WO2012146135A2 - 草酸烷基酯加氢合成乙二醇用复合载体催化剂及制备方法 - Google Patents

草酸烷基酯加氢合成乙二醇用复合载体催化剂及制备方法 Download PDF

Info

Publication number
WO2012146135A2
WO2012146135A2 PCT/CN2012/074092 CN2012074092W WO2012146135A2 WO 2012146135 A2 WO2012146135 A2 WO 2012146135A2 CN 2012074092 W CN2012074092 W CN 2012074092W WO 2012146135 A2 WO2012146135 A2 WO 2012146135A2
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene glycol
solution
catalyst
oxalate
hydrogenation
Prior art date
Application number
PCT/CN2012/074092
Other languages
English (en)
French (fr)
Other versions
WO2012146135A3 (zh
Inventor
张博
计扬
骆念军
毛彦鹏
Original Assignee
上海浦景化工技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海浦景化工技术有限公司 filed Critical 上海浦景化工技术有限公司
Priority to JP2014506739A priority Critical patent/JP2014517765A/ja
Publication of WO2012146135A2 publication Critical patent/WO2012146135A2/zh
Publication of WO2012146135A3 publication Critical patent/WO2012146135A3/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/885Molybdenum and copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a catalyst in the field of organic synthesis, in particular to a composite carrier catalyst for hydrogenation of decyl oxalate to ethylene glycol and a preparation method thereof.
  • Ethylene glycol is an important organic chemical material that can react with terephthalic acid (PTA) to form polyethylene terephthalate (PET is a polyester resin, which can be used as polyester fiber and polyester plastic). Raw materials, this is the main use of ethylene glycol. Ethylene glycol can also react with polybasic acids such as phthalic acid, maleic acid and fumaric acid to form corresponding polymers, collectively known as alkyd resins. Secondly, ethylene glycol can also be directly used as an antifreeze and a coolant for formulating engines. Diethylene nitrate can be used as an explosive, as well as plasticizers, paints, adhesives, surfactants, explosives and capacitor electrolytes. Substance that is indispensable for products.
  • the coal-based synthesis gas to ethylene glycol is synthesized from the synthesis gas by CO gas phase catalytic coupling to synthesize oxalate, and then hydrogenated to prepare ethylene glycol. From the raw materials, it is free from dependence on petroleum resources, and actively conforms to ethylene glycol production technology. The development trend is in line with the development strategy of China's energy development.
  • U.S. Patent No. 54112245 proposes that the copper-chromium catalyst has high hydrogenation activity and selectivity, and uses a copper-chromium catalyst supported on A1 2 0 3 , SiO 2 or glass beads at a temperature of 200-230 °. C, but the yield of ethylene glycol is only 11.7-18.9%.
  • the researchers turned to the gas phase hydrogenation of oxalate, and EP 46983 proposed a route for the gas phase hydrogenation of oxalate to ethylene glycol on a copper-chromium catalyst.
  • the composition of the product can be adjusted to obtain a product mainly based on glycolate or ethylene glycol.
  • Ube Industries Co., Ltd. hydrogenated oxalate
  • the research interest seems to have shifted to the hydrogenation of glycolic acid esters. It is proposed in the patents JP 06135895 A2, EP 614875 A1 to add a silver promoter to the Cu/SiO ⁇ catalyst to increase the selectivity of the formation of glycolic esters.
  • the conversion of oxalate was about 90.2% under the action of Si0 2 supported Cu-Ag catalyst, the yield of methyl glycolate was about 68%, and the space time yield was about 202.7 g/l/h.
  • patent CN 101524646A made in A1 2 0 3 as a carrier, Zn, Mn, Mg, Cr of one or more copper-based catalyst to aid the reaction pressure was 0.3 -1.0 MPa, reaction temperature is 145-220 ° C, oxalate liquid hourly space velocity is 0.1-0.6 h" 1 , oxalate conversion is greater than 99%, and ethylene glycol selectivity is greater than 90%.
  • Patent CN 101342489A discloses A copper-silicon-based hydrogenation catalyst containing an auxiliary agent selected from one or more of an alkaline earth metal, a transition metal element or a rare earth metal element, at a reaction pressure of 3.0 MPa, a space velocity of a polybasic acid solution of 0.7 h Under the process conditions of 1 , the raw material conversion rate is more than 99%, and the ethylene glycol selectivity is more than 95%.
  • Patent CN 101138725A discloses a catalyst for hydrogenating oxalate ester to synthesize ethylene glycol and a preparation method thereof, with copper element As the active component, the zinc element is an auxiliary agent, which is prepared by impregnation method.
  • the conversion rate of the catalyst is about 95%, and the selectivity of ethylene glycol is about 90%.
  • the catalysts reported in the above patents all adopt single carrier, focusing on passing Adding auxiliaries for catalyst SUMMARY OF THE INVENTION
  • the object of the present invention is to provide a high activity, high selectivity and high stability in order to overcome the defects of the prior art mentioned above, and is suitable for the industrial production of ethylene glycol oxalate ester.
  • a composite supported catalyst for hydrogenation of decyl oxalate to ethylene glycol characterized in that the chemical formula of the composite supported catalyst is CuO/ROx-MOy, CuO mass percentage
  • the content is 5%-60%
  • the content of ROx is 10%-90%
  • the mass percentage of MOy is 0.1%-60%
  • X is 1/2 of the highest valence of R
  • y is the highest valence of M. 1/2
  • R is selected from the group consisting of Si, Al, Zr, and Ti
  • M is selected from the group consisting of Si, Al, Cr, Zr, Ti, B, Zn, Mo, A type of Ce, Bi, La.
  • the CuO content is 10%-50% by mass ; the ROx mass percentage is 20%-80%; and the MOy mass percentage is 1%-50%.
  • a method for preparing a composite supported catalyst for hydrogenation of decyl oxalate to ethylene glycol characterized in that the method comprises the following steps:
  • the soluble salt or other soluble substance of the R element in the step (1) includes, but is not limited to, silica sol or ethyl orthosilicate, K 2 SiO 3 , A1(N0 3 ) 3 , Zr(N0 3 ) 4 , ZrOCl 2 , butyl titanate or TiCl 4 .
  • the soluble salt or other soluble substance containing the M element according to the step (1) includes, but is not limited to, silica sol or ethyl orthosilicate, K 2 SiO 3 , A1(N0 3 ) 3 , Zr(N0 3 ) 4 , ZrOCl 2 , butyl titanate or TiCl 4 , Cr(N0 3 ) 3 , CrCl 3 , Na 2 B 4 0 7 , H 3 B0 3 , Zn(N0 3 ) 2 , ZnCl 2 , (NH 4 ) 2 Mo0 4 , Na 2 Mo0 4 , Ce(N0 3 ) 3 , Bi(N0 3 ) 3 or La(N0 3 ) 3 .
  • the precipitating agent described in the step (1) is a soluble carbonate, a soluble hydroxide or a substance which can be hydrolyzed to form a hydroxide under certain conditions;
  • the precipitating agent includes urea, KOH, NaOH, Na 2 C0 3 , K 2 C0 3 .
  • the soluble copper salt of the step (1) includes CuC 2 0 4 , 01 (31 2 or 01 ⁇ 0 3 ) 2 .
  • the solution I, the solution II, the solution III and the solution IV are added in the step (2) such that the CuO mass percentage of the obtained product is 5%-60%, and the ROx mass percentage is 10%-90%, MOy
  • the mass percentage is 0.1%-60%
  • X is 1/2 of the highest valence state of R
  • y is 1/2 of the highest valence state of M
  • R is selected from one of Si, Al, Zr, Ti
  • M is selected from One of Si, Al, Cr, Zr, Ti, B, Zn, Mo, Ce, Bi, and La.
  • the drying temperature in the step (2) is 80-150 ° C, the drying time is 12-24 h; the baking temperature is 350-650 ° C, and the baking time is 2-6 h.
  • the decyl oxalate described in the present specification is preferably one of dimethyl oxalate, diethyl oxalate or dibutyl oxalate.
  • the catalyst is hydrogenated to synthesize ethylene glycol, and in the process, the catalyst is activated under a hydrogen atmosphere before use, and the activation temperature is raised from room temperature to 2° C./min to 300° C. It is then held for 6-15 h and the reduction pressure is 0.1-3.0 MPa.
  • the hydrogenation reaction is carried out in a U-tube reactor of ⁇ 6 ⁇ 1 mm, the reaction temperature is 180-300 ° C, the reaction pressure is 1.0-10 MPa, the hydrogen ester ratio is 40-300: 1, the oxalate liquid hourly space velocity 0.3-8 11
  • the metal as the active component of the catalyst is often supported on a certain carrier due to its high price or easy sintering.
  • the supported catalyst carrier has a great influence on its activity.
  • the carrier can not only disperse the active component, but also interact with the active component to produce a new substance, thereby affecting the activity of the catalyst.
  • copper and copper oxides and mixtures thereof are active components, and the dispersibility of the active components has a direct influence on the activity and stability of the catalyst.
  • the traditional copper-silicon catalyst active component and the carrier have weak synergistic combination, low anti-sintering ability and poor thermal stability.
  • the invention adopts a composite carrier to improve the dispersibility of the active component.
  • the active component grains become smaller, and the synergistic effect between the active component and the carrier is enhanced, and the growth of the active component grains can be effectively avoided, and the thermal stability of the catalyst is ensured.
  • the oxides of various carriers first form a certain structure, and then the active components are loaded, which has the advantage that the catalyst has an ideal skeleton structure, and the active components can be effectively dispersed.
  • the actual available active center is greatly increased compared with the conventional catalyst, and the equivalent copper loading has higher catalytic activity.
  • the catalyst using the composite carrier has a substantially neutral surface, which can effectively avoid the occurrence of side reactions and is beneficial to improve the selectivity of EG. detailed description
  • Preparation method of composite carrier catalyst for hydrogenation of decyl oxalate to ethylene glycol including the following
  • 4.29g of cerium nitrate is dissolved in 100ml of deionized water to adjust the pH value to 3.0, and is formulated into solution II;
  • the third step is to dissolve 12.00 g of urea in 100 ml of deionized water to prepare a solution III;
  • the fourth step is to dissolve 12.08g of copper nitrate in 200ml of deionized water, adjust the pH value of 3.0, and prepare the solution IV;
  • the solution I, the solution II and the solution III are mixed and mixed, stirred vigorously, and aged at 90 ° C for 3 h, then the solution IV is slowly added dropwise to the mixed solution, and the aging is continued for 16 h, and the filter cake is obtained by filtration and washing;
  • the sixth step of the filter cake was dried at 120 ° C for 12 h, dried, and calcined at 500 ° C for 3 h to obtain a catalyst precursor.
  • the catalyst composition was 35% CuO/50% Si0 2 -15% Ce0 2 by XRF test.
  • the calcined catalyst was tableted, crushed, sieved, and 2 g of 40-60 mesh catalyst was placed in a D6xlmm U-tube reactor, activated under a hydrogen atmosphere, a hydrogen flow rate of 100 ml/min, and an activation temperature from room temperature. It was raised to 300 ° C at 2 ° C / min and kept at normal pressure for 10 h.
  • the conversion rate of dimethyl oxalate is more than 99.9% under the conditions of reaction temperature 210 ° C, reaction pressure 3.5 MPa, liquid hourly space velocity ⁇ ⁇ ⁇ ⁇ 1 and hydrogen ester ratio 160.
  • the ethylene glycol selectivity is greater than 96%.
  • Example 1 According to the procedure and conditions of Example 1, only the catalyst composition was 25% CuO/65% SiO 2 -10% B 2 O 3 .
  • the reaction rate is 240 ° C
  • the reaction pressure is 3.0 MPa
  • the liquid hourly space velocity is S.Oh
  • the hydrogen ester ratio is 200.
  • the conversion rate of dimethyl oxalate is greater than 99.9%.
  • the diol selectivity is greater than 95%.
  • Example 1 According to the procedures and conditions of Example 1, except that the catalyst composition was 35% CuO/55% TiO 2 -10% ZrO 2 .
  • the reaction rate is 240 ° C
  • the reaction pressure is 5.0 MPa
  • the liquid hourly space velocity is ⁇ . ⁇ 1
  • the hydrogen ester ratio is 160
  • the conversion rate of dimethyl oxalate is greater than 99.9%.
  • the ethylene glycol selectivity is greater than 95%.
  • the catalyst composition is 40% CuO/20%.
  • Al 2 O 3 -40%ZrO with diethyl oxalate as raw material at a reaction temperature of 260 ° C, a reaction pressure of 5.0 MPa, a liquid hourly space velocity of ⁇ ⁇ ⁇ 1 ⁇ 1 , a hydrogen ester ratio of 60, a conversion of diethyl oxalate
  • the rate is greater than 99.9% and the ethylene glycol selectivity is greater than 95%.
  • Example 1 According to the steps and conditions of Example 1, only the catalyst composition is 40% CuO / 50% ZrO 2 - 5% TiO 2 - 5% Bi 2 0 with dimethyl oxalate as the raw material, methanol as the solvent, at the reaction temperature of 230 ° C, Under the condition of reaction pressure 5.0 MPa, liquid hourly space velocity ⁇ . ⁇ 1 , hydrogen ester ratio of 120, dimethyl oxalate conversion rate is greater than 99.9%, and ethylene glycol selectivity is greater than 96%.
  • Example 1 According to the various steps and conditions of Example 1, except that the catalyst composition is 30% CuO/55% ZrO 2 -10% TiO 2 - 5% La 2 0 with diethyl oxalate as raw material, at a reaction temperature of 250 ° C, a reaction pressure of 5.0 MPa. , liquid hourly space velocity ⁇ . ⁇ 1 , hydrogen ester ratio of 120 conditions, dimethyl oxalate conversion rate is greater than 99.9%, ethylene glycol selectivity greater than 95%.
  • the catalyst composition is 30% CuO/55% ZrO 2 -10% TiO 2 - 5% La 2 0 with diethyl oxalate as raw material, at a reaction temperature of 250 ° C, a reaction pressure of 5.0 MPa. , liquid hourly space velocity ⁇ . ⁇ 1 , hydrogen ester ratio of 120 conditions, dimethyl oxalate conversion rate is greater than 99.9%, ethylene glycol selectivity greater than 95%.
  • the catalyst composition is 30% CuO/30% ZrO 2 -35% SiO 2 -5% CrO.
  • Dimethyl oxalate is used as the raw material, methanol is used as the solvent, and the reaction temperature is 200 ° C. 2.6MPa, liquid hourly space velocity O h , hydrogen ester ratio of 200, dimethyl oxalate conversion rate is greater than 99.9%, ethylene glycol selectivity greater than 97%.
  • Catalyst stability experiment is Example 8
  • Example 1 According to the procedure and conditions of Example 1, only the catalyst composition was 35% CuO/50% SiO 2 -10% ZrO 2 -5% B 2 O 3 .
  • the conversion rate of dimethyl oxalate is more than 99.9% under the conditions of reaction temperature 220 ° C, reaction pressure 3.0 MPa, liquid hourly space velocity OJh and hydrogen ester ratio of 160.
  • the selectivity is greater than 95%.
  • the stability test of the catalyst was 4000 h.
  • the solution I, the solution II, the solution III, the solution IV were mixed and mixed, vigorously stirred, aged at 90 ° C for 16 h, filtered and washed to obtain a filtration. cake.
  • the conversion rate of dimethyl oxalate is greater than 99.9% under the conditions of reaction temperature 220 ° C, reaction pressure 3.0 MPa, liquid hourly space velocity OJh- 1 and hydrogen ester ratio 160.
  • the diol selectivity is greater than 92%.
  • the stability test of the catalyst was 1000 h.
  • the catalyst composition was 35% CuO/65% Si0 2 .
  • the conversion rate of dimethyl oxalate is greater than 99.9% under the conditions of reaction temperature 220 ° C, reaction pressure 3.0 MPa, liquid hourly space velocity OJh- 1 and hydrogen ester ratio 160.
  • the diol selectivity is greater than 88%.
  • the stability test of the catalyst was 1000 h.
  • a method for preparing a composite supported catalyst for hydrogenation of decyl oxalate to ethylene glycol comprising the following steps:
  • A1 (N03: ⁇ in deionized water, adjust the pH value to 1.0, and prepare solution I
  • the second step is to dissolve Zr(N0 3 ) 4 in deionized water, adjust the pH to 1.0, and prepare the solution.
  • the third step is to dissolve Na 2 C0 3 in deionized water to prepare a solution III;
  • the fourth step is to dissolve CuCl 2 in deionized water, adjust the pH value to 1.0, and prepare the solution IV.
  • the solution I, the solution II and the solution III are mixed and mixed, vigorously stirred, and aged at 60 ° C for 8 h. Then, the solution IV is slowly added dropwise to the mixture, and the aging is continued for 20 hours, and the filter cake is obtained by filtration and washing;
  • the sixth step of the filter cake was dried at 150 ° C for 12 h, dried, and calcined at 350 ° C for 6 h to obtain a catalyst.
  • the solution I, solution II, solution III and solution IV were added in an amount such that the obtained catalyst was subjected to XRF measurement and its composition was 5% CuO/90% Al 2 O 3 -5% ZrO 2 .
  • the catalyst was activated according to the activation mode in Example 1, using dimethyl oxalate as the raw material and methanol as the solvent.
  • the reaction temperature was 210 ° C
  • the reaction pressure was 3.0 MPa
  • the liquid hourly space velocity was 0.1 h
  • the hydrogen ester ratio was 300.
  • the conversion of dimethyl oxalate is greater than 99.9% and the selectivity to ethylene glycol is greater than 97%.
  • a method for preparing a composite supported catalyst for hydrogenation of decyl oxalate to ethylene glycol comprising the following steps:
  • Zr(N0 3 ) 4 is dissolved in deionized water to adjust the pH to 7.0, and is formulated into solution II;
  • the third step is to dissolve KOH in deionized water to form solution III;
  • the fourth step is to dissolve Cu(N0 3 ) 2 in deionized water and adjust the pH value to 7.0 to prepare solution IV.
  • solution I, solution II and solution III are mixed and mixed vigorously, at 90 After aging for 2 h at ° C, the solution IV was slowly added dropwise to the mixture, and the aging was continued for 10 h, and the filter cake was obtained by filtration and washing;
  • the sixth step of the filter cake was dried at 80 ° C for 24 h, dried, and calcined at 650 ° C for 2 h to obtain a catalyst.
  • the solution I, the solution II, the solution III and the solution IV were added in an amount such that the obtained catalyst was subjected to XRF measurement and its composition was 60% CuO/39.9% TiO 2 -0.1% ZrO.
  • the catalyst was activated according to the activation mode in Example 1, using diethyl oxalate as raw material, at a reaction temperature of 250 ° C, a reaction pressure of 3.8 MPa, a liquid hourly space velocity (Oh- 1 , a hydrogen ester ratio of 260, oxalic acid
  • the ester conversion is greater than 99.9% and the ethylene glycol selectivity is greater than 95%.
  • a method for preparing a composite supported catalyst for hydrogenation of decyl oxalate to ethylene glycol comprising the following steps:
  • the fourth step is to dissolve Cu(N0 3 ) 2 in deionized water, adjust the pH value to 5.0, and prepare the solution IV.
  • the solution I, the solution II and the solution III are mixed and mixed, and stirred vigorously. After aging for 5 h at ° C, the solution IV was slowly added dropwise to the mixture, and the aging was continued for 15 h, and the filter cake was obtained by filtration and washing;
  • the sixth step of the filter cake was dried at 100 ° C for 24 h, dried, and calcined at 500 ° C for 3 h to obtain a catalyst.
  • the solution I, solution II, solution III and solution IV were added in an amount such that the obtained catalyst was subjected to XRF measurement and its composition was 30% CuO/10% SiO 2 -60% ZnO.
  • the catalyst was activated according to the activation mode in Example 1, using dimethyl oxalate as the raw material and methanol as the solvent. Under the conditions of reaction temperature 260 ° C, reaction pressure 5.0 MPa, liquid hourly space velocity O.lSh and hydrogen ester ratio 200, The conversion of dimethyl oxalate is greater than 99.9% and the selectivity to ethylene glycol is greater than 96%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种草酸烷基酯加氢合成乙二醇用复合载体催化剂及其制备方法,该复合载体催化剂的化学式为CuO/ROx-MOy,CuO质量百分含量为5%-60%,ROx质量百分含量为10%-90%,MOy质量百分含量为0.1%-60%,x为R最高价态的1/2,y为M最高价态的1/2,R选自Si、Al、Zr、Ti的一种,M选自Si、Al、Cr、Zr、Ti、B、Zn、Mo、Ce、Bi、La的一种。与现有技术相比,本发明中草酸烷基酯加氢合成乙二醇的催化剂采用复合载体,该类型载体能有效的分散活性组分铜,使铜晶粒不易烧结,提高催化剂的使用寿命。同时复合载体能有效的调节催化剂表面酸碱性,减少副产物的生成,提高乙二醇选择性。草酸酯总转化率达99.9%以上,乙二醇选择性大于95%。本发明可用于乙二醇的工业生产中。

Description

草酸垸基酯加氢合成乙二醇用复合载体催化剂及制备方法 技术领域
本发明涉及一种有机合成领域的催化剂, 尤其是涉及一种草酸垸基酯加氢 合成乙二醇用复合载体催化剂及其制备方法。 背景技术
乙二醇是一种重要的有机化工原料,它可以与对苯二甲酸 (PTA)反应生成聚 对苯二甲酸乙二醇酯 (PET 即聚酯树脂, 可作为聚酯纤维和聚酯塑料的原料, 这是目前乙二醇的最主要用途。 乙二醇还可以与邻苯二甲酸、 顺丁烯二酸和反 丁烯二酸等多元酸反应生成相应的聚合物, 统称醇酸树脂, 其次乙二醇还可直 接用作防冻剂和配制发动机的冷却剂, 乙二醇的二硝酸酯可用作炸药, 同时也 是生产增塑剂、 油漆、 胶粘剂、 表面活性剂、 炸药及电容器电解液等产品不可 缺少的物质。
煤基合成气制乙二醇, 是从合成气出发由 CO气相催化偶联合成草酸酯, 再加氢制备乙二醇, 从原料上摆脱对石油资源的依赖, 积极顺应乙二醇生产技 术发展潮流, 符合我国能源开发的发展战略。
煤基合成气制乙二醇的关键技术之一是草酸酯加氢合成乙二醇催化剂的开 发。美国 ARCO公司在专利 US 54112245中提出铜铬系催化剂具有较高的加氢 活性和选择性, 采用负载在 A1203、 Si02或玻璃珠上的铜-铬系催化剂, 温度 200-230 °C , 但乙二醇的收率仅为 11.7-18.9%。 为了提高反应选择性和收率, 研 究者转向草酸酯气相加氢, EP 46983提出草酸酯在铜铬催化剂上气相加氢制乙 二醇的路线。宇部兴产在 80年代公布了一批专利 (昭 57-122939、昭 57-122946、 昭 57-123127等),他们对以铜为主体的催化剂,考察了载体 (A1203、 Si02、 La203 等:), 助剂 (K、 Zn、 Ag、 Mo、 Ba等:)、 制备方法等对催化活性和选择性的影响。 通过在以铜为主体的催化剂中加入第二组分改变反应的选择性, 如加入锌可以 提高生成乙二醇的选择性, 加入银提高乙醇酸甲酯的选择性, 在相同的催化剂 作用下通过改变氢酯比、 温度、 压力和停留时间等, 可以调节产物的组成, 从 而获得以乙醇酸酯或乙二醇为主的产品。 90年代以后, 宇部兴产对草酸酯加氢 的研究兴趣似乎又转到了加氢制乙醇酸酯, 在专利 JP 06135895 A2、 EP 614875 A1中提出在 Cu/SiO^ 化剂的基础上添加银助剂以提高生成羟基乙酸酯的选择 性, 在 Si02负载 Cu-Ag催化剂作用下草酸酯转化率约为 90.2%, 乙醇酸甲酯收 率约为 68%, 时空产率约为 202.7g/l/h。
国内中科院福建物构所、 华东理工大学、 浙江大学、 天津大学等相关研究 机构对从 80年代起开始对草酸酯加氢催化剂进行研究。福建物构所采用 Cu-Cr 催化剂在 208-230°C、 2.5-3.0MPa的条件下进行了草酸二乙酯加氢的模试研究, 反应结果为草酸二乙酯转化率 99.8%, 乙二醇平均选择性 95.3%, 催化剂可运 行 1134 小时。 近年来, 国内对草酸加氢催化剂的研究如火如荼, 专利 CN 101524646A提出以 A1203为载体, Zn、 Mn、 Mg、 Cr中一种或几种为助剂的铜 基催化剂, 反应压力为 0.3-1.0MPa, 反应温度为 145-220 °C, 草酸酯液时空速 为 0.1-0.6 h"1 , 草酸酯转化率大于 99%, 乙二醇选择性大于 90%。 专利 CN 101342489A公开了一种含助剂的铜硅系加氢催化剂,助剂选自碱土金属、过渡 金属元素或者稀土金属元素中的一种或一种以上, 在 3.0MPa反应压力, 多元 酸酯液时空速 0.7 h—1的工艺条件下, 原料转化率 99%以上, 乙二醇选择性 95% 以上。专利 CN 101138725A公开了一种草酸酯加氢合成乙二醇的的催化剂及其 制备方法, 以铜元素为活性组分, 锌元素为助剂, 采用浸渍法制备, 该催化剂 草酸酯转化率约 95%, 乙二醇选择性约 90%。 以上专利报道的催化剂, 均采用 单载体, 侧重于通过添加助剂进行催化剂改性。 发明内容 本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种具有高活 性, 高选择性, 高稳定性的特点, 适用于工业化生产乙二醇的草酸垸基酯加氢 合成乙二醇用复合载体催化剂及其制备方法。
本发明的目的可以通过以下技术方案来实现: 一种草酸垸基酯加氢合成乙 二醇用复合载体催化剂, 其特征在于, 该复合载体催化剂的化学式为 CuO/ROx-MOy,CuO质量百分含量为 5%-60%, ROx质量百分含量为 10%-90%, MOy质量百分含量为 0.1%-60%, X为 R最高价态的 1/2, y为 M最高价态的 1/2, R选自 Si、 Al、 Zr、 Ti的一种, M选自 Si、 Al、 Cr、 Zr、 Ti、 B、 Zn、 Mo、 Ce、 Bi、 La的一种。
所述的 CuO 质量百分含量为 10%-50%; 所述的 ROx 质量百分含量为 20%-80%; 所述的 MOy质量百分含量为 1%-50%。
一种草酸垸基酯加氢合成乙二醇用复合载体催化剂的制备方法, 其特征在 于, 该方法包括以下步骤:
(1) 将含 R元素的可溶性盐或其他可溶性物质溶于去离子水中, 调节 pH 值 1.0-7.0,配成溶液 I;将含 M元素的可溶性盐或其他可溶性物质溶于去离子 水中, 调节 pH值 1.0-7.0, 配成溶液 II ; 将沉淀剂溶于去离子水中, 配成溶液 III; 将可溶性铜盐溶于去离子水, 配成溶液 IV;
(2) 将溶液 I、 溶液 II、 溶液 III并流滴加混合, 剧烈搅拌, 在 60-90°C老化 2-8 h, 随后将溶液 IV滴加入混合液, 继续老化 10-20 h, 经过滤、 洗涤、 干燥、 焙烧得到产品。
步骤 (1 ) 所述的 R元素的可溶性盐或其他可溶性物质包括但不限于硅溶 胶或正硅酸乙酯、 K2Si03、 A1(N03)3、 Zr(N03)4、 ZrOCl2、 钛酸丁酯或 TiCl4
步骤 (1 ) 所述的含 M元素的可溶性盐或其他可溶性物质包括但不限于硅 溶胶或正硅酸乙酯、 K2Si03、 A1(N03)3、 Zr(N03)4、 ZrOCl2、 钛酸丁酯或 TiCl4、 Cr(N03)3、 CrCl3、 Na2B407、 H3B03、 Zn(N03)2、 ZnCl2、(NH4)2Mo04、 Na2Mo04、 Ce(N03)3、 Bi(N03)3或 La(N03)3
步骤(1 )所述的沉淀剂为可溶性碳酸盐、可溶性氢氧化物或在一定条件下 能水解生成氢氧根的物质;
所述的沉淀剂包括尿素、 KOH、 NaOH、 Na2C03、 K2C03
步骤 (1 ) 所述的可溶性铜盐包括 CuC204、 01(312或01^03)2
步骤(2 )所述的溶液 I、 溶液 II、 溶液 III和溶液 IV的加入量使得所得产品 中 CuO质量百分含量为 5%-60%, ROx质量百分含量为 10%-90%, MOy质量 百分含量为 0.1%-60%, X为 R最高价态的 1/2, y为 M最高价态的 1/2, R选 自 Si、 Al、 Zr、 Ti的一种, M选自 Si、 Al、 Cr、 Zr、 Ti、 B、 Zn、 Mo、 Ce、 Bi、 La的一种。
步骤 (2) 所述的干燥温度为 80-150°C, 干燥时间为 12-24 h; 焙烧温度为 350-650 °C, 焙烧时间为 2-6 h。 本技术方案中所述的草酸垸基酯优选为草酸二甲酯、 草酸二乙酯或草酸二 丁酯中的一种。
本技术方案所述草酸垸基酯加氢合成乙二醇的反应, 在该过程中, 催化剂 在使用前须在氢气氛围下活化, 活化温度从室温以 2°C/min升至 300°C, 然后 保持 6-15 h, 还原压力为 0.1-3.0 MPa。 具体而言, 在 Φ6χ 1 mm的 U型管反应 器中进行加氢反应,反应温度 180-300°C,反应压力 1.0-10 MPa,氢酯比 40-300: 1, 草酸酯液时空速 0.3-8 11
作为催化剂活性组分的金属常常由于价格昂贵或易烧结聚集需负载在一定 的载体上。 而负载型催化剂的载体对其活性有很大影响, 载体不仅可以分散活 性组分, 有时还会与活性组分发生相互作用, 产生新的物质, 从而影响催化剂 的活性。 在草酸垸基酯加氢合成乙二醇的过程中, 铜、 铜的氧化物及其混合物 是活性组分, 活性组分的分散性对催化剂的活性及稳定性有直接的影响。 传统 的铜硅系催化剂活性组分与载体之间结合协同作用弱, 抗烧结能力低, 热稳定 性差, 与现有技术相比, 本发明采用复合载体, 提高了活性组分的分散性, 使 活性组分晶粒变小, 活性组分与载体之间的协同作用得到了加强, 能有效避免 活性组分晶粒聚集长大, 保证了催化剂的热稳定性。 本发明中复合载体催化剂 的制备过程中,各种载体的氧化物先形成一定的结构,而后再负载上活性组分, 这样的好处在于催化剂有较为理想的骨架结构, 活性组分能有效的分散于催化 剂内外表面, 实际可用活性中心较传统催化剂大幅增加, 同等的铜载量有较高 的催化活性。 同时, 采用复合载体的催化剂, 其表面基本呈中性, 能有效的避 免副反应的发生, 有利于提高 EG的选择性。 具体实施方式
下面结合具体实施例对本发明进行详细说明。
实施例 1
一种草酸垸基酯加氢合成乙二醇用复合载体催化剂的制备方法, 包括以下 第二步 将 4.29g硝酸铈溶于 100ml去离子水中, 调节 pH值为 3.0, 配成 溶液 II;
第三步 将 12.00g尿素溶于 100ml去离子水中, 配成溶液 III;
第四步 将 12.08g硝酸铜溶于 200ml去离子水中, 调节 pH值为 3.0, 配成 溶液 IV;
第五步 将溶液 I、 溶液 II、 溶液 III并流滴加混合, 剧烈搅拌, 在 90°C老 化 3h, 随后将溶液 IV缓慢滴加入混合液, 继续老化 16h, 经过滤、 洗涤得到滤 饼;
第六步 滤饼在 120°C干燥 12h, 干燥后, 在 500°C焙烧 3h得到催化剂前躯 体。
经 XRF测试, 催化剂组成为 35% CuO/50% Si02-15%Ce02
将焙烧得到的催化剂压片、破碎、筛分,取 40-60目催化剂 2 g装于 (D6xlmm 的 U型管反应器中, 在氢气氛围下活化, 氢气流量 100ml/min, 活化温度从室 温以 2°C/min升至 300°C, 常压保持 10h。
以草酸二甲酯为原料, 甲醇为溶剂,在反应温度 210°C, 反应压力 3.5MPa, 液时空速 Ι^ΐι·1 , 氢酯比 160的条件下, 草酸二甲酯转化率大于 99.9%, 乙二醇 选择性大于 96%。
实施例 2
按照实例 1 各步骤与条件, 只是催化剂组成为 25%CuO/65% SiO2-10%B2O3。 以草酸二甲酯为原料, 甲醇为溶剂, 在反应温度 240°C, 反应 压力 3.0MPa, 液时空速 S.Oh , 氢酯比 200的条件下, 草酸二甲酯转化率大于 99.9%, 乙二醇选择性大于 95%。
实施例 3
按照实例 1各步骤与条件,只是催化剂组成为 35%CuO/55%TiO2-10%ZrO2。 以草酸二甲酯为原料, 甲醇为溶剂, 在反应温度 240°C, 反应压力 5.0MPa, 液 时空速 Ι.ΟΙι·1 , 氢酯比 160的条件下, 草酸二甲酯转化率大于 99.9%, 乙二醇选 择性大于 95%。
实施例 4
按照实例 1 各步骤与条件, 只是催化剂组成为 40%CuO/20% Al2O3-40%ZrO 以草酸二乙酯为原料, 在反应温度 260°C, 反应压力 5.0MPa, 液时空速 Ο.δΐι·1 , 氢酯比 60的条件下, 草酸二乙酯转化率大于 99.9%, 乙二醇 选择性大于 95%。
实施例 5
按照实例 1各步骤与条件, 只是催化剂组成为 40%CuO/50%ZrO2-5%TiO2- 5%Bi20 以草酸二甲酯为原料, 甲醇为溶剂, 在反应温度 230°C, 反应压力 5.0 MPa,液时空速 Ο.όΐι·1 ,氢酯比 120的条件下,草酸二甲酯转化率大于 99.9%, 乙二醇选择性大于 96%。
实施例 6
按照实例 1各步骤与条件,只是催化剂组成为 30%CuO/55%ZrO2-10%TiO2- 5%La20 以草酸二乙酯为原料, 在反应温度 250°C, 反应压力 5.0MPa, 液时 空速 Ο.όΐι·1 , 氢酯比 120的条件下, 草酸二甲酯转化率大于 99.9%, 乙二醇选择 性大于 95%。
实施例 7
按 照 实 例 1 各 步 骤 与 条 件 , 只 是 催 化 剂 组 成 为 30%CuO/30%ZrO2-35%SiO2-5%CrO 以草酸二甲酯为原料, 甲醇为溶剂, 在 反应温度 200°C, 反应压力 2.6MPa, 液时空速 O h , 氢酯比 200的条件下, 草酸二甲酯转化率大于 99.9%, 乙二醇选择性大于 97%。 催化剂稳定实验为 实施例 8
按 照 实 例 1 各 步 骤 与 条 件 , 只 是 催 化 剂 组 成 为 35%CuO/50%SiO2-10%ZrO2-5%B2O3。 以草酸二甲酯为原料, 甲醇为溶剂, 在 反应温度 220°C, 反应压力 3.0MPa, 液时空速 OJh , 氢酯比 160的条件下, 草酸二甲酯转化率大于 99.9%, 乙二醇选择性大于 95%。 催化剂的稳定性实验 为 4000h。
比较实例 1
按照实例 8各步骤与条件, 只是在制备过程第五步中将溶液 I、 溶液 II、 溶液 III、 溶液 IV并流滴加混合, 剧烈搅拌, 在 90°C老化 16h, 经过滤、 洗涤得 到滤饼。 以草酸二甲酯为原料, 甲醇为溶剂,在反应温度 220°C, 反应压力 3.0MPa, 液时空速 OJh—1 , 氢酯比 160的条件下, 草酸二甲酯转化率大于 99.9%, 乙二醇 选择性大于 92%。 催化剂的稳定性实验为 1000h。
比较实例 2
按照比较实例 1各步骤与条件, 只是催化剂组成为 35%CuO/65%Si02。 以草酸二甲酯为原料, 甲醇为溶剂,在反应温度 220°C, 反应压力 3.0MPa, 液时空速 OJh—1 , 氢酯比 160的条件下, 草酸二甲酯转化率大于 99.9%, 乙二醇 选择性大于 88%。 催化剂的稳定性实验为 1000h。
实施例 9
一种草酸垸基酯加氢合成乙二醇用复合载体催化剂的制备方法, 该方法包 括以下步骤:
第一步 将 A1(N03: §于去离子水, 调节 pH值为 1.0, 配成溶液 I ; 第二步 将 Zr(N03)4溶于去离子水中, 调节 pH值为 1.0, 配成溶液 II; 第三步 将 Na2C03溶于去离子水中, 配成溶液 III;
第四步 将 CuCl2溶于去离子水中, 调节 pH值为 1.0, 配成溶液 IV; 第五步 将溶液 I、 溶液 II、 溶液 III并流滴加混合, 剧烈搅拌, 在 60°C老 化 8h, 随后将溶液 IV缓慢滴加入混合液, 继续老化 20h, 经过滤、 洗涤得到滤 饼;
第六步 滤饼在 150°C干燥 12h, 干燥后, 在 350°C焙烧 6h得到催化剂。 所述的溶液 I、 溶液 II、 溶液 III和溶液 IV的加入量使得所得催化剂经 XRF 测试, 其组成为 5% CuO/90% Al2O3-5%ZrO2
按照实例 1中活化方式对催化剂进行活化, 以草酸二甲酯为原料, 甲醇为 溶剂, 在反应温度 210°C, 反应压力 3.0 MPa, 液时空速 O.lh , 氢酯比 300的 条件下, 草酸二甲酯转化率大于 99.9%, 乙二醇选择性大于 97%。
实施例 10
一种草酸垸基酯加氢合成乙二醇用复合载体催化剂的制备方法, 该方法包 括以下步骤:
第一步 将 TiCl4溶于去离子水, 调节 pH值为 7.0, 配成溶液 I ;
第二步 将 Zr(N03)4溶于去离子水中, 调节 pH值为 7.0, 配成溶液 II; 第三步 将 KOH溶于去离子水中, 配成溶液 III;
第四步 将 Cu(N03)2溶于去离子水中, 调节 pH值为 7.0, 配成溶液 IV; 第五步 将溶液 I、 溶液 II、 溶液 III并流滴加混合, 剧烈搅拌, 在 90°C老 化 2h, 随后将溶液 IV缓慢滴加入混合液, 继续老化 10h, 经过滤、 洗涤得到滤 饼;
第六步 滤饼在 80°C干燥 24h, 干燥后, 在 650°C焙烧 2h得到催化剂。 所述的溶液 I、 溶液 II、 溶液 III和溶液 IV的加入量使得所得催化剂经 XRF 测试, 其组成为 60% CuO/39.9% TiO2-0.1%ZrO
按照实例 1中活化方式对催化剂进行活化, 以草酸二乙酯为原料, 在反应 温度 250°C, 反应压力 3.8 MPa, 液时空速 (Oh—1 , 氢酯比 260的条件下, 草酸 二甲酯转化率大于 99.9%, 乙二醇选择性大于 95%。
实施例 11
一种草酸垸基酯加氢合成乙二醇用复合载体催化剂的制备方法, 该方法包 括以下步骤:
第一步 将 8103溶于去离子水, 调节 pH值为 5.0, 配成溶液 I; 第二步 将 ZnCl2溶于去离子水中, 调节 pH值为 5.0, 配成溶液 II; 第三步 将 NaOH溶于去离子水中, 配成溶液 III;
第四步 将 Cu(N03)2溶于去离子水中, 调节 pH值为 5.0, 配成溶液 IV; 第五步 将溶液 I、 溶液 II、 溶液 III并流滴加混合, 剧烈搅拌, 在 80°C老 化 5h, 随后将溶液 IV缓慢滴加入混合液, 继续老化 15h, 经过滤、 洗涤得到滤 饼;
第六步 滤饼在 100°C干燥 24h, 干燥后, 在 500°C焙烧 3h得到催化剂。 所述的溶液 I、 溶液 II、 溶液 III和溶液 IV的加入量使得所得催化剂经 XRF 测试, 其组成为 30% CuO/10% SiO2-60%ZnO。
按照实例 1中活化方式对催化剂进行活化, 以草酸二甲酯为原料, 甲醇为 溶剂, 在反应温度 260°C, 反应压力 5.0 MPa, 液时空速 O.lSh , 氢酯比 200 的条件下, 草酸二甲酯转化率大于 99.9%, 乙二醇选择性大于 96%。

Claims

权 利 要 求
1 . 一种草酸垸基酯加氢合成乙二醇用复合载体催化剂, 其特征在于, 该复 合载体催化剂的化学式为 CuO/ROx-MOy, CuO质量百分含量为 5%-60%, ROx 质量百分含量为 10%-90%, MOy质量百分含量为 0.1%-60%, x为 R最高价态 的 1/2, y为 M最高价态的 1/2, R选自 Si、 Al、 Zr、 Ti的一种, M选自 Si、 Al、 Cr、 Zr、 Ti、 B、 Zn、 Mo、 Ce、 Bi、 La的一种。
2.根据权利要求 1所述的一种草酸垸基酯加氢合成乙二醇用复合载体催化 剂, 其特征在于, 所述的 CuO质量百分含量为 10%-50%; 所述的 ROx质量百 分含量为 20%-80%; 所述的 MOy质量百分含量为 1%-50%。
3.—种根据权利要求 1所述的草酸垸基酯加氢合成乙二醇用复合载体催化 剂的制备方法, 其特征在于, 该方法包括以下步骤:
(1) 将含 R元素的可溶性盐或其他可溶性物质溶于去离子水中, 调节 pH 值 1.0-7.0,配成溶液 I;将含 M元素的可溶性盐或其他可溶性物质溶于去离子 水中, 调节 pH值 1.0-7.0, 配成溶液 II ; 将沉淀剂溶于去离子水中, 配成溶液 III; 将可溶性铜盐溶于去离子水, 配成溶液 IV;
(2) 将溶液 I、 溶液 II、 溶液 III并流滴加混合, 剧烈搅拌, 在 60-90 °C老化 2-8 h, 随后将溶液 IV滴加入混合液, 继续老化 10-20 h, 经过滤、 洗涤、 干燥、 焙烧得到产品。
4.根据权利要求 3所述的一种草酸垸基酯加氢合成乙二醇用复合载体催化 剂的制备方法, 其特征在于, 步骤 (1 ) 所述的 R元素的可溶性盐或其他可溶 性物质包括硅溶胶或正硅酸乙酯、 K2Si03、 A1(N03)3、 Zr(N03)4、 ZrOCl2、 钛酸 丁酯或 TiCl4
5.根据权利要求 3所述的一种草酸垸基酯加氢合成乙二醇用复合载体催化 剂的制备方法, 其特征在于, 步骤 (1 ) 所述的含 M元素的可溶性盐或其他可 溶性物质包括硅溶胶或正硅酸乙酯、 K2Si03、 A1(N03)3、 Zr(N03)4、 ZrOCl2、 钛 酸丁酯或 TiCl4、 Cr(N03)3、 CrCl3、 Na2B407、 H3B03、 Zn(N03)2、 ZnCl2、 (NH4)2Mo04、 Na2Mo04、 Ce(N03)3、 Bi(N03)3或 La(N03)3
6.根据权利要求 3所述的一种草酸垸基酯加氢合成乙二醇用复合载体催化 剂的制备方法, 其特征在于, 步骤(1 )所述的沉淀剂为可溶性碳酸盐、 可溶性 氢氧化物或在一定条件下能水解生成氢氧根的物质;
7.根据权利要求 6所述的一种草酸垸基酯加氢合成乙二醇用复合载体催化 剂的制备方法, 其特征在于, 所述的沉淀剂包括尿素、 KOH、 NaOH、 Na2C03、 K2C03
8.根据权利要求 3所述的一种草酸垸基酯加氢合成乙二醇用复合载体催化 剂的制备方法, 其特征在于, 步骤(1 )所述的可溶性铜盐包括 CuC204、 CuCl2 或 Cu(N03)2
9.根据权利要求 3所述的一种草酸垸基酯加氢合成乙二醇用复合载体催化 剂的制备方法, 其特征在于, 步骤(2)所述的溶液 I、 溶液 II、 溶液 III和溶液 IV的加入量使得所得产品中 CuO质量百分含量为 5%-60%, ROx质量百分含量 为 10%-90%, MOy质量百分含量为 0.1%-60%, x为 R最高价态的 1/2, y为 M 最高价态的 1/2, R选自 Si、 Al、 Zr、 Ti的一种, M选自 Si、 Al、 Cr、 Zr、 Ti、 B、 Zn、 Mo、 Ce、 Bi、 La的一种。
10. 根据权利要求 3所述的一种草酸垸基酯加氢合成乙二醇用复合载体催 化剂的制备方法, 其特征在于, 步骤 (2 ) 所述的干燥温度为 80-150°C, 干燥 时间为 12-24 h; 焙烧温度为 350-650°C, 焙烧时间为 2-6 h。
PCT/CN2012/074092 2011-04-29 2012-04-16 草酸烷基酯加氢合成乙二醇用复合载体催化剂及制备方法 WO2012146135A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014506739A JP2014517765A (ja) 2011-04-29 2012-04-16 シュウ酸アルキルエステルの水素添加によるエチレングリコールを合成するための複合担体触媒及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110110222.5 2011-04-29
CN2011101102225A CN102225338B (zh) 2011-04-29 2011-04-29 草酸烷基酯加氢合成乙二醇用复合载体催化剂及制备方法

Publications (2)

Publication Number Publication Date
WO2012146135A2 true WO2012146135A2 (zh) 2012-11-01
WO2012146135A3 WO2012146135A3 (zh) 2012-11-22

Family

ID=44806357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074092 WO2012146135A2 (zh) 2011-04-29 2012-04-16 草酸烷基酯加氢合成乙二醇用复合载体催化剂及制备方法

Country Status (3)

Country Link
JP (1) JP2014517765A (zh)
CN (1) CN102225338B (zh)
WO (1) WO2012146135A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111790390A (zh) * 2020-06-18 2020-10-20 北京化工大学 一种具有界面协同作用的铜基催化剂的制备方法及其应用
CN112898124A (zh) * 2019-12-03 2021-06-04 天津普莱化工技术有限公司 一种对苯二甲醇和对甲基苯甲醇的联产制备方法
CN114054022A (zh) * 2021-12-14 2022-02-18 河南能源化工集团研究总院有限公司 一种催化剂、制备方法及应用
CN116459846A (zh) * 2023-05-09 2023-07-21 中国科学院兰州化学物理研究所 一种羟基酯加氢纳米Cu基催化剂及其制备方法与应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225338B (zh) * 2011-04-29 2013-04-24 上海浦景化工技术有限公司 草酸烷基酯加氢合成乙二醇用复合载体催化剂及制备方法
CN102814184B (zh) * 2012-09-12 2014-12-17 西北化工研究院 一种草酸酯加氢制乙二醇的催化剂及制备方法
CN103816915B (zh) * 2014-02-25 2016-04-13 神华集团有限责任公司 一种由草酸二甲酯和甲醇加氢制取乙二醇单甲醚的催化剂及其工艺
CN106999921B (zh) * 2014-09-05 2021-03-23 巴斯夫公司 用于处理燃烧发动机排气流的催化剂中的作为铂族金属载体的二氧化钛掺杂的氧化锆
CN106607036B (zh) * 2015-10-21 2020-01-03 中国石油化工股份有限公司 草酸酯加氢催化剂、制备方法及用途
CN106607044A (zh) * 2015-10-22 2017-05-03 中国石油化工股份有限公司 1,6-己二酸二烷基酯加氢制备1,6-己二醇的催化剂及方法
CN109569629B (zh) * 2017-09-28 2021-11-19 中国石油化工股份有限公司 用于醋酸酯加氢的催化剂及其制备方法和醋酸酯加氢制醇的方法
CN109569619B (zh) * 2017-09-29 2021-11-30 中国石油化工股份有限公司 催化剂组合物、制造方法及用途
CN109569622B (zh) * 2017-09-29 2021-11-30 中国石油化工股份有限公司 催化剂组合物、合成方法及其用途
BR112021001734A2 (pt) * 2018-07-31 2021-04-27 China Petroleum & Chemical Corporation catalisador confinado em nanogaiola, processo de preparação e uso dos mesmos
DE102019131569A1 (de) * 2019-11-22 2021-05-27 Clariant International Ltd Chromfreier wasser- und saeurestabiler katalysator fuer hydrierungen
CN111298791B (zh) * 2019-11-27 2023-02-03 大连瑞克科技有限公司 一种草酸二甲酯加氢制乙二醇的复合载体催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751005A (en) * 1986-08-22 1988-06-14 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for treatment of waste water
CN101342489A (zh) * 2007-07-12 2009-01-14 上海焦化有限公司 一种加氢反应催化剂及其制备方法和应用
CN101485984A (zh) * 2009-02-11 2009-07-22 中国科学院山西煤炭化学研究所 一种co低温氧化催化剂及其制备方法
CN101829579A (zh) * 2010-05-25 2010-09-15 上海应用技术学院 负载氧化铜的铈锆复合氧化物催化剂的制备方法及其应用
CN102225338A (zh) * 2011-04-29 2011-10-26 上海浦景化工技术有限公司 草酸烷基酯加氢合成乙二醇用复合载体催化剂及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199479A (en) * 1978-02-24 1980-04-22 Chevron Research Company Hydrogenation catalyst
GB8717989D0 (en) * 1987-07-29 1987-09-03 Davy Mckee Ltd Catalyst
JP3339655B2 (ja) * 1993-10-04 2002-10-28 花王株式会社 水素化反応用触媒前駆体、その製造法、及びアルコールの製造法
CN101856615B (zh) * 2010-06-04 2012-08-22 天津大学 用于草酸酯加氢制乙二醇的催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751005A (en) * 1986-08-22 1988-06-14 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for treatment of waste water
CN101342489A (zh) * 2007-07-12 2009-01-14 上海焦化有限公司 一种加氢反应催化剂及其制备方法和应用
CN101485984A (zh) * 2009-02-11 2009-07-22 中国科学院山西煤炭化学研究所 一种co低温氧化催化剂及其制备方法
CN101829579A (zh) * 2010-05-25 2010-09-15 上海应用技术学院 负载氧化铜的铈锆复合氧化物催化剂的制备方法及其应用
CN102225338A (zh) * 2011-04-29 2011-10-26 上海浦景化工技术有限公司 草酸烷基酯加氢合成乙二醇用复合载体催化剂及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEKIZAWA, K. ET AL.: 'Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides' APPLIED CATALYSIS A: GENERAL vol. 169, 1998, pages 291 - 297 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112898124A (zh) * 2019-12-03 2021-06-04 天津普莱化工技术有限公司 一种对苯二甲醇和对甲基苯甲醇的联产制备方法
CN112898124B (zh) * 2019-12-03 2023-02-03 天津普莱化工技术有限公司 一种对苯二甲醇和对甲基苯甲醇的联产制备方法
CN111790390A (zh) * 2020-06-18 2020-10-20 北京化工大学 一种具有界面协同作用的铜基催化剂的制备方法及其应用
CN114054022A (zh) * 2021-12-14 2022-02-18 河南能源化工集团研究总院有限公司 一种催化剂、制备方法及应用
CN116459846A (zh) * 2023-05-09 2023-07-21 中国科学院兰州化学物理研究所 一种羟基酯加氢纳米Cu基催化剂及其制备方法与应用
CN116459846B (zh) * 2023-05-09 2024-03-26 中国科学院兰州化学物理研究所 一种羟基酯加氢纳米Cu基催化剂及其制备方法与应用

Also Published As

Publication number Publication date
JP2014517765A (ja) 2014-07-24
CN102225338B (zh) 2013-04-24
CN102225338A (zh) 2011-10-26
WO2012146135A3 (zh) 2012-11-22

Similar Documents

Publication Publication Date Title
WO2012146135A2 (zh) 草酸烷基酯加氢合成乙二醇用复合载体催化剂及制备方法
JP6304830B2 (ja) 流動層反応器に使用されるブテンの酸化脱水素によるブタジエン製造用触媒およびその製造方法と用途
CN101879448B (zh) 用于草酸酯加氢制乙二醇的规整结构催化剂及其制备方法
CN100409943C (zh) 一种化学置换法制备纳米贵金属加氢催化剂的方法及应用
CN109420498B (zh) 草酸烷基酯加氢合成乙二醇用高导热性催化剂及其制备方法
CN101584986A (zh) 一种合成甲醇催化剂的制备方法
CN102040505B (zh) 由不饱和醛氧化制不饱和酸的方法
CN106607036B (zh) 草酸酯加氢催化剂、制备方法及用途
CN104475138A (zh) 一种合成丙烯酸(酯)的钒磷锆钛复合氧化物催化剂及其制备方法和应用
CN103769149A (zh) 由丙烯醛氧化制备丙烯酸的催化剂、制备方法及其用途
CN108722408B (zh) 一种草酸二甲酯气相加氢合成乙二醇的催化剂及其制备方法
CN101704805B (zh) 一种丁二酸二甲酯催化加氢制备γ-丁内酯的方法
CN101947455A (zh) 顺酐加氢和1,4-丁二醇脱氢耦合制γ-丁内酯催化剂和制备方法及其用途
WO2012065326A1 (zh) 一种助剂改性的二氧化碳催化加氢制甲醇的催化剂及制备方法
EP2915582B1 (en) Composite oxide, preparation method for same, and application thereof
AU2019323492B2 (en) Catalyst used for producing methyl glycolate and preparation method and application thereof
WO2011150834A1 (zh) 用于co气相偶联合成草酸酯的规整催化剂及其制备方法与应用
WO2012113267A1 (zh) 草酸酯通过流化床催化反应生产乙二醇的方法
CN111229247B (zh) 一种用于草酸酯加氢制乙醇的催化剂及其制备方法和应用
CN109603837B (zh) 一种用于糠醛液相加氢的Cu/Ce/Co催化剂的制备方法
CN109569621B (zh) 催化剂组合物、制造方法及其用途
CN114804997B (zh) 环己基苯的制备方法及相应的金属催化剂
CN104415783B (zh) 一种二甲醚氧化脱氢制备环氧乙烷的催化剂和制备方法及应用
CN103521235A (zh) 由丙烯醛氧化制备丙烯酸催化剂及其制备方法
CN114436770A (zh) 环己烷二甲酸二元酯加氢制环己烷二甲醇的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776809

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase in:

Ref document number: 2014506739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/01/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12776809

Country of ref document: EP

Kind code of ref document: A2