WO2012144386A1 - 発電装置 - Google Patents

発電装置 Download PDF

Info

Publication number
WO2012144386A1
WO2012144386A1 PCT/JP2012/059887 JP2012059887W WO2012144386A1 WO 2012144386 A1 WO2012144386 A1 WO 2012144386A1 JP 2012059887 W JP2012059887 W JP 2012059887W WO 2012144386 A1 WO2012144386 A1 WO 2012144386A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
electromotive coil
magnet member
magnetic force
power generation
Prior art date
Application number
PCT/JP2012/059887
Other languages
English (en)
French (fr)
Inventor
隆逸 小林
Original Assignee
T.K Leverage有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T.K Leverage有限会社 filed Critical T.K Leverage有限会社
Priority to EP12773840.9A priority Critical patent/EP2701290B1/en
Priority to RU2013151176/07A priority patent/RU2605611C2/ru
Priority to ES12773840.9T priority patent/ES2693234T3/es
Priority to BR112013026906-5A priority patent/BR112013026906A2/pt
Priority to AP2013007241A priority patent/AP4071A/en
Priority to MX2013011868A priority patent/MX2013011868A/es
Priority to US14/111,221 priority patent/US9570967B2/en
Priority to AU2012246413A priority patent/AU2012246413B2/en
Priority to KR1020137030629A priority patent/KR101927275B1/ko
Publication of WO2012144386A1 publication Critical patent/WO2012144386A1/ja
Priority to US15/398,138 priority patent/US10374499B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/26Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating armatures and stationary magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings

Definitions

  • the present invention relates to a power generation apparatus that induces power generation by relative rotation between a permanent magnet and an electromotive coil.
  • a permanent magnet member having a permanent magnet arranged in a cylindrical shape and an electromotive coil member having an electromotive coil arranged in a cylindrical shape are arranged concentrically, that is, a single permanent magnet member
  • Various power generators have been developed that induce power generation by changing the magnetic force in the electromotive coil by concentrically arranging the single electromotive coil member and rotating the single permanent magnet member.
  • the power generation device of Patent Document 1 is based on the idea that an electromagnet is attached to a single permanent magnet member, the magnetic force acting on the electromotive coil is changed by the electromagnet, and efficient power generation is obtained. It is.
  • the present invention includes a first permanent magnet member and a second permanent magnet member arranged concentrically and in a nested structure as means for changing the magnetic force acting on the electromotive coil.
  • a first permanent magnet member and a second permanent magnet member arranged concentrically and in a nested structure as means for changing the magnetic force acting on the electromotive coil.
  • the power generator according to the present invention includes a first permanent magnet member, a second permanent magnet member, and an electromotive coil member that are concentrically arranged and nested, and the first permanent magnet member and / or the first permanent magnet member. It has a configuration for inducing power generation in the electromotive coil member by rotating two permanent magnet members, and the first and second permanent magnet members cooperate to change the magnetic force to obtain efficient power generation.
  • one of the first permanent magnet member and the second permanent magnet member can be rotated in the forward direction and the other can be rotated in the reverse direction, so that the rotational speed of both can be substantially improved and the power generation efficiency can be increased.
  • first permanent magnet member a first permanent magnet member, a second permanent magnet member, and an electromotive coil member that are concentrically arranged and nested, and inducing power generation in the electromotive coil member by rotating the electromotive coil member.
  • the first and second permanent magnet members cooperate to change the magnetic force to obtain efficient power generation.
  • the electromotive coil member is disposed concentrically outside the first and second permanent magnet members, or The electromotive coil member in which an electromotive coil composed of an air-core coil is disposed between the first permanent magnet member and the second permanent magnet member is disposed concentrically.
  • the electromotive coil member in which an electromotive coil composed of an air-core coil is disposed between the first permanent magnet member and the second permanent magnet member is disposed concentrically.
  • the first and second permanent magnet members are formed by arranging a large number of permanent magnets opposite to each other in the radial direction in the circumferential direction, so that a reliable change in the magnetic force is achieved and efficient power generation is obtained.
  • the number of one permanent magnet of the first and second permanent magnet members is an integral multiple of the number of the other permanent magnet, and the one permanent magnet is arranged adjacent to each other so as to have opposite polarities, The other permanent magnets are arranged adjacent to each other so as to have opposite polarities, and the magnetic force changes frequently to obtain efficient power generation.
  • the first and second permanent magnet members are formed by arranging a large number of permanent magnets opposite in the radial direction in the circumferential direction so that the permanent magnets of the first permanent magnet member and the second permanent magnet member are Between permanent magnets facing each other in the radial direction, between the opposite polarities of the opposing permanent magnets (N pole and S pole) and between the same opposing permanent magnets (S pole and S pole or N pole and N pole)
  • the magnetic force can be changed by increasing or decreasing the magnetic force.
  • the number of one permanent magnet of the first and second permanent magnet members is made an integral multiple of the number of the other permanent magnets, and the one permanent magnet is arranged adjacent to each other so as to have opposite polarities.
  • the opposite polarities of the permanent magnets of the first permanent magnet member and the permanent magnets of the second permanent magnet member are opposite to each other. Efficient power generation can be obtained by increasing the number of opposites and causing the magnetic force change to occur frequently.
  • FIG. 1 is an exploded perspective view of a power generator according to Embodiment 1 of the present invention.
  • the cross-sectional view of the electric power generating apparatus which concerns on the said Example 1.
  • FIG. The longitudinal cross-sectional view of the electric power generating apparatus which concerns on the said Example 1.
  • FIG. The principal part enlarged view which shows the magnetic force direction between the permanent magnet of the 1st permanent magnet member in the said Example 1, and the permanent magnet of a 2nd permanent magnet member, and a core in a cross-sectional view.
  • the disassembled perspective view of the electric power generating apparatus which concerns on Example 2, Example 3 of this invention.
  • the cross-sectional view of the electric power generating apparatus which concerns on the said Example 2 and Example 3.
  • FIG. 1 The longitudinal cross-sectional view of the electric power generating apparatus which concerns on the said Example 2.
  • FIG. 3 The longitudinal cross-sectional view of the electric power generating apparatus which concerns on the said Example 3.
  • FIG. The principal part enlarged view which shows the magnetic force direction between the permanent magnet of the 1st permanent magnet member in the said Example 2, Example 3 and the permanent magnet of a 2nd permanent magnet member by cross-sectional view.
  • the power generator according to the present invention has a first permanent magnet member 1 including a permanent magnet M ⁇ b> 1 arranged in a cylindrical shape or an annular shape, and a cylindrical shape or an annular shape.
  • the second permanent magnet member 2 including the permanent magnet M2 and the electromotive coil member 3 including the electromotive coil C disposed in a cylindrical or annular shape are arranged concentrically to form a nested structure, and the first permanent magnet member 1 or / and the structure which induces the electric power generation in the said electromotive coil member 3 by the relative rotation of the said 2nd permanent magnet member 2 and the said electromotive coil member 3.
  • the first permanent magnet member 1 has a permanent magnet M1 opposed in the radial direction, that is, an outer peripheral surface and an inner peripheral surface.
  • a plurality of permanent magnets M1 having opposite polarities are arranged in the circumferential direction.
  • the second permanent magnet member 2 is formed by arranging a number of permanent magnets M2 opposite in the radial direction, that is, a number of permanent magnets M2 having opposite polarities on the outer peripheral surface and the inner peripheral surface in the circumferential direction.
  • the number of one of the permanent magnet M1 and the permanent magnet M2 is an integral multiple of the other number.
  • Examples 1 to 3 to be described later show examples in which the number of permanent magnets M2 is twice the number of permanent magnets M1.
  • the above-mentioned many permanent magnets M1 are arranged adjacent to each other so as to have opposite polarities.
  • the polarity of the outer peripheral surface is N pole (the polarity of the inner peripheral surface is S pole).
  • the polarity of the outer peripheral surface of the permanent magnet M1 adjacent to the permanent magnet M1 is set as the S pole (the polarity of the inner peripheral surface is the N pole).
  • the permanent magnets M2 are arranged adjacent to each other so as to have opposite polarities, for example, the permanent magnet M2 adjacent to the permanent magnet M2 having an N-polarity on the outer peripheral surface (S-polarity on the inner peripheral surface).
  • the polarity of the outer peripheral surface is set as the S pole (the polarity of the inner peripheral surface is the N pole).
  • the first permanent magnet member 1 is formed by assembling a cylindrical or annular permanent magnet M1 made of a plate magnet having an arc-shaped cross section, or the above-described polarity arrangement on a cylindrical or rod-shaped magnetic body. It is formed by magnetizing.
  • the magnetization includes a case where the magnetization is performed in a straight shape along the central axis direction of the magnetic body and a case where the magnetization is performed in a skew shape with an inclination angle with respect to the coaxial direction.
  • the present invention does not exclude the formation of the first permanent magnet member 1 by embedding the permanent magnet M1 in the circumferential surface of the rotary shaft 4 or the fixed shaft 4 'to be described later and arranging the permanent magnet M1 in a cylindrical or annular shape.
  • the second permanent magnet member 2 is formed by assembling a permanent magnet M2 made of a plate magnet having a circular arc cross section into a cylindrical or annular shape, or is magnetized so as to have the above-described polarity arrangement on a cylindrical magnetic body. Form.
  • the magnetization includes a case where the magnetization is performed in a straight shape along the central axis direction of the magnetic material and a case where the magnetization is performed in a skew shape with an inclination angle with respect to the coaxial direction.
  • the second permanent magnet member 2 is formed to have a larger diameter than the first permanent magnet member 1 and is arranged concentrically outside the first permanent magnet member 1.
  • the present invention provides a case where the first permanent magnet member 1 has a multistage structure 1A, 1B and the second permanent magnet member 2 has a multistage structure 2A, 2B, or each segment. (1A, 1B or 2A, 2B) is included as a single member.
  • the electromotive coil member 3 is formed by arranging a large number of electromotive coils C in the circumferential direction, and is arranged concentrically with the first and second permanent magnet members 1 and 2, for example, as shown in Example 1 described later, The first and second permanent magnet members 1 and 2 are arranged concentrically outside the first permanent magnet member 1 and the second permanent magnet member 2 as shown in Examples 2 and 3 described later. Place concentrically.
  • the power generation apparatus induces efficient power generation by the first permanent magnet member 1 and the second permanent magnet member 2 working together to change the magnetic force. be able to.
  • the polarity of the outer peripheral surface of the permanent magnet M1 of the first permanent magnet member 1 is opposite to the polarity of the inner peripheral surface of the permanent magnet M2 of the second permanent magnet member 2 facing the permanent magnet M1 in the radial direction. In this case, a stable strong magnetic force is generated between the two.
  • the permanent magnet M1 when the polarity of the outer peripheral surface of the permanent magnet M1 is N pole and the polarity of the inner peripheral surface of the permanent magnet M2 is S pole, as shown by F1 in the figure, the permanent magnet M1 is changed to the permanent magnet M2.
  • the polarity of the outer peripheral surface of the permanent magnet M1 is the S pole and the polarity of the inner peripheral surface of the permanent magnet M2 is the N pole, as shown by F2 in the figure, the permanent magnet M1 is generated.
  • a stable magnetic force that flows from the magnet M2 to the permanent magnet M1 is generated.
  • the polarity of the outer peripheral surface of the permanent magnet M1 of the first permanent magnet member 1 and the polarity of the inner peripheral surface of the permanent magnet M2 of the second permanent magnet member 2 facing the permanent magnet M1 in the radial direction are the same polarity. In this case, no magnetic force flows between the two, and a magnetic force in the direction indicated by F3 and F4 in the figure is generated.
  • the first and second permanent magnet members 1 and 2 according to the present invention can freely set the thickness, magnetic force, and number of permanent magnets M1 and M2, and can improve the change in magnetic force.
  • the permanent magnets M1 and M2 of the first and second permanent magnet members 1 and 2 are not limited to being arranged adjacent to each other as shown in the figure, but are arranged at intervals in the circumferential direction. Including cases.
  • a first cylindrical yoke 5 is extrapolated to a rotating shaft 4 rotated by a power source 9 such as a motor, turbine, engine, etc.
  • the first permanent magnet member 1 is extrapolated to the yoke 5.
  • the second permanent magnet member 2 is concentrically arranged at a distance from the first permanent magnet member 1 in the radial direction, the electromotive coil member 3 is extrapolated to the second permanent magnet member 2, and the electromotive coil The second cylindrical yoke 6 is extrapolated to the member 3.
  • the first permanent magnet member 1 is provided with the first permanent magnet member 1, the second permanent magnet member 2 and the electromotive coil member 3 which are arranged concentrically and have a nested structure.
  • the second permanent magnet member 2 and the electromotive coil member 3 are fixed, and the first permanent magnet member 1 and the second permanent magnet member 2 and the electromotive coil member 3 are relatively rotated. And the power generation in the electromotive coil member 3 is induced by the relative rotation.
  • the electromotive coil C of the electromotive coil member 3 has windings 8 on a plurality of cores 7 disposed on the inner peripheral surface of the second cylindrical yoke 6 at intervals in the circumferential direction. Form by winding.
  • Each core 7 is formed by laminating silicon steel plates, and is adhered to the outer peripheral surface of each permanent magnet M2 of the second permanent magnet member 2.
  • the number of permanent magnets M2 of the second permanent magnet member 2 is twice the number of permanent magnets M1 of the first permanent magnet member 1, and both permanent magnets M1 and M2 are opposed in the radial direction, that is, one piece of the above-mentioned permanent magnet M1.
  • the outer peripheral surface of the permanent magnet M1 is opposed to the inner peripheral surfaces of the two permanent magnets M2.
  • the permanent magnet M2 is disposed adjacent to each other so as to have opposite polarities, the polarity of the outer peripheral surface of the permanent magnet M1 ( For example, the permanent magnet M2 having an inner peripheral surface of the same polarity (N pole) as that of the N pole and the permanent magnet M2 having an inner peripheral surface of the opposite polarity (S pole) are opposed to each other, so that a change in magnetic force to be described later frequently occurs and the efficiency is increased. Can get good power generation.
  • the magnetic force in the direction indicated by F1 and the F2 are passed through the core 7 bonded to the outer peripheral surface of each permanent magnet M2.
  • the magnetic force in the direction indicated by ⁇ 3> alternately acts on the electromotive coil C to change the magnetic force in the electromotive coil C, thereby inducing efficient power generation.
  • the facing distance between the permanent magnet M1 of the first permanent magnet member 1 and the permanent magnet M2 of the second permanent magnet member 2 is made as small as possible to allow the magnetic force to flow effectively.
  • the electromotive coil member 3 is rotatably arranged concentrically with the first permanent magnet member 1 in the radial direction, and the second permanent magnet member is spaced with the electromotive coil member 3 in the radial direction. 2 is fixed and concentrically arranged, and the second cylindrical yoke 6 is extrapolated to the second permanent magnet member 2.
  • the electromotive coil member 3 is rotated by a power source 9 such as a motor, a turbine, or an engine.
  • the first permanent magnet member 1, the second permanent magnet member 2, and the electromotive coil member 3 arranged concentrically and in a nested structure are provided.
  • the first and second permanent magnet members 1 and 2 are rotated and fixed, and the electromotive coil member 3 and the first and second permanent magnet members 1 and 2 are rotated relative to each other. Power generation in the electromotive coil member 3 is induced by the rotation.
  • the electromotive coil member 3 includes an electromotive coil C composed of an air-core coil in which a winding 8 is wound in a cylindrical or annular shape without a core, and each electromotive coil C is formed into a cylinder. It is formed by connecting in a ring shape or a ring shape.
  • the electromotive coil member 3 is formed of two cylindrical bodies made of a non-magnetic material such as glass and sandwiching the electromotive coils C made of the air-core coil from the inside and outside.
  • the electromotive coil C is a core coil as in the first embodiment.
  • the number of permanent magnets M2 of the second permanent magnet member 2 is double the number of permanent magnets M1 of the first permanent magnet member 1, and both the permanent magnets M1 and M2 are opposed in the radial direction, that is, one piece of the above-mentioned permanent magnet M1.
  • the outer peripheral surface of the permanent magnet M1 and the inner peripheral surfaces of the two permanent magnets M2 are opposed to each other, and the electromotive coil C is interposed between the opposed spaces.
  • the permanent magnet M2 is disposed adjacent to each other so as to have opposite polarities, the polarity of the outer peripheral surface of the permanent magnet M1 ( For example, the permanent magnet M2 having an inner peripheral surface of the same polarity (N pole) as that of the N pole and the permanent magnet M2 having an inner peripheral surface of the opposite polarity (S pole) are opposed to each other, so that a change in magnetic force to be described later frequently occurs and the efficiency is increased. Can get good power generation.
  • the magnetic force in the direction shown by F1 to F4 in FIG. 9 is directly applied to the electromotive coil C to induce efficient power generation.
  • the electromotive coil member 3 rotates between the permanent magnet M1 of the first permanent magnet member 1 and the permanent magnet M2 of the second permanent magnet member 2, and within each electromotive coil C of the electromotive coil member 3.
  • efficient power generation is induced.
  • the facing distance is increased, so that the magnetic force derived from the permanent magnets M1 and M2 is increased to some extent.
  • a first cylindrical yoke 5 is extrapolated to a rotating shaft 4 that is rotated by a power source 9 such as a motor, a turbine, or an engine.
  • the first permanent magnet member 1 is extrapolated to the first cylindrical yoke 5.
  • the electromotive coil member 3 is fixed and concentrically arranged with a gap in the radial direction from the first permanent magnet member 1, and the second permanent magnet member is spaced in a radial direction with the electromotive coil member 3. 2 are rotatably arranged concentrically, and a second cylindrical yoke 6 is extrapolated to the second permanent magnet member 2.
  • the second permanent magnet member 2 is rotated by a power source 10 such as a motor, a turbine, or an engine. It is not excluded that the power source 9 and the power source 10 are the same power source.
  • the first permanent magnet member 1, the second permanent magnet member 2, and the electromotive coil member 3 arranged concentrically and in a nested structure are provided, and the electromotive coil member 3 is provided.
  • the first and second permanent magnet members 1 and 2 are rotated, and the electromotive coil member 3 and the first and second permanent magnet members 1 and 2 are rotated relative to each other. Power generation in the electromotive coil member 3 is induced by the rotation.
  • the electromotive coil member 3 includes an electromotive coil C composed of an air-core coil in which a winding 8 is wound in a cylindrical or annular shape without a core, and each electromotive coil C is formed into a cylinder. It is formed by connecting in a ring shape or a ring shape.
  • the electromotive coil member 3 is formed of two cylindrical bodies made of a non-magnetic material such as glass and sandwiching the electromotive coils C made of the air-core coil from the inside and outside.
  • the electromotive coil C is a core coil as in the first embodiment.
  • the number of permanent magnets M2 of the second permanent magnet member 2 is twice the number of permanent magnets M1 of the first permanent magnet member 1, and both permanent magnets M1 and M2 are opposed in the radial direction, that is, one piece of the above-mentioned permanent magnet M1.
  • the outer peripheral surface of the permanent magnet M1 and the inner peripheral surfaces of the two permanent magnets M2 are opposed to each other, and the electromotive coil C is interposed between the opposed spaces.
  • the permanent magnet M2 is disposed adjacent to each other so as to have opposite polarities, the polarity of the outer peripheral surface of the permanent magnet M1 ( For example, the permanent magnet M2 having an inner peripheral surface of the same polarity (N pole) as that of the N pole and the permanent magnet M2 having an inner peripheral surface of the opposite polarity (S pole) are opposed to each other, so that a change in magnetic force to be described later frequently occurs and the efficiency is increased. Can get good power generation.
  • the magnetic force in the direction shown by F1 to F4 in FIG. 9 is directly applied to the electromotive coil C to induce efficient power generation.
  • the first and second permanent magnet members 1 and 2 are rotated in the same direction at the same speed, or the speeds of one permanent magnet member and the other permanent magnet member are changed in the same direction. Can be rotated.
  • one of the first and second permanent magnet members 1 and 2 can be normally rotated and the other can be reversely rotated to substantially improve the rotational speed of both of them and increase the power generation efficiency.
  • the facing distance is increased, so that the magnetic force derived from the permanent magnets M1 and M2 is increased to some extent.
  • the power generation device is not limited to the case of each of the above-described embodiments, and power generation in the electromotive coil member 3 is performed by relative rotation between the first permanent magnet member 1 or the second permanent magnet member 2 and the electromotive coil member 3. Includes all cases of induction.
  • one of the first and second permanent magnet members 1 and 2 rotates, and the other and the electromotive coil member 3 are fixed to perform the relative rotation, or the first and second permanent magnet members.
  • the power generation device includes all cases in which power generation in the electromotive coil member 3 is induced by the relative rotation of the electromotive coil member 3 with the first permanent magnet member 1 and the second permanent magnet member 2.
  • the first and second permanent magnet members 1 and 2 are rotated, the electromotive coil member 3 is fixed and the relative rotation is performed, or the first and second permanent magnet members 1 and 2 are moved. It includes all cases of fixing and rotating the electromotive coil member 3 to perform the relative rotation to induce power generation in the electromotive coil member 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 本発明は起電コイルに作用する磁力を変化し効率の良い発電が得られるようにした発電装置を提供する。 同心円状に配置して入れ子構造にした第一永久磁石部材1と第二永久磁石部材2と起電コイル部材3とを備え、上記第一永久磁石部材1又は/及び上記第二永久磁石部材2を回転することにより上記起電コイル部材3における発電を誘起する構成とした発電装置であって、上記第一,第二永久磁石部材1,2が協働して磁力を変化し効率の良い発電を得る。

Description

発電装置
 本発明は永久磁石と起電コイルとの相対回転により発電を誘起する発電装置に関する。
 既知のように、筒状に配設した永久磁石を備える永久磁石部材と、筒状に配設した起電コイルを備える起電コイル部材とを同心配置し、即ち単一の上記永久磁石部材と単一の上記起電コイル部材とを同心配置し、該単一の永久磁石部材を回転することにより、上記起電コイル内の磁力を変化させて発電を誘起する発電装置が種々開発されている。
 上記既知の発電装置にあっては、発電を誘起する磁力、即ち永久磁石の磁力は一定であることから、下記特許文献1に示すように、上記永久磁石とは別に電磁石を設け、該電磁石の磁力を加算したり、非加算したりして磁力を増減する構成が採用されている。
特許第3709145号公報
 換言すると、上記特許文献1の発電装置は単一の永久磁石部材に電磁石を付設し、該電磁石により起電コイルに作用する磁力を変化し、効率の良い発電を得んとする発想に基づくものである。
 これに対し、本発明は起電コイルに作用する磁力の変化を図る手段として、同心円状に配置し入れ子構造にした第一永久磁石部材と第二永久磁石部材とを備え、両者の協働により起電コイルに作用する磁力を変化し効率の良い発電が得られるようにしたものである。
 即ち本発明に係る発電装置は、同心円状に配置して入れ子構造にした第一永久磁石部材と第二永久磁石部材と起電コイル部材とを備え、上記第一永久磁石部材又は/及び上記第二永久磁石部材を回転することにより上記起電コイル部材における発電を誘起する構成を有し、上記第一,第二永久磁石部材が協働して磁力を変化し効率の良い発電を得る。
 具体例として、上記第一永久磁石部材及び上記第二永久磁石部材の一方を正回転し他方を逆回転して、両者の回転スピードを実質上向上し発電効率を高めることができる。
 又は同心円状に配置して入れ子構造にした第一永久磁石部材と第二永久磁石部材と起電コイル部材とを備え、上記起電コイル部材を回転することにより該起電コイル部材における発電を誘起する構成を有し、上記第一,第二永久磁石部材が協働して磁力を変化し効率の良い発電を得る。
 上記第一永久磁石部材又は/及び上記第二永久磁石部材を回転する場合の具体例として、上記起電コイル部材を上記第一,第二永久磁石部材の外方に同心配置するか、又は上記第一永久磁石部材と第二永久磁石部材間に空芯コイルから成る起電コイルを配設した上記起電コイル部材を同心配置する。
 又上記起電コイル部材を回転する場合の具体例として、上記第一永久磁石部材と第二永久磁石部材間に空芯コイルから成る起電コイルを配設した上記起電コイル部材を同心配置する。
 具体例として、上記第一,第二永久磁石部材は径方向において対極する永久磁石を周方向に多数配置して成り、確実な上記磁力変化を図り効率の良い発電を得る。
 更には上記第一,第二永久磁石部材の一方の永久磁石の数を他方の永久磁石の数の整数倍にし、該一方の永久磁石を互いに逆極性となるように隣接して配置すると共に、上記他方の永久磁石を互いに逆極性となるように隣接して配置し、上記磁力変化を頻発させ効率の良い発電を得る。
 本発明によれば、上記第一,第二永久磁石部材の協働により起電コイルに作用する磁力の変化を図り、効率良い発電を得ることができる。
 具体例として、上記第一,第二永久磁石部材は径方向において対極する永久磁石を周方向に多数配置して成ることにより、上記第一永久磁石部材の永久磁石と上記第二永久磁石部材の永久磁石が径方向で対向し、該対向する永久磁石同士の逆極性(N極とS極)間及び同対向する永久磁石同士の同極性(S極とS極又はN極とN極)間で磁力を増減して磁力変化を図ることができる。
 更に上記第一,第二永久磁石部材の一方の永久磁石の数を他方の永久磁石の数の整数倍にし、該一方の永久磁石を互いに逆極性となるように隣接して配置すると共に、上記他方の永久磁石を互いに逆極性となるように隣接して配置することにより、上記第一永久磁石部材の永久磁石と上記第二永久磁石部材の永久磁石の逆極性同士の対向と同極性同士の対向の数を増加し上記磁力変化を頻発させて、効率の良い発電を得ることができる。
本発明の実施例1に係る発電装置の分解斜視図。 上記実施例1に係る発電装置の横断面図。 上記実施例1に係る発電装置の縦断面図。 上記実施例1における第一永久磁石部材の永久磁石と第二永久磁石部材の永久磁石間及びコアにおける磁力方向を横断面視して示す要部拡大図。 本発明の実施例2,実施例3に係る発電装置の分解斜視図。 上記実施例2,実施例3に係る発電装置の横断面図。 上記実施例2に係る発電装置の縦断面図。 上記実施例3に係る発電装置の縦断面図。 上記実施例2,実施例3における第一永久磁石部材の永久磁石と第二永久磁石部材の永久磁石間における磁力方向を横断面視して示す要部拡大図。
 以下本発明を実施するための最良の形態を図1乃至図9に基づき説明する。
 本発明に係る発電装置は基本構成として、図1,図5に示すように、筒状又は環状に配設した永久磁石M1を備える第一永久磁石部材1と、筒状又は環状に配設した永久磁石M2を備える第二永久磁石部材2と、筒状又は環状に配設した起電コイルCを備える起電コイル部材3とを同心円状に配置して入れ子構造にし、上記第一永久磁石部材1又は/及び上記第二永久磁石部材2と上記起電コイル部材3の相対回転により、上記起電コイル部材3における発電を誘起する構成を有する。
 後記する実施例1~実施例3に共通の構成として、図2,図6にも示すように、上記第一永久磁石部材1は径方向において対極する永久磁石M1、即ち外周面と内周面の極性が互いに逆極性となる永久磁石M1を周方向に多数配置して成る。
 同様に上記第二永久磁石部材2は径方向において対極する永久磁石M2、即ち外周面と内周面の極性が互いに逆極性となる永久磁石M2を周方向に多数配置して成る。
 好ましくは、上記永久磁石M1と永久磁石M2の一方の数を他方の数の整数倍にする。後記する実施例1~実施例3においては、永久磁石M2の数を永久磁石M1の数の2倍にした例を示す。
 又図2,図6にも示すように、上記多数の永久磁石M1を互いに逆極性となるように隣接して配置、例えば外周面の極性をN極(内周面の極性をS極)とする永久磁石M1に隣り合う永久磁石M1の外周面の極性をS極(内周面の極性をN極)として配置する。
 同様に上記多数の永久磁石M2を互いに逆極性となるように隣接して配置、例えば外周面の極性をN極(内周面の極性をS極)とする永久磁石M2に隣り合う永久磁石M2の外周面の極性をS極(内周面の極性をN極)として配置する。
 上記第一永久磁石部材1は横断面円弧状の板磁石から成る永久磁石M1を筒状又は環状に組み立てて形成するか、又は筒形或いは棒形の磁性体に上記した極性配置となるように着磁して形成する。該着磁は上記磁性体の中心軸方向に沿ってストレート状に行う場合と、同軸方向に対して傾斜角度をもってスキュー状に行う場合を含む。
 又本発明は上記永久磁石M1を後記する回転軸4又は固定軸4´の周面に埋設して筒状又は環状に配設し上記第一永久磁石部材1を形成することを排除しない。
 上記第二永久磁石部材2は横断面円弧状の板磁石から成る永久磁石M2を筒状又は環状に組み立てて形成するか、又は筒形の磁性体に上記した極性配置となるように着磁して形成する。該着磁も上記磁性体の中心軸方向に沿ってストレート状に行う場合と、同軸方向に対して傾斜角度をもってスキュー状に行う場合を含む。上記第二永久磁石部材2は上記第一永久磁石部材1よりも大径に形成し、該第一永久磁石部材1の外方に同心配置する。
 又図1に破線で示すように、本発明は上記第一永久磁石部材1を複段構造1A,1Bにし、上記第二永久磁石部材2を複段構造2A,2Bにする場合、又は各セグメント(1A,1B又は2A,2B)を単一部材とする場合を含む。
 上記起電コイル部材3は起電コイルCを周方向に多数配置して成り、上記第一,第二永久磁石部材1,2と同心配置、例えば後記する実施例1に示すように、上記第一,第二永久磁石部材1,2の外方に同心配置するか、又は後記する実施例2,実施例3に示すように、上記第一永久磁石部材1と第二永久磁石部材2間に同心配置する。
 本発明に係る発電装置は、図4,図9に示すように、上記第一永久磁石部材1と第二永久磁石部材2とが協働して磁力変化を図り、効率の良い発電を誘起することができる。
 即ち上記第一永久磁石部材1の永久磁石M1の外周面の極性と、該永久磁石M1に径方向で対向する上記第二永久磁石部材2の永久磁石M2の内周面の極性が逆極性となる場合には両者間に安定した強い磁力が生じる。
 例えば、上記永久磁石M1の外周面の極性がN極で上記永久磁石M2の内周面の極性がS極の場合には、図中F1で示すように、上記永久磁石M1から永久磁石M2へと流れる安定した磁力が発生し、上記永久磁石M1の外周面の極性がS極で上記永久磁石M2の内周面の極性がN極の場合には、図中F2で示すように、上記永久磁石M2から永久磁石M1へと流れる安定した磁力が発生する。
 又上記第一永久磁石部材1の永久磁石M1の外周面の極性と、該永久磁石M1に径方向で対向する上記第二永久磁石部材2の永久磁石M2の内周面の極性が同極性となる場合には両者間に流れる磁力は生じず、図中F3,F4で示す方向の磁力が生じる。
 即ち、図中F3で示すように、上記永久磁石M1のN極の外周面から隣接する永久磁石M1のS極の外周面へと流れる磁力が発生し、図中F4で示すように、上記永久磁石M2のN極の外周面から隣接する永久磁石M2のS極の外周面へと流れる磁力が生じる。
 上記第一永久磁石部材1又は/及び上記第二永久磁石部材2と上記起電コイル部材3との相対回転により、図中F1~F4で示す方向の磁力が入れ替わって上記起電コイルCに作用し、効率の良い発電を得ることができる。
 本発明に係る上記第一,第二永久磁石部材1,2は厚さや磁力、永久磁石M1,M2の数を自由に設定でき、磁力変化の向上を図ることができる。
 又上記第一,第二永久磁石部材1,2の永久磁石M1,M2は、図示のように、筒状に隣接して配設する場合に限らず、周方向に間隔を置いて配設する場合を含む。
 実施例1にあっては、図1~図4に示すように、モータ、タービン、エンジン等の動力源9により回転する回転軸4に第一筒形ヨーク5を外挿し、該第一筒形ヨーク5に上記第一永久磁石部材1を外挿する。
 又上記第一永久磁石部材1と径方向に間隔を置いて上記第二永久磁石部材2を同心配置し、該第二永久磁石部材2に上記起電コイル部材3を外挿し、該起電コイル部材3に第二筒形ヨーク6を外挿する。
 依って、本実施例にあっては、同心円状に配置し入れ子構造にした第一永久磁石部材1と第二永久磁石部材2と起電コイル部材3とを備え、上記第一永久磁石部材1を回転し上記第二永久磁石部材2及び起電コイル部材3とを固定して、上記第一永久磁石部材1と上記第二永久磁石部材2及び起電コイル部材3とを相対回転する構成を有し、該相対回転により上記起電コイル部材3における発電を誘起する。
 図2に示すように、上記起電コイル部材3の起電コイルCは上記第二筒形ヨーク6の内周面に周方向に間隔を置いて配設した複数のコア7に巻線8を巻いて形成する。上記各コア7は珪素鋼板を積層して形成し、上記第二永久磁石部材2の各永久磁石M2の外周面に接着する。
 上記第二永久磁石部材2の永久磁石M2の数を上記第一永久磁石部材1の永久磁石M1の数の2倍にし、双方の永久磁石M1,M2を径方向において対向、即ち1個の上記永久磁石M1の外周面と2個の上記永久磁石M2の内周面を対向せしめる。
 前記のように、上記永久磁石M2は相互に逆極性となるように隣接して配置されているため、1個の上記永久磁石M1の外周面に対し、該永久磁石M1の外周面の極性(例えばN極)と同極性(N極)の内周面を持つ永久磁石M2と、逆極性(S極)の内周面を持つ永久磁石M2とが対向し、後記する磁力変化を頻発させ効率の良い発電を得ることができる。
 詳述すると、図4に示すように、上記永久磁石M1の外周面の極性と、該永久磁石M1に対向する上記永久磁石M2の内周面の極性が逆極性となる場合には両者間に図中F1又はF2で示す方向に安定した強い磁力が生じる。
 従って、上記第一永久磁石部材1が回転し各永久磁石M1が回転することにより、上記各永久磁石M2の外周面に接着されたコア7を介して、上記F1で示す方向の磁力と上記F2で示す方向の磁力が交互に上記起電コイルCに作用して該起電コイルC内の磁力変化を図り、効率の良い発電を誘起する。
 又図4に示すように、上記永久磁石M1の外周面の極性と、該永久磁石M1に対向する上記永久磁石M2の内周面の極性が同極性となる場合には両者間に磁力が流れず、図中F3,F4で示す方向に磁力が生じ、該F4で示す方向の磁力は一部が上記F1で示す方向の磁力に加算され、上記磁力変化を補完する。
 尚上記第一永久磁石部材1の永久磁石M1と第二永久磁石部材2の永久磁石M2との対向間隔はできるだけ小さくして磁力を有効に流すことが好ましい。
 実施例2にあっては、図5~図7,図9に示すように、固定軸4´に第一筒形ヨーク5を外挿し、該第一筒形ヨーク5に上記第一永久磁石部材1を外挿する。
 又上記第一永久磁石部材1と径方向に間隔を置いて上記起電コイル部材3を回転可能に同心配置し、該起電コイル部材3と径方向に間隔を置いて上記第二永久磁石部材2を固定して同心配置し、該第二永久磁石部材2に第二筒形ヨーク6を外挿する。上記起電コイル部材3はモータ、タービン、エンジン等の動力源9により回転する。
 依って、本実施例にあっては、同心円状に配置し入れ子構造にした第一永久磁石部材1と第二永久磁石部材2と起電コイル部材3とを備え、上記起電コイル部材3を回転し上記第一,第二永久磁石部材1,2を固定して、上記起電コイル部材3と上記第一,第二永久磁石部材1,2とを相対回転する構成を有し、該相対回転により上記起電コイル部材3における発電を誘起する。
 図5,図6に示すように、上記起電コイル部材3はコアレスで巻線8を筒状又は環状に巻いた空芯コイルから成る起電コイルCを備え、該各起電コイルCを筒状又は環状に連結して形成する。又は上記起電コイル部材3はガラス等の非磁性体から成る2個の筒体で上記空芯コイルから成る各起電コイルCを内外側から挾持して形成する。
 尚本実施例にあっては、上記実施例1のように、上記起電コイルCをコアコイルとすることを排除しない。
 上記第二永久磁石部材2の永久磁石M2の数を上記第一永久磁石部材1の永久磁石M1の数の2倍にし、双方の永久磁石M1,M2を径方向において対向、即ち1個の上記永久磁石M1の外周面と2個の上記永久磁石M2の内周面を対向せしめ、その対向間隔に上記起電コイルCを介在せしめる。
 前記のように、上記永久磁石M2は相互に逆極性となるように隣接して配置されているため、1個の上記永久磁石M1の外周面に対し、該永久磁石M1の外周面の極性(例えばN極)と同極性(N極)の内周面を持つ永久磁石M2と、逆極性(S極)の内周面を持つ永久磁石M2とが対向し、後記する磁力変化を頻発させ効率の良い発電を得ることができる。
 詳述すると、図9に示すように、上記永久磁石M1の外周面の極性と、該永久磁石M1に対向する上記永久磁石M2の内周面の極性が逆極性となる場合には両者間に図中F1又はF2で示す方向に安定した強い磁力が生じる。
 又図9に示すように、上記永久磁石M1の外周面の極性と、該永久磁石M1に対向する上記永久磁石M2の内周面の極性が同極性となる場合には両者間に磁力が流れず、図中F3,F4で示す方向に磁力が生じる。
 本実施例にあっては、前記した図9のF1~F4で示す方向の磁力を直接起電コイルC内に作用させ、効率の良い発電を誘起する。
 即ち上記起電コイル部材3は上記第一永久磁石部材1の永久磁石M1と上記第二永久磁石部材2の永久磁石M2間で回転し、該起電コイル部材3の各起電コイルC内で磁力が図9のF1~F4で示す各方向に変化することにより、効率の良い発電を誘起する。
 本実施例にあっては、上記永久磁石M1と永久磁石M2との対向間隔に上記起電コイルCが介在し上記対向間隔が大きくなるため、上記永久磁石M1,M2由来の磁力をある程度大きくするか、又は超電導現象が起こる絶対零度近くの極低温の環境で使用して、上記永久磁石M1,M2由来の磁力を効率良く利用することが望ましい。
 実施例3にあっては、図5,図6,図8,図9に示すように、モータ、タービン、エンジン等の動力源9により回転する回転軸4に第一筒形ヨーク5を外挿し、該第一筒形ヨーク5に上記第一永久磁石部材1を外挿する。
 又上記第一永久磁石部材1と径方向に間隔を置いて上記起電コイル部材3を固定して同心配置し、該起電コイル部材3と径方向に間隔を置いて上記第二永久磁石部材2を回転可能に同心配置し、該第二永久磁石部材2に第二筒形ヨーク6を外挿する。上記第二永久磁石部材2はモータ、タービン、エンジン等の動力源10により回転する。尚上記動力源9と動力源10とを同一動力源とすることも排除しない。
 依って、本実施例にあっては、同心円状に配置し入れ子構造にした上記第一永久磁石部材1と第二永久磁石部材2と起電コイル部材3とを備え、上記起電コイル部材3を固定し上記第一,第二永久磁石部材1,2を回転し、上記起電コイル部材3と上記第一,第二永久磁石部材1,2とを相対回転する構成を有し、該相対回転により上記起電コイル部材3における発電を誘起する。
 図5,図6に示すように、上記起電コイル部材3はコアレスで巻線8を筒状又は環状に巻いた空芯コイルから成る起電コイルCを備え、該各起電コイルCを筒状又は環状に連結して形成する。又は上記起電コイル部材3はガラス等の非磁性体から成る2個の筒体で上記空芯コイルから成る各起電コイルCを内外側から挾持して形成する。
 尚本実施例にあっては、上記実施例1のように、上記起電コイルCをコアコイルとすることを排除しない。
 上記第二永久磁石部材2の永久磁石M2の数を上記第一永久磁石部材1の永久磁石M1の数の2倍にし、双方の永久磁石M1,M2を径方向において対向、即ち1個の上記永久磁石M1の外周面と2個の上記永久磁石M2の内周面を対向せしめ、その対向間隔に上記起電コイルCを介在せしめる。
 前記のように、上記永久磁石M2は相互に逆極性となるように隣接して配置されているため、1個の上記永久磁石M1の外周面に対し、該永久磁石M1の外周面の極性(例えばN極)と同極性(N極)の内周面を持つ永久磁石M2と、逆極性(S極)の内周面を持つ永久磁石M2とが対向し、後記する磁力変化を頻発させ効率の良い発電を得ることができる。
 詳述すると、図9に示すように、上記永久磁石M1の外周面の極性と、該永久磁石M1に対向する上記永久磁石M2の内周面の極性が逆極性となる場合には両者間に図中F1又はF2で示す方向に安定した強い磁力が生じる。
 又図9に示すように、上記永久磁石M1の外周面の極性と、該永久磁石M1に対向する上記永久磁石M2の内周面の極性が同極性となる場合には両者間に磁力が流れず、図中F3,F4で示す方向に磁力が生じる。
 本実施例にあっては、前記した図9のF1~F4で示す方向の磁力を直接起電コイルC内に作用させ、効率の良い発電を誘起する。
 即ち上記第一永久磁石部材1及び第二永久磁石部材2は上記起電コイル部材3を挟んだ状態で回転し、上記永久磁石M1と永久磁石M2間の各起電コイルC内で磁力が図9のF1~F4で示す各方向に変化することにより、効率の良い発電を誘起する。
 本実施例にあっては、上記第一,第二永久磁石部材1,2を同方向に同スピードで回転するか、又は一方の永久磁石部材と他方の永久磁石部材のスピードを変えて同方向に回転することができる。
 又は上記第一,第二永久磁石部材1,2の一方を正回転し他方を逆回転して、両者の回転スピードを実質上向上し発電効率を高めることができる。
 本実施例にあっては、上記永久磁石M1と永久磁石M2との対向間隔に上記起電コイルCが介在し上記対向間隔が大きくなるため、上記永久磁石M1,M2由来の磁力をある程度大きくするか、又は超電導現象が起こる絶対零度近くの極低温の環境で使用して、上記永久磁石M1,M2由来の磁力を効率良く利用することが望ましい。
 本発明に係る発電装置は上記した各実施例の場合に限らず、第一永久磁石部材1又は第二永久磁石部材2と起電コイル部材3との相対回転により起電コイル部材3における発電を誘起する全ての場合を包含する。
 換言すると、上記第一,第二永久磁石部材1,2の一方が回転し、他方と上記起電コイル部材3を固定して上記相対回転を行うか、又は上記第一,第二永久磁石部材1,2の一方を固定し、他方と上記起電コイル部材3を回転して上記相対回転を行い、上記起電コイル部材3における発電を誘起する場合を全て包含する。
 又本発明に係る発電装置は第一永久磁石部材1及び第二永久磁石部材2と起電コイル部材3との相対回転により起電コイル部材3における発電を誘起する全ての場合を包含する。
 換言すると、上記第一,第二永久磁石部材1,2を回転し、上記起電コイル部材3を固定して上記相対回転を行うか、又は上記第一,第二永久磁石部材1,2を固定し、上記起電コイル部材3を回転して上記相対回転を行い、上記起電コイル部材3における発電を誘起する場合を全て包含する。
 1…第一永久磁石部材、2…第二永久磁石部材、3…起電コイル部材、4…回転軸、4´…固定軸、5…第一筒形ヨーク、6…第二筒形ヨーク、7…コア、8…巻線、9…動力源、10…動力源、M1…第一永久磁石部材の永久磁石、M2…第二永久磁石部材の永久磁石、C…起電コイル、F1,F2,F3,F4…磁力方向。

Claims (7)

  1.  同心円状に配置して入れ子構造にした第一永久磁石部材と第二永久磁石部材と起電コイル部材とを備え、上記第一永久磁石部材又は/及び上記第二永久磁石部材を回転することにより上記起電コイル部材における発電を誘起する構成としたことを特徴とする発電装置。
  2.  上記第一永久磁石部材及び上記第二永久磁石部材の一方を正回転し他方を逆回転することを特徴とする請求項1記載の発電装置。
  3.  同心円状に配置して入れ子構造にした第一永久磁石部材と第二永久磁石部材と起電コイル部材とを備え、上記起電コイル部材を回転することにより該起電コイル部材における発電を誘起する構成としたことを特徴とする発電装置。
  4.  上記起電コイル部材を上記第一,第二永久磁石部材の外方に同心配置したことを特徴とする請求項1記載の発電装置。
  5.  上記第一永久磁石部材と第二永久磁石部材間に空芯コイルから成る起電コイルを配設した上記起電コイル部材を同心配置したことを特徴とする請求項1又は請求項3記載の発電装置。
  6.  上記第一,第二永久磁石部材は径方向において対極する永久磁石を周方向に多数配置して成ることを特徴とする請求項1乃至請求項5のいずれかに記載の発電装置。
  7.  上記第一,第二永久磁石部材の一方の永久磁石の数を他方の永久磁石の数の整数倍にし、該一方の永久磁石を互いに逆極性となるように隣接して配置すると共に、上記他方の永久磁石を互いに逆極性となるように隣接して配置したことを特徴とする請求項6記載の発電装置。
PCT/JP2012/059887 2011-04-19 2012-04-11 発電装置 WO2012144386A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP12773840.9A EP2701290B1 (en) 2011-04-19 2012-04-11 Power generating device
RU2013151176/07A RU2605611C2 (ru) 2011-04-19 2012-04-11 Генератор энергии
ES12773840.9T ES2693234T3 (es) 2011-04-19 2012-04-11 Dispositivo generador de energía
BR112013026906-5A BR112013026906A2 (pt) 2011-04-19 2012-04-11 gerador de energia
AP2013007241A AP4071A (en) 2011-04-19 2012-04-11 Power generator
MX2013011868A MX2013011868A (es) 2011-04-19 2012-04-11 Generador de energia.
US14/111,221 US9570967B2 (en) 2011-04-19 2012-04-11 Power generator
AU2012246413A AU2012246413B2 (en) 2011-04-19 2012-04-11 Power generating device
KR1020137030629A KR101927275B1 (ko) 2011-04-19 2012-04-11 발전 장치
US15/398,138 US10374499B2 (en) 2011-04-19 2017-01-04 Power generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011093435A JP5722690B2 (ja) 2011-04-19 2011-04-19 発電装置
JP2011-093435 2011-04-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/111,221 A-371-Of-International US9570967B2 (en) 2011-04-19 2012-04-11 Power generator
US15/398,138 Division US10374499B2 (en) 2011-04-19 2017-01-04 Power generator

Publications (1)

Publication Number Publication Date
WO2012144386A1 true WO2012144386A1 (ja) 2012-10-26

Family

ID=47041497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059887 WO2012144386A1 (ja) 2011-04-19 2012-04-11 発電装置

Country Status (15)

Country Link
US (2) US9570967B2 (ja)
EP (1) EP2701290B1 (ja)
JP (1) JP5722690B2 (ja)
KR (1) KR101927275B1 (ja)
AP (1) AP4071A (ja)
AU (1) AU2012246413B2 (ja)
BR (1) BR112013026906A2 (ja)
ES (1) ES2693234T3 (ja)
MX (1) MX2013011868A (ja)
MY (1) MY165056A (ja)
PT (1) PT2701290T (ja)
RU (1) RU2605611C2 (ja)
TR (1) TR201816034T4 (ja)
TW (1) TWI549401B (ja)
WO (1) WO2012144386A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3142227B1 (en) * 2014-05-06 2020-07-01 Lin, Sheng-Lian Motor
KR102343297B1 (ko) * 2014-12-03 2021-12-24 현대모비스 주식회사 영구자석 동기 모터
JP6485102B2 (ja) * 2015-02-20 2019-03-20 スズキ株式会社 回転電機
DE102016208474A1 (de) * 2016-05-18 2017-11-23 Siemens Aktiengesellschaft Elektrische Maschine mit Doppelläuferanordnung mit kryogenem Ferromagnetikum
RU181317U1 (ru) * 2018-03-21 2018-07-10 Дзе Трастиз Фор Дзе Тайм Биинг Оф Дзе Кмн Фулфилмент Траст Электрический генератор, имеющий центральный магнитный вал
WO2021076428A1 (en) * 2019-10-15 2021-04-22 Darrell Schmidt Enterprises, Inc. Magnetic coupler
BR112022022435A2 (pt) 2020-05-13 2022-12-13 The Trustees For The Time Being Of The Kmn Fulfilment Trust Gerador elétrico com vários estatores

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654497A (ja) * 1992-06-04 1994-02-25 Techno Excel Kk 回転電機
JP3709145B2 (ja) 2001-02-20 2005-10-19 英男 河村 永久磁石式発電・電動機の電圧安定装置
JP2006520178A (ja) * 2003-03-06 2006-08-31 モトール ルロワ−ソメー 1個の固定子と2個の回転子を有する回転電機
JP2007259636A (ja) * 2006-03-24 2007-10-04 Honda Motor Co Ltd 電動機
JP2008193888A (ja) * 2006-12-26 2008-08-21 Kura Gijutsu Kenkyusho:Kk 磁束位相制御回転電機システム
JP2009535012A (ja) * 2006-04-24 2009-09-24 マグノマティックス リミテッド 電気機械
JP2009268269A (ja) * 2008-04-25 2009-11-12 Honda Motor Co Ltd 電動機
JP2010017032A (ja) * 2008-07-04 2010-01-21 Honda Motor Co Ltd 回転電機用ステータおよび電動機
JP2010533475A (ja) * 2007-07-13 2010-10-21 ウィルスドルフ、ドリス Mp−tiiマシン

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06113509A (ja) * 1992-09-29 1994-04-22 Tomishige Osako モータ
RU2082042C1 (ru) * 1994-07-04 1997-06-20 Александр Владимирович Фадеев Магнитный редуктор
DE19652490A1 (de) * 1996-12-17 1998-06-18 Philips Patentverwaltung Magnetisches Getriebe
US6121705A (en) * 1996-12-31 2000-09-19 Hoong; Fong Chean Alternating pole AC motor/generator with two inner rotating rotors and an external static stator
DE69912666T2 (de) * 1998-03-25 2004-05-13 Nissan Motor Co., Ltd., Yokohama Motor/Generator
JP2001218431A (ja) * 2000-01-28 2001-08-10 Mitsubishi Heavy Ind Ltd 電動機
JP4269544B2 (ja) * 2000-09-14 2009-05-27 株式会社デンソー 複数ロータ型同期機
JP3903956B2 (ja) * 2003-05-23 2007-04-11 日産自動車株式会社 複軸多層モータ
JP2006007424A (ja) * 2004-06-22 2006-01-12 Nitto Denko Corp 粘着シート片積層体
JP4849071B2 (ja) * 2005-10-13 2011-12-28 パナソニック株式会社 2つのロータを有するモータ
US8339010B2 (en) * 2005-12-21 2012-12-25 Honda Motor Co., Ltd Dual rotor electric machine having a field-controlling rotor
TWI338434B (en) * 2006-01-03 2011-03-01 Delta Electronics Inc Three phase opposite rotating motor and fan
JP2008035604A (ja) * 2006-07-27 2008-02-14 Sumitomo Heavy Ind Ltd Gm冷凍機、パルス管冷凍機、クライオポンプ、mri装置、超電導磁石装置、nmr装置および半導体冷却用冷凍機
RU2355909C1 (ru) * 2007-10-05 2009-05-20 Зао Нпп "Инкар-М" Ветровой электрогенератор двойного вращения (варианты)
JP2010154699A (ja) * 2008-12-26 2010-07-08 Hitachi Ltd 磁束可変型回転電機
RU2437196C1 (ru) * 2010-10-05 2011-12-20 Андрей Борисович Захаренко Электрическая машина двойного вращения

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654497A (ja) * 1992-06-04 1994-02-25 Techno Excel Kk 回転電機
JP3709145B2 (ja) 2001-02-20 2005-10-19 英男 河村 永久磁石式発電・電動機の電圧安定装置
JP2006520178A (ja) * 2003-03-06 2006-08-31 モトール ルロワ−ソメー 1個の固定子と2個の回転子を有する回転電機
JP2007259636A (ja) * 2006-03-24 2007-10-04 Honda Motor Co Ltd 電動機
JP2009535012A (ja) * 2006-04-24 2009-09-24 マグノマティックス リミテッド 電気機械
JP2008193888A (ja) * 2006-12-26 2008-08-21 Kura Gijutsu Kenkyusho:Kk 磁束位相制御回転電機システム
JP2010533475A (ja) * 2007-07-13 2010-10-21 ウィルスドルフ、ドリス Mp−tiiマシン
JP2009268269A (ja) * 2008-04-25 2009-11-12 Honda Motor Co Ltd 電動機
JP2010017032A (ja) * 2008-07-04 2010-01-21 Honda Motor Co Ltd 回転電機用ステータおよび電動機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2701290A4

Also Published As

Publication number Publication date
MY165056A (en) 2018-02-28
JP2012228068A (ja) 2012-11-15
EP2701290A1 (en) 2014-02-26
US20140028137A1 (en) 2014-01-30
PT2701290T (pt) 2018-11-16
US20170117785A1 (en) 2017-04-27
MX2013011868A (es) 2014-04-16
AP2013007241A0 (en) 2013-11-30
US10374499B2 (en) 2019-08-06
US9570967B2 (en) 2017-02-14
KR20140028007A (ko) 2014-03-07
ES2693234T3 (es) 2018-12-10
RU2605611C2 (ru) 2016-12-27
EP2701290A4 (en) 2016-03-02
AP4071A (en) 2017-03-16
TW201310865A (zh) 2013-03-01
EP2701290B1 (en) 2018-08-29
AU2012246413A1 (en) 2013-11-21
KR101927275B1 (ko) 2018-12-10
RU2013151176A (ru) 2015-05-27
TR201816034T4 (tr) 2018-11-21
TWI549401B (zh) 2016-09-11
JP5722690B2 (ja) 2015-05-27
BR112013026906A2 (pt) 2020-09-01
AU2012246413B2 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
WO2012144386A1 (ja) 発電装置
US6791222B1 (en) Rotary electric motor having at least two axially air gaps separating stator and rotor segments
KR101492172B1 (ko) 일체형 권선을 활용한 반경 방향 및 축 방향 자속 일체형 모터
JP6265569B2 (ja) 環状磁極部材及び磁気波動歯車装置
US6897595B1 (en) Axial flux motor with active flux shaping
JPWO2015140941A1 (ja) 永久磁石型電動機の回転子
JP5389122B2 (ja) 磁気歯車装置
JP2010045932A (ja) モータ
JP2016201967A (ja) 回転電機
JP2007116850A (ja) 永久磁石式回転電機および円筒型リニアモータ
JP2008295258A (ja) 回転電機
JP2016127612A (ja) リニアアクチュエータ
JP3216609U (ja) 中央磁性軸を有する発電機
JP2014057502A (ja) コギング力の抑えた発電装置
JP2012170264A (ja) 磁気歯車装置
WO2018096393A1 (en) Method of generating electromotive force in an electric machine with rotating magnetic dipoles and corresponding electric machine
WO2022254976A1 (ja) 発電機
JP5973310B2 (ja) モータ
JP2022150601A (ja) 磁気変調ギヤ装置
JP5500656B2 (ja) 電磁誘導回転装置
KR20190002773U (ko) 중심 자성 샤프트를 갖는 발전기
JP2004222490A (ja) 励磁機、界磁機、およびそれを用いた電動機
JP2008278675A (ja) 回転電機
JP2016174509A (ja) 磁気カップリング
WO2004112218A2 (en) Improved axial flux motor with active flux shaping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012773840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14111221

Country of ref document: US

Ref document number: MX/A/2013/011868

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013151176

Country of ref document: RU

Kind code of ref document: A

Ref document number: 20137030629

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012246413

Country of ref document: AU

Date of ref document: 20120411

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013026906

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013026906

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131018