WO2012146781A2 - Procédé pour générer de l'énergie électrique, cinétique et thermique à partir de mélanges air-eau ainsi que pour séparer les éléments constitutifs moléculaires - Google Patents

Procédé pour générer de l'énergie électrique, cinétique et thermique à partir de mélanges air-eau ainsi que pour séparer les éléments constitutifs moléculaires Download PDF

Info

Publication number
WO2012146781A2
WO2012146781A2 PCT/EP2012/057912 EP2012057912W WO2012146781A2 WO 2012146781 A2 WO2012146781 A2 WO 2012146781A2 EP 2012057912 W EP2012057912 W EP 2012057912W WO 2012146781 A2 WO2012146781 A2 WO 2012146781A2
Authority
WO
WIPO (PCT)
Prior art keywords
energy
medium
unit
air
electrical
Prior art date
Application number
PCT/EP2012/057912
Other languages
German (de)
English (en)
Other versions
WO2012146781A3 (fr
Inventor
Vladimir Romanov
Anatoly Epishin
Wolfgang Sass
Original Assignee
Enumax Technology Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enumax Technology Ag filed Critical Enumax Technology Ag
Publication of WO2012146781A2 publication Critical patent/WO2012146781A2/fr
Publication of WO2012146781A3 publication Critical patent/WO2012146781A3/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D7/00Arrangements for direct production of electric energy from fusion or fission reactions
    • G21D7/02Arrangements for direct production of electric energy from fusion or fission reactions using magneto-hydrodynamic generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the method is used to generate electrical, kinetic and thermal energy from media, especially air-water mixtures, as well as the separation of the molecular components of these media and is thus attributable to the fields of alternative energy and energy technology.
  • the purpose of the invention is to generate as easily as possible site-independent and also decentralized direct energy, in particular usable electrical energy, through readily available starting media.
  • Another purpose is to produce hydrogen as a climate and environmentally friendly energy sources with the lowest possible energy consumption.
  • direct and decentralized production on site should be possible in order to minimize difficulties and risks, especially in terms of infrastructure, logistics and security aspects.
  • the technical task was to build a plant that could harness the intrinsic energy of connecting media, especially water and air structures in media. Another task was to break down molecular binding structures of such media and thus to enable a separation of its molecular constituents.
  • devices have been constructed to the plant, through which the media supply, preferably air-water mixtures and thus an air and / or water supply, can be controlled as well as those that a technically safe removal of separated molecular components of the medium, in particular of hydrogen , as well as electrical, kinetic and thermal energy.
  • media supply preferably air-water mixtures and thus an air and / or water supply
  • the components of media such as air / water mixtures in specific mixing ratios, in a device by mechanical influence, in particular by conduction through special nozzle elements, and optionally also magnetic influence of the medium and / or influencing the medium by electrical high voltage pulses in the way influences and changes that the immanent energy of these components / the molecular binding forces are made usable and / or molecular Bindings can be broken, in particular for the direct generation of electrical, thermal and kinetic energy, as well as for the separation of molecular components of the media, in particular for the production of hydrogen.
  • FIG. 1 Construction of the system and its mode of operation
  • Feed unit for medium with compressor (Fig.1 / 1)
  • Electric pulse generator (Fig.l / V)
  • Generator unit (Fig.l / IX - IXa and IXb)
  • Generator unit - generator (Fig.1 / IXb)
  • Connector A connection of electric storage unit and electric generator
  • Connector Bl connection of unit of removal of electric power and electric storage unit
  • Connector B2 connection generator unit and electrical storage unit
  • Electroimput generator (Fig.2 / 111)
  • Air supply unit (Fig.3 / IV - IVa to IVd)
  • Air supply unit - air supply duct (Fig.3 / IVa)
  • Air supply unit - air treatment unit (Fig.3 / IVb)
  • Air supply unit - control unit (Fig.3 / iVc)
  • Air supply unit - air duct (Fig.3 / IVd)
  • Air-water turbulence unit (Fig.3 / V)
  • Air-water swirl unit - mixing tank (Fig.3 / Va)
  • Air-water turbulence unit - drive unit (Fig.3 / Vb)
  • Connector AI connection of electrical storage unit and electric pulse generator
  • Connector A2 connection of electrical storage unit and drive unit
  • Connector Bl connection of acceptance unit for electrical energy
  • a specific air-water mixture which preferably has saturation levels of 50-100% and is ideally in an ionized or partially ionized state, is supplied to the system as a volume flow (V - Fig.l).
  • V - Fig.l a volume flow
  • Figure 1 shown as a feed unit for the medium with compressor, with feed [Fig.1 / 1].
  • the flowing medium is first strongly accelerated in the continuously tapering flow channel in the nozzle element [Fig.1 / 11] and achieves high flow velocities, preferably close to the speed of sound and also beyond that, at greatly reduced static pressure (negative pressure), preferably with p ⁇ 500 mbar absolutely.
  • media components begin to cavitate. Cavitation effects are generated and molecular compounds broken up and plasma is formed. This process also leads to a "cold" separation of the molecular components of the medium, in particular of hydrogen, oxygen and nitrogen atoms in air-water mixtures.
  • the ionized gas mixture (plasma) treated in this way is replaced by the magnet unit [Fig.l / Ill; Fig.2 / 11], whereby the specific magnetic field [cf. Fig.2] Focus and align ions and electrons.
  • the gas mixture is intense high-frequency pulsating, from the electric pulse generator [Fig.l / V; Fig. 2 / Ill] generated, high voltage discharges, preferably with U> 20 kV exposed. This further destruction of the original molecular bonds.
  • the magnet unit as well as the electrode unit are each optional and each serve to amplify the effect and optimize the decomposition and alignment of the media stream. Due to the influence of the magnet unit [Fig.l / Ill; Fig.2 / 11] generated directional magnetic fields and the electrical discharges at the electrodes [Fig.l / Vl; Fig.2 / IV] it comes to the continued splitting of the medium and alignment of its constituents and for further charge separation (free electrons / ions) and thus to increased plasma formation.
  • the media stream may be passed before or after the nozzle member through additional magnetic or electrode units to enhance the effect and to optimize the result.
  • the medium is largely in a highly ionized state (plasma) and contains, depending on the amount of water / the water content of the medium and other positively charged hydrogen atoms / ions in large quantities. These positively charged hydrogen atoms are optionally collected via a cathodically oriented gas extraction unit [Fig.l / Vll] and discharged useful.
  • the rest of the highly ionized medium (plasma) falls after a sudden expansion of the cross-section of the flow channel in the optional electrical energy removal unit [Fig.l / VIll], now slower flowing and under higher pressure, forming a solid state of pulsed electromagnetic fields in a non-ionized state back.
  • the electric power take-off unit [Fig.l / VIll] contains coil-like windings which are suitable for converting the resulting electromagnetic fields, by means of induction, into a usable electric coil current.
  • This useful electrical current is supplied to the electrical storage unit [Fig.l / IV] via a suitable converter / regulator, which is not described in more detail here and corresponds to the state of the art.
  • the kinetic energy of the medium present at the exit from the electrical energy acceptance unit [FIG. 1] is converted into shaft power in the turbine [FIG. 1 / IXa] of the optional generator unit [FIG. 1 / IXa-IXb], which serves to drive the generator [Fig.l / IXb].
  • the electrical power of the generator [Fig.l / IXb] obtained is also supplied to the electrical storage unit [Fig.l / IV] via a suitable, not described in detail, converter / regulator.
  • the thermal residual energy of the media stream can optionally be condensed out in an atmospheric open heat exchanger / condenser [FIG. 1 / X], wherein the heat quantity can be supplied, for example, to a thermodynamic use.
  • the remaining medium is led out of the system as a volume flow ⁇ V - Fig.l, V 2 ) via the outlet unit for residual medium [Fig.l / Xl].
  • the excess recovered electrical work is available in the electrical storage unit [Fig.l / IV] for acceptance and external use.
  • the entire process is controlled by means of a higher-level control unit.
  • the generated electrical energy which is made available via the electrical storage unit [Fig.l / IV], in turn, optionally for the supply of any need be used in electrical energy within the system, in particular the electric pulse generator [Fig.l / V] and control / regulating units, so that in addition to suitable media flow no further external energy must be fed into the system and this then runs self-sufficient ,
  • the effectiveness can be increased by a specific pretreatment of the medium.
  • the system is initially started by a power source [Fig.3 / 1], for example battery or mains connection.
  • a power source for example battery or mains connection.
  • the drive unit [Fig.3 / Vb] of the air-water swirling unit [Fig.3 / V] is driven by a high-speed motor.
  • air is introduced into the system.
  • Air enters the air-water turbulence unit [Fig.3 / V] via the air duct [Fig.3 / IVc];
  • the air is previously passed through the air supply duct [Fig.3 / IVa] through an air treatment unit [Fig.3 / IVb] and pretreated before it is fed to the air-water swirling unit [Fig.3 / V].
  • the air in the air treatment unit [Fig.l / IVb] can be pretreated to optimize the process with specific electrical pulses of the electric pulse generator [Fig.3 / 11]; Pretreatment enhances the effectiveness of the system.
  • Water is introduced into the system by means of the water supply unit [Fig.3 / Illa to IIIc]. Air enters the air-water swirling unit [Fig.3 / V] via the water supply channel [Fig.3 / Illa].
  • the air and water supply and the specific mixing ratio are controlled via the control / regulation units [Fig.3 / Illb and IVc] and then via the air duct [Fig.3 / IVd] and the water channel [Fig.3 / Illc] in FIG the air-water Verwirbelungsaku [Fig.3 / V] out.
  • the system can be operated both with air, using its inherent moisture, as well as with a specific air-water mixture.
  • the water supply unit is optional.
  • the drive unit [Fig.3 / Vb] is a disc or alternatively an impeller.
  • the drive unit [Ftg.3 / Vb] conveys the medium into the energy converter unit [Fig.3 / Vl]. There, the flowing medium is first strongly accelerated in the continuously tapering flow channel in the nozzle element [Fig.3 / VII] and achieves high flow velocities, close to the speed of sound and also beyond, at greatly reduced static pressure (negative pressure). In the process, media components begin to cavitate.
  • the ionized gas mixture (plasma) treated in this way is replaced by the magnet unit [Fig.3 / VIII]; Fig.2 / 11], whereby the specific magnetic field [cf. Fig.2] Focus and align ions and electrons.
  • Electrode unit In the immediately following electrode unit [Fig.3 / IX; Fig.2 / tV] is the gas mixture intensive high-frequency pulsating, from the electric pulse generator [Fig.3 / 11; Fig.2 / 111] generated, exposed to discharges. This further destruction of the original molecular bonds.
  • the magnet unit as well as the electrode unit are each optional and each serve to amplify the effect and optimize the decomposition and alignment of the media stream. Due to the influence of the magnet unit [Fig.3 / VIII; Fig.
  • the media stream (largely plasma) can be passed before or after the nozzle element through further magnetic or electrode units in order to enhance the effect and to optimize the result.
  • the medium is largely in a highly ionized state (plasma) and contains, depending on the amount of water / the water content of the medium u.a. positively charged hydrogen atoms / ions in large quantities.
  • These positively charged hydrogen atoms are optionally collected via a cathodically oriented gas extraction unit [Fig.3 / Xj and usefully removed.
  • the existing kinetic energy of the medium is converted in the turbine [Fig.3 / Xlla] of the optional generator unit [Fig.3 / Xlla, XI 1 b] in shaft power, which serves to drive the generator [Fig.3 / Xilb] ,
  • the obtained electrical power of the generator [Fig.3 / Xl lb] is also supplied to the electrical storage unit [Fig.3 / 1] via a suitable, not described in detail, converter / regulator.
  • the thermal residual energy of the medium stream can optionally be condensed out in an atmosphere-open heat exchanger / condenser [FIG. 3 / XIII], wherein the heat quantity can be supplied, for example, to a thermodynamic use.
  • the remaining medium is led out of the system as a volume flow (V - Fig.3, V) via the outlet unit for residual medium [Fig.3 / XIV].
  • the excess recovered electrical energy is available in the electrical storage unit [Fig.3 / 1] for acceptance and external use.
  • the entire process is controlled by means of a higher-level control unit.
  • the generated electrical energy which is made available via the electrical storage unit [FIG. 3/1], can in turn optionally be used to supply the potential demand for electrical energy within the system, in particular for the drive unit [FIG. 3 / Vb], the electric pulse generator [Fig.3 / 11] and control / regulating units, are used, so that in addition to the air-water mixture / medium no further external energy needs to be fed into the system and this then runs self-sufficient.
  • the residues of the medium which have been discharged from the system via the outlet unit for residual medium [FIG. 3 / XIV] and which have not been consumed during the process and can still be used, may optionally be present as part of the specific air / water mixture via the air / Wasserzu beneficiaticianen [Fig.3 / 111, IV] is introduced into the system, the process can be fed back with.

Abstract

L'invention concerne un procédé pour générer de l'énergie électrique, cinétique et thermique à partir de mélanges air-eau ainsi que pour séparer les éléments constitutifs moléculaires du fluide. Un procédé avec lequel les éléments constitutifs de fluides, par exemple de mélanges air/eau dans des rapports de mélange spécifiques, peuvent être influencés et modifiés dans un dispositif par influence mécanique, en particulier par passage par des éléments de buse spéciaux, ainsi qu'en option par influence magnétique du fluide et/ou par influence du fluide par impulsions électriques haute tension de telle manière que l'énergie immanente de ces éléments constitutifs du fluide ainsi que les forces de liaison moléculaire puissent être exploitées et, en fait, en particulier pour la génération directe d'énergie électrique, thermique et cinétique utilisable ainsi que pour la séparation des éléments constitutifs moléculaires du fluide comme par exemple hydrogène, oxygène et azote pour des mélanges air-eau.
PCT/EP2012/057912 2011-04-28 2012-04-30 Procédé pour générer de l'énergie électrique, cinétique et thermique à partir de mélanges air-eau ainsi que pour séparer les éléments constitutifs moléculaires WO2012146781A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011017726A DE102011017726A1 (de) 2011-04-28 2011-04-28 Anlage zur gleichzeitigen Erzeugung von Elektroenergie, Wärmeenergie und atomarem Wasserstoff aus Wasser-Luft-Gemischen
DE102011017726.4 2011-04-28

Publications (2)

Publication Number Publication Date
WO2012146781A2 true WO2012146781A2 (fr) 2012-11-01
WO2012146781A3 WO2012146781A3 (fr) 2013-01-03

Family

ID=46022267

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2012/057914 WO2012146782A1 (fr) 2011-04-28 2012-04-30 Procédé de production d'énergie électrique à partir de mélanges air-eau
PCT/EP2012/057912 WO2012146781A2 (fr) 2011-04-28 2012-04-30 Procédé pour générer de l'énergie électrique, cinétique et thermique à partir de mélanges air-eau ainsi que pour séparer les éléments constitutifs moléculaires

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/057914 WO2012146782A1 (fr) 2011-04-28 2012-04-30 Procédé de production d'énergie électrique à partir de mélanges air-eau

Country Status (2)

Country Link
DE (1) DE102011017726A1 (fr)
WO (2) WO2012146782A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109942834A (zh) * 2019-03-07 2019-06-28 陕西艾顿腐植酸科技集团有限公司 一种医用黄腐酸的制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005762A (en) * 1958-01-20 1961-10-24 Aero Chem Res Lab Inc Electric discharge jet stream
US3127528A (en) * 1960-10-03 1964-03-31 United Aircraft Corp Magnetohydrodynamic generator
FR1358458A (fr) * 1963-02-14 1964-04-17 Commissariat Energie Atomique Générateur magnéto hydrodynamique
DE1286229B (de) * 1963-12-20 1969-01-02 Atomenergie Ab Vorrichtung zur Umwandlung von Kernenergie in elektrische nach dem MHD-Prinzip
US3660700A (en) * 1970-06-10 1972-05-02 Space Sciences Inc Magnetohydrodynamic generator
US3938525A (en) * 1972-05-15 1976-02-17 Hogle-Kearns International Plasma surgery
US4755344A (en) * 1980-04-11 1988-07-05 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for the production of cluster ions
US5321327A (en) * 1992-01-30 1994-06-14 21St Century Power & Light Corporation Electric generator with plasma ball
JP2003120498A (ja) * 2001-10-19 2003-04-23 Mitsubishi Heavy Ind Ltd トーネード方式風車装置
JP2005146368A (ja) * 2003-11-17 2005-06-09 Sumitomo Electric Ind Ltd プラズマ発生装置及びガラス加工方法
CN101054932A (zh) * 2007-04-18 2007-10-17 陈久斌 核动力发动机以及用它制造的飞行器与宇宙飞船
WO2008128422A1 (fr) * 2007-04-18 2008-10-30 Jiubin Chen Réacteur nucléaire
US7621129B2 (en) * 2007-11-08 2009-11-24 Mine-Rg, Inc. Power generation system
GB0904850D0 (en) * 2009-03-23 2009-05-06 Rolls Royce Plc Magneto-plasma-dynamic generator and method of operating the generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
WO2012146782A1 (fr) 2012-11-01
WO2012146781A3 (fr) 2013-01-03
DE102011017726A1 (de) 2012-10-31

Similar Documents

Publication Publication Date Title
DE112009000305B4 (de) Verfahren zur radialen Gegenstrom-Scher-Elektrolyse
DE3015900A1 (de) Verfahren zur herstellung von stickoxiden
DE19504632C2 (de) Elektrolyseur und Verfahren zur Elektrolyse eines fluiden Elektrolyts
DE2109634A1 (de) Verfahren und Lichtbogenheizeinrichtung zum Erhitzen von Gasen mittels·eines Lichtbogens
EP2803755B1 (fr) Procédé de fonctionnement d'une installation d'électrolyse sous haute pression, installation d'électrolyse sous haute pression et distributeur d'hydrogène doté d'une installation d'électrolyse sous haute pression
DE102019216242A1 (de) Dampfturbinenanlage sowie Verfahren zum Betreiben einer solchen Dampfturbinenanlage
EP3007350A1 (fr) Corps volant avec la production magnétohydrodynamique (mhd) d'énergie électrique
WO2014000737A1 (fr) Procédé et dispositif pour l'accumulation d'énergie électrique
WO2012146781A2 (fr) Procédé pour générer de l'énergie électrique, cinétique et thermique à partir de mélanges air-eau ainsi que pour séparer les éléments constitutifs moléculaires
DE102005046720B4 (de) Verfahren zur Kondensation von Flüssigkeiten in einer Dampfturbine
EP1123578B1 (fr) Procede de production d'energie electrique
DE102013109778A1 (de) Verfahren und Vorrichtung zur kontinuierlichen Wiederaufbereitung von Abgas eines Fusionsreaktors
EP3865455A1 (fr) Procédé et dispositif d'extraction des gaz de brown et/ou d'oxygène et d'hydrogène, en particulier pour moteurs à combustion, brûleurs chauffants ou piles à combustible
DE102005046721B3 (de) Verfahren zur Steuerung der Kondensation von Flüssigkeiten in einer Dampfturbine und zugehörige Dampfturbine
DE202008012562U1 (de) Elektrischer Raketenantrieb
DE102011107631A1 (de) Anlage und Betriebsverfahren zur Nutzung von zeitlich variabel anfallendem Kohlendioxid aus verschiedenen Emissionsquellen zur ökologischen Energiegewinnung
EP4139562A1 (fr) Système comprenant un dispositif de production d'électricité et de stockage d'énergie à air liquide
EP3044194A1 (fr) Installation et procédé d'utilisation efficiente d'un excédent d'énergie électrique
DE202012012531U1 (de) Vorrichtung zur Vergrößerung der Sauerstoffmenge im Luftgemisch, zugeführt in Brennkraftmaschine
WO2017157625A1 (fr) Dispositif et procédé de génération d'un plasma non thermique pour la gazéification d'une masse au moyen d'un générateur d'impulsions
EP3798435B1 (fr) Unité de centrale électrique pour une centrale électrique hybride
DE102011052683A1 (de) Vorrichtung zur Erzeugung von Knallgas, Windkraftanlage sowie Energieversorgungseinheit für ein Haus
DE10355158A1 (de) Verfahren zum Gewinnen elektrischer Energie und/oder mechanischer Antriebsenergie aus elektrolytisch dissoziiertem Wasser und Vorrichtung
EP2163514A1 (fr) Technologie destinée à la fabrication de gaz propulseur et énergie électrique à partir d'eau
AT521191B1 (de) Dimethylether und Dibuthylether als Brennstoff für die Erzeugung von elektrischer und thermischer Energie mit Hillfe eines Plasmagenerators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12723396

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: FESTSTELLUNG EINES RECHTSVERLUSTS NACH REGEL 112(1) EPUE (EPA FORM 1205A VOM 05/02/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12723396

Country of ref document: EP

Kind code of ref document: A2