WO2012145895A1 - Cigs太阳能光电四元溅镀靶材的制备方法、其与靶背板的结合方法及其补料方法 - Google Patents

Cigs太阳能光电四元溅镀靶材的制备方法、其与靶背板的结合方法及其补料方法 Download PDF

Info

Publication number
WO2012145895A1
WO2012145895A1 PCT/CN2011/073311 CN2011073311W WO2012145895A1 WO 2012145895 A1 WO2012145895 A1 WO 2012145895A1 CN 2011073311 W CN2011073311 W CN 2011073311W WO 2012145895 A1 WO2012145895 A1 WO 2012145895A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
copper
mold
material powder
powder
Prior art date
Application number
PCT/CN2011/073311
Other languages
English (en)
French (fr)
Inventor
张升常
Original Assignee
Chang Sheng-Chang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chang Sheng-Chang filed Critical Chang Sheng-Chang
Priority to PCT/CN2011/073311 priority Critical patent/WO2012145895A1/zh
Publication of WO2012145895A1 publication Critical patent/WO2012145895A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the invention relates to a CIGS solar photovoltaic quaternary sputtering target, a preparation method thereof, a method for combining the same with a target back plate and a feeding method thereof, in particular, a copper Cu, an indium In, a gallium Ga and a selenium Se are classified and modulated into
  • the material powder is processed, and the processed material powder is filled in the mold, and the CIGS target can be rapidly formed by a general heating and heating and melting process, and the target is molded and combined with the target back plate, and the target material is fed. , to achieve a greatly simplified processing procedures, and to reduce costs.
  • the current known copper indium gallium selenide CIGS thin film solar cell its basic structure is shown in Figure 11, mainly using CIGS semiconductor film as a light absorbing layer for solar photoelectric conversion, it has been confirmed that its photoelectric conversion efficiency is thin film solar energy.
  • the battery is the most efficient, so the industry has been actively involved in the development of related manufacturing technologies and equipment for copper indium gallium selenide CIGS thin film solar cells.
  • the existing CIGS thin film solar cell mass production technology can be divided into two categories according to the process technology, one is to use the vacuum sputtering process or the evaporation process to make the CIGS film light absorbing layer, and the other is the non-vacuum process technology (such as electroplating). Or printing film forming technology).
  • the conventional method for manufacturing a CIGS-based target is a co-sputtering method as disclosed in U.S. Patent Publication No. 2005/0109293, or a powder metallurgy method as disclosed in Taiwan Patent No. 200932933, wherein the powder metallurgy method must first A method of preparing a CIGS-based material powder and a method of preparing a CIGS-based material powder by Solvothermal Synthesis, or a method of chemical reflux synthesis such as Taiwan Publication No. 200932679 and No. 200932933.
  • the aforementioned conventional target manufacturing techniques are extremely complicated in terms of the process of the target material, which takes a lot of man-hours and has a problem of serious contamination of the solvent.
  • the target in order to facilitate the sputtering process, the target must be bonded to the target backing plate, and the target can be mounted in the reaction chamber of the sputtering apparatus by the structure of the target backing plate.
  • the target and the target backing plate are respectively formed, and then the target and the target backing plate are joined by using soft ⁇ , hard ⁇ , diffusion bonding or epoxy adhesive bonding technology, or It is like U.S. No. 5,230,459.
  • the technique disclosed in the Patent No. 287125 is to form a rough surface on the surface of the target backing plate, and after the target is pasted, the target and the target back are made by heating the target and hot-melt into the rough surface. Board combination.
  • the target backing plate can be integrally formed in the target forming process, and the solidity of the target and the target backing plate can be effectively improved.
  • Taiwan Patent No. 483937 Since the conventional target and the target backing plate are respectively formed and then joined by the joining technique, in order to be recycled and reused, the target and the target backing plate must be separated first, and then the target is cleaned and then melted and recast. The target backing plate must be thoroughly cleaned, and then the recast target and the target backing plate are rejoined by the above-mentioned joining technique, and the entire processing flow is extremely complicated, which takes a lot of labor and greatly increases the cost. In the technique of the present invention, a portion of the vacant portion formed after the target material is sputtered can be replenished and reused.
  • a first object of the present invention is to provide a method for easily and rapidly producing a purified CIGS quaternary sputtering target comprising elements such as copper Cu, indium In, gallium Ga and selenium Se.
  • the present invention : (i) preparing copper/indium alloy powder by mixing copper and indium with a plurality of procedures of vacuum hot-melting, pressurizing, cooling, and grinding into powder; (ii) Copper and gallium are mixed with each other, and a copper/gallium alloy powder is prepared by a plurality of procedures of vacuum hot melting, pressurization, cooling, and grinding into powder; (iii) Selenium Se powder is prepared.
  • Rapid prototyping includes targets with copper Cu, indium In, gallium Ga, and selenium Se elements, or the mold is placed in a vacuum chamber, and the rapid prototyping includes copper by a general heating and heating process.
  • a method for manufacturing a CIGS quaternary sputtering target comprising the steps of:
  • processing material powder mixture comprising copper Cu, indium In, gallium Ga and selenium Se;
  • the step of preparing the processed material powder includes:
  • the mold includes an aluminum target backing plate as a master mold, a frame mold surrounding the top surface of the target backing plate, and a male mold, and the target backing plate is fixed on a base.
  • the bottom surface of the male mold has a mold core, and the contour shape of the mold core is matched with the frame opening of the frame mold, and the target back plate and the frame mold enclose a molding cavity for the molding die.
  • the hole is filled with the processed material powder.
  • the top surface of the aluminum target back plate is provided with a groove, the groove is a part of the molding cavity, the groove includes a wall surface and a bottom, and the bottom portion is provided with a first rough structure.
  • the wall surface is provided with a second roughness structure.
  • the groove has a depth of 2 to 3 mm.
  • the first rough structure includes a plurality of longitudinal slots and a plurality of transverse slots arranged in a staggered manner, and the second roughness is a groove surrounded by a contour of the groove, the groove is located The wall of the groove meets the bottom.
  • the slots have a depth of 2 to 3 mm and a width of about 5 mm, and the spacing of the two adjacent slots is about 15 mm.
  • a second object of the present invention is to provide a purified CIGS quaternary sputtering target comprising elements such as copper Cu, indium In, gallium Ga, and selenium Se, which can be easily and quickly produced, and which is obtained while forming a target.
  • the target backsheet is integrated into one.
  • the present invention utilizes the above-mentioned processed material powder, together with the specially selected target backing plate material and the structural design of the target back plate, and the top surface of the target backing plate carrying the target is used as a part of the cavity of the mold. After the process material is subjected to the procedures of hot melt, pressurization and cooling, the target material can be formed and directly integrated with the target back plate.
  • a method of forming a CIGS quaternary sputtering target and simultaneously bonding with a target backing plate comprising the steps of:
  • the mold comprising an aluminum target backing plate as a master mold, a frame mold surrounding the top surface of the target backing plate, and a male mold.
  • the target back plate is fixed to a bottom surface of the target backing plate is provided with a groove, the groove includes a bottom portion and a wall surface, the bottom portion is provided with a first rough structure, and the wall surface is provided with a second rough structure,
  • the bottom surface of the mold has a mold core, and the contour shape of the mold core cooperates with the frame opening of the frame mold, and the groove of the target back plate and the frame mold enclose a molding cavity for the molding cavity Filling in the processed material powder, heating the processed material powder to a melting point temperature of selenium, and pressurizing, so that copper, gallium, indium and selenium are uniformly combined and bonded together and cooled after being joined to the back sheet;
  • the step of preparing the processed material powder is as described above.
  • the pressurization procedure in the (bl) step can be repeated a plurality of times.
  • the groove has a depth of 2 to 3 mm.
  • the first rough structure includes a plurality of longitudinal slots and a plurality of transverse slots arranged in a staggered manner, and the second roughness is a groove surrounded by a contour of the groove, the groove is located The wall of the groove meets the bottom.
  • the slots have a depth of 2 to 3 mm and a width of about 5 mm, and the spacing of the two adjacent slots is about 15 mm.
  • the mold in the step (b1), may be placed in a vacuum chamber for heating and pressurization.
  • a third object of the present invention is to provide a purified CIGS quaternary sputtering target which can easily and quickly produce elements including copper Cu, indium In, gallium Ga and selenium Se, and to make the used target simple.
  • the program can replenish the material to the desired size and shape for continued use.
  • the present invention utilizes the above-mentioned processed material powder, and the principle of the above second object, after cleaning the target used and incorporating the target backing plate, adding it to the mold, and filling the processed material powder into the mold.
  • the vacant part of the hole, after hot melting, pressurization and cooling procedures, or after the mold is placed in the vacuum chamber through the process of hot melt, pressurization and cooling, the target can be replenished to the required size. , continue to use.
  • a method for supplementing a CIGS quaternary sputtering target comprising the steps of: (a) preparing a processing material powder, the processing material powder mixture comprising copper Cu, indium In, gallium Ga, and selenium Se;
  • the mold including a master mold An aluminum backing plate, a frame mold surrounding the top surface of the target backing plate and a male die, the target backing plate is fixed on a base, and a top surface of the target backing plate is provided with a groove, a bottom of the groove is provided with a rough structure, and the bottom of the male mold
  • the mask has a mold core, and the contour shape of the mold core cooperates with the frame opening of the frame mold, and the groove of the target back plate and the frame mold enclose a molding cavity for filling the molding cavity Into the processed material powder, heating the processed material powder to at least the melting point temperature of selenium, and pressurizing, so that copper, gallium, indium and selenium are uniformly combined and bonded together and fused with the remaining target Cooling; and
  • the step of preparing the processed material powder is as described above.
  • the pressurization procedure in the (b2) step can be repeated a plurality of times.
  • the mold in the step (b2), may be placed in a vacuum chamber for heating and pressurization.
  • 1 is a schematic view showing the preparation process of the processed material powder of the present invention
  • FIG. 2 is a schematic view showing a first process embodiment of the target of the present invention
  • FIG. 3 is a schematic view of a target material obtained by the first process embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a target backing plate used in a second process embodiment of the present invention.
  • Figure 5 is a schematic view of a mold used in a second process embodiment of the present invention.
  • Figure 6 is an enlarged schematic view of the circle taken from the A-A circle in Figure 5;
  • FIG. 7 is a schematic flow chart of a second process embodiment of the present invention.
  • Figure 8 is a schematic view of a target made by the second process embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of a third process embodiment of the present invention.
  • Figure 10 is a schematic view of a target made by a third process embodiment of the present invention.
  • FIG. 11 is a schematic structural view of a conventional CIGS type thin film solar cell.
  • Annex I is a photograph of the actual finished product of the target incorporating the target backing plate of the present invention.
  • a method of fabricating a CIGS quaternary sputtering target comprising copper Cu, indium In, gallium Ga, and selenium Se elements it is prepared into a powder by pre-classification and formulation using a special material formulation as described below. Then, the powders of the respective classifications are thoroughly mixed into a powder of the molding processing material, and the powder of the processing material is directly filled in the mold, or the mold can be placed in the vacuum chamber, and then heated and heated by a general heating process. Rapid prototyping of targets including copper Cu, indium In, gallium Ga and selenium Se greatly simplifies the processing and reduces costs.
  • the target backing plate is integrated with the target backing plate while forming the target material.
  • It uses the above-mentioned processing material powder, and the specially selected target backing plate material and the structural design of the target back plate, and carries the target backing plate.
  • the top surface of the target is used as a part of the cavity of the mold, and the powder of the processing material is filled into the cavity of the mold, and the mold can be placed in the vacuum chamber, after the process of hot melt, pressurization and cooling,
  • the processing material powder is used to form the target in the cavity, and the target can be directly integrated with the target back plate, which greatly simplifies the processing procedure.
  • the used target can be used continuously through the supplemental material: it utilizes the above-mentioned processed material powder, and the principle of the second feature described above, to clean the target that has been used in combination with the target backing plate. After that, it is added to the mold, and the processed material powder is filled into the vacant part of the cavity, and the mold can be placed in the vacuum chamber, and then subjected to the procedures of hot melt, pressurization and cooling, the target can be made.
  • the size is added to the required size, greatly simplifying the process of recycling.
  • the present invention is specifically developed for a CIGS quaternary sputtering target comprising elements such as copper Cu, indium In, gallium Ga, and selenium Se.
  • the quaternary sputtering target is for sputtering.
  • the conventional CIGS-based target is mainly represented by the foregoing description in the background of the present specification, a compound of the foregoing element is mainly used, and a CIGS-based target is formed by a complicated chemical reaction, resulting in a manufacturing cost thereof. Significantly improved.
  • the inventors studied directly molding a material powder by hot melt and pressurization, thereby greatly simplifying the process and reducing the cost. After a long period of research, experimentation and development, the research and development results of the present invention are finally obtained.
  • indium In or gallium Ga is directly mixed with selenium Se, and when it melts, it will produce a violent reaction. When the amount is large, it will explode and produce highly toxic, and because the melting point of gallium is extremely low, the temperature in the general processing environment It is not easy to prepare into a powder. In order to overcome and solve the aforementioned problems, it is possible to implement the powder forming of the composite target by powder processing.
  • the inventors designed: (i) preparing a copper/gallium alloy powder by mixing copper and indium with a plurality of procedures of vacuum hot-melting, pressurizing, cooling, and grinding into powder; (ii) mutualizing copper and gallium Mixing, preparing a copper/gallium alloy powder by a plurality of procedures of vacuum hot melt, pressurization, cooling and grinding into powder; (iii) preparing a selenium Se powder. Then, the copper/indium alloy powder, the copper/gallium alloy material and the selenium material powder are thoroughly mixed to prepare a processed material powder, and the processed material powder, after the experiment, does not cause the problem of highly toxic and explosive, and It can be used for hot melt molding of target.
  • a method of manufacturing a CIGS quaternary sputtering target of the present invention includes the following steps: (a) Preparation of four element materials such as copper Cu, indium In, gallium Ga, and selenium Se.
  • step (dl) placing the processed material powder 40 into the cavity 51 of the mold 50, heating the processed material powder 40 to the melting point temperature of the selenium, and pressurizing the copper, indium, gallium and the processed material powder 40
  • the selenium is uniformly combined and bonded together and then cooled, wherein the pressurizing action in the step (dl) can be repeated to make the mixing more uniform and dense.
  • the mold 50 is removed, that is, the manufacture of the strip-shaped target 60 is completed, and the target 60 is made of copper Cu, indium In, gallium Ga, and selenium Se.
  • the processed material powder 40 is placed in the cavity 51 of the mold 50, and the processed material powder 40 is heated to a melting point temperature of about 217 ° C of the selenium, and the male mold 54 of the mold 50 is advanced. After pressing for three times, after cooling, the mold is removed, and the 1400*120*7mm strip-shaped target is completed, and the target contains copper Cu, indium In, gallium Ga, and selenium Se, and the target The molar ratio of copper, gallium, indium and selenium is approximately 1:0.7:0.3:2.
  • the aforementioned molar ratio is not the focus of the present invention, and the ratio of the molar number can be determined according to the needs of the user in the sputtering process for solar power generation efficiency and cost.
  • the weight ratio of each material in the aforementioned powder is adjusted, and the heat treatment with selenization function can be further transmitted to improve the solar photoelectric conversion efficiency.
  • the target material developed by the present invention as described above is a CIGS quaternary sputtering target including elements such as copper Cu, indium In, gallium Ga, and selenium Se.
  • a CIS system or a CIGS-based target in the prior art or His target must be bonded to the target backing plate for sputtering.
  • the target and the target backing plate are separately formed, and then the target is bonded to the target backing plate, for example, the patent application mentioned in the foregoing background.
  • indirect materials must be utilized, and the target material is bonded to the target back plate by indirect material thermal fusion, for example, a CIS system or a CIGS-based target, in which indium is interposed between the target and the target back plate.
  • the indium is thermally melted to bond the target to the target back sheet.
  • the interposed indium causes uneven distribution, so that the target cannot be firmly and effectively bonded to the target back sheet.
  • the selenium powder and the copper target backing plate where the target backing plate meets the target after hot melting and cooling are used.
  • the combined copper-selenium alloy is powdered, so that the target cannot be reliably bonded to the target backing plate.
  • the inventors have studied that, while molding a powder of a material to be molded by hot-melting and pressurization, an aluminum target backing plate is particularly used, and an aluminum target backing plate is used as a part of the mold to make the target Direct molding on the target backing plate allows the target of the present invention to be directly bonded to the target backsheet, greatly simplifying the process of combining the two, and since the selenium powder is only combined with copper, indium and gallium at low temperatures, It will be combined with aluminum, so that the formation of powder at the joint between the target and the target backing plate can be avoided, so that the target and the target backing plate can be firmly bonded, and the precision and firmness of the combination can be ensured.
  • the inventor has designed the target back plate as a part of the mold, and the powder of the processing material prepared by thoroughly mixing the copper/indium alloy powder, the copper/gallium alloy material and the selenium material powder is filled into the mold, and the general heat is melted. , pressurization and cooling procedures, the target can be formed, and the target can be directly bonded to the target back plate, the overall process is simplified, no need to use indirect materials, and the technology for molding the material of the CIGS system into a target
  • the target back plate used in the invention is made of aluminum material, and the selenium powder does not combine with aluminum at a low temperature, so that the powder at the joint between the target and the target back plate can be avoided, and the target composition can be ensured. High precision and strong bonding with the target back plate to completely solve the above problems.
  • a specific embodiment of the method for fabricating the CIGS quaternary sputtering target of the present invention in combination with the target backsheet includes the following steps:
  • the copper Cu and the indium In are uniformly mixed with each other, and the copper/indium Culn alloy material powder 10 is prepared by a plurality of procedures of vacuum hot-melt, pressurization, cooling, and grinding into powder; Uniformly mixed with each other, prepared by multiple cycles of vacuum hot melt, pressurization, cooling and grinding into powder
  • the selenium Se solid 30 is ground into a powder 31.
  • the processed material powder 40 is placed in a mold 50, which includes an aluminum target backing plate 52 as a master mold, a frame mold 53 framed on the top surface of the target backing plate 52, and a male mold 54.
  • the target back plate 52 is fixed on a base 55.
  • the top surface of the target back plate 52 is provided with a recess 520.
  • the bottom of the recess 520 is provided with a rough structure 521.
  • the bottom surface of the male mold 54 has a mold core 540, and the shape of the mold core 540 Cooperating with the frame opening 530 of the frame mold 53, the groove 520 of the target backing plate 52 and the frame mold 53 enclose a molding cavity 51, and the processing material powder 40 is filled in the molding cavity 51, or the mold 50 can be placed.
  • the processed material powder 40 in the cavity 51 is heated to at least the melting point temperature of the selenium, and is pressurized a plurality of times to homogenize and bond the copper, gallium, indium and selenium to form the target 60. At the same time, it is combined with the target backing plate 52 and cooled.
  • the male mold 54, the frame mold 53, and the base 55 are removed, that is, the process of forming the target material simultaneously with the target backing plate 52 is completed, and the target material 60 is made of copper Cu, indium In, gallium Ga, and selenium. Se is formed and bonded to the aluminum target backing plate 52.
  • FIG. 1 and FIG. 4 to FIG. 8 an experimental example of a method for manufacturing a CIGS quaternary sputtering target and a target back sheet according to the present invention, wherein 44.48 parts by weight of copper Cu and 80.37 parts by weight of indium In powder are uniformly mixed with each other.
  • a copper/indium Culn alloy material powder 10 having a particle diameter of about 74 ⁇ m is prepared by a plurality of vacuum hot melt, pressurization, cooling, and grinding.
  • a mold is prepared, which comprises a 1450*180*10mm aluminum target backing plate 52 as a female mold, a frame mold 53 surrounding the top surface of the target backing plate 52, and a male mold 54; the target backing plate 52 It is fixed on a base 55, and a top surface thereof is provided with a groove 520 having a depth of 2 mm (the depth can be generally 2 ⁇ 3 mm), and the bottom portion 520a of the groove 520 is provided with a first rough structure 521, the first rough
  • the structure 521 includes a plurality of longitudinal slots 522 and a plurality of transverse slots 523 arranged in a staggered manner, the slots 522 / 523 having a depth of 3 mm (typically a depth range of 2 to 3 mm), a width of about 5 mm, and The spacing between two adjacent slots 522/523 is about 15 mm (the depth range can be 15-20 mm, and the wall surface 520b of the recess 520 is provided with a second roughness 524, the second rough
  • the groove 525 is located at the intersection of the wall surface 520b of the groove 520 and the bottom portion 520a.
  • the groove 525 in the example of FIG. 6 has a V-shaped cross section;
  • the bottom surface of the male mold 54 has a mold core 540.
  • the contour of the mold core 540 is matched with the frame opening 530 of the frame mold 53, and the groove 520 and the frame mold 53 of the target back plate 52 enclose a molding cavity 51.
  • the processed material powder 40 is placed in the cavity 51 of the mold 50, and the processed material powder 40 is heated to the melting point temperature of the selenium.
  • the male mold 54 of the mold 50 is fed three times. After cooling, the male mold 54 and the frame are removed.
  • the mold 53 that is, the process of forming the 1400*120*7mm strip-shaped target 60 and simultaneously bonding with the aluminum target backing plate 52 as a master mold, the finished product is shown in FIG. 8 and the attached object, and the target 60
  • the elements include copper Cu, indium In, gallium Ga, and selenium Se, and the molar ratio of copper, indium, gallium, and selenium of the target 60 is 1:0.7:0.3:2. It is emphasized here that the aforementioned molar ratio is not the focus of the present invention, and the ratio of the molar number can be determined according to the needs of the user in the sputtering process for solar power generation efficiency and cost. The weight ratio of each material in the aforementioned formulated powder is adjusted.
  • the bottom and the side walls of the groove of the target back plate are each provided with a rough structure, and the processed material powder is not only effectively filled into the rough structure, but can be effectively combined with these rough structures after cooling and hardening, so Significantly improve the firmness of the bond.
  • the target material developed by the present invention as described above is a CIGS quaternary sputtering target comprising elements such as copper Cu, indium In, gallium Ga, and selenium Se.
  • the target must be bonded to the target backing plate to be attached to the reaction chamber of the sputtering apparatus for sputtering, and used. Thereafter, the remaining target must be removed from the target backing plate, and a new target is attached to the original target backing plate, such as the technique disclosed in the aforementioned patent application.
  • the remaining target material is removed from the target backing plate, the intermediate bonding material on the target backing plate is removed, and the new target material is joined, and the overall procedure is complicated, and the working time is increased, and the remaining target processing and reuse is extremely difficult. And the above problems still occur when joining. Therefore, the inventors have studied that it is not necessary to detach the target from the target backing plate, but after cleaning it, it is directly placed in the mold, and the processed material powder is filled, as in the above-described processing process of the present invention, by hot melt and pressure. And cooling, the remaining target can be filled with materials to form a complete target, which can achieve rapid recycling and reuse.
  • the inventors specially formulated the processed material powder, so that the CIGS quaternary sputtering target can be directly molded, and the target back plate is designed as a part of the mold, so that the remaining target is only required Join the mold along with the target backing plate, fill in the cavity
  • the material powder through the general hot melt, pressurization and cooling process, can make the target complete and still keep in combination with the target back plate, which greatly simplifies the process and can completely solve the above problems.
  • the method for recovering and replenishing the CIGS quaternary sputtering target of the present invention mainly comprises the following steps:
  • a used CIGS target 61 bonded to a target backing plate 52 is cleaned and placed in a mold 50, and the processed material powder 40 is placed in a mold 50, the mold 50 including as a mother
  • the back plate 52 of the die, a frame die 53 surrounding the top surface of the target back plate 52, and a male die 54 are fixed on a base 55.
  • the top surface of the target back plate 52 is provided with a recess 520.
  • the bottom of the groove 520 is provided with a rough structure 521, and the bottom surface of the male mold 54 has a mold core 540.
  • the contour of the mold core 540 is matched with the frame opening 530 of the frame mold 53, and the groove 520 and the frame mold 53 of the target back plate 52 are enclosed.
  • a molding cavity 51 is filled with the processing material powder 40 in the molding cavity 51, and the processing material powder 40 is heated to the melting point temperature of the selenium, and is pressurized a plurality of times to uniformly bond the copper, indium, gallium and selenium. After integration, it is fused with the remaining target and cooled.
  • the CIGS quaternary sputtering target of the present invention is used for recycling and reusing, and 44.48 parts by weight of copper Cu and 80.37 parts by weight of indium are uniformly mixed with each other.
  • a copper/indium Culn alloy material powder 10 having a particle diameter of about 74 ⁇ m was prepared by a procedure of vacuum hot melt, pressurization, cooling, and grinding into a powder.
  • a copper/gallium CuGa alloy having a particle diameter of about 74 ⁇ m was prepared by uniformly mixing 0.96 parts by weight of copper Cul with 20.92 parts by weight of gallium Ga, and performing multiple procedures of vacuum hot melt, pressurization, cooling, and grinding into powder.
  • Material powder 20. 100 parts by weight of copper/indium Culn alloy powder 10, 100 parts by weight of copper/gallium CuGa alloy powder 20 and 157.92 parts by weight of selenium Se material powder 31 were sufficiently mixed to prepare a processed material powder 40.
  • a mold 50 comprising a frame mold 53 and a male mold 54; and combining the remaining
  • the target backing plate 52 of the target 61 is used as a master mold, and the target backing plate 52 is fixed on a base 55.
  • the bottom surface of the male mold 54 has a mold core 540, and the contour of the mold core 540 is matched with the frame opening 530 of the frame mold 53.
  • the material 61, the target backing plate 52 and the frame mold 53 enclose a molding cavity 51.
  • the processed material powder 40 is placed in the molding cavity 51, and the processed material powder 40 is heated to the melting point temperature of the selenium.
  • the male mold 54 of the mold 50 is once pressurized, cooled, and then heated again to the melting point temperature of the selenium, and
  • the control male mold 54 is again fed once and pressurized, and after cooling, the male mold 54 and the frame mold 53 are removed, that is, the process of filling the target material 61 to a strip shape of a desired specification is completed, and the target includes Copper Cu, indium In, gallium Ga and selenium Se, and the molar ratio of copper, indium, gallium and selenium of the target is 1:0.7:0.3:2, so it can control the composition of the original remaining target and Mo
  • the number of ears is the same, and the target 61 is still firmly bonded to the target backing plate 52 and can be used continuously.
  • the invention is firstly classified into copper/indium alloy powder and copper/gallium alloy powder, and then they are prepared into processed powder with selenium powder, which can solve the difficulty of directly mixing selenium with gallium or indium and produce highly toxic or explosive.
  • the problem is that the molded CIGS quaternary sputtering target can be directly implemented by hot melt and pressurization of the material powder, thereby greatly simplifying the process and reducing the cost.
  • the present invention can directly form a target CIGS quaternary sputtering target by hot melt and pressurization of the material powder, and design the target back plate as a part of the mold. While the material powder is hot-melt-molded in the mold, the target is directly bonded to the target backing plate, which greatly simplifies the process and reduces the cost, and improves the bonding stability by the conventional bonding method, especially in the United States.
  • the patent No. 230,459 has a rough structure, it is still a technique of separately forming a target and a target backing plate, and then thermally bonding the target to the target backing plate, thereby improving the bonding of the target and the target backing plate. The firmness.
  • the CIGS quaternary sputtering target can be directly molded by hot melt and pressurization of the material powder, and the target and the target backing plate are designed as part of the mold.
  • the processing material powder is filled in the cavity, and the target is filled by the general hot melt, pressurization and cooling procedures, and the target is still filled.
  • the backsheet remains bonded, greatly simplifying the recycling process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Description

CIGS太阳能光电四元溅镀靶材的制备方法、 其与靶背板的结合方法及其补料方法
技术领域
本发明涉及一种 CIGS太阳能光电四元溅镀靶材、 其制法、 其与靶背板 结合方法及其补料方法, 尤指一种铜 Cu、 铟 In、 镓 Ga及硒 Se分类调制成 加工材料粉末, 将加工材料粉末填充于模具内, 藉由一般的加热升温热融及 加压程序, 即可快速成型 CIGS靶材, 靶材成型同时与靶背板结合, 及对靶 材补料, 而达到大幅简化加工程序, 及降低成本的目的。
背景技术
按目前所知铜铟镓硒 CIGS型薄膜太阳能电池, 其基本结构如图 11所 示, 主要利用 CIGS半导体薄膜做为光吸收层, 以进行太阳光电转换, 已被 证实其光电转换效率是薄膜太阳能电池中效率最高, 因而业界已竞相积极投 入铜铟镓硒 CIGS 型薄膜太阳能电池的相关制造技术及设备的研发。 现有 CIGS薄膜太阳能电池量产技术, 可依制程技术概分为二类, 一类为利用真 空溅镀制程或蒸镀制程制作 CIGS薄膜光吸收层, 另一类则是非真空制程技 术 (如电镀或印刷成膜技术)。
目前所知的溅镀制程中有二: 1)先以溅镀设备进行金属或合金薄膜镀 膜, 再利用硒化方式将金属或合金薄膜硒化形成 CIGS薄膜光吸收层, 但其 光电转换效率较差; 2)采用 CIGS系靶材配合溅镀设备, 直接在基板上溅镀 以形成 CIGS薄膜光吸收层, 因具有较佳的光电转换效率而为业界积极竞相 投入研发。 其中, CIGS 系靶材常见使用的材料有 CuInxGa^SySe^及 CuInxAl1-xSySe2-y,例如台湾公开第 200932933号及美国公开第 2005/0109293 号专利案中所揭示的材料。 再者, 习知 CIGS系靶材的制造方法有如美国公 开第 2005/0109293号专利案的共溅镀法, 或如台湾公开第 200932933号专 利案的粉末治金法,其中粉末治金法须先制备 CIGS系材料粉末,而其 CIGS 系材料粉末制备的技术溶剂热合成法 (Solvothermal synthesis),或由如台湾公 开第 200932679 号及第 200932933 号化学湿式合成法 (chemical reflux synthesis method) 所制得。 然而, 该等前述习知靶材制造技术, 在靶材材料 的制程方面便显得极为繁复, 花费工时, 而且有溶剂严重污染的问题。
再者, 由于为了便于溅镀制程得以进行, 靶材须与靶背板结合, 藉由靶 背板的结构而使靶材得以挂载于溅镀设备的反应室之中。而习知技术中, 都 是将靶材与靶背板分别成型后, 再利用软悍、 硬悍、 扩散接合或环氧树脂接 着剂接合技术, 而使靶材与靶背板相互接合, 或是如美国第 5,230,459号、 公湾第 287125号专利案所揭露的技术, 是在靶背板表面形成粗糙面, 将靶 材贴迭后, 藉由对靶材加热, 经热融陷入粗糙面, 而使靶材与靶背板结合。 再者, 也有一种习知 CIGS系靶材与靶背板接合技术, 系于分别成型的靶材 与靶背板之间置设一铟薄片材料,加热使铟薄片热融后而将靶材与靶背板接 合。 然而, 无论上述何种接合技术, 都是靶材与靶背板分别成型后, 再利用 上述的各种接合技术将二者接合, 造成制造程序复杂, 增加成本。 本发明的 技术中, 则在靶材成型过程中即可与靶背板一体成型, 并能有效提升靶材与 靶背板结合的牢固性。
此外, 由于靶材成本昂贵, 若于靶材使用后, 将剩余靶材丢弃, 实为浪 费。而目前习知将靶材回收再利用的方式, 有针对铝合金溅镀靶材回收的技 术被开发, 例如台湾第 483937 号专利案的技术。 由于习知靶材与靶背板系 分别成型, 再利用接合技术而使二者接合, 欲回收再利用, 便须先将靶材与 靶背板分离, 再将靶材清洁后熔解重铸, 且须将靶背板充分洗净, 而后再将 重铸的靶材与靶背板利用上述的接合技术重新接合, 整个处理流程极为繁 复, 花费工时, 大幅增加成本。 本发明的技术中, 可在靶材溅镀后消耗一部 份所形成的空缺部位进行补料, 即可再行利用。
发明内容
本发明第一目的, 在于提供一种可简便、 快速地制造包括有铜 Cu、 铟 In、 镓 Ga及硒 Se等元素的纯化 CIGS四元溅镀靶材的方法。 为实现前述 目的, 本发明: (i)将铜与铟相互混合, 经多次的真空热融、 加压、 冷却及研 磨成粉的程序, 而制备成铜 /铟合金粉末; (ii)将铜与镓相互混合, 经多次真 空热融、 加压、 冷却及研磨成粉的程序, 而制备成铜 /镓合金粉末; (iii)并备 妥硒 Se粉末。 而后, 再将铜 /铟合金粉末、 铜 /镓合金粉末及硒材料粉末充分 混合而制备成加工材料粉末, 直接将加工材料粉末填充于模具内, 藉由一般 的加热升温热融及加压程序, 快速成型包括有铜 Cu、 铟 In、 镓 Ga及硒 Se 元素的靶材, 或将模具置于真空腔体中, 再藉由一般的加热升温热融及加压 程序, 快速成型包括有铜 Cu、 铟 In、 镓 Ga及硒 Se相化合的靶材。
具体的技术方案如下:
一种 CIGS四元溅镀靶材的制造方法, 其特征在于包括有下列步骤:
(a)准备加工材料粉末, 所述加工材料粉末混合包含有铜 Cu、 铟 In、 镓 Ga及硒 Se;
(b)将所述加工材料粉末置入一模具的模穴中,对所述加工材料粉末加热 至少到硒的熔点温度, 并予以加压, 使铜、 镓、 铟及硒均匀化合而粘结一体 后再冷却; 及 (c)冷却后卸载所述模具, 即完成条块状的靶材制造, 并使所述靶材包括 有铜 Cu、 铟 In、 镓 Ga及硒 Se。
上述的制造方法中, 所述准备加工材料粉末的步骤包括:
(al)准备铜 Cu、 铟 In、 镓 Ga及硒 Se;
(a2)将铜 Cu与铟 In相互均匀混合, 经多次真空热融、 加压、 冷却及研 磨成粉的程序, 而制备成铜 /铟 Culn合金材料粉末; 将铜 Cu与镓 Ga相互均 匀混合, 经多次真空热融、 加压、 冷却及研磨成粉的程序, 而制备成铜 /镓 CuGa合金材料粉末; 备妥硒 Se粉末; 及
(a3)将所述铜 /铟 Culn合金粉末、 所述铜 /镓 CuGa合金粉末及所述硒材 料粉末充分混合而成所述加工材料粉末。
上述的制造方法中, 所述模具包括有一作为母模的铝制靶背板、一框围 在所述靶背板顶面的框模及一公模, 所述靶背板固定于一底座上, 所述公模 底面具有一模仁, 所述模仁轮廓形状与所述框模的框口相配合, 所述靶背板 及所述框模围成一成型模穴, 于所述成型模穴填入所述加工材料粉末。所述 铝制靶背板顶面设有一凹槽, 所述凹槽为所述成型模穴的一部份, 所述凹槽 包括有一壁面及一底部, 所述底部设有一第一粗糙结构, 所述壁面设有一第 二粗糙结构。 所述凹槽的深度为 2〜3mm。
所述第一粗糙结构包括有呈交错分布的复数条纵向狭槽及复数条横向 狭槽, 所述第二粗糙结构为一沿着所述凹槽的轮廓环绕的凹沟, 所述凹沟位 于所述凹槽的壁面与底部交接处。 狭槽的深度为 2〜3mm, 宽度为约 5mm, 且二相邻的所述狭槽的间隔为约 15mm。
本发明第二目的, 在于提供一种可简便、 快速地制造包括有铜 Cu、 铟 In、 镓 Ga及硒 Se等元素的纯化 CIGS四元溅镀靶材, 且在靶材成型的同时 得与靶背板结合为一体的方法。 为实现前述目的, 本发明利用上述的加工材 料粉末, 配合特别选用的靶背板材质及靶背板的结构设计, 将靶背板承载靶 材的顶面做为模具的模穴的一部份, 使加工材料粉末在经过热融、 加压及冷 却的程序后, 即可使靶材成型并直接与靶背板结合为一体。
具体的技术方案如下:
一种 CIGS四元溅镀靶材成型同时与靶背板结合的方法, 其特征在于包 括有下列步骤:
(a)准备加工材料粉末, 所述加工材料粉末混合包含有铜 Cu、 铟 In、 镓 Ga及硒 Se材料;
(bl)将所述加工材料粉末置入一模具中, 所述模具包括有一作为母模的 铝制靶背板、 一框围在所述靶背板顶面的框模及一公模, 所述靶背板固定于 一底座上, 所述靶背板顶面设有一凹槽, 所述凹槽包括有一底部及一壁面, 所述底部设有一第一粗糙结构, 所述壁面设有一第二粗糙结构, 所述公模底 面具有一模仁, 所述模仁轮廓形状与所述框模的框口相配合, 所述靶背板的 凹槽及所述框模围成一成型模穴, 于所述成型模穴填入所述加工材料粉末, 对所述加工材料粉末加热至硒的熔点温度, 并予以加压, 使铜、 镓、 铟及硒 均匀化合而粘结一体后并与背板接合后冷却; 及
(cl)冷却后卸载所述公模、 所述框模及所述底座, 即完成靶材成型同时 与所述靶背板接合的制造, 并使包括有铜 Cu、 铟 In、 镓 Ga及硒 Se元素的 所述靶材结合于所述铝制靶背板上。
上述方法中, 所述准备加工材料粉末的步骤如前所述。
上述方法中, 可重复多次 (bl)步骤中的加压程序。
上述方法中, 所述凹槽的深度为 2〜3mm。 所述第一粗糙结构包括有呈 交错分布的复数条纵向狭槽及复数条横向狭槽,所述第二粗糙结构为一沿着 所述凹槽的轮廓环绕的凹沟, 所述凹沟位于所述凹槽的壁面与底部交接处。 狭槽的深度为 2〜3mm, 宽度为约 5mm, 且二相邻的所述狭槽的间隔为约 15mm。
上述方法中, 步骤 (bl)中, 可将所述模具置于一真空腔室中进行加热及 加压。
本发明第三目的, 在于提供一种可简便、 快速地制造包括有铜 Cu、 铟 In、 镓 Ga及硒 Se等元素的纯化 CIGS四元溅镀靶材, 及令使用过的靶材经 由简单程序, 即可补充材料至原来所需规格形状, 而可供继续使用。 为实现 前述目的, 本发明利用上述的加工材料粉末, 以及上述第二目的的原理, 将 使用过且结合有靶背板的靶材清洁后, 将之加入模具, 再将加工材料粉末填 入模穴空缺的部份, 经过热融、 加压及冷却的程序, 或将模具置于真空腔体 内经热融、 加压及冷却的程序后, 即可使靶材补充至所需规格的尺寸大小, 继续供使用。
具体的技术方案如下:
一种 CIGS 四元溅镀靶材的补充方法, 其特征在于包括有下列步骤: (a)准备加工材料粉末, 所述加工材料粉末混合包含有铜 Cu、 铟 In、 镓 Ga及硒 Se;
(b2)将一使用过且仍结合有一靶背板的剩余靶材洗净,并置入一模具中, 并将所述加工材料粉末置入所述模具中,所述模具包括有一作为母模的铝制 背板、一框围在所述靶背板顶面的框模及一公模, 所述靶背板固定于一底座 上, 所述靶背板顶面设有一凹槽, 所述凹槽底部设有粗糙结构, 所述公模底 面具有一模仁, 所述模仁轮廓形状与所述框模的框口相配合, 所述靶背板的 凹槽及所述框模围成一成型模穴, 于所述成型模穴填入所述加工材料粉末, 对所述加工材料粉末加热至少到硒的熔点温度, 并予以加压, 使铜、 镓、 铟 及硒均匀化合而粘结一体后并与所述剩余靶材融合后冷却; 及
(c2)冷却后卸载所述公模、 所述框模及所述底座, 即完成所述剩余靶材 补料的制程。
上述方法中, 所述准备加工材料粉末的步骤如前所述。
上述方法中, 可重复多次 (b2)步骤中的加压程序。
上述方法中, 步骤 (b2)中, 可将所述模具置于一真空腔室中进行加热及 加压。
附图说明
图 1为本发明的加工材料粉末的制备流程示意图;
图 2为本发明的靶材的第一种制程实施例示意图;
图 3为本发明的第一种制程实施例所制得的靶材示意图;
图 4为本发明的第二种制程实施例所采用的靶背板示意图;
图 5为本发明的第二种制程实施例所采用的模具示意图;
图 6为图 5中撷取自 A-A 圆的放大示意图;
图 7为本发明的第二种制程实施例的流程示意图;
图 8为本发明的第二种制程实施例所制得的靶材示意图;
图 9为本发明的第三种制程实施例的流程示意图;
图 10为本发明的第三种制程实施例所制得的靶材示意图;
图 11为习知 CIGS 型薄膜太阳能电池结构示意图; 及
附件一为本发明结合有靶背板的靶材实际成品照片。
具体实施方式
一、 本发明的特色及原理
本发明技术的主要特点有以下三个:
第一、 是制造一种包括有铜 Cu、 铟 In、 镓 Ga及硒 Se元素的 CIGS四 元溅镀靶材的方法:其利用如下所述的特殊的材料配方预先分类调配而制成 粉末, 再将各分类粉末充分混合成成型加工材料粉末, 使其直接以加工材料 粉末填充于模具内, 或可再将模具置于真空腔体内, 再藉由一般的加热升温 热融及加压程序, 即可快速成型包括有铜 Cu、 铟 In、 镓 Ga及硒 Se元素的 靶材, 大幅简化加工程序, 及降低成本。
第二、是在靶材成型的同时得与靶背板结合为一体: 其利用上述的加工 材料粉末, 配合特别选用的靶背板材质及靶背板的结构设计, 将靶背板承载 靶材的顶面做为模具的模穴的一部份, 将加工材料粉末填入模具的模穴, 可 将模具置于真空腔室中, 经过热融、 加压及冷却的程序后, 可使加工材料粉 末在模穴中成形靶材, 同时可使靶材直接与靶背板结合为一体, 大幅简化加 工程序。
第三、则是使用过的靶材可经由补充材料而可供继续使用: 其利用上述 的加工材料粉末, 以及上述第二项特点的原理, 将使用过且结合有靶背板的 靶材清洁后, 将之加入模具, 再将加工材料粉末填入模穴空缺的部份, 并可 将模具置于真空腔体中, 再经过热融、 加压及冷却的程序后, 即可使靶材补 充至所需规格的尺寸大小, 大幅简化回收再利用的程序。
为便于审查员详细理解及本发明技术领域中熟习此技术者能据以实施, 兹将上述三项特点的具体实施例详述如后。
二、 本发明 CIGS四元溅镀靶材的制造方法
1、 开发原由
请参看图 1至 3所示, 本发明特别是针对包括有铜 Cu、 铟 In、 镓 Ga 及硒 Se等元素的 CIGS四元溅镀靶材而研发, 此四元溅镀靶材是供溅镀成 型太阳能光电薄膜之用。 由于一般习知 CIGS系靶材如本说明书中的背景所 记载的前案所示, 主要都是采用前述元素的化合物, 利用繁复的化学反应的 方式而制成 CIGS系靶材, 造成其制造成本大幅提升。 于是, 本发明人研究 直接以材料粉末经热融及加压而模制成型, 藉以大幅简化制程, 降低成本。 而经长时间的研究、 试验与开发, 终有本发明的研发成果。
2、 问题的解决
根据实验所知, 铟 In或镓 Ga直接与硒 Se混合, 至熔解时, 会产生剧 烈反应, 量大时会产生爆炸及产生剧毒, 而且由于镓的熔点极低, 在一般的 加工环境温度中不易调制成粉末。 为了克服、 解决前述的问题, 使该等元素 以粉末方式加工成型复合靶材可以付诸实现。 本发明人设计: (i)将铜与铟相 互混合, 经多次真空热融、 加压、 冷却及研磨成粉的程序, 而制备成铜 /镓 合金粉末; (ii)将铜与镓相互混合, 经多次真空热融、 加压、 冷却及研磨成 粉的程序, 而制备成铜 /镓合金粉末; (iii)并备妥硒 Se粉末。 而后, 再将铜 / 铟合金粉末、 铜 /镓合金材料及硒材料粉末充分混合而制备成加工材料粉末, 此一加工材料粉末, 经过实验后, 既不会产生剧毒及爆炸的问题, 又可供热 融加压成型靶材。
3、 具体实施例
请参看图 1至 3所示, 本发明的 CIGS 四元溅镀靶材的制造方法, 具 体实施例包括有下列步骤: (a)准备铜 Cu、 铟 In、 镓 Ga及硒 Se等四种元素材料。
(bl)将铜 Cu与铟 In相互混合, 经多次真空热融、 加压、 冷却及研磨成 粉的程序, 而制备成铜 /铟 Culn合金材料粉末 10; 将铜 Cu与镓 Ga相互混 合, 经多次真空热融、 加压、 冷却及研磨, 而制备成铜 /镓 CuGa合金材料粉 末 20; 若所准备的硒为固体, 则将硒 Se固体 30研磨成粉末 31。
(cl)将铜 /铟 Culn合金粉末 10、 铜 /镓 CuGa合金粉末 20及硒 Se材料粉 末 31充分混合而制备成加工材料粉末 40。
(dl)将该加工材料粉末 40置入模具 50的模穴 51 中, 对该加工材料粉 末 40加热至硒的熔点温度, 并予以加压, 使加工材料粉末 40中的铜、 铟、 镓及硒均匀化合而粘结成一体后再冷却, 其中, 可重复多次 (dl)步骤中的加 压动作, 以使混合更为均匀及密实。
(el)冷却后卸除该模具 50, 即完成条块状的靶材 60制造, 并使该靶材 60包含有铜 Cu、 铟 In、 镓 Ga及硒 Se。
4、 实验例
本发明 CIGS四元溅镀靶材的制造方法的实验例,取铜 Cu 44.48重量份 与铟 In 80.37重量份相互均匀混合, 经多次真空热融一加压一冷却一研磨成 粉的程序, 而制备成粒径约为 74μηι的铜 /铟 Culn合金材料粉末 10。 将铜 Cu 19.06重量份与 20.92重量份的镓 Ga相互均匀混合, 经多次真空热融一 加压一冷却一研磨成粉的程序, 而制备成粒径约为 74μηι的铜 /镓 CuGa合金 材料粉末 20。 取 100重量份的铜 /铟 Culn合金粉末 10、 100重量份的铜 /镓 CuGa合金粉末 20及 157.92重量份的硒 Se材料粉末 31充分混合而制备成 加工材料粉末 40。 请配合参看图 1至 3所示, 将该加工材料粉末 40置入模 具 50的模穴 51中, 对该加工材料粉末 40加热至约硒的熔点温度 217°C, 模具 50的公模 54进给加压三次,经冷却后,卸除模具,即完成 1400* 120*7mm 的条块状的靶材制造, 且靶材系包含有铜 Cu、 铟 In、 镓 Ga及硒 Se元素, 且靶材的铜、 镓、 铟及硒的莫耳数比约为 1:0.7:0.3:2。 在此特别强调, 前述 的莫耳数比并非为本发明所要论究的重点, 其莫耳数的比例值, 可依使用者 在溅镀制程中, 对于太阳能发电效率及成本对应考虑的需要, 来调整前述调 配粉末中各材料的重量比例, 而且也可再透过具有硒化功能的热处理, 以提 升太阳光电转换效率。
三、 本发明 CIGS四元溅镀靶材与靶背板结合的方法
1、 开发原由
如前所述本发明所研发的靶材, 为包括有铜 Cu、 铟 In、 镓 Ga及硒 Se 等元素的 CIGS四元溅镀靶材。 按习知技术中的 CIS系或 CIGS系靶材或其 他靶材, 都须与靶背板接合, 才能供溅镀之用。 而习知系先分别成型靶材与 靶背板, 再将靶材与靶背板接合, 例如前述背景所提的专利前案。 但习知技 术中, 都必须利用间接材料, 利用间接材料热融后使靶材与靶背板接合, 例 如 CIS系或 CIGS系靶材,是在靶材与靶背板之间介置铟 In薄片材料,将铟 热融后而使靶材与靶背板接合, 然而, 介置的铟会造成分布不均, 以致靶材 无法与靶背板稳固有效地接合。 此外, 若是采用铜制靶背板, 硒 Se粉末覆 于铜制靶背板的接合面时, 在热融及冷却后, 靶背板与靶材相接处的硒粉末 与铜制靶背板热融化合时, 其化合的铜硒合金会呈粉末化, 因而发生靶材无 法与靶背板确实接合的问题。 于是, 本发明人研究, 在以加工材料粉末经热 融及加压而模制成型的同时, 特别采用铝制靶背板, 将铝制靶背板作为模具 的一部份, 使靶材直接成型在靶背板上, 即可使本发明的靶材直接与靶背板 结合, 大幅简化二者结合的制程, 而且因硒粉末于低温中只会与铜、 铟、 镓 化合, 而不会与铝化合, 故可避免靶材与靶背板接合处形成粉末化的情形, 故可确保靶材与靶背板牢固结合, 而且二者结合的精确度及牢固性都可确 保。
2、 问题的解决
习知技术, 为分别成型靶材与靶背板, 再利用悍接、 扩散接合或以间接 材料而使二者接合, 制程较为繁复, 而且仍有接合不牢固的缺失, 且会造成 整个靶材材料不均匀的现象。 再者, 根据学识及本发明人试验所知, 硒粉末 填覆在铜制靶背板上, 其经热融与铜化合而于冷却后会形粉末化, 而造成靶 材与靶背板接合处粉末化, 而无法有效接合。 为了克服、 解决前述的问题。 本发明人是将靶背板设计为模具的一部份, 将铜 /铟合金粉末、 铜 /镓合金材 料及硒材料粉末充分混合所制备成的加工材料粉末填入模具, 经一般的热 融、 加压及冷却程序, 即可成型靶材, 同时使靶材直接结合于靶背板上, 整 体制程简化, 无需再使用间接材料, 而且针对 CIGS 系的加工材料粉末模制 成靶材的技术, 本发明所采用的靶背板是以铝材制成, 硒粉末于低温中不会 与铝化合, 故可避免靶材与靶背板接合处产生粉末化, 并可确保靶材成份均 匀、 精度高及与靶背板牢固结合, 进而彻底解决上述问题。
3、 具体实施例
请参看图 1及 4至 8所示, 本发明的 CIGS四元溅镀靶材与靶背板结合 的制造方法的具体实施例, 包括有下列步骤:
(a)准备铜 Cu、 铟 In、 镓 Ga及硒 Se等四种元素材料;
(b2)将铜 Cu与铟 In相互均匀混合, 经多次真空热融、 加压、 冷却及研 磨成粉的程序, 而制备成铜 /铟 Culn合金材料粉末 10; 将铜 Cu与镓 Ga相 互均匀混合, 经多次真空热融、 加压、 冷却及研磨成粉的程序, 而制备成铜
/镓 CuGa合金材料粉末 20; 若所准备的硒为固体, 则将硒 Se固体 30研磨 成粉末 31。
(c2)将铜 /铟 Culn合金粉末 10、铜 /镓 CuGa合金粉末 20 及硒 Se材料粉 末 31充分混合而制备成加工材料粉末 40。
(d2)将该加工材料粉末 40置入模具 50中,该模具 50包括有一作为母模 的铝制靶背板 52、 一框围在靶背板 52顶面的框模 53及一公模 54, 靶背板 52固定于一底座 55上, 靶背板 52顶面设有一凹槽 520, 凹槽 520底部设有 粗糙结构 521, 该公模 54底面具有一模仁 540, 模仁 540 轮廓形状与框模 53的框口 530相配合,靶背板 52的凹槽 520及框模 53围成一成型模穴 51, 于成型模穴 51填入加工材料粉末 40, 或可将模具 50置于真空腔体中, 再 对模穴 51中的加工材料粉末 40加热至少到硒的熔点温度,并予以加压多次, 使铜、 镓、 铟及硒均匀化合并粘结一体而成型靶材 60, 同时与靶背板 52结 合后冷却。
(e2)冷却后卸除公模 54、 框模 53及底座 55, 即完成靶材成型同时与靶 背板 52结合的制程, 并使该靶材 60由铜 Cu、 铟 In、 镓 Ga及硒 Se所构成 并结合于铝制靶背板 52上。
4、 实验例
请配合参看图 1及 4至 8所示, 本发明 CIGS四元溅镀靶材与靶背板结 合的制造方法的实验例, 取铜 Cu 44.48重量份与铟 In粉末 80.37重量份相 互均匀混合, 经多次真空热融、加压、冷却及研磨, 而制备成粒径约为 74μηι 的铜 /铟 Culn合金材料粉末 10。 将铜 Cu 19.06重量份与 20.92重量份的镓 Ga相互均匀混合, 经多次真空热融、 加压、 冷却及研磨成粉的程序, 而制 备成粒径约为 74μηι的铜 /镓 CuGa合金材料粉末 20。 取 100重量份的铜 /铟 Culn合金粉末 10、 100重量份的铜 /镓 CuGa合金粉末 20及 157.92重量份的 硒 Se材料粉末 31充分混合而制备成加工材料粉末 40。
备制一模具, 其包括有一 1450* 180* 10mm的且作为母模的铝制靶背板 52、 一框围在靶背板 52顶面的框模 53及一公模 54; 靶背板 52固定于一底 座 55上, 其顶面设有一深度为 2mm的凹槽 520 (—般实施的深度范围可为 2〜3mm), 凹槽 520的底部 520a设有第一粗糙结构 521, 第一粗糙结构 521 包括有呈交错分布的复数条纵向狭槽 522 及复数条横向狭槽 523, 狭槽 522/523的深度为 3mm (—般实施的深度范围可为 2〜3mm), 宽度约 5mm, 且二相邻的狭槽 522/523 的间隔约 15mm (—般实施的深度范围可为 15〜20mm), 且凹槽 520的壁面 520b设有第二粗糙结构 524, 其第二粗糙结 构 524为一沿着凹槽 520轮廓环绕的凹沟 525, 凹沟 525位于凹槽 520的壁 面 520b与底部 520a交接处, 如图 6的图示例中的凹沟 525的横断面呈 V 字形;公模 54底面具有一模仁 540,模仁 540轮廓形状与框模 53的框口 530 相配合, 靶背板 52的凹槽 520及框模 53围成一成型模穴 51。 将加工材料 粉末 40置入模具 50的模穴 51中,对加工材料粉末 40加热至硒的熔点温度, 模具 50的公模 54进给加压三次, 经冷却后, 卸除公模 54与框模 53, 即完 成 1400*120*7mm的条块状的靶材 60成型同时与做为母模的铝制靶背板 52 结合的制程, 其成品如图 8及附件一所示, 靶材 60包含有铜 Cu、 铟 In、 镓 Ga及硒 Se元素, 且靶材 60的铜、 铟、 镓及硒的莫耳数比为 1:0.7:0.3:2。 在 此再次强调, 前述的莫耳数比并非为本发明所要论究的重点, 其莫耳数的比 例值, 可依使用者在溅镀制程中, 对于太阳能发电效率及成本对应考虑的需 要, 来调整前述调配粉末中各材料的重量比例。 再者, 由于本实验例中, 靶 背板凹槽的底部及侧壁各设有粗糙结构,加工材料粉末不仅有效填入粗糙结 构中, 在冷却硬化后可与这些粗糙结构有效结合, 故可大幅地提高结合的牢 固性。
四、 本发明 CIGS四元溅镀靶材回收补料再利用的方法
1、 开发原由
如前所述本发明所研发的靶材, 为包括有铜 Cu、 铟 In、 镓 Ga及硒 Se 等元素化合的 CIGS四元溅镀靶材。 而按习知技术中的 CIS系或 CIGS系靶 材或其他靶材, 都须将靶材与靶背板接合, 才能附挂于溅镀设备的反应室中 以供溅镀之用, 而使用后则须将剩余靶材自靶背板上拆下, 再于原靶背板上 接上新的靶材,例如前述背景所提的专利前案所揭露的技术。但习知技术中, 自靶背板上拆卸剩余靶材, 清除靶背板上的中间粘接材, 再接合装新靶材, 整体程序繁复, 增加工时, 剩余靶材处理再利用也极为不易, 而且接合时仍 会产生上述的问题。 于是, 本发明人研究, 不须将靶材与靶背板拆离, 而将 之清洁后,直接置入模具中,填入加工材料粉末,如同前述本发明加工制程, 经热融、 加压及冷却, 即可使剩余靶材补上材料而成完整的靶板, 而可达到 快速回收重新利用的功效。
2、 问题的解决
习知技术, 为将剩余靶材自靶背板上拆离, 再利用间接材料于原有靶背 板上接上靶材, 造成制程繁复, 接合不牢固, 靶材材料不均匀, 及靶背板清 理与剩余靶材处理不易等缺失。 为了解决前述的问题, 本发明人特别调配的 加工材料粉末, 使 CIGS 四元溅镀靶材可直接模制成型, 而且将靶背板设 计为模具的一部份, 故只要将剩余靶材连同靶背板加入模具, 于模穴填入加 工材料粉末, 经一般的热融、 加压及冷却程序, 即可使靶材补齐, 且仍与靶 背板保持结合, 大幅简化制程, 而可彻底解决上述问题。
3、 具体实施例
请参看图 1、 9及 1 0所示, 本发明的 CIGS四元溅镀靶材回收补料再 利用的方法, 主要包括有下列步骤:
(a)准备铜 Cu、 铟 In、 镓 Ga及硒 Se等四种元素材料;
(b3)将铜 Cu与铟 In相互均匀混合, 经多次真空热融、 加压、 冷却及研 磨成粉的程序, 而制备成铜 /铟 Culn合金材料粉末 10; 将铜 Cu与镓 Ga相 互均匀混合, 经多次真空热融、 加压、 冷却及研磨成粉的程序, 而制备成铜 /镓 CuGa合金材料粉末 20; 若所准备的硒为固体, 则将硒 Se固体 30研磨 成粉末 31。
(c3)将铜 /铟 Culn合金粉末 10、 铜 /镓 CuGa合金粉末 20及硒 Se材料粉 末 31 充分混合而制备成加工材料粉末 40。
(d3)将一使用过的并结合在一靶背板 52上的 CIGS靶材 61清洁, 并置 入模具 50中, 并将加工材料粉末 40置入模具 50中, 该模具 50包括有作为 母模的该背板 52、 一框围在靶背板 52顶面的框模 53及一公模 54, 靶背板 52固定于一底座 55上, 靶背板 52顶面设有一凹槽 520, 凹槽 520底部设有 粗糙结构 521, 公模 54底面具有一模仁 540, 模仁 540轮廓形状与框模 53 的框口 530相配合, 靶背板 52的凹槽 520及框模 53围成一成型模穴 51, 于该成型模穴 51填入加工材料粉末 40, 对加工材料粉末 40加热至硒的熔 点温度, 并予以多次加压, 使铜、 铟、 镓及硒均匀化合粘结一体后并与剩余 的靶材融合后冷却。
(e3)冷却后卸除公模、 框模及底座, 即完成靶材补料成所需规格尺寸的 加工程序, 而可继续供使用。
4、 实验例
请参看图 1、 9及 1 0所示, 本发明的 CIGS四元溅镀靶材回收补料再 利用的实验例, 取铜 Cu 44.48重量份与铟 In 80.37重量份相互均匀混合, 经 多次真空热融、 加压、 冷却及研磨成粉的程序, 而制备成粒径约为 74μηι的 铜 /铟 Culn合金材料粉末 10。 将铜 Cul9.06重量份与 20.92重量份的镓 Ga 相互均匀混合, 经多次真空热融、 加压、 冷却及研磨成粉的程序, 而制备成 粒径约为 74μηι的铜 /镓 CuGa合金材料粉末 20。 取 100重量份的铜 /铟 Culn 合金粉末 10、 100重量份的铜 /镓 CuGa合金粉末 20及 157.92重量份的硒 Se 材料粉末 31充分混合而制备成加工材料粉末 40。
备制一模具 50, 其包括有一框模 53及一公模 54; 并以一结合有剩余的 靶材 61的靶背板 52作为母模, 靶背板 52固定于一底座 55上; 公模 54底 面具有一模仁 540, 模仁 540轮廓形状与框模 53的框口 530相配合, 靶材 61、 靶背板 52及框模 53围成一成型模穴 51。 将加工材料粉末 40置入成型 模穴 51中, 对加工材料粉末 40加热至硒的熔点温度, 模具 50的公模 54进 给加压一次, 冷却后, 再一次加热至硒的熔点温度, 并控制公模 54再进给 加压一次, 经冷却后, 卸除公模 54与框模 53, 即完成使靶材 61补齐至呈 所需规格的条块状的制程, 其靶材包括有铜 Cu、铟 In、镓 Ga及硒 Se元素, 且靶材的铜、 铟、 镓及硒的莫耳数比为 1:0.7:0.3:2, 故可控制与原来剩余靶 材的成份及莫耳数相同, 而且靶材 61与靶背板 52仍牢固结合, 而可继续使 用。
工业应用性
藉由上述的具体实施例及实验例的详细说明,可归纳本发明具有下列几 个主要优点:
1、 本发明系先行分类调配成铜 /铟合金粉末、 铜 /镓合金粉末, 再将它们 与硒粉末调制成加工粉末,可解决硒与镓或铟直接混合的困难及所产生剧毒 或爆炸的问题,使得直接以材料粉末经热融及加压而模制成型 CIGS四元溅 镀靶材得以付诸实行, 进而大幅简化制程及降低成本。
2、 本发明除了第 1优点所述, 可直接以材料粉末经热融及加压而模制 成型 CIGS 四元溅镀靶材之外, 又将靶背板设计为模具的一部份, 在材料 粉末于模具中热融成型靶材的同时, 靶材即直接与靶背板结合, 进而可大幅 简化制程及降低成本, 及较习用胶合方式而可提高结合牢固性, 尤其较美国 第 5,230,459号专利案虽设有粗糙结构, 但仍是分别成型靶材与靶背板后, 再将靶材与靶背板热融接合的技术, 更可提高靶材与靶背板结合的牢固性。
3、 本发明如第 2优点所述, 可直接以材料粉末经热融及加压而模制成 型 CIGS 四元溅镀靶材, 且设计靶材及靶背板为模具的一部份, 只要将剩 余靶材连同靶背板与公模、 框模结合, 于模穴填入加工材料粉末, 经一般的 热融、 加压及冷却程序, 即可使靶材补齐, 且仍与靶背板保持结合, 大幅简 化回收再利用的制程。
以上所述, 仅为本发明的可行的具体实施例, 并非用以限定本发明的专 利范围, 凡举依据下列申请专利范围所述的内容、特征以及其精神而为的其 他变化的等效实施, 皆应包含于本发明的专利保护范围内。
本发明所具体界定于申请专利范围的技术特征,未见于同类技术而具新 颖性,且较习知技术具进步性,并能供产业充分利用, 已符合发明专利要件, 故依法具文提出申请,谨请钧局依法核予专利,以维护本申请人合法的权益。

Claims

权 利 要 求 书
1、 一种 CIGS四元溅镀靶材的制造方法, 其特征在于包括有下列步骤:
(a)准备加工材料粉末, 所述加工材料粉末混合包含有铜 Cu、 铟 In、 镓 Ga及硒 Se;
(b)将所述加工材料粉末置入一模具的模穴中,对所述加工材料粉末加热 至少到硒的熔点温度, 并予以加压, 使铜、 镓、 铟及硒均匀化合而粘结一体 后再冷却; 及
(c)冷却后卸载所述模具, 即完成条块状的靶材制造, 并使所述靶材包括 有铜 Cu、 铟 In、 镓 Ga及硒 Se。
2、 如权利要求 1所述的制造方法, 其特征在于: 所述准备加工材料粉 末的步骤包括:
(al)准备铜 Cu、 铟 In、 镓 Ga及硒 Se;
(a2)将铜 Cu与铟 In相互均匀混合, 经多次真空热融、 加压、 冷却及研 磨成粉的程序, 而制备成铜 /铟 Culn合金材料粉末; 将铜 Cu与镓 Ga相互均 匀混合, 经多次真空热融、 加压、 冷却及研磨成粉的程序, 而制备成铜 /镓 CuGa合金材料粉末; 备妥硒 Se粉末; 及
(a3)将所述铜 /铟 Culn合金粉末、 所述铜 /镓 CuGa合金粉末及所述硒材 料粉末充分混合而成所述加工材料粉末。
3、 如权利要求 1所述的制造方法, 其特征在于: 可重复多次 (b)步骤的 加压程序。
4、如权利要求 1所述的制造方法, 其特征在于: 步骤 (b)的所述模具包 括有一作为母模的铝制靶背板、 一框围在所述靶背板顶面的框模及一公模, 所述靶背板固定于一底座上, 所述公模底面具有一模仁, 所述模仁轮廓形状 与所述框模的框口相配合, 所述靶背板及所述框模围成一成型模穴, 于所述 成型模穴填入所述加工材料粉末。
5、 如权利要求 4所述的制造方法, 其特征在于: 所述铝制靶背板顶面 设有一凹槽, 所述凹槽为所述成型模穴的一部份, 所述凹槽包括有一壁面及 一底部, 所述底部设有一第一粗糙结构, 所述壁面设有一第二粗糙结构。
6、 如权利要求 5 所述的制造方法, 其特征在于: 所述凹槽的深度为 2〜3mm。
7、 如权利要求 5所述的制造方法, 其特征在于: 所述第一粗糙结构包 括有呈交错分布的复数条纵向狭槽及复数条横向狭槽,所述第二粗糙结构为 一沿着所述凹槽的轮廓环绕的凹沟,所述凹沟位于所述凹槽的壁面与底部交 接处。
8、如权利要求 7所述的制造方法,其特征在于:狭槽的深度为 2〜3mm, 宽度为 5mm, 且二相邻的所述狭槽的间隔为 15mm。
9、 如权利要求 1所述的制造方法, 其特征在于: 步骤 (b)中, 可将所述 模具置于一真空腔室中进行加热及加压。
10、 一种 CIGS四元溅镀靶材成型同时与靶背板结合的方法, 其特征在 于包括有下列步骤:
(a)准备加工材料粉末, 所述加工材料粉末混合包含有铜 Cu、 铟 In、 镓 Ga及硒 Se材料;
(bl)将所述加工材料粉末置入一模具中, 所述模具包括有一作为母模的 铝制靶背板、 一框围在所述靶背板顶面的框模及一公模, 所述靶背板固定于 一底座上, 所述靶背板顶面设有一凹槽, 所述凹槽包括有一底部及一壁面, 所述底部设有一第一粗糙结构, 所述壁面设有一第二粗糙结构, 所述公模底 面具有一模仁, 所述模仁轮廓形状与所述框模的框口相配合, 所述靶背板的 凹槽及所述框模围成一成型模穴, 于所述成型模穴填入所述加工材料粉末, 对所述加工材料粉末加热至硒的熔点温度, 并予以加压, 使铜、 镓、 铟及硒 均匀化合而粘结一体后并与背板接合后冷却; 及
(cl)冷却后卸载所述公模、 所述框模及所述底座, 即完成靶材成型同时 与所述靶背板接合的制造, 并使包括有铜 Cu、 铟 In、 镓 Ga及硒 Se元素的 所述靶材结合于所述铝制靶背板上。
11、 如权利要求 10所述的方法, 其特征在于: 所述准备加工材料粉末 的步骤包括:
(al)准备铜 Cu、 铟 In、 镓 Ga及硒 Se;
(a2)将铜 Cu与铟 In相互均匀混合, 经多次真空热融、 加压、 冷却及研 磨成粉的程序, 而制备成铜 /铟 Culn合金材料粉末; 将铜 Cu与镓 Ga相互均 匀混合, 经多次真空热融、 加压、 冷却及研磨成粉的程序, 而制备成铜 /镓 CuGa合金材料粉末; 备妥硒 Se粉末; 及
(a3)将所述铜 /铟 Culn合金粉末、 所述铜 /镓 CuGa合金粉末及所述硒材 料粉末充分混合而成所述加工材料粉末。
12、 如权利要求 10 所述的方法, 其特征在于: 可重复多次 (bl)步骤中 的加压程序。
13、如权利要求 10所述的方法,其特征在于:所述凹槽的深度为 2〜3mm。
14、 如权利要求 10所述的方法, 其特征在于: 所述第一粗糙结构包括 有呈交错分布的复数条纵向狭槽及复数条横向狭槽,所述第二粗糙结构为一 沿着所述凹槽的轮廓环绕的凹沟,所述凹沟位于所述凹槽的壁面与底部交接 处。
15、 如权利要求 14所述的方法, 其特征在于: 狭槽的深度为 2〜3mm, 宽度为约 5mm, 且二相邻的所述狭槽的间隔为约 15mm。
16、 如权利要求 10 所述的方法, 其特征在于: 步骤 (bl)中, 可将所述 模具置于一真空腔室中进行加热及加压。
17、 一种 CIGS 四元溅镀靶材的补充方法, 其特征在于包括有下列步 骤:
(a)准备加工材料粉末, 所述加工材料粉末混合包含有铜 Cu、 铟 In、 镓 Ga及硒 Se;
(b2)将一使用过且仍结合有一靶背板的剩余靶材洗净,并置入一模具中, 并将所述加工材料粉末置入所述模具中,所述模具包括有一作为母模的铝制 背板、一框围在所述靶背板顶面的框模及一公模, 所述靶背板固定于一底座 上, 所述靶背板顶面设有一凹槽, 所述凹槽底部设有粗糙结构, 所述公模底 面具有一模仁, 所述模仁轮廓形状与所述框模的框口相配合, 所述靶背板的 凹槽及所述框模围成一成型模穴, 于所述成型模穴填入所述加工材料粉末, 对所述加工材料粉末加热至少到硒的熔点温度, 并予以加压, 使铜、 镓、 铟 及硒均匀化合而粘结一体后并与所述剩余靶材融合后冷却; 及
(c2)冷却后卸载所述公模、 所述框模及所述底座, 即完成所述剩余靶材 补料的制程。
18、 如权利要求 17所述的方法, 其特征在于: 所述准备加工材料粉末 的步骤包括:
(al)准备铜 Cu、 铟 In、 镓 Ga及硒 Se;
(a2)将铜 Cu与铟 In相互均匀混合, 经多次真空热融、 加压、 冷却及研 磨成粉的程序, 而制备成铜 /铟 Culn合金材料粉末; 将铜 Cu与镓 Ga相互均 匀混合, 经多次真空热融、 加压、 冷却及研磨成粉的程序, 而制备成铜 /镓 CuGa合金材料粉末; 备妥硒 Se粉末; 及
(a3)将所述铜 /铟 Culn合金粉末、 所述铜 /镓 CuGa合金粉末及所述硒材 料粉末充分混合而成所述加工材料粉末。
19、如权利要求 17所述的方法, 其特征在于: 可重复多次 (b2)步骤中的 加压程序。
20、 如权利要求 17 所述的方法, 其特征在于: 步骤 (b2)中, 可将所述 模具置于一真空腔室中进行加热及加压。
PCT/CN2011/073311 2011-04-26 2011-04-26 Cigs太阳能光电四元溅镀靶材的制备方法、其与靶背板的结合方法及其补料方法 WO2012145895A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073311 WO2012145895A1 (zh) 2011-04-26 2011-04-26 Cigs太阳能光电四元溅镀靶材的制备方法、其与靶背板的结合方法及其补料方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073311 WO2012145895A1 (zh) 2011-04-26 2011-04-26 Cigs太阳能光电四元溅镀靶材的制备方法、其与靶背板的结合方法及其补料方法

Publications (1)

Publication Number Publication Date
WO2012145895A1 true WO2012145895A1 (zh) 2012-11-01

Family

ID=47071550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073311 WO2012145895A1 (zh) 2011-04-26 2011-04-26 Cigs太阳能光电四元溅镀靶材的制备方法、其与靶背板的结合方法及其补料方法

Country Status (1)

Country Link
WO (1) WO2012145895A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028363A (ja) * 1988-06-24 1990-01-11 Matsushita Electric Ind Co Ltd スパッタ用ターゲット及びその製造方法
US5397050A (en) * 1993-10-27 1995-03-14 Tosoh Smd, Inc. Method of bonding tungsten titanium sputter targets to titanium plates and target assemblies produced thereby
US20080149477A1 (en) * 2006-12-22 2008-06-26 Chi-Fung Lo Method for consolidating and diffusion-bonding powder metallurgy sputtering target
CN101397647A (zh) * 2008-11-03 2009-04-01 清华大学 铜铟镓硒或铜铟铝硒太阳能电池吸收层靶材及其制备方法
CN101645473A (zh) * 2009-09-09 2010-02-10 北京有色金属研究总院 薄膜太阳能电池吸收层用硒化物材料的制备方法
CN102051584A (zh) * 2009-11-03 2011-05-11 张昇常 Cigs太阳能光电四元溅镀靶材、其制法、其与靶背板结合方法及其补料方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028363A (ja) * 1988-06-24 1990-01-11 Matsushita Electric Ind Co Ltd スパッタ用ターゲット及びその製造方法
US5397050A (en) * 1993-10-27 1995-03-14 Tosoh Smd, Inc. Method of bonding tungsten titanium sputter targets to titanium plates and target assemblies produced thereby
US20080149477A1 (en) * 2006-12-22 2008-06-26 Chi-Fung Lo Method for consolidating and diffusion-bonding powder metallurgy sputtering target
CN101397647A (zh) * 2008-11-03 2009-04-01 清华大学 铜铟镓硒或铜铟铝硒太阳能电池吸收层靶材及其制备方法
CN101645473A (zh) * 2009-09-09 2010-02-10 北京有色金属研究总院 薄膜太阳能电池吸收层用硒化物材料的制备方法
CN102051584A (zh) * 2009-11-03 2011-05-11 张昇常 Cigs太阳能光电四元溅镀靶材、其制法、其与靶背板结合方法及其补料方法

Similar Documents

Publication Publication Date Title
CN102051584B (zh) Cigs太阳能光电四元溅镀靶材、其制法、其与靶背板结合方法及其补料方法
EP1968121B1 (en) Method for manufacturing single crystal silicon solar cell and single crystal silicon solar cell
JPH07321363A (ja) 半導体ウェハの成形加工方法
CN104247047B (zh) 多结太阳能电池装置的制造
JP5409127B2 (ja) 薄膜太陽電池モジュールをリサイクルする方法
US20070175506A1 (en) Thermoelectric module, method of forming a thermoelectric element, and method of thermoelectric module
JP5452709B2 (ja) シリコンインゴット鋳造用積層ルツボ及びその製造方法
JP2014523132A5 (zh)
JP2008112843A (ja) 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池
JP7119671B2 (ja) 複合伝熱部材、及び複合伝熱部材の製造方法
TWI239093B (en) Manufacturing method of plat-shape silicon, substrate for manufacturing plate-shape silicon, plate-shape silicon, solar cell and solar cell module using plate-shape silicon
CN109818004B (zh) 一种燃料电池双极板的制备方法
WO2012145895A1 (zh) Cigs太阳能光电四元溅镀靶材的制备方法、其与靶背板的结合方法及其补料方法
CN110739209A (zh) 一种锗单晶单面抛光片的清洗工艺
JP2018525815A5 (zh)
JP2018525815A (ja) 不定形有機シリコン樹脂光変換体でledを貼り合せてパッケージするプロセス方法
CN105633217B (zh) 一种微米级铜锗锌锡硫硒单晶颗粒的制备方法及其单晶颗粒和太阳能电池
JP6680808B2 (ja) 直列ローリングによって有機シリコン樹脂光変換体でledを貼り合せてパッケージする設備システム
JP5761172B2 (ja) シリコン粉末を用いた太陽電池セルの製造方法
CN102709435B (zh) 一种取代二、三元系芯片的四元系芯片及其制作方法
EP1755847B1 (en) Manufacturing method and a jig for use in the manufacturing method
CN105448707A (zh) 一种利用陶瓷衬底制备多晶硅薄膜的方法
JP2641794B2 (ja) 太陽電池モジュールの製造方法
CN101132027B (zh) 用碎硅片制备的太阳电池及其制备方法
JP2018527745A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864586

Country of ref document: EP

Kind code of ref document: A1