction amount, and display means for displaying the driving output status of the driving output means
  • the driving output correction amount includes at least a disturbance correction amount calculated based on a disturbance to the vehicle, and the display means is less affected by the disturbance correction amount than the target driving output correction value.
  • the display of the driving output status by the display means is performed based on the display target driving output value which is a value in which the influence of the disturbance correction amount is reduced than the target driving output correction value. Therefore, the display of the driving output status is displayed as compared with the case where the driving output status is displayed based on the target driving output correction value, that is, the corrected target driving output value obtained by correcting the target driving output value with the driving output correction amount. It is possible to reduce the influence of the disturbance correction amount on. Therefore, even in a situation in which the sign of the disturbance correction amount repeatedly fluctuates due to a disturbance to the vehicle, it is possible to reduce the possibility that the sign of the display target operation output value fluctuates repeatedly. Therefore, it is possible to prevent the display of the driving output status of the driving output means from repeatedly fluctuating due to the repeated fluctuation of the sign of the target driving output value for display, thereby preventing the vehicle occupant from feeling annoying. can do.
  • the target operation output value for display is a value obtained by correcting the target operation output value with the operation output correction amount when the magnitude of the target operation output value exceeds the reference value.
  • the value may be a value in which the influence of the disturbance correction amount is less than the target operation output correction value.
  • the display target operation output value is more disturbance-corrected than the target operation output correction value. This is a value in which the influence of the quantity is reduced. Therefore, even when the target driving output value is less than or equal to the reference value, compared to the case where the target driving output value for display is a value obtained by correcting the target driving output value with the driving output correction amount, the driving output means It is possible to suppress the display of the driving output status from fluctuating repeatedly.
  • the display target operation output value is a value obtained by correcting the target operation output value by the operation output correction amount, that is, the target operation output correction value. Therefore, even when the target driving output value exceeds the reference value, the display target driving output value is actually less than the case where the influence of the disturbance correction amount is less than the target driving output correction value.
  • the driving output status can be displayed according to the driving output status.
  • the value of which the influence of the disturbance correction amount is less than the target operation output correction value is obtained by correcting the target operation output value with a correction amount that does not include the disturbance correction amount. May be a value reduced to zero.
  • the target operation output value for display is a value in which the influence of the disturbance correction amount is reduced to 0, and is a value that is not affected by the disturbance correction amount at all. Therefore, it is possible to prevent the display of the driving output status by the driving output means from repeatedly changing due to the repeated fluctuation of the sign of the disturbance correction amount.
  • the value obtained by reducing the influence of the disturbance correction amount over the target operation output correction value is the target operation output value corrected by the operation output correction amount so that the magnitude of the disturbance correction amount is reduced. It may be a value obtained by correcting.
  • the display target operation output value is a value obtained by correcting the target operation output value with the operation output correction amount corrected so that the magnitude of the disturbance correction amount is reduced.
  • the influence of the disturbance correction amount on is small. Therefore, it is possible to reduce the possibility that the display of the driving output status by the driving output means repeatedly fluctuates due to the repeated fluctuation of the sign of the disturbance correction amount.
  • the value in which the influence of the disturbance correction amount is reduced more than the target driving output correction value is filtered in a specific passing frequency band including at least the vehicle resonance frequency range with respect to the target driving output correction value.
  • the value obtained by subtracting the correction amount from the target operation output correction value may be a value obtained by performing the above operation as a correction amount.
  • the display target operation output value is a value obtained by subtracting the correction amount from the target operation output correction value.
  • the display target driving output value is a value obtained by removing a component of a specific passing frequency band including at least the resonance frequency band of the vehicle from the target driving output correction value. Therefore, even when the vehicle vibrates at a frequency in the resonance frequency range, it is possible to reduce the possibility that the sign of the target driving output value for display repeatedly fluctuates between positive and negative, thereby driving output by the driving output means. It is possible to reduce the possibility of the situation display repeatedly fluctuating.
  • the value of which the influence of the disturbance correction amount is less than the target driving output correction value is obtained by sampling the target driving output correction value at a sampling cycle other than the cycle corresponding to the resonance frequency range of the vehicle. It may be a value obtained by
  • the display target driving output value is a value obtained by sampling the target driving output correction value at a sampling period other than the period corresponding to the resonance frequency range of the vehicle.
  • the display target operation output value is a value corrected so as to eliminate the influence of the disturbance correction amount in the resonance frequency range of the vehicle. Therefore, even when the vehicle vibrates at a frequency in the resonance frequency range, it is possible to reduce the possibility that the sign of the target driving output value for display repeatedly fluctuates between positive and negative, thereby driving output by the driving output means. It is possible to reduce the possibility of the situation display repeatedly fluctuating.
  • the reference value may be variably set according to the disturbance correction amount.
  • the reference value since the reference value is variably set according to the disturbance correction amount, the reference value can be changed according to the influence of the disturbance correction amount on the target operation output correction value. Therefore, the display target operation output value can be changed according to the influence of the disturbance correction amount on the target operation output correction value.
  • the disturbance correction amount is calculated as a feedback control amount based on the disturbance to the vehicle
  • the driving output correction amount is a feedforward control amount calculated based on the disturbance correction amount and the driving operation amount of the driver. May be included.
  • the target driving output value is the target driving force of the vehicle
  • the disturbance correction amount repeatedly fluctuates across positive and negative with the driving direction of the vehicle being positive
  • the display means displays the sign of the target driving output value for display.
  • the display of the operation output status may be changed according to.
  • the driving output means includes a motor generator and a power storage means, and when the target driving output correction value is a positive value, the motor generator is supplied with electric energy from the power storage means to When the target driving output correction value is a negative value, the motor generator is driven by the driving force from the wheels to generate electric power and charge the power storage means. It may be.
  • the display of the driving output status by the driving output means is between the above two modes. It can suppress that it changes repeatedly.
  • the display means is in a special situation where the sign of the disturbance correction amount and the display target operation output value are different and the magnitude of the disturbance correction amount is larger than the display target operation output value. Indicates whether the motor generator is generating driving force or generating power according to the sign of the disturbance correction amount, and according to the sign of the target operating output value for display in situations other than special situations Thus, it may be displayed whether the motor generator is generating driving force or generating power.
  • whether the motor generator is generating driving force or generating power is determined by the sign of the disturbance correction amount.
  • the target operation output value for display is a value in which the influence of the disturbance correction amount is less than the target operation output correction value, whether the motor generator is generating driving force or generating power It is determined by the sign of the target operation output value. Therefore, the indication whether the motor generator is generating driving force or generating power may be different from the actual operating state of the motor generator.
  • the display means when the display means also displays the amount of power stored in the power storage means, if it is displayed that the motor generator is generating power despite the generation of driving force, the motor generator is generating power. Despite being displayed, the amount of stored electricity is reduced. On the contrary, if it is displayed that the driving power is being generated even though the motor generator is generating power, the displayed amount of storage is reduced even though it is displayed that the motor generator is generating the driving force. Increase. In either case, the vehicle occupant feels uncomfortable.
  • the display means is in a special situation where the sign of the disturbance correction amount and the display target operation output value are different and the magnitude of the disturbance correction amount is larger than the display target operation output value.
  • the motor generator generates a driving force depending on whether the target operation output value for display is larger than the condition determination reference value, with the value obtained by subtracting the disturbance correction amount from the display target operation output value as the condition determination reference value. Whether the motor generator is generating driving force or generating power according to the sign of the target operation output value for display in situations other than special situations. May be displayed.
  • the motor generator in the special situation, is generating a driving force or generating power depending on whether or not the display target operation output value is larger than the situation determination reference value. It is displayed whether there is.
  • the determination of whether or not the display target operation output value is larger than the situation determination reference value is equivalent to the determination of the sign of the disturbance correction amount. Therefore, it can be avoided that the display of whether the motor generator is generating driving force or generating electricity is different from the actual operating state of the motor generator.
  • whether the motor generator is generating driving force or generating power is displayed according to the sign of the display target operation output value. Therefore, it is possible to suppress the display of the operation status of the motor generator from repeatedly changing between the generation of the driving force and the generation of electric power due to the sign of the disturbance correction amount being repeatedly changed in the positive and negative directions.
  • the target driving output value calculating means for calculating the target driving output value of the vehicle based on the driving operation amount of the driver, and the driving output for calculating the driving output correction amount for suppressing the vibration of the vehicle.
  • Correction amount calculation means control means for controlling the driving output means of the vehicle based on the target driving output correction value obtained by correcting the target driving output value with the driving output correction quantity, and a display for displaying the driving output status of the driving output means
  • the driving output correction amount includes at least a disturbance correction amount calculated based on a disturbance with respect to the vehicle, and the control means has a target driving output value not greater than a reference value.
  • the vehicle control device is characterized in that the target driving output correction value is calculated so that the influence of the disturbance correction amount is reduced, and the display means displays the driving output status based on the target driving output correction value. It is.
  • the target operation output correction value is less affected by the disturbance correction amount. It is a value calculated by Therefore, even when the target driving output value is less than or equal to the reference value, the target driving output correction value is less than the value obtained by correcting the target driving output value with the driving output correction amount. It is possible to suppress the output status and its display from fluctuating repeatedly.
  • the target driving output correction value is a value obtained by correcting the target driving output value by the driving output correction amount. Therefore, even when the target driving output value exceeds the reference value, the target driving output correction value is less than the target driving output value when the influence of the disturbance correction amount is reduced. It can be effectively suppressed. Further, the driving output status can be displayed in accordance with the actual driving output status.
  • the control means calculates the operation output correction value by correcting the target operation output value with a correction amount that does not include the disturbance correction amount. You may be supposed to.
  • the target operation output correction value when the magnitude of the target operation output value is equal to or less than the reference value, the target operation output correction value is not affected by the disturbance correction amount, that is, the disturbance correction amount is not affected at all. Value. Therefore, it is possible to prevent the display of the driving output status by the driving output means from repeatedly fluctuating due to the repeated fluctuation of the sign of the disturbance correction amount in a situation where the target driving output value is likely to fluctuate repeatedly between positive and negative. .
  • the control means when the magnitude of the target operation output value is equal to or less than the reference value, the control means sets the target operation output value with the operation output correction amount corrected so as to reduce the magnitude of the disturbance correction amount.
  • the target operation output correction value may be calculated by correcting.
  • the target operation output correction value is the target operation output with the operation output correction amount corrected so that the disturbance correction amount is reduced. This is a value corrected. Therefore, since the influence of the disturbance correction amount on the target driving output correction value is small, it is possible to reduce the possibility that the display of the driving output status by the driving output means repeatedly fluctuates due to the repeated fluctuation of the sign of the disturbance correction amount. .
  • the control means sets a value obtained by correcting the target operation output value by the operation output correction amount as a temporary target operation output correction value, By subtracting the correction amount from the provisional target driving output correction value, using the value obtained by performing the filtering process in the specific pass frequency band including at least the vehicle resonance frequency range as the temporary target driving output correction value.
  • a target operation output correction value may be calculated.
  • the target operation output correction value is calculated by subtracting the correction amount from the provisional target operation output correction value.
  • the target driving output correction value is a value obtained by removing a component of a specific passing frequency band including at least the vehicle resonance frequency band from the provisional target driving output correction value. Therefore, even when the vehicle vibrates at a frequency in the resonance frequency range, it is possible to reduce the possibility that the sign of the target driving output correction value, which is the basis for displaying the driving output status, repeatedly fluctuates between positive and negative. . Accordingly, it is possible to reduce the possibility that the display of the driving output status of the driving output means will fluctuate repeatedly.
  • the control means uses a value obtained by correcting the target operation output value with the operation output correction amount as a provisional target operation output correction value.
  • the target driving output correction value may be calculated by sampling the temporary target driving output correction value at a sampling period other than the period corresponding to the resonance frequency range of the vehicle.
  • the target driving output correction value when the target driving output value is less than or equal to the reference value, is a temporary target driving output correction value at a sampling period other than the period corresponding to the resonance frequency range of the vehicle. This value is obtained by sampling.
  • the target driving output correction value is a value corrected so as to eliminate the influence of the disturbance correction amount in the resonance frequency range of the vehicle. Therefore, even when the vehicle vibrates at a frequency in the resonance frequency range, it is possible to reduce the possibility that the sign of the target driving output correction value repeatedly fluctuates between positive and negative. It is possible to reduce the possibility that the display of the display fluctuates repeatedly.
  • control means may variably set the reference value according to the disturbance correction amount.
  • the reference value since the reference value is variably set according to the disturbance correction amount, the reference value can be changed according to the influence of the disturbance correction amount on the target operation output correction value. Therefore, the target operation output value that is the basis of display can be changed according to the influence of the disturbance correction amount on the target operation output correction value.
  • control means has a value including a disturbance correction amount calculated as a feedback control amount based on the vehicle and a feedforward control amount calculated based on the driving operation amount of the driver. It may be calculated as a driving output correction amount.
  • the target driving output value is the target driving force of the vehicle
  • the disturbance correction amount repeatedly fluctuates between positive and negative with the driving direction of the vehicle being positive
  • the display means uses the sign of the target driving output correction value. Accordingly, the display of the operation output status may be changed.
  • the driving output means includes a motor generator and a power storage means, and when the target driving output correction value is a positive value, the motor generator is supplied with electric energy from the power storage means to When the target driving output correction value is a negative value, the motor generator is driven by receiving driving force from the wheels to charge the power storage means. Good.
  • the display of the driving output status by the driving output means is between the above two modes. It can suppress that it changes repeatedly.
  • the driving output correction amount for suppressing the vibration accompanying the acceleration / deceleration of the vehicle may be the driving output correction amount for suppressing the resonance vibration on the spring accompanying the acceleration / deceleration of the vehicle.
  • the reference value of the target operation output value is large so that the disturbance correction amount is larger when the disturbance correction amount is large than when the disturbance correction amount is small. Depending on the situation, it may be set variably.
  • the motor generator when the target operation output correction value is a positive value, the motor generator generates driving force for driving the wheels by being supplied with electric energy from the power storage means, and the display means When the motor generator is generating driving force and the target driving output correction value is negative, the motor generator is driven by the driving force from the wheels to generate power and charge the storage means
  • the display means may display that the motor generator is generating power.
  • FIG. 1 is a schematic configuration diagram showing a vehicle equipped with a hybrid system to which a vehicle control device according to the present invention may be applied.
  • 100 indicates a vehicle control device
  • 10 indicates a hybrid system.
  • the hybrid system 10 includes an engine 12 such as a gasoline engine and an electric motor (electric motor) 14 as an auxiliary power source.
  • the output rotation shaft 12A of the engine 12 and the rotation shaft 14A of the electric motor 14 are mechanically connected to the power distribution device 16, and the rotation shaft 18A of the generator 18 is also mechanically connected to the power distribution device 16.
  • the power distribution device 16 includes a planetary gear mechanism, and switches between a mode for transmitting the power of the engine 12 to the rotating shaft 14A, a mode for transmitting to the rotating shaft 18A, and a mode for transmitting to the rotating shafts 14A and 18A. ing.
  • the rotary shaft 14A is drivingly connected to the inner ends of the left and right drive shafts 22L and 22R via a speed reducer 20 incorporating a differential gear device.
  • the outer ends of the drive shafts 22L and 22R are connected to the left and right drive wheels 24L and 24R via constant velocity joints not shown in FIG.
  • the power of the rotating shaft 14A is transmitted as driving force to the driving wheels 24L and 24R via the speed reducer 20 and the drive shafts 22L and 22R.
  • the rotational driving force received by the drive wheels 24L and 24R from the road surface is transmitted to the rotating shaft 14A via the drive shafts 22L and 22R and the speed reducer 20, and is transmitted to the electric motor 14 from the rotating shaft 14A.
  • the power distribution device 16 cuts off the connection between the rotary shaft 14A, the output rotary shaft 12A, and the rotary shaft 18A.
  • the electric motor 14 and the generator 18 are of AC specifications and are electrically connected to the battery 28 via the inverter 26.
  • the electric motor 14 is supplied with power from the battery 28 and is supplied with drive current converted into alternating current by the inverter 26, thereby generating power as required.
  • the electric motor 14 functions as a regenerative generator during deceleration braking of the vehicle, and the generated current is converted into direct current by the inverter 26 and then supplied to the battery 28, whereby the battery is charged.
  • the generator 18 generates power when power is supplied from the engine 12 via the power distribution device 16, and the generated current is converted into direct current by the inverter 26 and then supplied to the battery 28, thereby charging the battery. . Further, the generated current of the generator 18 is supplied to the electric motor 14 through the inverter 26 as necessary, and thereby the electric motor is driven.
  • the engine 12, the electric motor 14, the power distribution device 16, the generator 18, and the inverter 26 are controlled by a hybrid control unit of the integrated control device 30.
  • the hybrid control units cooperate with each other according to the traveling state of the vehicle to achieve the following vehicle traveling mode.
  • An output correction command is input to the hybrid control unit as needed from the sprung mass damping control unit of the integrated control device 30, so that the bounce on the spring and the sprung vibration of the pitch are suppressed to the hybrid control unit.
  • the driving force of the hybrid system 10 is controlled.
  • the vehicle control device 100 has a display device 32 provided in the vehicle interior, and the display device 32 is controlled by the display control unit of the integrated control device 30 to display information related to vehicle travel.
  • Each control unit of the integrated control device 30 may be a microcomputer having a general configuration including a CPU, a ROM, a RAM, and an input / output port device, which are connected to each other via a bidirectional common bus.
  • FIG. 2 is a functional block diagram showing the hybrid control unit of the integrated control device 30 together with the sprung mass damping control unit and the display control unit
  • FIG. 3 is a functional block diagram showing the upper vibration damping control unit shown in FIG.
  • the hybrid control unit 34 of the integrated control device 30 has a required drive torque calculation block 36, and the required torque calculation block 36 sets the accelerator opening degree Acc and the engine speed Ne that are the drive operation amount of the driver. Based on this, the driver's required drive torque Treq is calculated.
  • the sprung mass damping control unit 38 calculates a drive torque correction amount ⁇ Treq for suppressing sprung mass vibration.
  • the required drive torque Treq and the correction amount ⁇ Treq are added by the adder 40, whereby the corrected required drive torque Tareq is calculated.
  • the hybrid control unit 34 of the integrated control apparatus 30 has a target engine output calculation block 42.
  • the block 42 is based on the corrected required drive torque Tareq and engine speed Ne, and the target engine torque Tet and target engine speed Net. Is calculated. Signals indicating the target engine torque Tet and the target engine speed Net are output to the engine control unit 44, whereby the engine 12 is controlled based on the target engine torque Tet and the target engine speed Net.
  • a signal indicating the target motor torque Tmt is output to the motor control unit 48, whereby the electric motor 14 is controlled based on the target motor torque Tmt.
  • the vehicle travel modes achieved by the hybrid control unit 34 of the integrated control device 30 are as follows. (A) Start and low-speed driving mode
  • the battery 28 is controlled so as to always maintain a constant charge state. Therefore, when the SOC meter 28A detects that the charge amount of the battery 28 has decreased to a predetermined value or less, the output of the engine 12 is increased in the normal running mode, and the power distribution device 16 distributes it to the generator 18. The power is increased, and the increase in the power generated by the generator 18 is supplied to the battery 28 via the inverter 26, and the battery is charged.
  • F Eco-run mode
  • the vehicle speed is reduced to a predetermined value or less due to deceleration braking and the vehicle stops, such as when waiting for a signal
  • the temperature of the engine 12 is equal to or higher than a certain temperature in order to prevent unnecessary fuel consumption by the engine 12,
  • the engine 12 is automatically stopped even when an ignition switch (not shown) is on.
  • the sprung mass damping control unit 38 includes a feedforward correction amount calculation block 50, a feedback correction amount calculation block 52, and an adder 54.
  • the feedforward correction amount calculation block 50 calculates a feedforward correction amount ⁇ Tff of drive torque for suppressing sprung vibration based on at least the accelerator opening Acc.
  • the feedback correction amount calculation block 52 calculates a feedback correction amount ⁇ Tfb of driving torque for suppressing sprung vibration based on at least a disturbance from the road surface.
  • the adder 54 calculates the sum of the feedforward correction amount ⁇ Tff and the feedback correction amount ⁇ Tfb as the drive torque correction amount ⁇ Treq.
  • Signals indicating the feedforward correction amount ⁇ Tff and the feedback correction amount ⁇ Tfb are also input to the display control unit 56. In some embodiments, only a signal indicating the feedforward correction amount ⁇ Tff is input to the display control unit 56, and a signal indicating the drive torque correction amount ⁇ Treq is input to the display control unit 56.
  • the display control unit 56 calculates the display driving torque Tdsp based on the required driving torque Treq, the feedforward correction amount ⁇ Tff, and the like as will be described in detail later.
  • the display control unit 56 controls the display of the display device 32 based on at least the display driving torque Tdsp.
  • FIG. 4 is a functional block diagram showing the display control unit and the sprung mass damping control unit in the first embodiment of the vehicle control apparatus according to the present invention.
  • the display control unit 56 has an adder 58.
  • a signal indicating the required drive torque Treq is input from the required torque calculation block 36 of the hybrid control unit 34 to the adder 58, and a signal indicating the feedforward correction amount ⁇ Tff is input from the sprung mass damping control unit 38.
  • the adder 58 calculates the sum Treq + ⁇ Tff of the required drive torque Treq and the feedforward correction amount ⁇ Tff as the required drive torque Tfreq corrected by the feedforward correction amount ⁇ Tff.
  • a signal indicating the corrected required drive torque Tfreq is input to the adder 62 constituting a part of the hybrid control unit 34 and also input to the display control device 60 as the display drive torque Tdsp.
  • the display control device 60 displays on the display device 32 that the operation mode of the hybrid system 10 is the drive mode.
  • the display control device 60 displays on the display device 32 that the operation mode of the hybrid system 10 is the charging mode. Further, the display control device 60 displays the charge amount of the battery 28 on the display device 32 based on the charge state of the battery 28 detected by the SOC meter 28A.
  • the function of the display control device 60 is the same in other embodiments described later except for the fifth and sixth embodiments (FIG. 8).
  • the adder 62 adds the corrected required driving torque Tfreq and the feedback correction amount ⁇ Tfb.
  • the output of the adder 62, and hence the signal indicating the sum Treq + ⁇ Treq, is output to the target engine output calculation block 42 and the adder 46 of the hybrid controller 34 as a signal indicating the corrected required driving torque Tareq. Therefore, the functions of the adder 40 of FIG. 2 are achieved by the adders 58 and 62.
  • the display drive torque Tdsp is the sum of the required drive torque Treq and the feedforward correction amount ⁇ Tff, and a value not including the feedback correction amount ⁇ Tfb, that is, the influence of the feedback correction amount ⁇ Tfb.
  • the value is reduced to zero. Therefore, the operation mode of the hybrid system 10 can be displayed on the display device 32 without being affected by the feedback correction amount ⁇ Tfb. Therefore, the operation mode of the hybrid system 10 displayed on the display device 32 due to the influence of the feedback correction amount ⁇ Tfb is prevented from frequently changing between the drive mode and the charge mode, and the vehicle occupant is troublesome. Can prevent you from feeling.
  • the display driving torque Tdsp is the sum of the required driving torque Treq and the feedforward correction amount ⁇ Tff, and correction of the feedback correction amount ⁇ Tfb is unnecessary. Therefore, the vehicle control device can have a simple configuration as compared with the case where the correction to the feedback correction amount ⁇ Tfb is performed.
  • the corrected required drive torque Tareq is the sum of the required drive torque Treq and the drive torque correction amount ⁇ Treq for suppressing the sprung vibration, and is not affected by the calculation control of the display drive torque Tdsp. Therefore, sprung vibration can be effectively suppressed without being affected by the calculation control of the display driving torque Tdsp.
  • FIG. 5 is a functional block diagram showing the display control unit and the sprung mass damping control unit in the second embodiment of the vehicle control apparatus according to the present invention.
  • the same reference numerals as those in FIG. 4 are given to the blocks corresponding to the blocks shown in FIG. The same applies to the other embodiments shown in FIGS.
  • the display control unit 56 has an adder 64, which is the sum of the feedforward correction amount ⁇ Tff and the feedback correction amount ⁇ Tfb from the sprung mass damping control unit 38.
  • a signal indicating a drive torque correction amount ⁇ Treq is input.
  • the adder 64 calculates the corrected required driving torque Tareq by adding the required driving torque Treq and the correction amount ⁇ Treq of the driving torque.
  • a signal indicating the corrected required drive torque Tareq is output to the target engine output calculation block 42 and the adder 46 of the hybrid control unit 34 and also input to the band pass filter block 66. Therefore, the adder 64 also functions as the adder 40 shown in FIG.
  • a signal indicating the corrected required driving torque Tareq is also input to the bandpass filter block 66.
  • the lower limit value and the upper limit value of the frequency range of the vehicle sprung resonance are set to f1 and f2, respectively, and the lower limit value and the upper limit value of the pass band of the bandpass filter block 66 are set to fbp1 and fbp2, respectively.
  • Fbp2f is a value greater than or equal to f2.
  • the lower limit value fbp1 and the upper limit value fbp2 of the passband of the bandpass filter block 66 may be constants.
  • the bandpass filter block 66 is variably set according to the change in the frequency range of sprung resonance associated with the change in the number of passengers and the load. May be.
  • the signal indicating the corrected required driving torque Tabp subjected to the bandpass filter processing by the bandpass filter block 66 is input to the negative terminal of the adder 68.
  • the plus terminal of the adder 68 receives a signal indicating the corrected required driving torque Tareq that has not been subjected to the bandpass filter process.
  • the adder 68 calculates a value of Tareq ⁇ Tabp, and a signal indicating the value of Tareq ⁇ Tabp is input to the display control device 60 as a display driving torque Tdsp.
  • the display driving torque Tdsp is a value obtained by removing the feedback correction amount ⁇ Tfb in the frequency range of the sprung resonance of the vehicle from the corrected required driving torque Tareq. Therefore, the display driving torque Tdsp is the corrected required driving torque Tareq that is corrected so that the influence of the feedback correction amount ⁇ Tfb is reduced to 0 in the frequency range of the sprung resonance of the vehicle.
  • the band-pass filter processing is performed for a specific frequency that is greater than or equal to fbp1f and less than or equal to fbp2f including the frequency range of the sprung resonance of the vehicle, and for other frequencies, the required drive torque after correction
  • the feedback correction amount ⁇ Tfb is not removed from Tareq. Therefore, compared with the case where the feedback correction amount ⁇ Tfb is removed from the corrected required drive torque Tareq regardless of the frequency, the operation mode displayed on the display device 32 for frequencies other than the specific frequency is brought closer to the actual operation mode. be able to. This effect can also be obtained in the seventh embodiment described later.
  • FIG. 6 is a functional block diagram showing the display control unit and the sprung mass damping control unit in the third embodiment of the vehicle control apparatus according to the present invention.
  • the display control unit 56 includes a gain multiplier 70 and an adder 72 in addition to the adder 58.
  • a signal indicating the feedback correction amount ⁇ Tfb is input to the gain multiplier 70, and the gain multiplier 70 multiplies the feedback correction amount ⁇ Tfb by a gain K that is greater than 0 and smaller than 1 to thereby reduce the feedback correction amount after correction.
  • ⁇ Tfba is calculated.
  • the gain K may be constant, but may be variably set according to the magnitude of ⁇ Tfb so that, for example, when the magnitude of the feedback correction amount ⁇ Tfb is large, it is smaller than when the magnitude of ⁇ Tfb is small. Is preferred.
  • the magnitude of the feedback correction amount ⁇ Tfb may be an average value or a maximum value of the feedback correction amount ⁇ Tfb within a preset first time.
  • the signal indicating the feedback correction amount ⁇ Tfba after the reduction correction is input to the adder 72.
  • the adder 72 adds the feedback correction amount ⁇ Tfba after the reduction correction and the required driving torque Tfreq corrected by the feedforward correction amount ⁇ Tff, and a signal indicating the sum Tfreq + ⁇ Tfba, which is the output, is displayed as the display driving torque Tdsp. 60.
  • the display drive torque Tdsp is the sum of the feedback correction amount ⁇ Tfba whose magnitude is reduced and the required drive torque Tfreq corrected with the feedforward correction amount ⁇ Tff. Accordingly, the display drive torque Tdsp is the corrected required drive torque Tareq that has been corrected to reduce the influence of the feedback correction amount ⁇ Tfb.
  • the display driving torque Tdsp is the sum of the feedback correction amount ⁇ Tfba whose magnitude has been reduced and the required driving torque Tfreq corrected by the feedforward correction amount ⁇ Tff, and the feedback correction The amount ⁇ Tfb is reflected. Therefore, the operation mode displayed on the display device 32 can be brought closer to the actual operation mode as compared with the case where the display drive torque Tdsp is the feedforward correction amount ⁇ Tff. This effect can also be obtained in the eighth embodiment described later. [Fourth embodiment]
  • FIG. 7 is a functional block diagram showing the display control unit and the sprung mass damping control unit in the fourth embodiment of the vehicle control apparatus according to the present invention.
  • the display control unit 56 has a sampling circuit 74 in addition to the adder 64.
  • a signal indicating the drive torque correction amount ⁇ Treq is input to the sampling circuit 74, and the sampling circuit 74 samples the drive torque correction amount ⁇ Treq at the sampling period Cs of the predetermined value Csa.
  • the output of the sampling circuit 74 is input to the display control device 60 as the display driving torque Tdsp.
  • the predetermined value Csa of the sampling period is longer than the period (1 / f1) corresponding to the lower limit value f1 of the vehicle sprung resonance frequency range or the period corresponding to the upper limit value f2 of the vehicle sprung resonance frequency range.
  • the cycle is shorter than (1 / f2).
  • the display driving torque Tdsp is a value obtained by sampling the driving torque correction amount ⁇ Treq at the sampling period Cs of the predetermined value Csa.
  • the sampling period Cs of the predetermined value Csa is a period other than the period corresponding to the frequency range of the sprung resonance of the vehicle. Therefore, the display driving torque Tdsp is a corrected required driving torque Tareq that is corrected so as to eliminate the influence of the feedback correction amount ⁇ Tfb in the frequency range of the sprung resonance of the vehicle.
  • the display driving torque Tdsp is a value that does not include the feedback correction amount ⁇ Tfb in the frequency range of the sprung resonance of the vehicle, but for frequencies other than the frequency range of the sprung resonance of the vehicle. Is a value including the feedback correction amount ⁇ Tfb. Therefore, compared with the case where the display driving torque Tdsp is a value that does not include the feedback correction amount ⁇ Tfb regardless of the frequency, the operation mode displayed on the display device 32 is actually displayed for frequencies other than the frequency range of the sprung resonance of the vehicle. The operation mode can be approached. This effect can also be obtained in the ninth embodiment described later. [Fifth embodiment]
  • FIG. 8 is a functional block diagram showing the display control unit and the sprung mass damping control unit in the fifth embodiment of the vehicle control apparatus according to the present invention configured as a modification of the first embodiment.
  • a signal indicating the required drive torque Tfreq corrected by the feedforward correction amount ⁇ Tff is input from the adder 58 to the display control device 60, and the sprung mass damping control unit 38.
  • a signal indicating the feedback correction amount ⁇ Tfb is input.
  • the display control device 60 displays whether the operation mode of the hybrid system 10 is the drive mode or the charge mode according to the relationship between the sign of the corrected required drive torque Tfreq and the feedback correction amount ⁇ Tfb.
  • the display control device 60 determines that the hybrid system 10 is in a predetermined situation when the signs of the corrected required driving torque Tfreq and the feedback correction amount ⁇ Tfb are different from each other and the magnitude of ⁇ Tfb is larger than the magnitude of Tfreq. .
  • the display control device 60 displays on the display device 32 that the operation mode of the hybrid system 10 is the drive mode when the sign of the feedback correction amount ⁇ Tfb is positive. To do.
  • the display control device 60 displays on the display device 32 that the operation mode of the hybrid system 10 is the charging mode.
  • the display control device 60 When the signs of the corrected required driving torque Tfreq and the feedback correction amount ⁇ Tfb are the same or the magnitude of ⁇ Tfb is equal to or smaller than the magnitude of Tfreq, the display control device 60 is not in a predetermined situation. Is determined. When the hybrid system 10 is not in a predetermined situation, the display control device 60 sets the required drive torque Tfreq corrected with the feedforward correction amount ⁇ Tff as the display drive torque Tdsp. When the display drive torque Tdsp is a positive value, the display control device 60 displays on the display device 32 that the operation mode of the hybrid system 10 is the drive mode. On the other hand, when the display driving torque Tdsp is a positive value, the display control device 60 displays on the display device 32 that the operation mode of the hybrid system 10 is the charging mode.
  • the display drive torque Tdsp is a value in which the influence of the feedback correction amount ⁇ Tfb is reduced
  • the displayed operation mode of the hybrid system 10 is actually changed depending on the situation.
  • the display may be different from the operation mode.
  • the actual operation mode of the hybrid system 10 is determined by the sign of the feedback correction amount ⁇ Tfb.
  • the displayed operation mode of the hybrid system 10 is determined by the sign of the corrected required drive torque Tfreq, so that the operation mode is different from the actual operation mode.
  • the displayed operation mode of the hybrid system 10 is the drive mode
  • the displayed charge amount is increased, or conversely, the displayed operation mode of the hybrid system 10 is the charge mode.
  • the displayed charge amount may decrease. Therefore, the vehicle occupant may feel uncomfortable due to this.
  • the operation mode of the hybrid system 10 is displayed according to the sign of the feedback correction amount ⁇ Tfb. Therefore, in a situation where the hybrid system 10 is in a special situation, it is possible to effectively prevent the display of the operation mode of the hybrid system 10 on the display device 32 from being different from the actual operation mode of the hybrid system 10. can do.
  • the display drive torque Tdsp is the corrected required drive torque Tfreq corrected so that the influence of the feedback correction amount ⁇ Tfb is reduced to zero. Therefore, when the hybrid system 10 is not in a special situation, the operation mode displayed due to the influence of the feedback correction amount ⁇ Tfb is frequently between the drive mode and the charge mode as in the case of the first embodiment described above. Can be prevented from changing.
  • the sixth embodiment is configured as a modification of the fifth embodiment, and the display control unit in the sixth embodiment is configured in the same manner as in the fifth embodiment. Also in the sixth embodiment, the display control device 60 is a hybrid system when the signs of the corrected required driving torque Tfreq and the feedback correction amount ⁇ Tfb are different from each other and the magnitude of ⁇ Tfb is larger than the magnitude of Tfreq. 10 is determined to be in a predetermined situation.
  • the display control device 60 when the signs of the corrected required driving torque Tfreq and the feedback correction amount ⁇ Tfb are the same, or when the magnitude of ⁇ Tfb is equal to or smaller than the magnitude of Tfreq, the display control device 60 is in a predetermined situation. Judge that there is no. When the hybrid system 10 is not in a predetermined situation, the display control device 60 indicates whether the operation mode of the hybrid system 10 is the drive mode or the charge mode according to the sign of the display drive torque Tdsp. To display.
  • the display control device 60 sets a value obtained by subtracting the corrected required driving torque Tfreq from the feedback correction amount ⁇ Tfb as the situation determination reference value Tfreqs.
  • the display control device 60 displays on the display device 32 that the operation mode of the hybrid system 10 is the driving mode.
  • the display control device 60 displays on the display device 32 that the operation mode of the hybrid system 10 is the charging mode.
  • Whether the required drive torque Tfreq after correction in the sixth embodiment is larger than the situation determination reference value Tfreqs is determined by whether the sign of the feedback correction amount ⁇ Tfb in the fifth embodiment is positive. Equivalent to the determination of NO.
  • FIG. 9 is a functional block diagram showing the display control unit and the sprung mass damping control unit in the seventh embodiment of the vehicle control apparatus according to the present invention configured as a modification of the first embodiment.
  • the display control unit 56 has a determination block 76 in addition to the adder 58.
  • a signal indicating the required drive torque Treq is input to the determination block 76 from the required torque calculation block 36 of the hybrid control unit 34.
  • a signal indicating the required drive torque Tfreq corrected by the feedforward correction amount ⁇ Tff is input from the adder 58 to the determination block 76, and a signal indicating the corrected required drive torque Tareq is input from the adder 62.
  • the determination block 76 sets the display driving torque Tdsp to the corrected required driving torque Tareq when the magnitude of the required driving torque Treq exceeds the reference value Treqc. On the other hand, when the magnitude of the required drive torque Treq is less than the reference value Treqc, the determination block 76 sets the display drive torque Tdsp to a value obtained by subtracting the feedback correction amount ⁇ Tfb from the corrected required drive torque Tfreq. A signal indicating the display driving torque Tdsp is input to the display control device 60.
  • the reference value Treqc may be a positive constant, but is variably set in accordance with the magnitude of ⁇ Tfb so that when the magnitude of the feedback correction amount ⁇ Tfb is large, it becomes larger than when the magnitude of ⁇ Tfb is small. It is preferable.
  • the magnitude of the feedback correction amount ⁇ Tfb may be an average value or a maximum value of the feedback correction amount ⁇ Tfb at a preset second time. This is the same for the eighth to fourteenth embodiments described later.
  • the display drive torque Tdsp is the sum of the required drive torque Treq and the feedforward correction amount ⁇ Tff, and the feedback correction The value does not include the amount ⁇ Tfb. Therefore, in a situation that is easily influenced by the feedback correction amount ⁇ Tfb that is the second operation output correction amount, the operation mode of the hybrid system 10 is displayed on the display device 32 without being affected by the feedback correction amount ⁇ Tfb. Can do. Therefore, it is possible to prevent the operation mode of the hybrid system 10 displayed on the display device 32 from frequently changing between the drive mode and the charge mode due to the influence of the feedback correction amount ⁇ Tfb.
  • the display drive torque Tdsp is the sum of the required drive torque Treq and the feedforward correction amount ⁇ Tff, and the feedback correction There is no need to correct the amount ⁇ Tfb. Therefore, the vehicle control device can be made simpler than other embodiments in which correction or the like is performed on the feedback correction amount ⁇ Tfb.
  • FIG. 10 is a functional block diagram showing the display control unit and the sprung mass damping control unit in the eighth embodiment of the vehicle control apparatus according to the present invention configured as a modification of the second embodiment.
  • the decision block 76 includes a signal indicating the value of Tareq-Tabp from the adder 68 in addition to a signal indicating the required drive torque Treq and a signal indicating the corrected required drive torque Tareq. Is entered.
  • the determination block 76 sets the display driving torque Tdsp to the corrected required driving torque Tareq when the magnitude of the required driving torque Treq exceeds the reference value Treqc. On the other hand, when the magnitude of the required drive torque Treq is less than the reference value Treqc, the determination block 76 sets the display drive torque Tdsp to the value of Tareq ⁇ Tabp. A signal indicating the display driving torque Tdsp is input to the display control device 60.
  • the display driving torque Tdsp is fed back with respect to the frequency range of the sprung resonance of the vehicle from the corrected required driving torque Tareq. This is the value from which the correction amount ⁇ Tfb has been removed. Therefore, in a situation where the actual operation mode of the hybrid system 10 is easily affected by the feedback correction amount ⁇ Tfb, the operation mode of the hybrid system 10 can be displayed on the display device 32 by reducing the influence of the feedback correction amount ⁇ Tfb. it can.
  • FIG. 11 is a functional block diagram showing the display control unit and the sprung mass damping control unit in the ninth embodiment of the vehicle control apparatus according to the present invention configured as a modification of the third embodiment.
  • the determination block 76 includes a signal indicating the required drive torque Treq and a signal indicating the corrected required drive torque Tareq, as well as the required drive torque Tfreq corrected by the adder 72.
  • a signal indicating the sum of the feedback correction amount ⁇ Tfba after the reduction correction is input.
  • the determination block 76 sets the display driving torque Tdsp to the corrected required driving torque Tareq when the magnitude of the required driving torque Treq exceeds the reference value Treqc. On the other hand, when the magnitude of the required drive torque Treq is less than the reference value Treqc, the determination block 76 sets the display drive torque Tdsp to the sum of Tfreq and ⁇ Tfba. A signal indicating the display driving torque Tdsp is input to the display control device 60.
  • the display drive torque Tdsp when the required drive torque Treq is less than the reference value Treqc, the display drive torque Tdsp is reduced to the feedback correction amount ⁇ Tfba and the feedforward correction amount ⁇ Tff that are reduced in size. And the corrected required driving torque Tfreq. Accordingly, the display drive torque Tdsp is the corrected required drive torque Tareq that has been corrected to reduce the influence of the feedback correction amount ⁇ Tfb.
  • FIG. 12 is a functional block diagram showing the display control unit and the sprung mass damping control unit in the tenth embodiment of the vehicle control apparatus according to the present invention configured as a modification of the fourth embodiment.
  • the determination block 76 sets the sampling period of the sampling circuit 74 to the standard value Csn when the magnitude of the required drive torque Treq exceeds the reference value Treqc. On the other hand, when the magnitude of the required drive torque Treq is less than the reference value Treqc, the determination block 76 sets the sampling period of the sampling circuit 74 to the predetermined value Csa.
  • the sampling circuit 74 samples the drive torque correction amount ⁇ Treq at the sampling period Cs of Csn or Csa, and the output of the sampling circuit 74 is input to the display control device 60 as the display drive torque Tdsp.
  • the predetermined value Csa of the sampling period is a period longer than the period (1 / f1) corresponding to the lower limit f1 of the frequency range of the sprung resonance of the vehicle or the sprung resonance of the vehicle.
  • the period is shorter than the period (1 / f2) corresponding to the upper limit value f2 of the frequency region.
  • the sampling circuit 74 samples the drive torque correction amount ⁇ Treq at the sampling period of the predetermined value Csa. Accordingly, the display drive torque Tdsp is the corrected required drive torque Tareq that has been corrected to reduce the influence of the feedback correction amount ⁇ Tfb.
  • FIG. 13 is a functional block diagram showing the display control unit and the sprung mass damping control unit in the eleventh embodiment of the vehicle control apparatus according to the present invention configured as a modification of the seventh embodiment.
  • the determination block 76 sets the display driving torque Tdsp to the corrected required driving torque Tareq when the magnitude of the required driving torque Treq exceeds the reference value Treqc. Further, a signal indicating the corrected required driving torque Tareq is output to the target engine output calculation block 42 and the adder 46 of the hybrid control unit 34.
  • the determination block 76 sets the display driving torque Tdsp to a value obtained by subtracting the feedback correction amount ⁇ Tfb from the corrected required driving torque Tfreq. Further, a signal indicating a value obtained by subtracting the feedback correction amount ⁇ Tfb from the corrected required drive torque Tfreq is output to the target engine output calculation block 42 and the adder 46 of the hybrid control unit 34.
  • the operation mode of the hybrid system 10 displayed due to the influence of the feedback correction amount ⁇ Tfb is frequently set to the drive mode and the charge mode. It can prevent changing between.
  • the engine 12 and the electric motor 14 are controlled based on the same target drive torque as the display drive torque Tdsp, which is described later in the twelfth to fourteenth embodiments. The same applies to the above.
  • FIG. 14 is a functional block diagram showing the display control unit and the sprung mass damping control unit in the twelfth embodiment of the vehicle control apparatus according to the present invention configured as a modification of the seventh embodiment.
  • the determination block 76 sets the display driving torque Tdsp to the corrected required driving torque Tareq when the magnitude of the required driving torque Treq exceeds the reference value Treqc. Further, a signal indicating the corrected required driving torque Tareq is output to the target engine output calculation block 42 and the adder 46 of the hybrid control unit 34.
  • the determination block 76 sets the display drive torque Tdsp to a value of Tareq ⁇ Tabp.
  • a signal indicating the value of Tareq ⁇ Tabp is output to the target engine output calculation block 42 and the adder 46 of the hybrid control unit 34.
  • FIG. 15 is a functional block diagram showing the display control unit and the sprung mass damping control unit in the thirteenth embodiment of the vehicle control apparatus according to the present invention configured as a modification of the eighth embodiment.
  • the determination block 76 sets the display drive torque Tdsp to the corrected required drive torque Tareq. Further, a signal indicating the corrected required driving torque Tareq is output to the target engine output calculation block 42 and the adder 46 of the hybrid control unit 34.
  • the determination block 76 sets the display drive torque Tdsp to the sum of Tfreq and ⁇ Tfba.
  • a signal indicating the sum of Tfreq and ⁇ Tfba is output to the target engine output calculation block 42 and the adder 46 of the hybrid control unit 34.
  • the same effect as that of the ninth embodiment can be obtained. That is, when the magnitude of the required drive torque Treq is less than the reference value Treqc, the possibility that the display drive torque Tdsp repeatedly fluctuates to a positive or negative value is reduced, and the operation mode displayed thereby is frequently referred to as the drive mode. The possibility of changing between charging modes can be reduced. [14th embodiment]
  • FIG. 16 is a functional block diagram showing the display control unit and the sprung mass damping control unit in the fourteenth embodiment of the vehicle control apparatus according to the present invention configured as a modification of the ninth embodiment.
  • the determination block 76 sets the sampling period of the sampling circuit 74 to the standard value Csn when the magnitude of the required drive torque Treq exceeds the reference value Treqc. On the other hand, when the magnitude of the required drive torque Treq is less than the reference value Treqc, the determination block 76 sets the sampling period of the sampling circuit 74 to the predetermined value Csa.
  • the sampling circuit 74 samples the drive torque correction amount ⁇ Treq at the sampling period Cs of Csn or Csa, and the output of the sampling circuit 74 is input to the display control device 60 as the display drive torque Tdsp.
  • the output of the sampling circuit 74 is output to the target engine output calculation block 42 and the adder 46 of the hybrid control unit 34.
  • the same operational effects as in the tenth embodiment can be obtained. That is, even when the sprung of the vehicle vibrates at the resonance frequency, the operation mode of the hybrid system 10 displayed on the display device 32 due to the influence of the feedback correction amount ⁇ Tfb is frequently the drive mode and the charge mode. It is possible to prevent changes in the meantime.
  • FIG. 17 is a functional block diagram showing the hybrid control unit of the first modified example of the vehicle control device according to the present invention together with the sprung mass damping control unit and the display control unit.
  • the sprung mass damping control unit 38 calculates a feedforward correction amount ⁇ Teff and a feedback correction amount ⁇ Tefb of the target drive torque Tet of the engine 12 for suppressing the sprung vibration. Signals indicating the feedforward correction amount ⁇ Teff and the feedback correction amount ⁇ Tefb are input to the display control unit 56.
  • the display control unit 56 controls the display of the display device 32 in the same manner as in any of the first to tenth embodiments based on at least the feedforward correction amount ⁇ Teff.
  • the sprung mass damping control unit 38 controls the sprung vibration in the same manner as in any of the first to tenth embodiments based on the feedforward correction amount ⁇ Teff and the feedback correction amount ⁇ Tefb.
  • the correction amount ⁇ Tet of the target drive torque Tet is calculated.
  • the correction amount ⁇ Tet is added to the target drive torque Tet of the engine 12 by the adder 78, thereby calculating the corrected target drive torque (target drive torque correction value) Taet.
  • a signal indicating the corrected target drive torque Taet is input to the engine control unit 44, and the engine control unit 44 controls the engine 12 based on the corrected target drive torque Taet and the target engine speed Net.
  • the display device 32 is the same as in the first to tenth embodiments, except that the correction amounts ⁇ Teff, ⁇ Tefb, ⁇ Tet are calculated for the target drive torque Tet of the engine 12. Can be controlled. Therefore, the operation mode of the hybrid system 10 displayed due to the influence of the feedback correction amount ⁇ Tefb can be prevented or reduced from frequently changing between the drive mode and the charge mode.
  • FIG. 18 is a functional block diagram showing a hybrid control unit of a second modification of the vehicle control device according to the present invention together with a sprung mass damping control unit and a display control unit.
  • the sprung mass damping control unit 38 calculates a feedforward correction amount ⁇ Tmff and a feedback correction amount ⁇ Tmfb of the target drive torque Tmt of the electric motor 14 for suppressing the sprung vibration.
  • Signals indicating the feedforward correction amount ⁇ Tmff and the feedback correction amount ⁇ Tmfb are input to the display control unit 56.
  • the display control unit 56 controls the display of the display device 32 in the same manner as in any of the first to tenth embodiments based on at least the feedforward correction amount ⁇ Tmff.
  • the sprung mass damping control unit 38 controls the sprung vibration in the same manner as in any of the first to tenth embodiments based on the feedforward correction amount ⁇ Tmff and the feedback correction amount ⁇ Tmfb.
  • a correction amount ⁇ Tmt of 14 target drive torque Tmt is calculated.
  • the correction amount ⁇ Tmt is added to the target drive torque Tmt of the electric motor 14 by the adder 80, whereby the corrected target drive torque Tamt is calculated.
  • a signal indicating the corrected target drive torque Tamt is input to the motor control unit 48, and the motor control unit 48 controls the electric motor 14 based on the corrected target drive torque Tamt.
  • the display device is the same as in the first to tenth embodiments except that the correction amounts ⁇ Tmff, ⁇ Tmfb, ⁇ Tmt are calculated for the target drive torque Tmt of the electric motor 14. 32 displays can be controlled. Accordingly, it is possible to prevent or reduce the operation mode of the hybrid system 10 displayed due to the influence of the feedback correction amount ⁇ Tmfb from frequently changing between the drive mode and the charge mode.
  • FIG. 19 is a functional block diagram showing a hybrid control unit of a third modification of the vehicle control device according to the present invention configured as a modification of the eleventh embodiment, together with a sprung mass damping control unit and a display control unit. .
  • the sprung mass damping control unit 38 calculates a feedforward correction amount ⁇ Teff and a feedback correction amount ⁇ Tefb of the target drive torque Tet of the engine 12 for suppressing the sprung vibration.
  • the feedforward correction amount ⁇ Teff is added to the target drive torque Tet of the engine 12 by the adder 58, whereby the corrected target drive torque Tfet is calculated.
  • the corrected target drive torque Tfet is added to the feedback correction amount ⁇ Tefb by the adder 62, whereby the corrected target drive torque Taet is calculated.
  • a signal indicating the corrected target drive torque Tfet and a signal indicating the corrected target drive torque Taet are input to the determination block 76.
  • the determination block 76 sets the display drive torque Tdsp to the corrected target drive torque Taet when the magnitude of the target drive torque Tet of the engine 12 exceeds the reference value Tetc. In addition, a signal indicating the corrected target drive torque Taet is output to the engine control unit 44.
  • the determination block 76 sets the display drive torque Tdsp to a value obtained by subtracting the feedback correction amount ⁇ Tefb from the corrected target drive torque Taet. To do. Further, a signal indicating a value obtained by subtracting the feedback correction amount ⁇ Tefb from the corrected target driving torque Taet is output to the engine control unit 44.
  • the reference value Tetc may be a positive constant, but is variably set according to the magnitude of ⁇ Tefb so that the feedback correction amount ⁇ Tefb is large when compared with the small value of ⁇ Tefb. It is preferable.
  • the magnitude of the feedback correction amount ⁇ Tefb may be an average value or a maximum value of the feedback correction amount ⁇ Tefb at a preset third time.
  • the display device 32 displays the same as in the eleventh embodiment, except that correction amounts ⁇ Teff, ⁇ Tefb, ⁇ Tet are calculated for the target drive torque Tet of the engine 12. Can be controlled. Therefore, it is possible to prevent the operation mode of the hybrid system 10 displayed due to the influence of the feedback correction amount ⁇ Tefb from frequently changing between the drive mode and the charge mode.
  • FIG. 20 is a functional block diagram showing a hybrid control unit of a fourth modification of the vehicle control device according to the present invention configured as a modification of the eleventh embodiment together with a sprung mass damping control unit and a display control unit. .
  • the sprung mass damping control unit 38 calculates a feedforward correction amount ⁇ Tmff and a feedback correction amount ⁇ Tmfb of the target drive torque Tmt of the electric motor 14 for suppressing the sprung vibration.
  • the feedforward correction amount ⁇ Tmff is added to the target drive torque Tmt of the electric motor 14 by the adder 58, thereby calculating the corrected target drive torque Tfmt.
  • the corrected target drive torque Tfmt is added to the feedback correction amount ⁇ Tmfb by the adder 62, whereby the corrected target drive torque Tamt is calculated.
  • a signal indicating the corrected target driving torque Tfmt and a signal indicating the corrected target driving torque Tamt are input to the determination block 76.
  • the determination block 76 sets the display driving torque Tdsp to the corrected target driving torque Tamt when the magnitude of the target driving torque Tmt of the electric motor 14 exceeds the reference value Tmtc. A signal indicating the corrected target driving torque Tamt is output to the motor control unit 48.
  • the determination block 76 subtracts the feedback correction amount ⁇ Tmfb from the corrected target drive torque Tamt for the display drive torque Tdsp. Set. Further, a signal indicating a value obtained by subtracting the feedback correction amount ⁇ Tmfb from the corrected target drive torque Tamt is output to the motor control unit 48.
  • the reference value Tmtc may be a positive constant, but is variably set according to the magnitude of ⁇ Tmfb so that when the magnitude of the feedback correction amount ⁇ Tmfb is large, it becomes larger than when the magnitude of ⁇ Tmfb is small. It is preferable.
  • the magnitude of the feedback correction amount ⁇ Tmfb may be an average value or a maximum value of the feedback correction amount ⁇ Tmfb in a preset fourth time.
  • the display device 32 displays the same as in the eleventh embodiment, except that the correction amounts ⁇ Tmff, ⁇ Tmfb, ⁇ Tmt are calculated for the target drive torque Tmt of the electric motor 14. Can be controlled. Therefore, it is possible to prevent the operation mode of the hybrid system 10 displayed due to the influence of the feedback correction amount ⁇ Tmfb from frequently changing between the drive mode and the charge mode.
  • the fifth and sixth embodiments described above are configured as modifications of the first embodiment, but the configuration of the fifth or sixth embodiment is any one of the second to fourth embodiments. May be applied.
  • the hybrid system 10 when the signs of the display drive torque Tdsp and the feedback correction amount ⁇ Tfb are different from each other and the magnitude of ⁇ Tfb is larger than the magnitude of Tfreq, the hybrid system 10 is predetermined. It is determined that there is a situation. When the hybrid system 10 is in a predetermined situation and the sign of the feedback correction amount ⁇ Tfb is positive, it is displayed that the operation mode of the hybrid system 10 is the drive mode. On the other hand, when the sign of the feedback correction amount ⁇ Tfb is negative, it is displayed that the operation mode of the hybrid system 10 is the charging mode.
  • the hybrid system 10 is not in a predetermined situation.
  • the display drive torque Tdsp is a positive value
  • the operation mode of the hybrid system 10 is the drive mode.
  • the display driving torque Tdsp is a positive value
  • the operation mode of the hybrid system 10 is the charging mode.
  • the bandpass filter processing is performed with the lower limit value and the upper limit value of the pass bands of fbp1 and fbp2, respectively.
  • a combination of a low-pass filter process with a cutoff frequency of fbp1 and a high-pass filter process with a cutoff frequency of fbp2 may be employed, or only one of these filter processes may be employed.
  • the drive torque correction amount ⁇ Treq for suppressing the sprung vibration of the vehicle accompanying the driving operation of the driver is calculated, and the required drive torque Treq becomes the drive torque correction amount ⁇ Treq.
  • the corrected required driving torque Tareq is calculated.
  • a corrected amount of braking torque for suppressing the sprung vibration of the vehicle accompanying the driver's braking operation is calculated, and the required braking torque is corrected by the corrected amount of braking torque.
  • the present invention may also be applied when the braking drive torque is calculated.
  • the braking torque correction amount includes at least a first braking torque correction amount calculated based on a driver's braking operation amount, and a second braking torque correction amount calculated based on a disturbance to the vehicle. May be included.
  • the display device 32 serving as a display means displays the driving output status based on the corrected required braking drive torque after display, which is a value in which the influence of the second braking torque correction amount is reduced compared to the corrected required braking drive torque. It may be displayed.
  • the vehicle is a vehicle equipped with a hybrid system.
  • the vehicle control device of the present invention may be applied to an electric vehicle that performs regeneration during deceleration braking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 運転者の駆動操作量に基づいて車両の目標運転出力値としての要求駆動トルクTreqを演算し、車両のばね上振動を抑制するための補正トルクΔTreqを演算する。要求駆動トルクTreqを補正トルクΔTreqにて補正した補正後の要求駆動トルクTareqに基づいてエンジン及び電動モータを制御すると共に、電動モータの作動状況の表示を制御する車両制御装置。補正トルクΔTreqは少なくとも車両に対する外乱に基づいて演算される外乱補正量としてのフィードバック補正量ΔTfbを含む。電動モータの作動状況の表示は補正後の要求駆動トルクTareqよりもフィードバック補正量ΔTfbの影響が低減された値である表示用駆動トルクに基づいて行われる。

Description

車両制御装置
 本発明は、車両制御装置に係り、更に詳細には車両の運転出力を制御すると共に運転出力状況の表示を制御する車両制御装置に係る。
 自動車等の車両に於いては、車両の駆動力は運転者の運転操作に応じて制御され、また車両の状況に応じて制御される。例えば車両の状況に応じて車両の駆動力を制御する車両制御の一つとして、運転者の駆動操作に基づいて車両のはね上の振動を予測し、はね上の振動を抑制するよう車両の駆動力を制御するばね上制振制御が既に知られている。このばね上制振制御の一例が例えば下記の特許文献1に記載されており、運転者の駆動操作に基づく車両の目標駆動力がばね上制振制御の補正量にて補正される。
特開2006-60936号公報
〔発明が解決しようとする課題〕
 特にハイブリッドシステム搭載車や電気自動車の如く、車両の駆動力の少なくとも一部が電動モータにより発生される車両によっては、車両の減速制動時に電動モータが回生発電機として作用し、発電により発生された電気はバッテリに充電される。この種の車両に於いては、電動モータの作動モードがバッテリより電気を供給されることにより駆動力を発生する駆動モードであるか、発電によりバッテリへ電気を供給する充電モードであるかが車室内の表示装置に表示されるようになっていることが多い。
 一般に、表示装置に表示される電動モータの作動モードは、ばね上制振制御の補正量にて補正された車両の目標駆動力の符号に基づいて制御される。即ち表示される作動モードは補正後の車両の目標駆動力が正の値であるときには駆動モードであり、補正後の車両の目標駆動力が負の値であるときには充電モードである。
 また一般に、ばね上制振制御の補正量は運転者の駆動操作に基づくフィードフォワード制御量と路面の外乱などに基づくフィードバック制御量とを含んでいる。フィードフォワード制御量の符号が正負に亘り繰り返し変動することはまれであるが、フィードバック制御量の符号は正負に亘り小さい振幅にて繰り返し変動する。
 そのため特にフィードフォワード制御量の大きさが小さい状況に於いてフィードバック制御量の符号が正負に亘り繰り返し変動すると、ばね上制振制御の補正量の符号も正負に亘り繰り返し変動する。そのためかかる状況に於いては、補正後の車両の目標駆動力の符号も正負に亘り繰り返し変動するので、表示装置に表示される電動モータの作動モードが駆動モードと充電モードとの間にて繰り返し変動し、車両の乗員が煩わしさを感じることがある。
 本発明の主要な目的は、車両の目標運転出力値を演算し、車両の加減速に伴う振動を抑制するための運転出力補正量にて目標運転出力値を補正し、その補正後の目標運転出力値に基づいて車両の運転出力手段を制御すると共に運転出力手段による運転出力状況を表示する車両に於いて、補正後の車両の目標駆動力の符号の繰り返し変動に起因して運転出力状況の表示が繰り返し変動することを抑制することである。
〔課題を解決するための手段及び発明の効果〕
 本発明によれば、運転者の運転操作量に基づいて車両の目標運転出力値を演算する目標運転出力値演算手段と、車両の振動を抑制するための運転出力補正量を演算する運転出力補正量演算手段と、目標運転出力値を運転出力補正量にて補正した目標運転出力補正値に基づいて車両の運転出力手段を制御する制御手段と、運転出力手段の運転出力状況を表示する表示手段と、を有する車両制御装置に於いて、運転出力補正量は少なくとも車両に対する外乱に基づいて演算される外乱補正量を含み、表示手段は目標運転出力補正値よりも外乱補正量の影響が低減された値である表示用目標運転出力値に基づいて運転出力状況を表示することを特徴とする車両制御装置が提供される。
 この構成によれば、表示手段による運転出力状況の表示は目標運転出力補正値よりも外乱補正量の影響が低減された値である表示用目標運転出力値に基づいて行われる。よって運転出力状況の表示が目標運転出力補正値、即ち目標運転出力値を運転出力補正量にて補正した補正後の目標運転出力値に基づいて行われる場合に比して、運転出力状況の表示に対する外乱補正量の影響を低減することができる。従って車両に対する外乱に起因して外乱補正量の符号が正負に亘り繰り返し変動する状況に於いても、表示用目標運転出力値の符号が正負に亘り繰り返し変動する虞れを低減することができる。よって表示用目標運転出力値の符号の繰り返し変動に起因して運転出力手段の運転出力状況の表示が繰り返し変動することを抑制することができ、これにより車両の乗員が煩わしさを感じることを抑制することができる。
 上記構成に於いて、表示用目標運転出力値は、目標運転出力値の大きさが基準値を越えるときには、運転出力補正量にて目標運転出力値を補正した値であり、目標運転出力値の大きさが基準値以下であるときには、目標運転出力補正値よりも外乱補正量の影響が低減された値であってよい。
 この構成によれば、目標運転出力値の大きさが基準値以下であり、目標運転出力値が正負に亘り繰り返し変動し易いときには、表示用目標運転出力値は目標運転出力補正値よりも外乱補正量の影響が低減された値である。よって目標運転出力値の大きさが基準値以下であるときにも表示用目標運転出力値が運転出力補正量にて目標運転出力値を補正した値である場合に比して、運転出力手段による運転出力状況の表示が繰り返し変動することを抑制することができる。
 また目標運転出力値の大きさが基準値を越えるときには、表示用目標運転出力値は運転出力補正量にて目標運転出力値を補正した値、即ち目標運転出力補正値である。よって目標運転出力値の大きさが基準値を越えるときにも表示用目標運転出力値が目標運転出力補正値よりも外乱補正量の影響が低減された値である場合に比して、実際の運転出力状況に則して運転出力状況を表示することができる。
 また上記構成に於いて、目標運転出力補正値よりも外乱補正量の影響が低減された値は、外乱補正量を含まない補正量にて目標運転出力値を補正することにより外乱補正量の影響が0に低減された値であってよい。
 この構成によれば、表示用目標運転出力値は外乱補正量の影響が0に低減された値であり、外乱補正量の影響を全く受けない値である。よって外乱補正量の符号の繰り返し変動に起因して運転出力手段による運転出力状況の表示が繰り返し変動することを防止することができる。
 また上記構成に於いて、目標運転出力補正値よりも外乱補正量の影響が低減された値は、外乱補正量の大きさが低減されるよう修正された運転出力補正量にて目標運転出力値を補正した値であってよい。
 この構成によれば、表示用目標運転出力値は外乱補正量の大きさが低減されるよう修正された運転出力補正量にて目標運転出力値を補正した値であり、表示用目標運転出力値に与える外乱補正量の影響は小さい。よって外乱補正量の符号の繰り返し変動に起因して運転出力手段による運転出力状況の表示が繰り返し変動する虞れを低減することができる。
 また上記構成に於いて、目標運転出力補正値よりも外乱補正量の影響が低減された値は、目標運転出力補正値に対し少なくとも車両の共振周波数域を含む特定の通過周波数帯域にてフィルタ処理を行った値を修正量として、目標運転出力補正値より修正量を減算することにより求められる値であってよい。
 この構成によれば、表示用目標運転出力値は目標運転出力補正値より修正量を減算することにより求められる値である。換言すれば表示用目標運転出力値は目標運転出力補正値より少なくとも車両の共振周波数域を含む特定の通過周波数帯域の成分を除去した値である。よって車両がその共振周波数域の振動数にて振動する場合にも、表示用目標運転出力値の符号が正負に亘り繰り返し変動する虞れを低減することができ、これにより運転出力手段による運転出力状況の表示が繰り返し変動する虞れを低減することができる。
 また上記構成に於いて、目標運転出力補正値よりも外乱補正量の影響が低減された値は、車両の共振周波数域に対応する周期以外のサンプリング周期にて目標運転出力補正値をサンプリングすることにより求められる値であってよい。
 この構成によれば、表示用目標運転出力値は車両の共振周波数域に対応する周期以外のサンプリング周期にて目標運転出力補正値をサンプリングすることにより求められる値である。換言すれば表示用目標運転出力値は車両の共振周波数域について外乱補正量の影響が排除されるよう修正された値である。よって車両がその共振周波数域の振動数にて振動する場合にも、表示用目標運転出力値の符号が正負に亘り繰り返し変動する虞れを低減することができ、これにより運転出力手段による運転出力状況の表示が繰り返し変動する虞れを低減することができる。
 また上記構成に於いて、基準値は外乱補正量に応じて可変設定されるようになっていてよい。
 この構成によれば、基準値は外乱補正量に応じて可変設定されるので、外乱補正量が目標運転出力補正値に与える影響に応じて基準値を変化させることができる。よって外乱補正量が目標運転出力補正値に与える影響に応じて表示用目標運転出力値を変化させることができる。
 また上記構成に於いて、外乱補正量は車両に対する外乱に基づいてフィードバック制御量として演算され、運転出力補正量は外乱補正量と運転者の運転操作量に基づいて演算されるフィードフォワード制御量とを含んでいてよい。
 この構成によれば、運転者の運転操作量及び車両に対する外乱に基づいて車両の振動を抑制するための運転出力補正量を演算することができ、よって運転者の運転操作量及び車両に対する外乱に基づいて車両の振動を抑制することができる。
 また上記構成に於いて、目標運転出力値は車両の目標駆動力であり、外乱補正量は車両の駆動方向を正として正負にまたがって繰り返し変動し、表示手段は表示用目標運転出力値の符号に応じて運転出力状況の表示を変更するようになっていてよい。
 この構成によれば、外乱補正量の符号が正負に亘り繰り返し変動することに起因して目標運転出力補正値の目標駆動力の符号が正負に亘り繰り返し変動する場合にも、運転出力状況の表示が繰り返し変更されることを抑制することができる。
 また上記構成に於いて、運転出力手段は電動発電機及び蓄電手段を有し、目標運転出力補正値が正の値であるときには、電動発電機は蓄電手段より電気エネルギーを供給されることにより車輪を駆動するための駆動力を発生し、目標運転出力補正値が負の値であるときには、電動発電機は車輪より駆動力を受けて駆動されることにより発電し蓄電手段を充電するようになっていてよい。
 この構成によれば、電動発電機が駆動力を発生するモードと蓄電手段を充電するモードとの間に繰り返し変化する場合にも、運転出力手段による運転出力状況の表示が上記二つのモードの間にて繰り返し変化することを抑制することができる。
 また上記構成に於いて、表示手段は、外乱補正量及び表示用目標運転出力値の符号が異なり且つ外乱補正量の大きさが表示用目標運転出力値の大きさよりも大きい特殊な状況に於いては、外乱補正量の符号に応じて電動発電機が駆動力発生中であるか発電中であるかを表示し、特殊な状況以外の状況に於いては表示用目標運転出力値の符号に応じて電動発電機が駆動力発生中であるか発電中であるかを表示するようになっていてよい。
 上記特殊な状況に於いては、電動発電機が駆動力発生中であるか発電中であるかは外乱補正量の符号により決定される。しかし表示用目標運転出力値が目標運転出力補正値よりも外乱補正量の影響が低減された値である場合には、電動発電機が駆動力発生中であるか発電中であるかは表示用目標運転出力値の符号により決定される。そのため電動発電機が駆動力発生中であるか発電中であるかの表示が電動発電機の実際の作動状況とは異なるものになることがある。
 特に表示手段が蓄電手段の蓄電量をも表示する場合には、電動発電機が駆動力発生中であるにも拘らず発電中であると表示されると、電動発電機が発電中であると表示されているにも拘らず表示の蓄電量が減少する。逆に電動発電機が発電中であるにも拘らず駆動力発生中であると表示されると、電動発電機が駆動力発生中であると表示されているにも拘らず表示の蓄電量が増大する。何れの場合にも車両の乗員は違和感を感じる。
 上記の構成によれば、上記特殊な状況に於いては、外乱補正量の符号に応じて電動発電機が駆動力発生中であるか発電中であるかが表示される。よって電動発電機が駆動力発生中であるか発電中であるかの表示が電動発電機の実際の作動状況とは異なるものになることを回避することができる。また上記特殊な状況以外の状況に於いては、表示用目標運転出力値の符号に応じて電動発電機が駆動力発生中であるか発電中であるかが表示される。よって外乱補正量の符号が正負に亘り繰り返し変動することに起因して電動発電機の作動状況の表示が駆動力発生中と発電中との間に繰り返し変化することを抑制することができる。
 また上記構成に於いて、表示手段は、外乱補正量及び表示用目標運転出力値の符号が異なり且つ外乱補正量の大きさが表示用目標運転出力値の大きさよりも大きい特殊な状況に於いては、表示用目標運転出力値より外乱補正量を減算した値を状況判定基準値として、表示用目標運転出力値が状況判定基準値よりも大きいか否かに応じて電動発電機が駆動力発生中であるか発電中であるかを表示し、特殊な状況以外の状況に於いては表示用目標運転出力値の符号に応じて電動発電機が駆動力発生中であるか発電中であるかを表示するようになっていてよい。
 上記の構成によれば、上記特殊な状況に於いては、表示用目標運転出力値が状況判定基準値よりも大きいか否かに応じて電動発電機が駆動力発生中であるか発電中であるかが表示される。そして表示用目標運転出力値が状況判定基準値よりも大きいか否かの判定は外乱補正量の符号の判定と等価である。よって電動発電機が駆動力発生中であるか発電中であるかの表示が電動発電機の実際の作動状況とは異なるものになることを回避することができる。また上記特殊な状況以外の状況に於いては、表示用目標運転出力値の符号に応じて電動発電機が駆動力発生中であるか発電中であるかが表示される。よって外乱補正量の符号が正負に亘り繰り返し変動することに起因して電動発電機の作動状況の表示が駆動力発生中と発電中との間に繰り返し変化することを抑制することができる。
 また本発明によれば、運転者の運転操作量に基づいて車両の目標運転出力値を演算する目標運転出力値演算手段と、車両の振動を抑制するための運転出力補正量を演算する運転出力補正量演算手段と、目標運転出力値を運転出力補正量にて補正した目標運転出力補正値に基づいて車両の運転出力手段を制御する制御手段と、運転出力手段の運転出力状況を表示する表示手段と、を有する車両制御装置に於いて、運転出力補正量は少なくとも車両に対する外乱に基づいて演算される外乱補正量を含み、制御手段は、目標運転出力値の大きさが基準値以下であるときには、外乱補正量の影響が低減されるように目標運転出力補正値を演算し、表示手段は目標運転出力補正値に基づいて運転出力状況を表示することを特徴とする車両制御装置が提供される。
 この構成によれば、目標運転出力値の大きさが基準値以下であり、目標運転出力値が正負に亘り繰り返し変動し易いときには、目標運転出力補正値は外乱補正量の影響が低減されるように演算される値である。よって目標運転出力値の大きさが基準値以下であるときにも目標運転出力補正値が運転出力補正量にて目標運転出力値を補正した値である場合に比して、運転出力手段の運転出力状況及びその表示が繰り返し変動することを抑制することができる。
 また目標運転出力値の大きさが基準値を越えるときには、目標運転出力補正値は運転出力補正量にて目標運転出力値を補正した値である。よって目標運転出力値の大きさが基準値を越えるときにも目標運転出力補正値が目標運転出力値よりも外乱補正量の影響が低減された値である場合に比して、車両の振動を効果的に抑制することができる。また実際の運転出力状況に則して運転出力状況を表示することができる。
 上記構成に於いて、制御手段は、目標運転出力値の大きさが基準値以下であるときには、外乱補正量を含まない補正量にて目標運転出力値を補正することにより運転出力補正値を演算するようになっていてよい。
 この構成によれば、目標運転出力値の大きさが基準値以下であるときには、目標運転出力補正値は外乱補正量の影響が0に低減された値、即ち外乱補正量の影響を全く受けない値になる。よって目標運転出力値が正負に亘り繰り返し変動し易い状況に於いて、外乱補正量の符号の繰り返し変動に起因して運転出力手段による運転出力状況の表示が繰り返し変動することを防止することができる。
 また上記構成に於いて、制御手段は、目標運転出力値の大きさが基準値以下であるときには、外乱補正量の大きさが低減されるよう修正された運転出力補正量にて目標運転出力値を補正することにより目標運転出力補正値を演算するようになっていてよい。
 この構成によれば、目標運転出力値の大きさが基準値以下であるときには、目標運転出力補正値は外乱補正量の大きさが低減されるよう修正された運転出力補正量にて目標運転出力値を補正した値である。よって目標運転出力補正値に与える外乱補正量の影響は小さいので、外乱補正量の符号の繰り返し変動に起因して運転出力手段による運転出力状況の表示が繰り返し変動する虞れを低減することができる。
 また上記構成に於いて、制御手段は、目標運転出力値の大きさが基準値以下であるときには、目標運転出力値を運転出力補正量にて補正した値を暫定の目標運転出力補正値とし、暫定の目標運転出力補正値に対し少なくとも車両の共振周波数域を含む特定の通過周波数帯域にてフィルタ処理を行った値を修正量として、暫定の目標運転出力補正値より修正量を減算することにより目標運転出力補正値を演算するようになっていてよい。
 この構成によれば、目標運転出力値の大きさが基準値以下であるときには、目標運転出力補正値は暫定の目標運転出力補正値より修正量を減算することにより演算される。換言すれば目標運転出力補正値は暫定の目標運転出力補正値より少なくとも車両の共振周波数域を含む特定の通過周波数帯域の成分を除去した値である。よって車両がその共振周波数域の振動数にて振動する場合にも、運転出力状況の表示の基礎とされる目標運転出力補正値の符号が正負に亘り繰り返し変動する虞れを低減することができる。従って運転出力手段の運転出力状況の表示が繰り返し変動する虞れを低減することができる。
 また上記構成に於いて、制御手段は、目標運転出力値の大きさが基準値以下であるときには、目標運転出力値を運転出力補正量にて補正した値を暫定の目標運転出力補正値として、車両の共振周波数域に対応する周期以外のサンプリング周期にて暫定の目標運転出力補正値をサンプリングすることにより目標運転出力補正値を演算するようになっていてよい。
 この構成によれば、目標運転出力値の大きさが基準値以下であるときには、目標運転出力補正値は車両の共振周波数域に対応する周期以外のサンプリング周期にて暫定の目標運転出力補正値をサンプリングすることにより求められる値である。換言すれば目標運転出力補正値は車両の共振周波数域について外乱補正量の影響が排除されるよう修正された値である。よって車両がその共振周波数域の振動数にて振動する場合にも、目標運転出力補正値の符号が正負に亘り繰り返し変動する虞れを低減することができ、これにより運転出力手段の運転出力状況の表示が繰り返し変動する虞れを低減することができる。
 また上記構成に於いて、制御手段は、外乱補正量に応じて基準値を可変設定するようになっていてよい。
 この構成によれば、基準値は外乱補正量に応じて可変設定されるので、外乱補正量が目標運転出力補正値に与える影響に応じて基準値を変化させることができる。よって外乱補正量が目標運転出力補正値に与える影響に応じて表示の基礎となる目標運転出力値を変化させることができる。
 また上記構成に於いて、制御手段は、前記車両に対するに基づいてフィードバック制御量として演算される外乱補正量と、運転者の運転操作量に基づいて演算されるフィードフォワード制御量とを含む値を運転出力補正量として演算するようになっていてよい。
 この構成によれば、運転者の運転操作量及び車両に対する外乱に基づいて車両の振動を抑制するための運転出力補正量を演算することができ、よって運転者の運転操作量及び車両に対する外乱に基づいて車両の振動を抑制することができる。
 また上記構成に於いて、目標運転出力値は車両の目標駆動力であり、外乱補正量は車両の駆動方向を正として正負にまたがって繰り返し変動し、表示手段は目標運転出力補正値の符号に応じて運転出力状況の表示を変更するようになっていてよい。
 この構成によれば、外乱補正量の符号が正負に亘り繰り返し変動することに起因して目標運転出力補正値の目標駆動力の符号が正負に亘り繰り返し変動する場合にも、運転出力状況の表示が繰り返し変更されることを抑制することができる。
 また上記構成に於いて、運転出力手段は電動発電機及び蓄電手段を有し、目標運転出力補正値が正の値であるときには、電動発電機は蓄電手段より電気エネルギーを供給されることにより車輪を駆動するための駆動力を発生し、目標運転出力補正値が負の値であるときには、電動発電機は車輪より駆動力を受けて駆動されることにより蓄電手段を充電するようになっていてよい。
 この構成によれば、電動発電機が駆動力を発生するモードと蓄電手段を充電するモードとの間に繰り返し変化する場合にも、運転出力手段による運転出力状況の表示が上記二つのモードの間にて繰り返し変化することを抑制することができる。
 また上記構成に於いて、車両の加減速に伴う振動を抑制するための運転出力補正量は、車両の加減速に伴うばね上の共振振動を抑制するための運転出力補正量であってよい。
 また上記構成に於いて、目標運転出力値の大きさの基準値は、外乱補正量の大きさが大きいときには外乱補正量の大きさが小さいときに比して大きくなるよう、外乱補正量の大きさに応じて可変設定されるようになっていてよい。
 また上記構成に於いて、目標運転出力補正値が正の値であるときには、電動発電機は蓄電手段より電気エネルギーを供給されることにより車輪を駆動するための駆動力を発生し、表示手段は電動発電機が駆動力発生中であることを表示し、目標運転出力補正値が負の値であるときには、電動発電機は車輪より駆動力を受けて駆動されることにより発電し蓄電手段を充電し、表示手段は電動発電機が発電中であることを表示するようになっていてよい。
本発明による車両制御装置が適用されてよいハイブリッドシステム搭載車を示す概略構成図である。 統合制御装置30のハイブリッド制御部をばね上制振制御部及び表示制御部と共に示す機能ブロック図である。 図2に示されたね上制振制御部を示す機能ブロック図である。 本発明による車両制御装置の第一の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。 本発明による車両制御装置の第二の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。 本発明による車両制御装置の第三の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。 本発明による車両制御装置の第四の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。 第一の実施形態の変形例として構成された本発明による車両制御装置の第五の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。 第一の実施形態の修正例として構成された本発明による車両制御装置の第七の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。 第二の実施形態の修正例として構成された本発明による車両制御装置の第八の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。 第三の実施形態の修正例として構成された本発明による車両制御装置の第九の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。 第四の実施形態の修正例として構成された本発明による車両制御装置の第十の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。 第七の実施形態の修正例として構成された本発明による車両制御装置の第十一の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。 第八の実施形態の修正例として構成された本発明による車両制御装置の第十二の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。 第九の実施形態の修正例として構成された本発明による車両制御装置の第十三の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。 第十の実施形態の修正例として構成された本発明による車両制御装置の第十四の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。 本発明による車両制御装置の第一の変形例のハイブリッド制御部をばね上制振制御部及び表示制御部と共に示す機能ブロック図である。 本発明による車両制御装置の第二の変形例のハイブリッド制御部をばね上制振制御部及び表示制御部と共に示す機能ブロック図である。 第十一の実施形態の修正例として構成された本発明による車両制御装置の第三の変形例のハイブリッド制御部をばね上制振制御部及び表示制御部と共に示す機能ブロック図である。 第十一の実施形態の修正例として構成された本発明による車両制御装置の第四の変形例のハイブリッド制御部をばね上制振制御部及び表示制御部と共に示す機能ブロック図である。
 以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。
[第一の実施形態]
 図1は本発明による車両制御装置が適用されてよいハイブリッドシステム搭載車を示す概略構成図である。
 図1に於いて、100は車両制御装置を示し、10はハイブリッドシステムを示している。ハイブリッドシステム10はガソリンエンジンの如きエンジン12と補助動力源としての電動モータ(電動機)14とを有している。エンジン12の出力回転軸12A及び電動モータ14の回転軸14Aは動力分配装置16に機械的に接続されており、動力分配装置16には発電機18の回転軸18Aも機械的に接続されている。動力分配装置16は遊星歯車機構を含み、エンジン12の動力を回転軸14Aへ伝達するモードと、回転軸18Aへ伝達するモードと、回転軸14A及び18Aへ伝達するモードとに切り替るようになっている。
 回転軸14Aは差動歯車装置を内蔵する減速機20を介して左右のドライブシャフト22L及び22Rの内端に駆動接続されいる。ドライブシャフト22L及び22Rの外端は図1には示されていない等速ジョイントを介して左右の駆動輪24L及び24Rに連結されている。車輌の走行時には回転軸14Aの動力が減速機20、ドライブシャフト22L及び22Rを介して駆動輪24L及び24Rへ走行用駆動力として伝達される。また車輌の減速制動時には駆動輪24L及び24Rが路面より受ける回転駆動力がドライブシャフト22L及び22R、減速機20を介して回転軸14Aへ伝達され、回転軸14Aより電動モータ14へ伝達される。この場合動力分配装置16により回転軸14Aと出力回転軸12A及び回転軸18Aとの接続が遮断される。
 電動モータ14及び発電機18は交流仕様のものであり、インバータ26を介してバッテリ28と電気的に接続されている。電動モータ14はバッテリ28より供給されインバータ26により交流に変換された駆動電流が供給されることにより必要に応じて動力を発生する。また電動モータ14は車輌の減速制動時には回生発電機として機能し、その発電電流はインバータ26により直流に変換された後バッテリ28へ供給され、これによりバッテリが充電される。発電機18はエンジン12より動力分配装置16を介して動力が供給されることにより発電し、その発電電流はインバータ26により直流に変換された後バッテリ28へ供給され、これによりバッテリが充電される。また発電機18の発電電流は必要に応じてインバータ26を介して電動モータ14へ供給され、これにより電動モータが駆動される。
 エンジン12、電動モータ14、動力分配装置16、発電機18、インバータ26は統合制御装置30のハイブリッド制御部により制御される。ハイブリッド制御部は車輌の走行状況に応じて互いに共働して下記の車両走行モードを達成する。ハイブリッド制御部には統合制御装置30のばね上制振制御部より必要に応じて出力の補正指令が入力され、これによりハイブリッド制御部にはばね上のバウンスやピッチのばね上振動を抑制するようハイブリッドシステム10の駆動力を制御する。
 車両制御装置100は車室内に設けられた表示装置32を有し、表示装置32は統合制御装置30の表示制御部によって制御されることにより、車両の走行に関する情報を表示する。尚統合制御装置30の各制御部はそれぞれCPUとROMとRAMと入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のマイクロコンピュータであってよい。
 図2は統合制御装置30のハイブリッド制御部をばね上制振制御部及び表示制御部と共に示す機能ブロック図、図3は図2に示されたね上制振制御部を示す機能ブロック図である。
 図2に於いて、統合制御装置30のハイブリッド制御部34は要求駆動トルク演算ブロック36を有し、要求トルク演算ブロック36は運転者の駆動操作量であるアクセル開度Acc及びエンジン回転数Neに基づいて運転者の要求駆動トルクTreqを演算する。ばね上制振制御部38はばね上振動を抑制するための駆動トルクの補正量ΔTreqを演算する。要求駆動トルクTreq及び補正量ΔTreqは加算器40によって加算され、これにより補正後の要求駆動トルクTareqが演算される。
 また統合制御装置30のハイブリッド制御部34は目標エンジン出力演算ブロック42を有し、このブロック42は補正後の要求駆動トルクTareq及びエンジン回転数Neに基づいて目標エンジントルクTet及び目標エンジン回転数Netを演算する。目標エンジントルクTet及び目標エンジン回転数Netを示す信号はエンジン制御部44へ出力され、これによりエンジン12が目標エンジントルクTet及び目標エンジン回転数Netに基づいて制御される。
 補正後の要求駆動トルクTareqを示す信号は加算器46のプラスの端子に入力され、目標エンジントルクTetを示す信号は加算器46のマイナスの端子に入力され、これにより目標モータトルクTmt(=Tareq-Tet)が演算される。目標モータトルクTmtを示す信号はモータ制御部48へ出力され、これにより電動モータ14が目標モータトルクTmtに基づいて制御される。
 統合制御装置30のハイブリッド制御部34により達成される車両の走行モードは以下の通りである。
(A)発進及び低速走行モード
 車輌の発進時及び低速走行時に於いては、エンジンの効率が他の運転域に比して低いので、エンジン12が停止され又は空転される状態にて電動モータ14がバッテリ28よりインバータ26を経て供給される駆動電流により駆動され、車輌は電気自動車として走行する。尚エンジン12が低温状態にあるときには、一定の温度以上になるまでエンジン12がアイドリング運転されるが、その動力は外部へ伝達されない。
(B)通常走行モード
 車輌の通常走行時には、エンジン12の動力が動力分配装置16により発電機18及び減速機20へ分配され、発電機18により発電された電力により電動モータ14が駆動され、駆動輪24L及び24Rは動力分配装置16より減速機20へ供給される動力及び電動モータ14により発生され減速機20へ供給される動力の両者により駆動される。
(C)高負荷走行モード
 車輌が全開加速時や急坂登坂時の如き高負荷走行状態にあるときには、通常走行モードの場合と同様、エンジン12の動力が動力分配装置16により発電機18及び減速機20へ分配されるが、電動モータ14は発電機18により発電された電力及びバッテリ28よりインバータ26を経て供給される駆動電流の両者によって駆動され、これにより駆動輪24L及び24Rは高い駆動力にて駆動される。
(D)減速制動モード
 車輌の減速制動時には、前述の如く駆動輪24L及び24Rが路面より受ける回転駆動力がドライブシャフト22L及び22R、減速機20、回転軸14Aを介して電動モータ14へ伝達され、電動モータ14が回生発電機として機能することにより発電された電力がインバータ26を経てバッテリ28へ供給されバッテリが充電される。
(E)バッテリ充電モード
 バッテリ28は常に一定の充電状態を維持するよう制御される。従ってバッテリ28の充電量が所定値以下に低下したことがSOCメータ28Aにより検出されると、上記通常走行モード時にエンジン12の出力が増大されると共に、動力分配装置16により発電機18への分配動力が増大され、発電機18による発電電力の増大分がインバータ26を経てバッテリ28へ供給されバッテリが充電される。
(F)エコランモード
 例えば信号待ち時の如く、減速制動により車速が所定値以下に低下し車輌が停止すると、エンジン12による無駄な燃料消費を防止すべく、エンジン12の温度が一定の温度以上であれば、図には示されていないイグニッションスイッチがオン状態にあってもエンジン12が自動的に停止される。
 図3に示されている如く、ばね上制振制御部38はフィードフォワード補正量演算ブロック50と、フィードバック補正量演算ブロック52と、加算器54とを有している。フィードフォワード補正量演算ブロック50は少なくともアクセル開度Accに基づいてばね上振動を抑制するための駆動トルクのフィードフォワード補正量ΔTffを演算する。フィードバック補正量演算ブロック52は少なくとも路面からの外乱に基づいてばね上振動を抑制するための駆動トルクのフィードバック補正量ΔTfbを演算する。加算器54はフィードフォワード補正量ΔTff及びフィードバック補正量ΔTfbの和を駆動トルクの補正量ΔTreqとして演算する。
 フィードフォワード補正量ΔTff及びフィードバック補正量ΔTfbを示す信号は表示制御部56にも入力される。尚実施形態によっては、フィードフォワード補正量ΔTffを示す信号のみが表示制御部56に入力され、また駆動トルクの補正量ΔTreqを示す信号が表示制御部56に入力される。
 表示制御部56は後に詳細に説明する如く要求駆動トルクTreq及びフィードフォワード補正量ΔTff等に基づいて表示用駆動トルクTdspを演算する。そして表示制御部56は少なくとも表示用駆動トルクTdspに基づいて表示装置32の表示を制御する。
 図4は本発明による車両制御装置の第一の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。
 図4に於いて、表示制御部56は加算器58を有している。加算器58にはハイブリッド制御部34の要求トルク演算ブロック36より要求駆動トルクTreqを示す信号が入力され、またばね上制振制御部38よりフィードフォワード補正量ΔTffを示す信号が入力される。加算器58は要求駆動トルクTreq及びフィードフォワード補正量ΔTffの和Treq+ΔTffをフィードフォワード補正量ΔTffにて補正された要求駆動トルクTfreqとして演算する。補正された要求駆動トルクTfreqを示す信号はハイブリッド制御部34の一部を構成する加算器62へ入力されると共に、表示用駆動トルクTdspとして表示制御装置60へ入力される。
 表示制御装置60は、表示用駆動トルクTdspが正の値であるときには、ハイブリッドシステム10の作動モードが駆動モードであることを表示装置32に表示する。これに対し表示用駆動トルクTdspが正の値であるときには、表示制御装置60はハイブリッドシステム10の作動モードが充電モードであることを表示装置32に表示する。また表示制御装置60はSOCメータ28Aにより検出されるバッテリ28の充電状態に基づいてバッテリ28の充電量を表示装置32に表示する。
 尚この表示制御装置60の機能は、第五及び第六の実施形態(図8)を除く後述の他の実施形態に於いても同様である。
 加算器62は補正された要求駆動トルクTfreqとフィードバック補正量ΔTfbとを加算する。加算器62の出力、従って和Treq+ΔTreqを示す信号は、補正後の要求駆動トルクTareqを示す信号としてハイブリッド制御部34の目標エンジン出力演算ブロック42及び加算器46へ出力される。よって加算器58及び62により図2の加算器40の機能が達成される。
 かくして第一の実施形態によれば、表示用駆動トルクTdspは、要求駆動トルクTreqとフィードフォワード補正量ΔTffとの和であり、フィードバック補正量ΔTfbを含まない値、即ちフィードバック補正量ΔTfbの影響が0に低減された値である。よってフィードバック補正量ΔTfbの影響を全く受けることなく、ハイブリッドシステム10の作動モードを表示装置32に表示することができる。従ってフィードバック補正量ΔTfbの影響に起因して表示装置32に表示されるハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止し、車両の乗員が煩わしさを感じることを防止することができる。
 特に第一の実施形態によれば、表示用駆動トルクTdspは要求駆動トルクTreqとフィードフォワード補正量ΔTffとの和であり、フィードバック補正量ΔTfbに対する修正などは不要である。よってフィードバック補正量ΔTfbに対する修正などが行われる場合に比して、車両制御装置を単純な構成にすることができる。
 尚補正後の要求駆動トルクTareqは要求駆動トルクTreqとばね上振動を抑制するための駆動トルクの補正量ΔTreqとの和であり、表示用駆動トルクTdspの演算制御による影響を受けない。よって表示用駆動トルクTdspの演算制御による影響を受けることなく、ばね上振動を効果的に抑制することができる。このことは後述の第二乃至第九の実施形態についても同様である。
[第二の実施形態]
 図5は本発明による車両制御装置の第二の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。尚図5に於いて、図4に示されたブロックに対応するブロックには図4に於いて付された符号と同一の符号が付されている。このことは図6乃至図16に示された他の実施形態についても同様である。
 この第二の実施形態に於いては、表示制御部56は加算器64を有し、加算器64にはばね上制振制御部38よりフィードフォワード補正量ΔTff及びフィードバック補正量ΔTfbの和である駆動トルクの補正量ΔTreqを示す信号が入力される。そして加算器64は要求駆動トルクTreqと駆動トルクの補正量ΔTreqとを加算することにより補正後の要求駆動トルクTareqを演算する。補正後の要求駆動トルクTareqを示す信号はハイブリッド制御部34の目標エンジン出力演算ブロック42及び加算器46へ出力されると共に、バンドパスフィルタブロック66に入力される。よって加算器64は図2に示された加算器40としても機能する。
 補正後の要求駆動トルクTareqを示す信号はバンドパスフィルタブロック66にも入力される。車両のばね上共振の周波数域の下限値及び上限値をそれぞれf1、f2とし、バンドパスフィルタブロック66の通過帯域の下限値及び上限値をそれぞれfbp1、fbp2として、fbp1fはf1以下の値であり、fbp2fはf2以上の値である。
 尚バンドパスフィルタブロック66の通過帯域の下限値fbp1及び上限値fbp2は定数であってもよいが、例えば乗員数や積載荷重の変化に伴うばね上共振の周波数域の変化に応じて可変設定されてもよい。
 バンドパスフィルタブロック66によりバンドパスフィルタ処理された補正後の要求駆動トルクTabpを示す信号は加算器68のマイナスの端子に入力される。加算器68のプラスの端子にはバンドパスフィルタ処理されていない補正後の要求駆動トルクTareqを示す信号が入力される。加算器68はTareq-Tabpの値を演算し、Tareq-Tabpの値を示す信号は表示用駆動トルクTdspとして表示制御装置60へ入力される。
 かくして第二の実施形態によれば、表示用駆動トルクTdspは補正後の要求駆動トルクTareqより車両のばね上共振の周波数域についてフィードバック補正量ΔTfbが除去された値である。よって表示用駆動トルクTdspは車両のばね上共振の周波数域についてフィードバック補正量ΔTfbの影響が0に低減されるよう修正された補正後の要求駆動トルクTareqである。
 従って車両のばね上が共振振動数にて振動する場合にも、フィードバック補正量ΔTfbの影響に起因して表示装置32に表示されるハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止することができる。
 特に第二の実施形態によれば、バンドパスフィルタ処理は車両のばね上共振の周波数域を含むfbp1f以上でfbp2f以下の特定の周波数について行われ、それ以外の周波数については補正後の要求駆動トルクTareqよりフィードバック補正量ΔTfbは除去されない。従って周波数に関係なく補正後の要求駆動トルクTareqよりフィードバック補正量ΔTfbが除去される場合に比して、特定の周波数以外の周波数について表示装置32に表示される作動モードを実際の作動モードに近づけることができる。尚この作用効果は後述の第七の実施形態に於いても同様に得られる。
[第三の実施形態]
 図6は本発明による車両制御装置の第三の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。
 この第三の実施形態に於いては、表示制御部56は加算器58に加えてゲイン乗算器70及び加算器72を有している。ゲイン乗算器70にはフィードバック補正量ΔTfbを示す信号が入力され、ゲイン乗算器70は0よりも大きく1よりも小さいゲインKをフィードバック補正量ΔTfbに乗算することにより、低減修正後のフィードバック補正量ΔTfbaを演算する。
 尚ゲインKは一定であってもよいが、例えばフィードバック補正量ΔTfbの大きさが大きいときにはΔTfbの大きさが小さいときに比して小さくなるよう、ΔTfbの大きさに応じて可変設定されることが好ましい。この場合フィードバック補正量ΔTfbの大きさは予め設定された第一の時間内に於けるフィードバック補正量ΔTfbの平均値又は最大値であってよい。
 低減修正後のフィードバック補正量ΔTfbaを示す信号は加算器72に入力される。加算器72は低減修正後のフィードバック補正量ΔTfbaとフィードフォワード補正量ΔTffにて補正された要求駆動トルクTfreqと加算し、その出力である和Tfreq+ΔTfbaを示す信号は表示用駆動トルクTdspとして表示制御装置60へ入力される。
 この第三の実施形態によれば、表示用駆動トルクTdspは大きさが低減されたフィードバック補正量ΔTfbaと、フィードフォワード補正量ΔTffにて補正された要求駆動トルクTfreqとの和である。よって表示用駆動トルクTdspはフィードバック補正量ΔTfbの影響が低減されるよう修正された補正後の要求駆動トルクTareqである。
 従って表示用駆動トルクTdspが正負の値に繰り返し変動する虞れを低減し、これにより表示装置32に表示されるハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化する虞れを低減することができる。
 特に第三の実施形態によれば、表示用駆動トルクTdspは大きさが低減されたフィードバック補正量ΔTfbaと、フィードフォワード補正量ΔTffにて補正された要求駆動トルクTfreqとの和であり、フィードバック補正量ΔTfbを反映している。従って表示用駆動トルクTdspがフィードフォワード補正量ΔTffである場合に比して、表示装置32に表示される作動モードを実際の作動モードに近づけることができる。尚この作用効果は後述の第八の実施形態に於いても同様に得られる。
[第四の実施形態]
 図7は本発明による車両制御装置の第四の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。
 この第四の実施形態に於いては、表示制御部56は加算器64に加えてサンプリング回路74を有している。サンプリング回路74には駆動トルクの補正量ΔTreqを示す信号が入力され、サンプリング回路74は所定値Csaのサンプリング周期Csにて駆動トルクの補正量ΔTreqをサンプリングする。サンプリング回路74の出力は表示用駆動トルクTdspとして表示制御装置60へ入力される。
 サンプリング周期の所定値Csaは、車両のばね上共振の周波数域の下限値f1に対応する周期(1/f1)よりも長い周期又は車両のばね上共振の周波数域の上限値f2に対応する周期(1/f2)よりも短い周期である。
 この第四の実施形態によれば、表示用駆動トルクTdspは駆動トルクの補正量ΔTreqを所定値Csaのサンプリング周期Csにてサンプリングすることにより得られる値である。そして所定値Csaのサンプリング周期Csは車両のばね上共振の周波数域に対応する周期以外の周期である。よって表示用駆動トルクTdspは車両のばね上共振の周波数域についてフィードバック補正量ΔTfbの影響が排除されるよう修正された補正後の要求駆動トルクTareqである。
 従って車両のばね上が共振振動数にて振動する場合にも、フィードバック補正量ΔTfbの影響に起因して表示装置32に表示されるハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止することができる。
 特に第四の実施形態によれば、表示用駆動トルクTdspは車両のばね上共振の周波数域についてはフィードバック補正量ΔTfbを含まない値であるが、車両のばね上共振の周波数域以外の周波数についてはフィードバック補正量ΔTfbを含む値である。従って周波数に関係なく表示用駆動トルクTdspがフィードバック補正量ΔTfbを含まない値である場合に比して、車両のばね上共振の周波数域以外の周波数について表示装置32に表示される作動モードを実際の作動モードに近づけることができる。尚この作用効果は後述の第九の実施形態に於いても同様に得られる。
[第五の実施形態]
 図8は第一の実施形態の変形例として構成された本発明による車両制御装置の第五の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。
 この第五の実施形態に於いては、表示制御装置60には加算器58よりフィードフォワード補正量ΔTffにて補正された要求駆動トルクTfreqを示す信号が入力され、またばね上制振制御部38よりフィードバック補正量ΔTfbを示す信号が入力される。表示制御装置60は、補正後の要求駆動トルクTfreq及びフィードバック補正量ΔTfbの符号の関係及び大小関係に応じて、ハイブリッドシステム10の作動モードが駆動モードであるか充電モードであるかを表示する。
 特に表示制御装置60は、補正後の要求駆動トルクTfreq及びフィードバック補正量ΔTfbの符号が互いに異なり且つΔTfbの大きさがTfreqの大きさよりも大きいときには、ハイブリッドシステム10が所定の状況にあると判定する。そしてハイブリッドシステム10が所定の状況にある場合には、表示制御装置60は、フィードバック補正量ΔTfbの符号が正であるときには、ハイブリッドシステム10の作動モードが駆動モードであることを表示装置32に表示する。これに対し、フィードバック補正量ΔTfbの符号が負であるときには、表示制御装置60はハイブリッドシステム10の作動モードが充電モードであることを表示装置32に表示する。
 表示制御装置60は、補正後の要求駆動トルクTfreq及びフィードバック補正量ΔTfbの符号が同一である、若しくはΔTfbの大きさがTfreqの大きさ以下であるときには、ハイブリッドシステム10が所定の状況にはないと判定する。そしてハイブリッドシステム10が所定の状況にない場合には、表示制御装置60は、フィードフォワード補正量ΔTffにて補正された要求駆動トルクTfreqを表示用駆動トルクTdspとする。そして表示制御装置60は、表示用駆動トルクTdspが正の値であるときには、ハイブリッドシステム10の作動モードが駆動モードであることを表示装置32に表示する。これに対し表示用駆動トルクTdspが正の値であるときには、表示制御装置60はハイブリッドシステム10の作動モードが充電モードであることを表示装置32に表示する。
 上述の第一乃至第四の実施形態の如く、表示用駆動トルクTdspがフィードバック補正量ΔTfbの影響が低減された値である場合には、状況によっては表示されるハイブリッドシステム10の作動モードが実際の作動モードとは異なる表示になることがある。
 即ち補正後の要求駆動トルクTfreq及びフィードバック補正量ΔTfbの符号が互いに異なり且つΔTfbの大きさがTfreqの大きさよりも大きいときには、ハイブリッドシステム10の実際の作動モードはフィードバック補正量ΔTfbの符号により決定される。しかるにハイブリッドシステム10が上記特殊な状況にあるときにも、表示されるハイブリッドシステム10の作動モードは補正後の要求駆動トルクTfreqの符号により決定されるため、実際の作動モードとは異なる作動モードになる。
 そのため表示されるハイブリッドシステム10の作動モードが駆動モードであるにも拘らず、表示される充電量が増大したり、逆に表示されるハイブリッドシステム10の作動モードが充電モードであるにも拘らず、表示される充電量が減少したりすることがある。よって車両の乗員がこのことによっても違和感を感じることがある。
 第五の実施形態によれば、ハイブリッドシステム10が上記特殊な状況にあるときには、フィードバック補正量ΔTfbの符号に応じてハイブリッドシステム10の作動モードが表示される。従ってハイブリッドシステム10が特殊な状況にある状況に於いて、表示装置32に於けるハイブリッドシステム10の作動モードの表示がハイブリッドシステム10の実際の作動モードとは異なる表示になることを効果的に防止することができる。
 尚ハイブリッドシステム10が上記特殊な状況にないときには、表示用駆動トルクTdspがフィードバック補正量ΔTfbの影響が0に低減されるよう修正された補正後の要求駆動トルクTfreqである。よってハイブリッドシステム10が特殊な状況にないときには、上述の第一の実施形態の場合と同様にフィードバック補正量ΔTfbの影響に起因して表示される作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止することができる。
[第六の実施形態]
 第六の実施形態は第五の実施形態の修正例として構成されており、この第六の実施形態に於ける表示制御部は第五の実施形態の場合と同様に構成されている。この第六の実施形態に於いても、表示制御装置60は、補正後の要求駆動トルクTfreq及びフィードバック補正量ΔTfbの符号が互いに異なり且つΔTfbの大きさがTfreqの大きさよりも大きいときには、ハイブリッドシステム10が所定の状況にあると判定する。
 また表示制御装置60は、補正後の要求駆動トルクTfreq及びフィードバック補正量ΔTfbの符号が同一である、若しくはΔTfbの大きさがTfreqの大きさ以下であるときには、ハイブリッドシステム10が所定の状況にはないと判定する。そしてハイブリッドシステム10が所定の状況にない場合には、表示制御装置60は表示用駆動トルクTdspの符号に応じてハイブリッドシステム10の作動モードが駆動モードであるか充電モードであるかを表示装置32に表示する。
 しかし表示制御装置60は、ハイブリッドシステム10が所定の状況にある場合には、フィードバック補正量ΔTfbより補正後の要求駆動トルクTfreqを減算した値を状況判定基準値Tfreqsに設定する。そして表示制御装置60は、補正後の要求駆動トルクTfreqが状況判定基準値Tfreqsよりも大きいときには、ハイブリッドシステム10の作動モードが駆動モードであることを表示装置32に表示する。これに対し、補正後の要求駆動トルクTfreqが状況判定基準値Tfreqsよりも小さいときには、表示制御装置60はハイブリッドシステム10の作動モードが充電モードであることを表示装置32に表示する。
 第六の実施形態に於ける補正後の要求駆動トルクTfreqが状況判定基準値Tfreqsよりも大きいか否かの判定は、第五の実施形態に於けるフィードバック補正量ΔTfbの符号が正であるか否かの判定と等価である。
 よって第六の実施形態によれば、ハイブリッドシステム10が上記特殊な状況にある場合及び上記特殊な状況にない場合の何れの場合にも、上述の第五の実施形態の場合と同様の作用効果を得ることができる。
[第七の実施形態]
 図9は第一の実施形態の修正例として構成された本発明による車両制御装置の第七の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。
 この第七の実施形態に於いては、表示制御部56は加算器58に加えて判定ブロック76を有している。判定ブロック76にはハイブリッド制御部34の要求トルク演算ブロック36より要求駆動トルクTreqを示す信号が入力される。また判定ブロック76には加算器58よりフィードフォワード補正量ΔTffにて補正された要求駆動トルクTfreqを示す信号が入力され、更に加算器62より補正後の要求駆動トルクTareqを示す信号が入力される。
 判定ブロック76は要求駆動トルクTreqの大きさが基準値Treqcを越えるときには、表示用駆動トルクTdspを補正後の要求駆動トルクTareqに設定する。これに対し要求駆動トルクTreqの大きさが基準値Treqc未満であるときには、判定ブロック76は表示用駆動トルクTdspを補正後の要求駆動トルクTfreqよりフィードバック補正量ΔTfbを減算した値に設定する。そして表示用駆動トルクTdspを示す信号は表示制御装置60へ入力される。
 尚基準値Treqcは正の定数であってもよいが、フィードバック補正量ΔTfbの大きさが大きいときにはΔTfbの大きさが小さいときに比して大きくなるようΔTfbの大きさに応じて可変設定されることが好ましい。この場合フィードバック補正量ΔTfbの大きさは予め設定された第二の時間に於けるフィードバック補正量ΔTfbの平均値又は最大値であってよい。このことは後述の第八乃至第十四の実施形態について同様である。
 かくして第七の実施形態によれば、要求駆動トルクTreqの大きさが基準値Treqc未満であるときには、表示用駆動トルクTdspは要求駆動トルクTreqとフィードフォワード補正量ΔTffとの和であり、フィードバック補正量ΔTfbを含まない値である。よって第二の運転出力補正量であるフィードバック補正量ΔTfbの影響を受けやすい状況に於いて、フィードバック補正量ΔTfbの影響を全く受けることなく、ハイブリッドシステム10の作動モードを表示装置32に表示することができる。従ってフィードバック補正量ΔTfbの影響に起因して表示装置32に表示されるハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止することができる。
 特に第七の実施形態によれば、要求駆動トルクTreqの大きさが基準値Treqc未満であるときには、表示用駆動トルクTdspは要求駆動トルクTreqとフィードフォワード補正量ΔTffとの和であり、フィードバック補正量ΔTfbに対する修正などは不要である。よってフィードバック補正量ΔTfbに対し修正などが行われる他の実施形態に比して車両制御装置を単純な構成にすることができる。
 また第七の実施形態によれば、要求駆動トルクTreqの大きさが基準値Treqc未満であるか否かに応じて、表示用駆動トルクTdspがフィードフォワード補正量ΔTffにて補正された要求駆動トルクTfreq又は補正後の要求駆動トルクTareqに変更される。従って要求駆動トルクTreqの大きさが基準値Treqcを越えるときにも表示用駆動トルクTdspが補正された要求駆動トルクTfreqに設定される場合に比して、表示されるハイブリッドシステム10の作動モードを実際のモードに近づけることができる。尚これらの作用効果は後述の第十一の実施形態に於いても同様に得られる。
[第八の実施形態]
 図10は第二の実施形態の修正例として構成された本発明による車両制御装置の第八の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。
 この第八の実施形態に於いては、判定ブロック76には要求駆動トルクTreqを示す信号及び補正後の要求駆動トルクTareqを示す信号に加えて、加算器68よりTareq-Tabpの値を示す信号が入力される。
 また判定ブロック76は要求駆動トルクTreqの大きさが基準値Treqcを越えるときには、表示用駆動トルクTdspを補正後の要求駆動トルクTareqに設定する。これに対し要求駆動トルクTreqの大きさが基準値Treqc未満であるときには、判定ブロック76は表示用駆動トルクTdspをTareq-Tabpの値に設定する。そして表示用駆動トルクTdspを示す信号は表示制御装置60へ入力される。
 この第八の実施形態によれば、要求駆動トルクTreqの大きさが基準値Treqc未満であるときには、表示用駆動トルクTdspは補正後の要求駆動トルクTareqより車両のばね上共振の周波数域についてフィードバック補正量ΔTfbが除去された値である。よってハイブリッドシステム10の実際の作動モードがフィードバック補正量ΔTfbの影響を受けやすい状況に於いては、フィードバック補正量ΔTfbの影響を低減してハイブリッドシステム10の作動モードを表示装置32に表示することができる。
 従って車両のばね上が共振振動数にて振動する場合にも、フィードバック補正量ΔTfbの影響に起因して表示されるハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止することができる。
[第九の実施形態]
 図11は第三の実施形態の修正例として構成された本発明による車両制御装置の第九の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。
 この第九の実施形態に於いては、判定ブロック76には要求駆動トルクTreqを示す信号及び補正後の要求駆動トルクTareqを示す信号に加えて、加算器72より補正された要求駆動トルクTfreqと低減修正後のフィードバック補正量ΔTfbaとの和を示す信号が入力される。
 また判定ブロック76は要求駆動トルクTreqの大きさが基準値Treqcを越えるときには、表示用駆動トルクTdspを補正後の要求駆動トルクTareqに設定する。これに対し要求駆動トルクTreqの大きさが基準値Treqc未満であるときには、判定ブロック76は表示用駆動トルクTdspをTfreqとΔTfbaとの和に設定する。そして表示用駆動トルクTdspを示す信号は表示制御装置60へ入力される。
 この第九の実施形態によれば、要求駆動トルクTreqの大きさが基準値Treqc未満であるときには、表示用駆動トルクTdspは大きさが低減されたフィードバック補正量ΔTfbaと、フィードフォワード補正量ΔTffにて補正された要求駆動トルクTfreqとの和である。よって表示用駆動トルクTdspはフィードバック補正量ΔTfbの影響が低減されるよう修正された補正後の要求駆動トルクTareqである。
 従って要求駆動トルクTreqの大きさが基準値Treqc未満であるときに、表示用駆動トルクTdspが正負の値に繰り返し変動する虞れを低減し、これにより表示される作動モードが頻繁に駆動モードと充電モードとの間にて変化する虞れを低減することができる。
[第十の実施形態]
 図12は第四の実施形態の修正例として構成された本発明による車両制御装置の第十の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。
 この第十の実施形態に於いては、判定ブロック76には要求駆動トルクTreqを示す信号のみが入力される。そして判定ブロック76は要求駆動トルクTreqの大きさが基準値Treqcを越えるときには、サンプリング回路74のサンプリング周期を標準値Csnに設定する。これに対し要求駆動トルクTreqの大きさが基準値Treqc未満であるときには、判定ブロック76はサンプリング回路74のサンプリング周期を所定値Csaに設定する。
 サンプリング回路74はCsn又はCsaのサンプリング周期Csにて駆動トルクの補正量ΔTreqをサンプリングし、サンプリング回路74の出力は表示用駆動トルクTdspとして表示制御装置60へ入力される。
 サンプリング周期の所定値Csaは、第四の実施形態の場合と同様に、車両のばね上共振の周波数域の下限値f1に対応する周期(1/f1)よりも長い周期又は車両のばね上共振の周波数域の上限値f2に対応する周期(1/f2)よりも短い周期である。
 この第十の実施形態によれば、要求駆動トルクTreqの大きさが基準値Treqc未満であるときには、サンプリング回路74は所定値Csaのサンプリング周期にて駆動トルクの補正量ΔTreqをサンプリングする。よって表示用駆動トルクTdspはフィードバック補正量ΔTfbの影響が低減されるよう修正された補正後の要求駆動トルクTareqである。
 従って車両のばね上が共振振動数にて振動する場合にも、フィードバック補正量ΔTfbの影響に起因して表示装置32に表示されるハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止することができる。
[第十一の実施形態]
 図13は第七の実施形態の修正例として構成された本発明による車両制御装置の第十一の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。
 この第十一の実施形態に於いては、判定ブロック76は要求駆動トルクTreqの大きさが基準値Treqcを越えるときには、表示用駆動トルクTdspを補正後の要求駆動トルクTareqに設定する。また補正後の要求駆動トルクTareqを示す信号がハイブリッド制御部34の目標エンジン出力演算ブロック42及び加算器46へ出力される。
 これに対し要求駆動トルクTreqの大きさが基準値Treqc未満であるときには、判定ブロック76は表示用駆動トルクTdspを補正後の要求駆動トルクTfreqよりフィードバック補正量ΔTfbを減算した値に設定する。また補正後の要求駆動トルクTfreqよりフィードバック補正量ΔTfbを減算した値を示す信号がハイブリッド制御部34の目標エンジン出力演算ブロック42及び加算器46へ出力される。
 この第十一の実施形態によれば、第六の実施形態の場合と同様に、フィードバック補正量ΔTfbの影響に起因して表示されるハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止することができる。
 尚第十一の実施形態によれば、エンジン12及び電動モータ14は表示用駆動トルクTdspと同一の目標駆動トルクに基づいて制御され、このことは後述の第十二乃至第十四の実施形態に於いても同様である。
[第十二の実施形態]
 図14は第七の実施形態の修正例として構成された本発明による車両制御装置の第十二の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。
 この第十二の実施形態に於いては、判定ブロック76は要求駆動トルクTreqの大きさが基準値Treqcを越えるときには、表示用駆動トルクTdspを補正後の要求駆動トルクTareqに設定する。また補正後の要求駆動トルクTareqを示す信号がハイブリッド制御部34の目標エンジン出力演算ブロック42及び加算器46へ出力される。
 これに対し要求駆動トルクTreqの大きさが基準値Treqc未満であるときには、判定ブロック76は表示用駆動トルクTdspをTareq-Tabpの値に設定する。またTareq-Tabpの値を示す信号がハイブリッド制御部34の目標エンジン出力演算ブロック42及び加算器46へ出力される。
 従って第十二の実施形態によれば、第八の実施形態の場合と同様の作用効果が得られる。即ち車両のばね上が共振振動数にて振動する場合にも、フィードバック補正量ΔTfbの影響に起因してハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止することができる。
[第十三の実施形態]
 図15は第八の実施形態の修正例として構成された本発明による車両制御装置の第十三の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。
 この第十三の実施形態に於いては、判定ブロック76は要求駆動トルクTreqの大きさが基準値Treqcを越えるときには、表示用駆動トルクTdspを補正後の要求駆動トルクTareqに設定する。また補正後の要求駆動トルクTareqを示す信号がハイブリッド制御部34の目標エンジン出力演算ブロック42及び加算器46へ出力される。
 これに対し要求駆動トルクTreqの大きさが基準値Treqc未満であるときには、判定ブロック76は表示用駆動トルクTdspをTfreqとΔTfbaとの和に設定する。またTfreqとΔTfbaとの和を示す信号がハイブリッド制御部34の目標エンジン出力演算ブロック42及び加算器46へ出力される。
 この第十三の実施形態によれば、第九の実施形態の場合と同様の作用効果が得られる。即ち要求駆動トルクTreqの大きさが基準値Treqc未満であるときに、表示用駆動トルクTdspが正負の値に繰り返し変動する虞れを低減し、これにより表示される作動モードが頻繁に駆動モードと充電モードとの間にて変化する虞れを低減することができる。
[第十四の実施形態]
 図16は第九の実施形態の修正例として構成された本発明による車両制御装置の第十四の実施形態に於ける表示制御部をばね上制振制御部と共に示す機能ブロック図である。
 この第十四の実施形態に於いては、判定ブロック76は要求駆動トルクTreqの大きさが基準値Treqcを越えるときには、サンプリング回路74のサンプリング周期を標準値Csnに設定する。これに対し要求駆動トルクTreqの大きさが基準値Treqc未満であるときには、判定ブロック76はサンプリング回路74のサンプリング周期を所定値Csaに設定する。
 サンプリング回路74はCsn又はCsaのサンプリング周期Csにて駆動トルクの補正量ΔTreqをサンプリングし、サンプリング回路74の出力は表示用駆動トルクTdspとして表示制御装置60へ入力される。またサンプリング回路74の出力はハイブリッド制御部34の目標エンジン出力演算ブロック42及び加算器46へ出力される。
 この第十四の実施形態によれば、第十の実施形態の場合と同様の作用効果が得られる。即ち車両のばね上が共振振動数にて振動する場合にも、フィードバック補正量ΔTfbの影響に起因して表示装置32に表示されるハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止することができる。
[第一の変形例]
 図17は本発明による車両制御装置の第一の変形例のハイブリッド制御部をばね上制振制御部及び表示制御部と共に示す機能ブロック図である。
 この第一の変形例に於いては、ばね上制振制御部38はばね上振動を抑制するためのエンジン12の目標駆動トルクTetのフィードフォワード補正量ΔTeff及びフィードバック補正量ΔTefbを演算する。フィードフォワード補正量ΔTeff及びフィードバック補正量ΔTefbを示す信号は表示制御部56へ入力される。表示制御部56は少なくともフィードフォワード補正量ΔTeffに基づいて第一乃至第十の実施形態の何れかの場合と同様の要領にて表示装置32の表示を制御する。
 ばね上制振制御部38はフィードフォワード補正量ΔTeff及びフィードバック補正量ΔTefbに基づいて第一乃至第十の実施形態の何れかの場合と同様の要領にてばね上振動を抑制するためのエンジン12の目標駆動トルクTetの補正量ΔTetを演算する。そして補正量ΔTetは加算器78によりエンジン12の目標駆動トルクTetと加算され、これにより補正後の目標駆動トルク(目標駆動トルク補正値)Taetが演算される。エンジン制御部44には補正後の目標駆動トルクTaetを示す信号が入力され、エンジン制御部44は補正後の目標駆動トルクTaet及び目標エンジン回転数Netに基づいてエンジン12を制御する。
 よってこの第一の変形例によれば、エンジン12の目標駆動トルクTetについて補正量ΔTeff、ΔTefb、ΔTetが演算される点を除き、第一乃至第十の実施形態の場合と同様に表示装置32の表示を制御することができる。従ってフィードバック補正量ΔTefbの影響に起因して表示されるハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止又は低減することができる。
[第二の変形例]
 図18は本発明による車両制御装置の第二の変形例のハイブリッド制御部をばね上制振制御部及び表示制御部と共に示す機能ブロック図である。
 この第二の変形例に於いては、ばね上制振制御部38はばね上振動を抑制するための電気モータ14の目標駆動トルクTmtのフィードフォワード補正量ΔTmff及びフィードバック補正量ΔTmfbを演算する。フィードフォワード補正量ΔTmff及びフィードバック補正量ΔTmfbを示す信号は表示制御部56へ入力される。表示制御部56は少なくともフィードフォワード補正量ΔTmffに基づいて第一乃至第十の実施形態の何れかの場合と同様の要領にて表示装置32の表示を制御する。
 ばね上制振制御部38はフィードフォワード補正量ΔTmff及びフィードバック補正量ΔTmfbに基づいて第一乃至第十の実施形態の何れかの場合と同様の要領にてばね上振動を抑制するための電気モータ14の目標駆動トルクTmtの補正量ΔTmtを演算する。そして補正量ΔTmtは加算器80により電気モータ14の目標駆動トルクTmtと加算され、これにより補正後の目標駆動トルクTamtが演算される。モータ制御部48には補正後の目標駆動トルクTamtを示す信号が入力され、モータ制御部48は補正後の目標駆動トルクTamtに基づいて電気モータ14を制御する。
 よってこの第二の変形例によれば、電気モータ14の目標駆動トルクTmtについて補正量ΔTmff、ΔTmfb、ΔTmtが演算される点を除き、第一乃至第十の実施形態の場合と同様に表示装置32の表示を制御することができる。従ってフィードバック補正量ΔTmfbの影響に起因して表示されるハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止又は低減することができる。
[第三の変形例]
 図19は第十一の実施形態の修正例として構成された本発明による車両制御装置の第三の変形例のハイブリッド制御部をばね上制振制御部及び表示制御部と共に示す機能ブロック図である。
 この第三の変形例に於いては、ばね上制振制御部38はばね上振動を抑制するためのエンジン12の目標駆動トルクTetのフィードフォワード補正量ΔTeff及びフィードバック補正量ΔTefbを演算する。フィードフォワード補正量ΔTeffは加算器58によりエンジン12の目標駆動トルクTetと加算され、これにより補正後の目標駆動トルクTfetが演算される。補正後の目標駆動トルクTfetは加算器62によりフィードバック補正量ΔTefbと加算され、これにより補正後の目標駆動トルクTaetが演算される。補正後の目標駆動トルクTfetを示す信号及び補正後の目標駆動トルクTaetを示す信号は判定ブロック76へ入力される。
 判定ブロック76はエンジン12の目標駆動トルクTetの大きさが基準値Tetcを越えるときには、表示用駆動トルクTdspを補正後の目標駆動トルクTaetに設定する。また補正後の目標駆動トルクTaetを示す信号がエンジン制御部44へ出力される。
 これに対しエンジン12の目標駆動トルクTetの大きさが基準値Tetc未満であるときには、判定ブロック76は表示用駆動トルクTdspを補正後の目標駆動トルクTaetよりフィードバック補正量ΔTefbを減算した値に設定する。また補正後の目標駆動トルクTaetよりフィードバック補正量ΔTefbを減算した値を示す信号がエンジン制御部44へ出力される。
 尚基準値Tetcは正の定数であってもよいが、フィードバック補正量ΔTefbの大きさが大きいときにはΔTefbの大きさが小さいときに比して大きくなるようΔTefbの大きさに応じて可変設定されることが好ましい。この場合フィードバック補正量ΔTefbの大きさは予め設定された第三の時間に於けるフィードバック補正量ΔTefbの平均値又は最大値であってよい。
 この第三の変形例によれば、エンジン12の目標駆動トルクTetについて補正量ΔTeff、ΔTefb、ΔTetが演算される点を除き、第十一の実施形態の場合と同様に表示装置32の表示を制御することができる。従ってフィードバック補正量ΔTefbの影響に起因して表示されるハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止することができる。
 尚この第三の変形例と同様の変形が上述の第十二乃至第十四の何れかの実施形態に適用されてもよい。
[第四の変形例]
 図20は第十一の実施形態の修正例として構成された本発明による車両制御装置の第四の変形例のハイブリッド制御部をばね上制振制御部及び表示制御部と共に示す機能ブロック図である。
 この第二の変形例に於いては、ばね上制振制御部38はばね上振動を抑制するための電気モータ14の目標駆動トルクTmtのフィードフォワード補正量ΔTmff及びフィードバック補正量ΔTmfbを演算する。フィードフォワード補正量ΔTmffは加算器58により電気モータ14の目標駆動トルクTmtと加算され、これにより補正後の目標駆動トルクTfmtが演算される。補正後の目標駆動トルクTfmtは加算器62によりフィードバック補正量ΔTmfbと加算され、これにより補正後の目標駆動トルクTamtが演算される。補正後の目標駆動トルクTfmtを示す信号及び補正後の目標駆動トルクTamtを示す信号は判定ブロック76へ入力される。
 判定ブロック76は電気モータ14の目標駆動トルクTmtの大きさが基準値Tmtcを越えるときには、表示用駆動トルクTdspを補正後の目標駆動トルクTamtに設定する。また補正後の目標駆動トルクTamtを示す信号がモータ制御部48へ出力される。
 これに対し電気モータ14の目標駆動トルクTmtの大きさが基準値Tmtc未満であるときには、判定ブロック76は表示用駆動トルクTdspを補正後の目標駆動トルクTamtよりフィードバック補正量ΔTmfbを減算した値に設定する。また補正後の目標駆動トルクTamtよりフィードバック補正量ΔTmfbを減算した値を示す信号がモータ制御部48へ出力される。
 尚基準値Tmtcは正の定数であってもよいが、フィードバック補正量ΔTmfbの大きさが大きいときにはΔTmfbの大きさが小さいときに比して大きくなるようΔTmfbの大きさに応じて可変設定されることが好ましい。この場合フィードバック補正量ΔTmfbの大きさは予め設定された第四の時間に於けるフィードバック補正量ΔTmfbの平均値又は最大値であってよい。
 この第四の変形例によれば、電気モータ14の目標駆動トルクTmtについて補正量ΔTmff、ΔTmfb、ΔTmtが演算される点を除き、第十一の実施形態の場合と同様に表示装置32の表示を制御することができる。従ってフィードバック補正量ΔTmfbの影響に起因して表示されるハイブリッドシステム10の作動モードが頻繁に駆動モードと充電モードとの間にて変化することを防止することができる。
 尚この第四の変形例と同様の変形が上述の第十二乃至第十四の何れかの実施形態に適用されてもよい。
 以上に於いては本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであろう。
 例えば上述の第五及び第六の実施形態は第一の実施形態の変形例として構成されているが、第五若しくは第六の実施形態の構成が第二乃至第四の何れかの実施形態に適用されてもよい。
 即ち第二乃至第四の何れかの実施形態に於いて、表示用駆動トルクTdsp及びフィードバック補正量ΔTfbの符号が互いに異なり且つΔTfbの大きさがTfreqの大きさよりも大きいときには、ハイブリッドシステム10が所定の状況にあると判定される。そしてハイブリッドシステム10が所定の状況にある場合に於いて、フィードバック補正量ΔTfbの符号が正であるときには、ハイブリッドシステム10の作動モードが駆動モードであると表示される。これに対し、フィードバック補正量ΔTfbの符号が負であるときには、ハイブリッドシステム10の作動モードが充電モードであると表示される。
 また表示用駆動トルクTdsp及びフィードバック補正量ΔTfbの符号が同一である、若しくはΔTfbの大きさがTfreqの大きさ以下であるときには、ハイブリッドシステム10が所定の状況にはないと判定される。そしてハイブリッドシステム10が所定の状況にない場合に於いて、表示用駆動トルクTdspが正の値であるときには、ハイブリッドシステム10の作動モードが駆動モードであると表示される。これに対し表示用駆動トルクTdspが正の値であるときには、ハイブリッドシステム10の作動モードが充電モードであると表示される。
 また上述の第二、第八、第十二の実施形態に於いては、それぞれfbp1、fbp2の通過帯域の下限値及び上限値にてバンドパスフィルタ処理が行われるようになっている。しかしカットオフ周波数がfbp1のローパスフィルタ処理とカットオフ周波数がfbp2のハイパスフィルタ処理との組合せが採用されてもよく、またそれらの一方のフィルタ処理のみが採用されてもよい。
 また上述の各実施形態に於いては、運転者の駆動操作に伴う車両のばね上振動を抑制するための駆動トルクの補正量ΔTreqが演算され、要求駆動トルクTreqが駆動トルクの補正量ΔTreqにて補正されることにより補正後の要求駆動トルクTareqが演算される。しかし本発明は運転者の制動操作に伴う車両のばね上振動を抑制するための制動トルクの補正量が演算され、要求制動トルクが制動トルクの補正量にて補正されることにより補正後の要求制動駆動トルクが演算される場合にも適用されてよい。
 尚その場合には制動トルクの補正量は少なくとも運転者の制動操作量に基づいて演算される第一の制動トルク補正量と、車両に対する外乱に基づいて演算される第二の制動トルク補正量とを含んでいてよい。また表示手段としての表示装置32は補正後の要求制動駆動トルクよりも第二の制動トルク補正量の影響が低減された値である表示用補正後の要求制動駆動トルクに基づいて運転出力状況を表示するようになっていてよい。
 また上述の各実施形態に於いては、車両はハイブリッドシステム搭載車であるが、本発明の車両制御装置は減速制動時に回生を行う電気自動車に適用されてもよい。

Claims (21)

  1.  運転者の運転操作量に基づいて車両の目標運転出力値を演算する目標運転出力値演算手段と、
     車両の振動を抑制するための運転出力補正量を演算する運転出力補正量演算手段と、
     前記目標運転出力値を前記運転出力補正量にて補正した目標運転出力補正値に基づいて車両の運転出力手段を制御する制御手段と、
     前記運転出力手段の運転出力状況を表示する表示手段と、
    を有する車両制御装置に於いて、
     前記運転出力補正量は少なくとも前記車両に対する外乱に基づいて演算される外乱補正量を含み、
     前記表示手段は前記目標運転出力補正値よりも前記外乱補正量の影響が低減された値である表示用目標運転出力値に基づいて運転出力状況を表示する
    ことを特徴とする車両制御装置。
  2.  前記表示用目標運転出力値は、前記目標運転出力値の大きさが基準値を越えるときには、前記運転出力補正量にて前記目標運転出力値を補正した値であり、前記目標運転出力値の大きさが前記基準値以下であるときには、前記目標運転出力補正値よりも前記外乱補正量の影響が低減された値であることを特徴とする請求項1に記載の車両制御装置。
  3.  前記目標運転出力補正値よりも前記外乱補正量の影響が低減された値は、前記外乱補正量を含まない補正量にて前記目標運転出力値を補正することにより前記外乱補正量の影響が0に低減された値であることを特徴とする請求項1又は2に記載の車両制御装置。
  4.  前記目標運転出力補正値よりも前記外乱補正量の影響が低減された値は、前記外乱補正量の大きさが低減されるよう修正された前記運転出力補正量にて前記目標運転出力値を補正した値であることを特徴とする請求項1又は2に記載の車両制御装置。
  5.  前記目標運転出力補正値よりも前記外乱補正量の影響が低減された値は、前記目標運転出力補正値に対し少なくとも車両の共振周波数域を含む特定の通過周波数帯域にてフィルタ処理を行った値を修正量として、前記目標運転出力補正値より修正量を減算することにより求められる値であることを特徴とする請求項1又は2に記載の車両制御装置。
  6.  前記目標運転出力補正値よりも前記外乱補正量の影響が低減された値は、車両の共振周波数域に対応する周期以外のサンプリング周期にて前記目標運転出力補正値をサンプリングすることにより求められる値であることを特徴とする請求項1又は2に記載の車両制御装置。
  7.  前記基準値は前記外乱補正量に応じて可変設定されることを特徴とする請求項2に記載の車両制御装置。
  8.  前記外乱補正量は前記車両に対する外乱に基づいてフィードバック制御量として演算され、前記運転出力補正量は前記外乱補正量と運転者の運転操作量に基づいて演算されるフィードフォワード制御量とを含むことを特徴とする請求項1乃至7の何れか一つに記載の車両制御装置。
  9.  前記目標運転出力値は車両の目標駆動力であり、前記外乱補正量は車両の駆動方向を正として正負にまたがって繰り返し変動し、前記表示手段は前記表示用目標運転出力値の符号に応じて前記運転出力状況の表示を変更することを特徴とする請求項1乃至8の何れか一つに記載の車両制御装置。
  10.  前記運転出力手段は電動発電機及び蓄電手段を有し、前記目標運転出力補正値が正の値であるときには、前記電動発電機は前記蓄電手段より電気エネルギーを供給されることにより車輪を駆動するための駆動力を発生し、前記目標運転出力補正値が負の値であるときには、前記電動発電機は車輪より駆動力を受けて駆動されることにより発電し前記蓄電手段を充電することを特徴とする請求項9に記載の車両制御装置。
  11.  前記表示手段は、前記外乱補正量及び前記表示用目標運転出力値の符号が異なり且つ前記外乱補正量の大きさが前記表示用目標運転出力値の大きさよりも大きい特殊な状況に於いては、前記外乱補正量の符号に応じて前記電動発電機が駆動力発生中であるか発電中であるかを表示し、前記特殊な状況以外の状況に於いては前記表示用目標運転出力値の符号に応じて前記電動発電機が駆動力発生中であるか発電中であるかを表示することを特徴とする請求項10に記載の車両制御装置。
  12.  前記表示手段は、前記外乱補正量及び前記表示用目標運転出力値の符号が異なり且つ前記外乱補正量の大きさが前記表示用目標運転出力値の大きさよりも大きい特殊な状況に於いては、前記表示用目標運転出力値より前記外乱補正量を減算した値を状況判定基準値として、前記表示用目標運転出力値が前記状況判定基準値よりも大きいか否かに応じて前記電動発電機が駆動力発生中であるか発電中であるかを表示し、前記特殊な状況以外の状況に於いては前記表示用目標運転出力値の符号に応じて前記電動発電機が駆動力発生中であるか発電中であるかを表示することを特徴とする請求項10に記載の車両制御装置。
  13.  運転者の運転操作量に基づいて車両の目標運転出力値を演算する目標運転出力値演算手段と、
     車両の振動を抑制するための運転出力補正量を演算する運転出力補正量演算手段と、
     前記目標運転出力値を前記運転出力補正量にて補正した目標運転出力補正値に基づいて車両の運転出力手段を制御する制御手段と、
     前記運転出力手段の運転出力状況を表示する表示手段と、
    を有する車両制御装置に於いて、
     前記運転出力補正量は少なくとも前記車両に対する外乱に基づいて演算される外乱補正量を含み、
     前記制御手段は、目標運転出力値の大きさが基準値以下であるときには、前記外乱補正量の影響が低減されるように前記目標運転出力補正値を演算し、
     前記表示手段は前記目標運転出力補正値に基づいて運転出力状況を表示する
    ことを特徴とする車両制御装置。
  14.  前記制御手段は、前記目標運転出力値の大きさが前記基準値以下であるときには、前記外乱補正量を含まない補正量にて前記目標運転出力値を補正することにより前記目標運転出力補正値を演算することを特徴とする請求項13に記載の車両制御装置。
  15.  前記制御手段は、前記目標運転出力値の大きさが前記基準値以下であるときには、前記外乱補正量の大きさが低減されるよう修正された前記運転出力補正量にて前記目標運転出力値を補正することにより前記目標運転出力補正値を演算することを特徴とする請求項13に記載の車両制御装置。
  16.  前記制御手段は、前記目標運転出力値の大きさが前記基準値以下であるときには、前記目標運転出力値を前記運転出力補正量にて補正した値を暫定の目標運転出力補正値とし、前記暫定の目標運転出力補正値に対し少なくとも車両の共振周波数域を含む特定の通過周波数帯域にてフィルタ処理を行った値を修正量として、前記暫定の目標運転出力補正値より修正量を減算することにより前記目標運転出力補正値を演算することを特徴とする請求項13に記載の車両制御装置。
  17.  前記制御手段は、前記目標運転出力値の大きさが前記基準値以下であるときには、前記目標運転出力値を前記運転出力補正量にて補正した値を暫定の目標運転出力補正値として、車両の共振周波数域に対応する周期以外のサンプリング周期にて前記暫定の目標運転出力補正値をサンプリングすることにより前記目標運転出力補正値を演算することを特徴とする請求項13に記載の車両制御装置。
  18.  前記制御手段は、前記外乱補正量に応じて前記基準値を可変設定することを特徴とする請求項13乃至17の何れか一つに記載の車両制御装置。
  19.  前記制御手段は、前記車両に対するに基づいてフィードバック制御量として演算される前記外乱補正量と、運転者の運転操作量に基づいて演算されるフィードフォワード制御量とを含む値を前記運転出力補正量として演算することを特徴とする請求項13乃至18の何れか一つに記載の車両制御装置。
  20.  前記目標運転出力値は車両の目標駆動力であり、前記外乱補正量は車両の駆動方向を正として正負にまたがって繰り返し変動し、前記表示手段は前記目標運転出力補正値の符号に応じて前記運転出力状況の表示を変更することを特徴とする請求項13乃至19の何れか一つに記載の車両制御装置。
  21.  前記運転出力手段は電動発電機及び蓄電手段を有し、前記目標運転出力補正値が正の値であるときには、前記電動発電機は前記蓄電手段より電気エネルギーを供給されることにより車輪を駆動するための駆動力を発生し、前記目標運転出力補正値が負の値であるときには、前記電動発電機は車輪より駆動力を受けて駆動されることにより前記蓄電手段を充電することを特徴とする請求項20に記載の車両制御装置。
PCT/JP2011/060173 2011-04-26 2011-04-26 車両制御装置 WO2012147164A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/821,652 US8935030B2 (en) 2011-04-26 2011-04-26 Vehicle control device
CN201180005042.9A CN102883906B (zh) 2011-04-26 2011-04-26 车辆控制装置
JP2012504583A JP5206902B1 (ja) 2011-04-26 2011-04-26 車両制御装置
PCT/JP2011/060173 WO2012147164A1 (ja) 2011-04-26 2011-04-26 車両制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/060173 WO2012147164A1 (ja) 2011-04-26 2011-04-26 車両制御装置

Publications (1)

Publication Number Publication Date
WO2012147164A1 true WO2012147164A1 (ja) 2012-11-01

Family

ID=47071706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060173 WO2012147164A1 (ja) 2011-04-26 2011-04-26 車両制御装置

Country Status (4)

Country Link
US (1) US8935030B2 (ja)
JP (1) JP5206902B1 (ja)
CN (1) CN102883906B (ja)
WO (1) WO2012147164A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096209B2 (en) * 2010-09-17 2015-08-04 Hyundai Motor Company Control system and method for hybrid vehicle
CN107757627A (zh) * 2016-08-23 2018-03-06 本田技研工业株式会社 车辆用控制装置以及信息提供方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883906B (zh) * 2011-04-26 2015-08-19 丰田自动车株式会社 车辆控制装置
DE102012206559A1 (de) * 2012-04-20 2013-10-24 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Drehung von Drehunförmigkeiten eines Antriebsstrangs eines Hybridfahrzeugs
US20220274598A1 (en) * 2019-10-16 2022-09-01 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Motor control device for electric vehicle
US11014547B1 (en) * 2019-12-09 2021-05-25 GM Global Technology Operations LLC Exhaust brake torque systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069472A (ja) * 2004-09-06 2006-03-16 Denso Corp 車両安定化制御システム
JP2010041750A (ja) * 2008-07-31 2010-02-18 Fujitsu Ten Ltd 省燃費運転診断装置、省燃費運転診断システム及び省燃費運転診断方法
JP2010132254A (ja) * 2008-10-31 2010-06-17 Toyota Motor Corp 車両のバネ上制振制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2851385B2 (ja) * 1990-06-14 1999-01-27 マツダ株式会社 4輪駆動車のトルク配分制御装置
US5442268A (en) * 1993-05-13 1995-08-15 Hughes Aircraft Company Torque oscillation compensation using torque emulator/observer feedback
US5350989A (en) * 1993-05-13 1994-09-27 Hughes Aircraft Company Torque oscillation compensation utilizing battery current sensing
IT1284580B1 (it) 1995-10-07 1998-05-21 Bosch Gmbh Robert Procedimenti e dispositivo per comandare una unita' motrice di un veicolo
EP0853723B1 (de) 1995-10-07 2000-01-26 Robert Bosch Gmbh Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
EP1055545B1 (en) * 1999-05-26 2004-01-28 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle with fuel cells incorporated therein and method of controlling the same
JP2006060936A (ja) 2004-08-20 2006-03-02 Denso Corp 車両挙動制御システム
JP4604749B2 (ja) * 2005-02-09 2011-01-05 トヨタ自動車株式会社 メータ表示装置、その方法及びハイブリッド自動車
JP5078119B2 (ja) * 2005-12-06 2012-11-21 トヨタ自動車株式会社 充電装置
JP2010104129A (ja) * 2008-10-22 2010-05-06 Sanyo Electric Co Ltd 電源システム、電源側制御部及び電動車輌
JP5477030B2 (ja) * 2009-05-22 2014-04-23 日産自動車株式会社 電動車両の制御装置
JP5204073B2 (ja) * 2009-09-30 2013-06-05 三菱重工業株式会社 電動車両用制御装置、並びに、これを備えた電動車両及びフォークリフト
JP5573456B2 (ja) * 2010-07-23 2014-08-20 日産自動車株式会社 電動車両の制振制御装置および電動車両の制振制御方法
US8525467B2 (en) * 2011-04-18 2013-09-03 Ford Global Technologies, Llc Phase delayed active motor damping to mitigate electric vehicle driveline oscillations
CN102883906B (zh) * 2011-04-26 2015-08-19 丰田自动车株式会社 车辆控制装置
US8712616B2 (en) * 2012-04-26 2014-04-29 Ford Global Technologies, Llc Regenerative braking control to mitigate powertrain oscillation
KR101448754B1 (ko) * 2012-12-07 2014-10-13 현대자동차 주식회사 자동차의 구동 토크 제어 방법 및 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069472A (ja) * 2004-09-06 2006-03-16 Denso Corp 車両安定化制御システム
JP2010041750A (ja) * 2008-07-31 2010-02-18 Fujitsu Ten Ltd 省燃費運転診断装置、省燃費運転診断システム及び省燃費運転診断方法
JP2010132254A (ja) * 2008-10-31 2010-06-17 Toyota Motor Corp 車両のバネ上制振制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096209B2 (en) * 2010-09-17 2015-08-04 Hyundai Motor Company Control system and method for hybrid vehicle
CN107757627A (zh) * 2016-08-23 2018-03-06 本田技研工业株式会社 车辆用控制装置以及信息提供方法
US10654485B2 (en) 2016-08-23 2020-05-19 Honda Motor Co., Ltd. Controller for vehicle and information providing method
CN107757627B (zh) * 2016-08-23 2020-08-04 本田技研工业株式会社 车辆用控制装置以及信息提供方法

Also Published As

Publication number Publication date
JP5206902B1 (ja) 2013-06-12
JPWO2012147164A1 (ja) 2014-07-28
US20140046526A1 (en) 2014-02-13
US8935030B2 (en) 2015-01-13
CN102883906A (zh) 2013-01-16
CN102883906B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
KR101369650B1 (ko) 하이브리드 차에 있어서의 차량 상태 표시 장치
JP5206902B1 (ja) 車両制御装置
JP5879251B2 (ja) 電動機の駆動制御装置
EP2815914A1 (en) Vibration suppression control device for electric motor-driven vehicle and method for controlling vibration suppression
JP4217192B2 (ja) ハイブリッド車両の制御装置
KR20140081696A (ko) 하이브리드 차량의 주행 모드 전환 제어 장치
JP2014082916A (ja) 電気自動車のアンチジャーク制御方法及びシステム
JP2009247157A (ja) 車両の駆動力制御装置
CN105829184A (zh) 车辆
US9096135B1 (en) Acceleration control for an electric vehicle
JP2018043678A (ja) ハイブリッド車の作動制御装置
WO2012105021A1 (ja) ハイブリッド車両およびその制御方法
JP5152014B2 (ja) 車両の駆動トルク制御装置
JP5447170B2 (ja) 蓄電装置の制御装置およびそれを搭載する車両
JP2010132141A (ja) 動力出力装置および車両並びに駆動装置、動力出力装置の制御方法
US10218203B2 (en) Control device for controlling charging and discharging of a lithium ion capacitor
JP2022081327A (ja) 車両の制御装置
JP5146686B2 (ja) 車両の駆動トルク制御装置
JP5024892B2 (ja) 車両及び車両の制御方法
JP4236239B2 (ja) 車両の補機への供給電力制御装置
JP2013014219A (ja) 車両の制御装置
JP2010221824A (ja) 自動車
WO2021106392A1 (ja) 車両用制御装置
JP2015085863A (ja) ハイブリッド自動車
JP5104787B2 (ja) 車両の駆動力制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005042.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012504583

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864250

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13821652

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864250

Country of ref document: EP

Kind code of ref document: A1