WO2012144276A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2012144276A1
WO2012144276A1 PCT/JP2012/055224 JP2012055224W WO2012144276A1 WO 2012144276 A1 WO2012144276 A1 WO 2012144276A1 JP 2012055224 W JP2012055224 W JP 2012055224W WO 2012144276 A1 WO2012144276 A1 WO 2012144276A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
electrical angle
phase
voltage
detecting
Prior art date
Application number
PCT/JP2012/055224
Other languages
English (en)
French (fr)
Inventor
大輔 廣野
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to CN201280019595.4A priority Critical patent/CN103493362B/zh
Priority to US14/113,357 priority patent/US9246420B2/en
Priority to EP12774052.0A priority patent/EP2696496B1/en
Publication of WO2012144276A1 publication Critical patent/WO2012144276A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/166Driving load with high inertia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/20Controlling the acceleration or deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting

Definitions

  • the rotor position (rotational position of the rotor) is detected without a sensor, and the stator coil is appropriately energized. Execute the control to perform.
  • a motor control device having a function of detecting the rotor position without the sensor a motor control device disclosed in Patent Document 1 has been proposed.
  • the motor control device disclosed in Patent Document 1 is capable of detecting the rotor position ⁇ m with constant accuracy and a low processing load in the normal operation mode (position detection operation) of the synchronous motor.
  • the synchronous motor has a start mode (forced commutation operation) as a step before entering the normal operation mode.
  • this start mode the angle of the d axis of the rotor coordinate system with respect to the ⁇ axis of the stator coordinate system (absolute rotor)
  • the position detection operation based on the rotor position ⁇ m is not performed because the estimation error of the rotor position ⁇ m representing the position) increases. Therefore, in the start mode, the synchronous motor is started by the motor control device disclosed in Patent Document 2.
  • the motor control device of Patent Document 2 When the motor control device of Patent Document 2 receives an operation command including a target rotation speed (target rotation speed) in a motor stop state, the motor control device is driven with an applied voltage and an applied voltage phase set by a start voltage setting unit and a start phase setting unit. The rotation speed is gradually increased at a constant acceleration. Then, when the rotation speed reaches a predetermined value lower than the target rotation speed, it is considered that the activation is completed, and control for shifting to the normal operation mode is executed. This eliminates the need for a processing device with high processing capability, and enables simple and reliable completion of startup.
  • the rotor position detection accuracy is not good, so the rotor position is not detected, and forced driving is performed to gradually increase the rotational speed with constant acceleration.
  • the step-out operation takes time.
  • ⁇ Load fluctuation in the start mode can appear especially in the compressor of an air conditioner (air conditioner) using a synchronous motor.
  • air conditioner air conditioner
  • the load of the compression stroke increases.
  • the load applied to the synchronous motor in the start-up mode in this case varies according to the compression / suction stroke of the compressor.
  • the motor control device disclosed in Patent Document 2 performs forced control with constant acceleration regardless of the load in the startup mode, and thus does not support the case where there is a load variation as described above. In view of such a technical background, some kind of contrivance is required to follow the fluctuation of the load in the startup mode.
  • the motor control device proposed for this problem is Current detection means for detecting the current flowing in the stator coil of the synchronous motor; Applied voltage detecting means for detecting an applied voltage applied to the stator coil; The rotor position of the synchronous motor using a predetermined rotor position calculation formula including a current variable and a voltage variable obtained based on the current detected by the current detection means and the applied voltage detected by the applied voltage detection means Rotor position detecting means for detecting Speed / speed fluctuation detecting means for detecting the rotational speed based on the rotor position detected by the rotor position detecting means; In the start mode, the start voltage instruction value and the start voltage phase instruction value are output, the rotational speed of the synchronous motor driven based on these instruction values is increased at a predetermined acceleration, and the speed / speed fluctuation detecting means Starting means for reflecting the rotation speed detected by the starting voltage phase instruction value; It is comprised including.
  • the rotor position detected in the motor control device is based on the detected current and applied voltage, and the calculated value reflects “difference between induced voltage electrical angle and current electrical angle”. . Therefore, the rotational speed detected based on the rotor position varies according to the variation in the difference between the induced voltage electrical angle and the current electrical angle (that is, the phase difference between the induced voltage and the current). In general, in the motor vector diagram, the difference between the induced voltage electrical angle and the current electrical angle increases as the rotor position advances and decreases as the rotor position delays.
  • FIG. 1 shows an embodiment of a motor control device.
  • the synchronous motor M of this embodiment is a three-phase star connection type, and includes a stator including U-phase, V-phase, and W-phase stator coils, and a rotor including permanent magnets. Only U-phase, V-phase, and W-phase stator coils are shown in the figure, and the others are not shown.
  • a star connection type is shown as an example, but the same applies to a delta connection.
  • the power module (IPM) PM for driving the synchronous motor M has switching elements + U, + V, + W on the upper arm side and switching elements ⁇ U, ⁇ V, ⁇ on the lower arm side for each of the U phase, the V phase, and the W phase. W is connected in series between the high and low sides of the DC power supply. Further, shunt resistors Ru, Rv, Rw for detecting currents flowing in the respective phases are provided on the lower side of the lower arm side switching elements -U, -V, -W.
  • Each of the switching elements + U to -W is driven by a PWM signal from the inverter drive unit 1, and the U-phase, V-phase, and W-phase stator coils are controlled by sinusoidal energization (180-degree energization) in accordance with this.
  • Currents flowing through the phases U, V, and W by the control are detected using the shunt resistors Ru, Rv, and Rw.
  • the inverter drive unit 1 and each unit described below will be described as being executed by a computer such as a microcomputer that operates according to a program.
  • a computer such as a microcomputer that operates according to a program.
  • the present invention is not limited to this, and each may be configured by hardware.
  • the phase current detection unit 2 corresponding to the current detection means measures the voltage applied to the shunt resistors Ru, Rv, Rw, and thereby the U-phase current Iu flowing in the U-phase stator coil and the V-phase flowing in the V-phase stator coil.
  • the current Iv and the W-phase current Iw flowing through the W-phase stator coil are detected.
  • the applied voltage detection unit 3 corresponding to the applied voltage detection means includes a U-phase applied voltage Vu applied from the upper arm side switching elements + U to + W to the U-phase stator coil, the V-phase stator coil, and the W-phase stator coil. , V phase applied voltage Vv and W phase applied voltage Vw are detected.
  • the phase current peak value / electrical angle detection unit 4 corresponding to the current peak value / electrical angle detection means is based on the values of the phase currents Iu, Iv, Iw detected by the phase current detection unit 2. And the phase current electrical angle ⁇ i is detected.
  • the detection method is as follows. This detection method is described in detail in the aforementioned Patent Document 1.
  • phase current waveform diagram when the sine wave energization is performed in the U phase, the V phase, and the W phase is as shown in FIG. 2A, and the U phase current Iu, the V phase current Iv, and the W phase that form the sine waveform.
  • Each current Iw has a phase difference of 120 °.
  • the following formula 1 is established among the phase currents Iu, Iv, Iw, the phase current peak value Ip, and the phase current electrical angle ⁇ i.
  • the phase current peak value / electrical angle detection unit 4 uses the U phase current Iu, the V phase current Iv, and the W phase current Iw detected by the phase current detection unit 2 to calculate the phase current peak value Ip and the phase The electric current angle ⁇ i is obtained.
  • Iu Ip ⁇ cos ( ⁇ i)
  • Iv Ip ⁇ cos ( ⁇ i ⁇ 2 / 3 ⁇ )
  • Iw Ip ⁇ cos ( ⁇ i + 2 / 3 ⁇ )
  • the induced voltage peak value / electrical angle detection unit 5 corresponding to the induced voltage peak value / electrical angle detection means is detected by the phase currents Iu, Iv, Iw detected by the phase current detection unit 2 and the applied voltage detection unit 3.
  • the induced voltage peak value Ep and the induced voltage electrical angle ⁇ e are detected based on the applied voltages Vu, Vv, and Vw.
  • the detection method is as follows. This detection method is also described in detail in the above-mentioned Patent Document 1.
  • the induced voltage waveform diagram when the sine wave energization is performed in the U phase, the V phase, and the W phase is as shown in FIG. 2B.
  • the U phase induced voltage Eu, the V phase induced voltage Ev, Each W-phase induced voltage Ew has a phase difference of 120 °.
  • the following expression 2 is established among the induced voltages Eu, Ev, Ew, the induced voltage peak value Ep, and the induced voltage electrical angle ⁇ e.
  • Eu Ep ⁇ cos ( ⁇ e)
  • Ev Ep ⁇ cos ( ⁇ e ⁇ 2 / 3 ⁇ )
  • Ew Ep ⁇ cos ( ⁇ e + 2 / 3 ⁇ )
  • the induced voltage peak value / electrical angle detector 5 includes a U-phase current Iu, a V-phase current Iv, a W-phase current Iw detected by the phase current detector 2, and a U-phase applied voltage detected by the applied voltage detector 3. Based on Vu, the V-phase applied voltage Vv, and the W-phase applied voltage Vw, the U-phase induced voltage Eu, the V-phase induced voltage Ev, and the W-phase induced voltage Ew are obtained from Equation 3, and the obtained U-phase induced voltage Eu Based on the V-phase induced voltage Ev and the W-phase induced voltage Ew, the induced voltage peak value Ep and the induced voltage electrical angle ⁇ e are obtained from Equation 2.
  • the rotor position detection unit 6 corresponding to the rotor position detection means includes a phase current peak value Ip, a phase current electrical angle ⁇ i, an induced voltage wave detected by the phase current peak value / electrical angle detection unit 4 as current variables and voltage variables. Based on the induced voltage peak value Ep detected by the high value / electrical angle detector 5 and the induced voltage electrical angle ⁇ e, the rotor position ⁇ m (the angle of the d axis with respect to the ⁇ axis) is detected.
  • the current electrical angle ⁇ i or the induced voltage electrical angle ⁇ e is included as a variable, and based on the current peak value Ip or the induced voltage peak value Ep and the difference [ ⁇ e ⁇ i] between the induced voltage electrical angle ⁇ e and the current electrical angle ⁇ i.
  • the rotor position ⁇ m of the synchronous motor M is detected using a rotor position calculation formula that includes the obtained current phase ⁇ or induced voltage phase ⁇ as a variable (refer to Patent Document 1 for details).
  • the first equation using the rotor position calculation formula including the phase current electrical angle ⁇ i and the current phase ⁇ based on the phase current peak value Ip and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] as variables is used.
  • the second detection method will be specifically described.
  • the current phase ⁇ in Equation 4 is selected by referring to a data table prepared in advance using the phase current peak value Ip and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] as parameters.
  • the data table is prepared as follows and stored in the memory.
  • FIG. 3A shows a motor vector diagram when the rotor of the synchronous motor M is rotating, and the applied voltage V (Vu to Vw), current I (Iu to Iw), and induced voltage E.
  • the relationship (Eu to Ew) is expressed as a vector in dq coordinates.
  • the induced voltage E is represented by [ ⁇ ].
  • Vd is the d-axis component of the applied voltage V
  • Vq is the q-axis component of the applied voltage V
  • Id is the d-axis component of the current I
  • Iq is the q-axis component of the current I
  • Ed is the induced voltage E.
  • the d-axis component, Eq is the q-axis component of the induced voltage E.
  • the voltage phase based on the q axis is ⁇
  • the current phase based on the q axis is ⁇
  • the induced voltage phase based on the q axis is ⁇ .
  • ⁇ a is the magnetic flux of the permanent magnet of the rotor
  • Ld is the d-axis inductance
  • Lq is the q-axis inductance
  • R is the resistance value (Rcu to Rcw) of the stator coil
  • is the total flux linkage of the rotor.
  • equation 5 is established with the rotor rotational speed ⁇
  • equation 6 is established by shifting the value related to ⁇ from the right side of equation 5 to the left side.
  • a data table is created in advance on the basis that Equations 5 and 6 are established under the motor vector diagram of FIG. 3A. That is, while gradually increasing the current phase ⁇ and the current I shown in the motor vector diagram within a predetermined range, the current phase ⁇ when the [induced voltage phase ⁇ current phase ⁇ ] is a predetermined value is stored, Data table of current phase ⁇ with phase current peak value Ip corresponding to current I and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] corresponding to [induced voltage phase ⁇ current phase ⁇ ] as parameters. Create
  • the current phase ⁇ is increased by 0.001 ° from ⁇ 180 ° to 180 °, and the current I is increased by 1 A from 0A to 64A.
  • the voltage phase ⁇ , the current phase ⁇ , and the induced voltage phase ⁇ are obtained based on the motor vector diagram using the d-axis inductance Ld and the q-axis inductance Lq inherent to the synchronous motor M.
  • the current phase ⁇ when [induced voltage phase ⁇ current phase ⁇ ] is 1 °, 2 °, 3 °,... Is stored.
  • phase current peak value Ip corresponding to the current I is set as one parameter, and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] corresponding to [induced voltage phase ⁇ current phase ⁇ ] is set to another parameter.
  • a data table of the current phase ⁇ is created as one parameter.
  • the rotor position ⁇ m is detected by inserting the current phase ⁇ and the phase current electrical angle ⁇ i selected from this data table into Equation 4 of the rotor position calculation formula.
  • the induced voltage phase ⁇ in Equation 7 is selected by referring to a data table prepared in advance using the phase current peak value Ip and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] as parameters.
  • the data table is prepared as follows and stored in the memory.
  • the data table in this case is also created in advance on the basis that Expressions 5 and 6 are established under the motor vector diagram of FIG. 3A. That is, the induced voltage phase ⁇ when [the induced voltage phase ⁇ current phase ⁇ ] is a predetermined value is stored while increasing the current phase ⁇ and the current I shown in the motor vector diagram stepwise within a predetermined range. Of induced voltage phase ⁇ with parameters of phase current peak value Ip corresponding to current I and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] corresponding to [induced voltage phase ⁇ current phase ⁇ ]. Create a data table.
  • the d-phase inductance inherent to the synchronous motor M is increased while the current phase ⁇ is increased by 0.001 ° from ⁇ 180 ° to 180 ° and the current I is increased by 1A from 0A to 64A.
  • voltage phase ⁇ , current phase ⁇ , and induced voltage phase ⁇ are obtained based on the motor vector diagram. Then, the induced voltage phase ⁇ when [induced voltage phase ⁇ current phase ⁇ ] is 1 °, 2 °, 3 °,... Is stored.
  • phase current peak value Ip corresponding to the current I is set as one parameter, and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] corresponding to [induced voltage phase ⁇ current phase ⁇ ] is set to another parameter.
  • the rotor position ⁇ m is detected by inserting the induced voltage phase ⁇ and the induced voltage electrical angle ⁇ e selected from this data table into the formula 7 of the rotor position calculation formula.
  • the rotor position detector 6 that executes the first and second detection methods described above, the rotor position ⁇ m is obtained directly using the above-described rotor position calculation formula, and therefore the rotor position ⁇ m is determined in the normal operation mode. It can be detected with high accuracy.
  • a method of selecting the current phase ⁇ or the induced voltage phase ⁇ which is one of the variables included in the rotor calculation formula, from a data table prepared in advance, the current phase ⁇ or the induced voltage phase ⁇ is The processing load is low compared to the case where it is calculated by each calculation. However, if it is not necessary to consider the processing load, it may be configured to calculate by each calculation.
  • the current phase ⁇ or the induced voltage phase ⁇ is selected as a data table using the phase current peak value Ip and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] as parameters.
  • a data table for selecting the current phase ⁇ or the induced voltage phase ⁇ using the induced voltage peak value Ep and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] as parameters, phase current peak value Ip, induced voltage wave Similarly, it is possible to use either a data table for selecting the current phase ⁇ or the induced voltage phase ⁇ using the high value Ep and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] as parameters.
  • the rotor position ⁇ m detected by the rotor position detection unit 6 is input to the normal operation rotation control unit 7.
  • the normal operation rotation control unit 7 outputs a voltage instruction value Vp and a voltage phase instruction value ⁇ v based on an operation command input from the outside and the rotor position ⁇ m.
  • the voltage instruction value Vp and the voltage phase instruction value ⁇ v are provided to the inverter drive unit 1 in the normal operation mode, and a PWM signal corresponding to this is output from the inverter drive unit 1 to the power module PM.
  • the position detection operation is executed by the normal operation rotation control unit 7 using the rotor position ⁇ m detected by the rotor position detection 6.
  • the detection accuracy of the rotor position ⁇ m is lowered, so that the startup means described below executes rotation control.
  • the starting voltage / starting phase setting unit 10 corresponding to the starting means outputs the starting voltage instruction value Vp and the starting voltage phase instruction value ⁇ v in the starting mode.
  • These instruction values Vp and ⁇ v are provided to the inverter drive unit 1 through the mode changeover switch 11, and a PWM signal is output from the inverter drive unit 1 to drive the synchronous motor M by the power module PM.
  • the starting voltage / starting phase setting unit 10 increases the starting rotational speed of the synchronous motor M driven based on the instruction values Vp and ⁇ v at a predetermined acceleration of, for example, 1 rpm / 1 msec.
  • the mode changeover switch 11 transmits the instruction values Vp and ⁇ v output from the normal operation rotation control unit 7 to the inverter driving unit 1 in the normal operation mode, and the instruction output from the starting voltage / starting phase setting unit 10 in the start mode.
  • the values Vp and ⁇ p are transmitted to the inverter drive unit 1.
  • the start-up voltage / start-up phase setting unit 10 generates a start-up voltage instruction value Vp indicating an applied voltage peak value in the start-up mode by PI control, P control, or the like according to the start-up current value Is output from the start-up current setting unit 12 To do.
  • the starter current setting unit 12 sets a current value corresponding to the maximum output torque as the starter current value Is when an operation command including the target rotation speed is input in a motor stop state.
  • the maximum current value that can be passed by the power module PM is set to the starting current value Is.
  • the starting current value Is output from the starting current setting unit 12 is corrected by the adding unit 13 and then input to the starting voltage / starting phase setting unit 10.
  • the adder 13 receives the phase current peak value Ip from the phase current peak value / electrical angle detector 4, and the phase current peak value Ip is fed back to the starting current value Is to set the starting voltage / starting phase.
  • the starting current value Is input to the unit 10 is maintained appropriately.
  • the start-up voltage / start-up phase setting unit 10 generates a start-up voltage phase instruction value ⁇ v indicating the applied voltage phase in the start-up mode according to the constant angular acceleration ⁇ a output from the acceleration setting unit 14.
  • the acceleration setting unit 14 outputs a constant angular acceleration ⁇ a to the starting voltage / starting phase setting unit 10 in response to an input of an operation command including the target rotation speed when the motor is stopped. Then, the acceleration setting unit 14 determines that ⁇ a ⁇ elapsed time t becomes the target rotation speed included in the operation command or, as described in Patent Document 2, described above, than the target rotation speed included in the operation command.
  • the mode changeover switch 11 is switched to the normal operation mode by the normal operation rotation control unit 7.
  • the starting voltage / starting phase setting unit 10 uses the rotor rotational speed (angular speed) ⁇ detected by the speed / speed variation detecting unit 15 for starting. It is reflected in the voltage phase instruction value ⁇ v.
  • the speed / speed fluctuation detecting unit 15 corresponding to the speed / speed fluctuation detecting means detects the rotational speed ⁇ by d ⁇ m / dt based on the rotor position ⁇ m detected by the rotor position detecting unit 6.
  • the starting voltage / starting phase setting unit 10 uses the angular acceleration ⁇ a and the detected rotational speed ⁇ (an angle corresponding thereto) to set the starting voltage phase instruction value ⁇ v according to the following equation 8.
  • ⁇ v ( ⁇ 1) represents the previous startup voltage phase instruction value ⁇ v
  • ⁇ t represents the control cycle.
  • the starting voltage / starting phase setting unit 10 sets the starting voltage phase instruction value ⁇ v by reflecting the rotor rotational speed ⁇ detected by the speed / speed fluctuation detecting unit 15. Since the fluctuation of the rotational speed ⁇ can be considered to depend on the fluctuation of the load applied to the output shaft of the synchronous motor M, in the start-up mode, the acceleration is appropriately adjusted according to the detected fluctuation of the rotational speed ⁇ . It is possible to execute rotation control following the load fluctuation.
  • the rotor position ⁇ m detected by the rotor position detector 6 is a calculated value reflecting [induced voltage electrical angle ⁇ e ⁇ current electrical angle ⁇ i]. Therefore, the rotational speed ⁇ detected based on the rotor position ⁇ m in the speed / speed fluctuation detection unit 15 varies according to the variation of [induced voltage electrical angle ⁇ e ⁇ current electrical angle ⁇ i]. This will be described with reference to FIGS. 3B and 3C.
  • 3B and 3C are motor vector diagrams under current I that is constantly controlled in the start-up mode.
  • the solid line vector is shown as the current phase, and the dotted line vector is shown as the target phase.
  • [induced voltage electrical angle ⁇ e ⁇ current electrical angle ⁇ i] increases as the rotor position ⁇ m advances.
  • FIG. 3C it can be seen that [induced voltage electrical angle ⁇ e ⁇ current electrical angle ⁇ i] decreases as the rotor position ⁇ m is delayed. That is, whether the rotor position ⁇ m has advanced or delayed in the preceding and following detection cycles from the rotational speed ⁇ that reflects [induced voltage electrical angle ⁇ e ⁇ current electrical angle ⁇ i] regardless of the detection accuracy of the rotor position ⁇ m.
  • Acceleration limitation according to the load can be applied to the setting of the starting voltage phase instruction value ⁇ v by the starting voltage / starting phase setting unit 10.
  • An acceleration adjusting unit 16 corresponding to acceleration adjusting means is provided to execute this acceleration adjustment.
  • the acceleration adjusting unit 16 starts the voltage phase instruction value ⁇ v for starting so as to decrease the rotational speed ⁇ when the fluctuation amount of the rotational speed ⁇ detected by the speed / speed fluctuation detecting unit 15 exceeds a predetermined threshold value ⁇ th. Adjust.
  • the fluctuation amount of the rotational speed ⁇ can be, for example, [ ⁇ (0) - ⁇ (-1)], where ⁇ (0) is the latest detected rotational speed and ⁇ (-1) is the previous detection. Rotation speed.
  • the load fluctuation in the start mode may be noticeable in the compressor of the air conditioner using the synchronous motor M.
  • refrigerant may condense in the cylinder and exist as a liquid.
  • the load is unusually heavy compared to the normal gas refrigerant compression stroke. Therefore, the load torque of the synchronous motor M that drives the compressor is high even at a low rotation, and if the rotation speed ⁇ increases. Then it gets higher rapidly.
  • the load applied to the synchronous motor M in the startup mode in this case greatly varies according to the compression / intake stroke of the compressor.
  • the threshold value ⁇ th assuming such load fluctuation is determined, and when the fluctuation amount of the rotational speed ⁇ exceeds the threshold value ⁇ th, the acceleration adjusting unit 16 sets the negative angular acceleration ⁇ a ′, The starting voltage / starting phase setting unit 10 sets the starting voltage phase instruction value ⁇ v according to the negative angular acceleration ⁇ a ′. Accordingly, the rotational speed ⁇ of the synchronous motor M is slowed down to a low rotational speed (for example, about 120 rpm) that can be operated even in the liquid compression stroke, thereby preventing step-out.
  • a low rotational speed for example, about 120 rpm
  • the synchronous motor M can be operated for a while at a low rotational speed, the amount of the liquid present in the compressor cylinder is small, so it will be discharged soon. If the load is lightened, the fluctuation amount of the rotational speed ⁇ detected by the speed / velocity fluctuation detection unit 15 becomes small. Therefore, the acceleration adjustment unit 16 cancels the acceleration adjustment, and the angular acceleration ⁇ a by the acceleration setting unit 14 is set. The normal startup mode used is executed.
  • a second threshold value ⁇ th ′ that is smaller than the first threshold value ⁇ th, it becomes more difficult to step out.
  • the acceleration adjusting unit 16 executes the acceleration adjustment based on the variation of [induced voltage electrical angle ⁇ e ⁇ current electrical angle ⁇ i] that can be regarded as torque variation.
  • the acceleration adjustment unit 16 receives the value of [induced voltage electrical angle ⁇ e ⁇ current electrical angle ⁇ i] from the rotor position detection unit 6 and detects the fluctuation by comparing with the stored previous value. .
  • Tth a predetermined threshold value
  • the setting unit 10 sets the starting voltage phase instruction value ⁇ v according to the angular acceleration ⁇ a ′. As a result, the rotational speed ⁇ of the synchronous motor M can be reduced. Thereafter, when the variation amount of [induced voltage electrical angle ⁇ e ⁇ current electrical angle ⁇ i] becomes smaller than the threshold value Tth, the acceleration adjusting unit 16 cancels the acceleration adjustment and uses the angular acceleration ⁇ a by the acceleration setting unit 14. Normal startup mode is executed.
  • a second threshold value Tth ′ that is smaller than the threshold value Tth. Can be set. In this case, the acceleration adjusting unit 16 does not increase the rotational speed ⁇ when the variation amount of [induced voltage electrical angle ⁇ e ⁇ current electrical angle ⁇ i] exceeds the second threshold Tth ′, for example, angular acceleration.
  • the acceleration adjustment unit 16 configured to use [induced voltage electrical angle ⁇ e ⁇ current electrical angle ⁇ i] instead of inputting the value of [induced voltage electrical angle ⁇ e ⁇ current electrical angle ⁇ i] from the rotor position detection unit 6
  • the induced voltage electrical angle ⁇ e and the electrical current angle ⁇ i are input from the phase current peak value / electrical angle detector 4 and the induced voltage peak value / electrical angle detector 5 corresponding to the electrical angle detector.
  • the acceleration adjusting unit 16 can operate independently of the rotor position detecting unit 6 and the speed / speed fluctuation detecting unit 15.
  • the configuration related to the acceleration adjusting unit 16 can be used in combination with the motor control device disclosed in Patent Document 2 described above.
  • the acceleration adjustment control flow of the acceleration adjustment unit 16 can be performed as follows when the synchronous motor M is used in the compressor of the air conditioner. First, a step of calculating the current rotation time of the compressor based on the rotation speed ⁇ by the speed / speed fluctuation detection unit 15 is executed. Next, a step of continuously detecting the maximum value and the minimum value of the rotational speed ⁇ or the maximum value and the minimum value of [induced voltage electrical angle ⁇ e ⁇ current electrical angle ⁇ i] within the time of one rotation of the compressor is executed. Then, the difference between the maximum value and the minimum value is compared with threshold values ⁇ th, ⁇ th ′ or threshold values Tth, Tth ′, and the step of adjusting the acceleration as described above is executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Motor And Converter Starters (AREA)

Abstract

 起動モードにおいて負荷の変動に追従した回転制御を実行するモータ制御装置を提案する。この提案のモータ制御装置は、相電流Iu~Iwに基づいて電流波高値Ip及び電流電気角θiを検出する検出手段4と、相電流Iu~Iwと印加電圧Vu~Vwとに基づいて誘起電圧波高値Ep及び誘起電圧電気角θeを検出する検出手段5と、θm=θi-β-90°又はθm=θe-γ-90°を使用してロータ位置θmを検出するロータ位置検出手段6と、そのθmに基づいて回転速度ωを検出する速度変動検出手段15と、起動用電圧指示値Vp及び起動用電圧位相指示値θvを出力し、同期モータMの回転速度を所定の加速度で上昇させると共に、速度変動検出手段15で検出される回転速度ωをθvに反映させる起動手段10と、を備える。

Description

モータ制御装置
 同期モータの起動制御に関する技術が以下に開示される。
 同期モータ(永久磁石同期モータ)の駆動方式として適用例が増えている正弦波駆動方式(180度通電方式)では、ロータ位置(ロータの回転位置)をセンサレスで検出し、ステータコイルへ適切な通電を行う制御を実行する。このセンサレスでロータ位置を検出する機能を備えたモータ制御装置として、特許文献1に開示のモータ制御装置が提案されている。特許文献1のモータ制御装置は、同期モータの通常運転モード(位置検出運転)においてロータ位置θmを一定の精度且つ低処理負荷で検出することを可能とするものである。
 同期モータには、通常運転モードへ入る前段階として起動モード(強制転流運転)があるが、この起動モードにおいては、ステータ座標系のα軸に対するロータ座標系のd軸の角度(ロータの絶対位置)を表すロータ位置θmの推定誤差が大きくなるため、ロータ位置θmに基づいた位置検出運転をしていない。そこで、起動モードでは、特許文献2に開示されるモータ制御装置により同期モータを起動させるものとしている。特許文献2のモータ制御装置は、目標回転速度(目標回転数)を含む運転指令をモータ停止状態で受け取ると、起動電圧設定部及び起動位相設定部により設定される印加電圧及び印加電圧位相で駆動を開始し、一定の加速度で回転速度を漸増させていく。そして、回転速度が目標回転速度よりも低い所定値に達したところで起動完了とみなし、通常運転モードへ移行する制御を実行する。これにより、処理能力の高い演算装置を不要とし、起動完了の簡素且つ確実化を可能としている。
特開2011-10438号公報 特開2005-94853号公報
 上述のように、同期モータの起動モードでは、ロータ位置の検出精度が良くないため、ロータ位置の検出は行わず、加速度一定で回転速度を漸増させる強制駆動を実行している。しかし、このときに、同期モータの出力軸にかかる負荷の変動、特に瞬間的な変動があると、脱調して起動に時間を要する可能性がある。
 起動モードにおける負荷変動は、特に、同期モータを使用したエアコン(エアコンディショナ)のコンプレッサにおいて現れ得る。例えば、コンプレッサのシリンダ内に冷媒液の粒が入り込むと、圧縮行程の負荷が増加する。一方で、吸入行程の負荷は通常通りであるため、この場合の起動モードにおいて同期モータにかかる負荷は、コンプレッサの圧縮・吸入行程に従って変動することになる。
 特許文献2に開示のモータ制御装置は、起動モードにおいて、負荷に関わらず加速度一定の強制的な制御を実行するため、上記のような負荷変動がある場合に対応していない。このような技術背景に鑑みると、起動モードにおいて負荷の変動に追従できるような何らかの工夫が必要である。
 当課題に対して提案するモータ制御装置は、
 同期モータのステータコイルに流れる電流を検出する電流検出手段と、
 前記ステータコイルに印加される印加電圧を検出する印加電圧検出手段と、
 前記電流検出手段で検出される電流及び前記印加電圧検出手段で検出される印加電圧に基づいて求められる電流変数及び電圧変数を含む所定のロータ位置計算式を使用して、前記同期モータのロータ位置を検出するロータ位置検出手段と、
 前記ロータ位置検出手段で検出されるロータ位置に基づいて回転速度を検出する速度・速度変動検出手段と、
 起動モードにおいて起動用電圧指示値及び起動用電圧位相指示値を出力し、これら指示値に基づいて駆動される前記同期モータの回転速度を所定の加速度で上昇させると共に、前記速度・速度変動検出手段で検出される回転速度を前記起動用電圧位相指示値に反映させる起動手段と、
 を含んで構成される。
 上記提案に係るモータ制御装置において検出されるロータ位置は、検出された現在の電流及び印加電圧に基づいており、その算出値は「誘起電圧電気角及び電流電気角の差」を反映している。したがって、このロータ位置に基づいて検出される回転速度は、誘起電圧電気角と電流電気角との差(すなわち誘起電圧と電流との位相差)の変動に応じて変動するものとなる。モータベクトル図において一般に、誘起電圧電気角及び電流電気角の差は、ロータ位置が進むと大きくなり、ロータ位置が遅れると小さくなる。つまり、誘起電圧電気角及び電流電気角の差を反映して変動する回転速度から、ロータ位置(ロータの絶対位置)の検出精度に関わりなく、前後の検出周期でロータ位置が進んだか遅れたかというロータの相対的位置を検出することができる。そして、回転速度の変動=ロータの相対的位置の変動は、同期モータの出力軸にかかる負荷の変動に応じると考えることができるので、検出される回転速度の変動に応じて加速度を適切に調節すれば、起動モードにおいて負荷の変動に追従した回転制御を実行することが可能である。
モータ制御装置の実施形態を示したブロック図。 正弦波通電における(A)電流、(B)誘起電圧の各波形図。 同期モータのベクトル図。
 図1は、モータ制御装置の実施形態を示している。
 この実施形態の同期モータMは、3相のスター結線型で、U相、V相、W相のステータコイルを含むステータと、永久磁石を含むロータとを有する。図中にはU相、V相、W相の各ステータコイルのみを示し、その他は図示を省略してある。なお、スター結線型を例として示すがデルタ結線でも同様に適用される。
 この同期モータMを駆動するパワーモジュール(IPM)PMは、U相、V相、W相ごとに上アーム側のスイッチング素子+U,+V,+W及び下アーム側のスイッチング素子-U,-V,-Wを直流電源の高位側と低位側の間に直列接続してある。また、下アーム側スイッチング素子-U,-V,-Wの低位側には、各相に流れる電流を検出するためのシャント抵抗Ru,Rv,Rwが設けられる。各スイッチング素子+U~-Wはインバータ駆動部1によるPWM信号で駆動され、これに従いU相、V相、W相の各ステータコイルが正弦波通電(180度通電)で制御される。当該制御によって各相U,V,Wに流れる電流が、シャント抵抗Ru,Rv,Rwを利用して検出される。
 インバータ駆動部1及び以下に説明する各部は、本実施形態の場合、プログラムに従って動作するマイコン等のコンピュータにより実行されるものとして説明する。ただし、これに限らず、ハードウエアによりそれぞれを構成することなども可能である。
 電流検出手段に相当する相電流検出部2は、シャント抵抗Ru,Rv,Rwにかかる電圧を測定することにより、U相のステータコイルに流れるU相電流Iu、V相のステータコイルに流れるV相電流Iv、W相のステータコイルに流れるW相電流Iwをそれぞれ検出する。印加電圧検出手段に相当する印加電圧検出部3は、上アーム側スイッチング素子+U~+WからU相のステータコイル、V相のステータコイル、W相のステータコイルへそれぞれ印加されるU相印加電圧Vu、V相印加電圧Vv、W相印加電圧Vwを検出する。
 電流波高値・電気角検出手段に相当する相電流波高値・電気角検出部4は、相電流検出部2で検出される相電流Iu,Iv,Iwの値に基づいて、相電流波高値Ip及び相電流電気角θiを検出する。その検出方法は次の通りである。当該検出方法は、前述の特許文献1に詳しく説明されている。
 U相、V相、W相に正弦波通電を行っているときの相電流波形図は、図2Aに示してある通りであり、正弦波形を成すU相電流Iu、V相電流Iv、W相電流Iwにはそれぞれ120°の位相差がある。この相電流波形図からすれば、相電流Iu,Iv,Iw、相電流波高値Ip、そして相電流電気角θiの間には次の式1が成立する。相電流波高値・電気角検出部4は、相電流検出部2で検出されるU相電流Iu、V相電流Iv、W相電流Iwを利用して、式1によって相電流波高値Ip及び相電流電気角θiを求める。
[式1]
Iu=Ip×cos(θi)
Iv=Ip×cos(θi-2/3π)
Iw=Ip×cos(θi+2/3π)
 誘起電圧波高値・電気角検出手段に相当する誘起電圧波高値・電気角検出部5は、相電流検出部2で検出される相電流Iu,Iv,Iwと、印加電圧検出部3で検出される印加電圧Vu,Vv,Vwとに基づいて、誘起電圧波高値Ep及び誘起電圧電気角θeを検出する。その検出方法は次の通りである。当該検出方法も、前述の特許文献1に詳しく説明されている。
 U相、V相、W相に正弦波通電を行っているときの誘起電圧波形図は、図2Bに示してある通りであり、正弦波形を成すU相誘起電圧Eu、V相誘起電圧Ev、W相誘起電圧Ewにはそれぞれ120°の位相差がある。この誘起電圧波形図からすれば、誘起電圧Eu,Ev,Ew、誘起電圧波高値Ep、そして誘起電圧電気角θeの間には次の式2が成立する。
[式2]
Eu=Ep×cos(θe)
Ev=Ep×cos(θe-2/3π)
Ew=Ep×cos(θe+2/3π)
 一方、印加電圧Vu,Vv,Vw、相電流Iu,Iv,Iw、ステータコイルの抵抗値Rcu,Rcv,Rcw、そして誘起電圧Eu,Ev,Ewの間には次の式3が成立する。
[式3]
Vu-Iu×Rcu=Eu
Vv-Iv×Rcv=Ev
Vw-Iw×Rcw=Ew
 誘起電圧波高値・電気角検出部5は、相電流検出部2で検出されるU相電流Iu、V相電流Iv、W相電流Iwと、印加電圧検出部3で検出されるU相印加電圧Vu、V相印加電圧Vv、W相印加電圧Vwとに基づいて、式3からU相誘起電圧Eu、V相誘起電圧Ev、W相誘起電圧Ewを求め、そして、求めたU相誘起電圧Eu、V相誘起電圧Ev、W相誘起電圧Ewに基づいて、式2から誘起電圧波高値Epと誘起電圧電気角θeを求める。
 ロータ位置検出手段に相当するロータ位置検出部6は、電流変数及び電圧変数として、相電流波高値・電気角検出部4で検出される相電流波高値Ip、相電流電気角θi、誘起電圧波高値・電気角検出部5で検出される誘起電圧波高値Ep、誘起電圧電気角θeに基づいて、ロータ位置θm(α軸に対するd軸の角度)を検出する。すなわち、電流電気角θi又は誘起電圧電気角θeを変数として含むと共に、電流波高値Ip又は誘起電圧波高値Epと誘起電圧電気角θe及び電流電気角θiの差[θe-θi]とに基づいて求められる電流位相β又は誘起電圧位相γを変数として含むロータ位置計算式を使用して、同期モータMのロータ位置θmを検出する(詳しくは特許文献1参照)。
 このうち、相電流電気角θiと、相電流波高値Ip及び[誘起電圧電気角θe-相電流電気角θi]に基づく電流位相βと、を変数として含むロータ位置計算式を使用した第1の検出方法、さらに、誘起電圧電気角θeと、相電流波高値Ip及び[誘起電圧電気角θe-相電流電気角θi]に基づく誘起電圧位相γと、を変数として含むロータ位置計算式を使用した第2の検出方法について、具体的に説明する。
(1)第1の検出方法
 第1の検出方法において、検出された相電流電気角θi及び電流位相βを変数として含むロータ位置計算式は、次の式4である。
[式4]
θm=θi-β-90°
 式4における電流位相βは、相電流波高値Ip及び[誘起電圧電気角θe-相電流電気角θi]をパラメータとして、予め用意したデータテーブルを参照することで選出される。そのデータテーブルは、次のようにして用意し、メモリに記憶しておく。
 データテーブル作成に関し、図3Aに示すのは、同期モータMのロータが回転しているときのモータベクトル図であり、印加電圧V(Vu~Vw)、電流I(Iu~Iw)、誘起電圧E(Eu~Ew)の関係をd-q座標にベクトルで表してある。誘起電圧Eは[ωΨ]で表される。また、図3Aにおいて、Vdは印加電圧Vのd軸成分、Vqは印加電圧Vのq軸成分、Idは電流Iのd軸成分、Iqは電流Iのq軸成分、Edは誘起電圧Eのd軸成分、Eqは誘起電圧Eのq軸成分である。さらに、q軸を基準とした電圧位相がα、q軸を基準とした電流位相がβ、q軸を基準とした誘起電圧位相がγである。図中のΨaはロータの永久磁石の磁束、Ldはd軸インダクタンス、Lqはq軸インダクタンス、Rはステータコイルの抵抗値(Rcu~Rcw)、Ψはロータの総合鎖交磁束である。
 このモータベクトル図からすれば、ロータの回転速度をωとして次の式5が成立し、そして、式5の右辺からωに関する値を左辺に移して式6が成立する。
[式5]
Figure JPOXMLDOC01-appb-I000001
[式6]
Figure JPOXMLDOC01-appb-I000002
 このように図3Aのモータベクトル図下で式5、式6が成り立つことを基礎としてデータテーブルが予め作成される。すなわち、モータベクトル図に示される電流位相β及び電流Iをそれぞれ所定範囲内で段階的に増加させながら、[誘起電圧位相γ-電流位相β]が所定値のときの電流位相βを保存し、電流Iに相当する相電流波高値Ipと、[誘起電圧位相γ-電流位相β]に相当する[誘起電圧電気角θe-相電流電気角θi]と、をパラメータとした電流位相βのデータテーブルを作成する。
 詳しくは、例えば前述の特許文献1の図5に示されているように、電流位相βを-180°から180°まで0.001°ずつ増加させ、且つ、電流Iを0Aから64Aまで1Aずつ増加させながら、同期モータMに固有のd軸インダクタンスLdとq軸インダクタンスLqを利用して、モータベクトル図を基に電圧位相α、電流位相β、誘起電圧位相γを求める。そして、[誘起電圧位相γ-電流位相β]が1°,2°,3°,…のときの電流位相βを保存する。これにより、電流Iに相当する相電流波高値Ipを1つのパラメータとし、且つ、[誘起電圧位相γ-電流位相β]に相当する[誘起電圧電気角θe-相電流電気角θi]をもう1つのパラメータとした、電流位相βのデータテーブルが作成される。
 このデータテーブルから選出される電流位相βと相電流電気角θiとを、ロータ位置計算式の式4に挿入すれば、ロータ位置θmが検出される。
(2)第2の検出方法
 第2の検出方法において、検出された誘起電圧電気角θe及び誘起電圧位相γを変数として含むロータ位置計算式は、次の式7である。
[式7]
θm=θe-γ-90°
 式7における誘起電圧位相γは、相電流波高値Ip及び[誘起電圧電気角θe-相電流電気角θi]をパラメータとして、予め用意したデータテーブルを参照することで選出される。そのデータテーブルは、次のように用意し、メモリに記憶しておく。
 この場合のデータテーブルも、図3Aのモータベクトル図下で式5、式6が成り立つことを基礎として予め作成される。すなわち、モータベクトル図に示される電流位相β及び電流Iをそれぞれ所定範囲内で段階的に増加させながら、[誘起電圧位相γ-電流位相β]が所定値のときの誘起電圧位相γを保存し、電流Iに相当する相電流波高値Ipと、[誘起電圧位相γ-電流位相β]に相当する[誘起電圧電気角θe-相電流電気角θi]と、をパラメータとした誘起電圧位相γのデータテーブルを作成する。
 詳しくは、上記同様に、電流位相βを-180°から180°まで0.001°ずつ増加させ、且つ、電流Iを0Aから64Aまで1Aずつ増加させながら、同期モータMに固有のd軸インダクタンスLdとq軸インダクタンスLqを利用して、モータベクトル図を基に電圧位相α、電流位相β、誘起電圧位相γを求める。そして、[誘起電圧位相γ-電流位相β]が1°,2°,3°,…のときの誘起電圧位相γを保存する。これにより、電流Iに相当する相電流波高値Ipを1つのパラメータとし、且つ、[誘起電圧位相γ-電流位相β]に相当する[誘起電圧電気角θe-相電流電気角θi]をもう1つのパラメータとした、誘起電圧位相γのデータテーブルが作成される。
 このデータテーブルから選出される誘起電圧位相γと誘起電圧電気角θeとを、ロータ位置計算式の式7に挿入すれば、ロータ位置θmが検出される。
 以上の第1及び第2の検出方法を実行するロータ位置検出部6によると、上記のロータ位置計算式を用いてロータ位置θmを直接的に求めているので、通常運転モードにおいてロータ位置θmを精度良く検出することができる。また、ロータ計算式に含まれる変数の1つである電流位相β又は誘起電圧位相γを、予め用意したデータテーブルから選出する方式が採用されているので、電流位相β又は誘起電圧位相γをその都度計算によって求める場合に比べて処理負荷が低い。ただし、処理負荷を考えなくてもよいのであれば、その都度の計算で算出するように構成することも可能である。
 上記に説明した第1及び第2の検出方法では、データテーブルとして、相電流波高値Ip及び[誘起電圧電気角θe-相電流電気角θi]をパラメータとして電流位相β又は誘起電圧位相γを選出するテーブルを例示した。これ以外にも、誘起電圧波高値Ep及び[誘起電圧電気角θe-相電流電気角θi]をパラメータとして電流位相β又は誘起電圧位相γを選出するデータテーブル、相電流波高値Ip、誘起電圧波高値Ep及び[誘起電圧電気角θe-相電流電気角θi]をパラメータとして電流位相β又は誘起電圧位相γを選出するデータテーブル、のいずれかを用いることが同様に可能である。
 このようなロータ位置検出部6により検出されたロータ位置θmは、通常運転回転制御部7に入力される。通常運転回転制御部7は、外部から入力される運転指令とロータ位置θmに基づいて、電圧指示値Vp及び電圧位相指示値θvを出力する。これら電圧指示値Vp及び電圧位相指示値θvは、通常運転モードにおいて、インバータ駆動部1へ提供され、インバータ駆動部1からこれに応じたPWM信号がパワーモジュールPMへ出力される。
 通常運転モードでは、ロータ位置検出6で検出されるロータ位置θmを利用し、通常運転回転制御部7により位置検出運転が実行される。しかし、起動モードでは、そのロータ位置θmの検出精度が落ちるので、次に説明する起動手段が回転制御を実行する。
 本実施形態において起動手段に相当する起動電圧・起動位相設定部10は、起動モードにおいて起動用電圧指示値Vp及び起動用電圧位相指示値θvを出力する。これら指示値Vp,θvは、モード切換スイッチ11を通してインバータ駆動部1へ提供され、該インバータ駆動部1からPWM信号が出力されてパワーモジュールPMにより同期モータMが駆動される。このように指示値Vp,θvに基づいて駆動される同期モータMの起動回転速度に関し、起動電圧・起動位相設定部10は、例えば1rpm/1msecといった所定の加速度で上昇させる。モード切換スイッチ11は、通常運転モードでは通常運転回転制御部7から出力される指示値Vp,θvをインバータ駆動部1へ伝達し、起動モードでは起動電圧・起動位相設定部10から出力される指示値Vp,θpをインバータ駆動部1へ伝達する。
 起動電圧・起動位相設定部10は、起動電流設定部12から出力される起動電流値Isに従って、PI制御やP制御等により、起動モードにおける印加電圧波高値を示す起動用電圧指示値Vpを発生する。起動電流設定部12は、モータ停止状態において目標回転速度を含んだ運転指令が入力されると、起動電流値Isとして、最大出力トルクに相応する電流値を設定する。同期モータMを起動させるときには、必要なトルクが不明なので、パワーモジュールPMで流せる最大電流値を起動電流値Isに設定するものである。
 起動電流設定部12から出力される起動電流値Isは、加算部13で補正されてから起動電圧・起動位相設定部10へ入力される。加算部13には、相電流波高値・電気角検出部4から相電流波高値Ipが入力されており、起動電流値Isに対し相電流波高値Ipがフィードバックされて、起動電圧・起動位相設定部10へ入力される起動電流値Isが適正に保たれる。
 起動電圧・起動位相設定部10は、加速度設定部14から出力される一定の角加速度θaに従って、起動モードにおける印加電圧位相を示す起動用電圧位相指示値θvを発生する。加速度設定部14は、モータ停止状態において目標回転速度を含んだ運転指令が入力されると、これに応じて一定の角加速度θaを起動電圧・起動位相設定部10へ出力する。そして、加速度設定部14は、θa×経過時間tが運転指令に含まれた目標回転速度になるか、又は、前述の特許文献2にあるように、運転指令に含まれた目標回転速度よりも低い所定値に達したときに、モード切換スイッチ11を切り換えて、通常運転回転制御部7による通常運転モードとする。
 この角加速度θaに従い起動用電圧位相指示値θvを発生する際に、起動電圧・起動位相設定部10は、速度・速度変動検出部15で検出されるロータの回転速度(角速度)ωを起動用電圧位相指示値θvに反映させる。速度・速度変動検出手段に相当する速度・速度変動検出部15は、ロータ位置検出部6で検出されたロータ位置θmに基づいて、dθm/dtにより回転速度ωを検出する。起動電圧・起動位相設定部10は、角加速度θa及び検出回転速度ω(に相当する角度)を利用し、次式8により起動用電圧位相指示値θvを設定する。式中、θv(-1)は前回の起動用電圧位相指示値θvを表し、Δtは制御周期を表す。
[式8]
θv=θv(-1)+[θaΔt+ω]Δt
 このように、起動電圧・起動位相設定部10は、速度・速度変動検出部15で検出されたロータの回転速度ωを反映させて起動用電圧位相指示値θvを設定する。回転速度ωの変動は、同期モータMの出力軸にかかる負荷の変動に応じると考えることができるので、検出される回転速度ωの変動に応じて加速度を適切に調節することで、起動モードにおいて負荷の変動に追従した回転制御を実行可能である。
 ロータ位置検出部6において検出されるロータ位置θmは、[誘起電圧電気角θe-電流電気角θi」を反映した算出値である。したがって、速度・速度変動検出部15においてロータ位置θmに基づき検出される回転速度ωは、[誘起電圧電気角θe-電流電気角θi]の変動に応じて変動するものとなる。これに関し、図3B及び図3Cを参照して説明する。図3B及び図3Cは、起動モードにおいて一定に制御される電流Iの下でのモータベクトル図である。
 図3B及び図3Cにおいて、実線のベクトルは現在の位相として示し、点線のベクトルは目標の位相として示す。図3Bを参照すれば、[誘起電圧電気角θe-電流電気角θi]は、ロータ位置θmが進むと大きくなることが分かる。一方、図3Cを参照すれば、[誘起電圧電気角θe-電流電気角θi]は、ロータ位置θmが遅れると小さくなることが分かる。すなわち、[誘起電圧電気角θe-電流電気角θi]を反映して変動する回転速度ωから、ロータ位置θmの検出精度に関わりなく、前後の検出周期でロータ位置θmが進んだか遅れたかというロータの相対的位置Δθmを検出することができる。この回転速度ωの変動=ロータの相対的位置変動Δθmは、同期モータMの出力軸にかかる負荷の変動に応じると考えることができるので、検出される回転速度ωの変動に応じて加速度を適切に調節することにより、起動モードにおいて負荷の変動に追従した回転制御を実行することが可能である。
 起動電圧・起動位相設定部10による起動用電圧位相指示値θvの設定に、負荷に応じた加速度制限をかけることも可能である。この加速度調節を実行するために設けられているのが、加速度調節手段に相当する加速度調節部16である。加速度調節部16は、速度・速度変動検出部15で検出される回転速度ωの変動量が所定のしきい値ωthを超える場合に、回転速度ωを低下させるように起動用電圧位相指示値θvを調節する。回転速度ωの変動量は、例えば[ω(0)-ω(-1)]とすることができ、式中のω(0)は最新の検出回転速度、ω(-1)は前回の検出回転速度である。
 起動モードにおける負荷変動は、同期モータMを使用したエアコンのコンプレッサにおいて顕著に現れる場合がある。例えば、夜間の冷え込みなどで冷たくなったコンプレッサでは、シリンダ内で冷媒が結露し液体として存在していることがあり、この状態でコンプレッサを始動させると、液圧縮行程が発生する。液圧縮行程は、通常の気体の冷媒圧縮行程に比べて負荷が異様に重くなるため、コンプレッサを駆動する同期モータMの負荷トルクは、低回転であっても高く、回転速度ωが上昇すればそれからさらに急激に高くなる。一方で、吸入行程の負荷は通常通りであるため、この場合の起動モードにおいて同期モータMにかかる負荷は、コンプレッサの圧縮・吸入行程に従って大きく変動することになる。
 このように負荷が大きく変動するときに、加速度一定で回転速度ωを強制的に上昇させる制御を実行すると、脱調して起動に時間を要する可能性がある。そこで、このような負荷変動を想定したしきい値ωthを決め、回転速度ωの変動量が当該しきい値ωthを超える場合には、加速度調節部16が負の角加速度θa’を設定し、起動電圧・起動位相設定部10は、その負の角加速度θa’に従って起動用電圧位相指示値θvを設定する。これより、同期モータMの回転速度ωを遅くし、液圧縮行程でも運転可能な低回転速度(例えば120rpm程度)まで回転速度ωを下げ、脱調を防止する。
 低回転速度でしばらく同期モータMを運転することができれば、コンプレッサのシリンダ内に存在する液体は、その量が少ないので、やがて吐出される。これにより負荷が軽くなれば、速度・速度変動検出部15で検出される回転速度ωの変動量が小さくなるので、加速度調節部16が加速度調節を解除し、加速度設定部14による角加速度θaを使用した正常な起動モードが実行される。
 加速度調節部16においては、上記所定のしきい値ωthの他に、該しきい値ωthよりも小さい別のしきい値ωth’を設定してあってもよい。この場合の加速度調節部16は、速度変動検出部15で検出される回転速度ωの変動量がしきい値ωth’を超える場合に、回転速度ωを上昇させないように、例えば角加速度θa=0として、起動用電圧位相指示値θvを調節する。第1のしきい値ωthよりも小さい第2のしきい値ωth’という中間レベルを設けることで、さらに脱調し難くなる。
 回転速度ωの変動から負荷変動を推定する他に、加速度調節部16は、トルク変動とみなすことができる[誘起電圧電気角θe-電流電気角θi]の変動に基づいて、加速度調節を実行するように構成してもよい。この場合の加速度調節部16は、ロータ位置検出部6から[誘起電圧電気角θe-電流電気角θi]の値を入力し、記憶しておいた前回の値と比較することで変動を検出する。そして、[誘起電圧電気角θe-電流電気角θi]の変動量が、上記同様に決められる所定のしきい値Tthを超える場合に、負の角加速度θa’を設定し、起動電圧・起動位相設定部10がその角加速度θa’に従って起動用電圧位相指示値θvを設定する。これより、同期モータMの回転速度ωを遅くすることができる。この後、[誘起電圧電気角θe-電流電気角θi]の変動量がしきい値Tthよりも小さくなれば、加速度調節部16は加速度調節を解除し、加速度設定部14による角加速度θaを使用した正常な起動モードが実行される。
 [誘起電圧電気角θe-電流電気角θi]を利用する加速度調節部16においても、上記第1のしきい値Tthの他に、該しきい値Tthよりも小さい第2のしきい値Tth’を設定可能である。この場合の加速度調節部16は、[誘起電圧電気角θe-電流電気角θi]の変動量が第2のしきい値Tth’を超える場合に、回転速度ωを上昇させないように、例えば角加速度θa=0として、起動用電圧位相指示値θvを調節する。
 [誘起電圧電気角θe-電流電気角θi]を利用する構成の加速度調節部16は、ロータ位置検出部6から[誘起電圧電気角θe-電流電気角θi]の値を入力する代わりに、電流電気角検出手段に相当する相電流波高値・電気角検出部4及び誘起電圧電気角検出手段に相当する誘起電圧波高値・電気角検出部5から誘起電圧電気角θe及び電流電気角θiを入力し、[誘起電圧電気角θe-電流電気角θi]を自身で検出して起動用電圧位相指示値θvを調節することもできる。この場合、加速度調節部16は、ロータ位置検出部6及び速度・速度変動検出部15から独立して動作可能である。
 上記の加速度調節部16に関連する構成は、前述の特許文献2に開示されたモータ制御装置などに組みあわせて使用することも可能である。
 加速度調節部16の加速度調節制御フローは、エアコンのコンプレッサに同期モータMが使用される場合、次のようにすることができる。
 まず、速度・速度変動検出部15による回転速度ωに基づいて現在のコンプレッサ1回転の時間を計算するステップを実行する。次いで、そのコンプレッサ1回転の時間内で、回転速度ωの最大値と最小値、あるいは、[誘起電圧電気角θe-電流電気角θi]の最大値と最小値を継続検出するステップを実行する。そして、その最大値と最小値との差を、しきい値ωth,ωth’又はしきい値Tth,Tth’と比較し、上記のようにして加速度を調節するステップを実行する。
1 インバータ駆動部
2 相電流検出部
3 印加電圧検出部
4 相電流波高値・電気角検出部
5 誘起電圧波高値・電気角検出部
6 ロータ位置検出部
7 通常運転回転制御部
10 起動電圧・起動位相設定部
11 モード切換スイッチ
12 起動電流設定部
13 加算部
14 加速度設定部
15 速度・速度変動検出部
16 加速度調節部

Claims (9)

  1.  同期モータのステータコイルに流れる電流を検出する電流検出手段と、
     前記ステータコイルに印加される印加電圧を検出する印加電圧検出手段と、
     前記電流検出手段で検出される電流及び前記印加電圧検出手段で検出される印加電圧に基づいて求められる電流変数及び電圧変数を含む所定のロータ位置計算式を使用して、前記同期モータのロータ位置を検出するロータ位置検出手段と、
     前記ロータ位置検出手段で検出されるロータ位置に基づいて回転速度を検出する速度・速度変動検出手段と、
     起動モードにおいて起動用電圧指示値及び起動用電圧位相指示値を出力し、これら指示値に基づいて駆動される前記同期モータの回転速度を所定の加速度で上昇させると共に、前記速度・速度変動検出手段で検出される回転速度を前記起動用電圧位相指示値に反映させる起動手段と、
     を含んで構成されるモータ制御装置。
  2.  前記速度・速度変動検出手段で検出される回転速度の変動量が第1のしきい値を超える場合に、前記同期モータの回転速度を低下させるように前記起動用電圧位相指示値を調節する加速度調節手段を含む、
     請求項1に記載のモータ制御装置。
  3.  前記加速度調節手段は、
     前記速度・速度変動検出手段で検出される回転速度の変動量が、前記第1のしきい値よりも小さい第2のしきい値を超える場合に、前記同期モータの回転速度を上昇させないように前記起動用電圧位相指示値を調節する、
     請求項2に記載のモータ制御装置。
  4.  前記誘起電圧電気角及び前記電流電気角の差の変動量が第1のしきい値を超える場合に、前記同期モータの回転速度を低下させるように前記起動用電圧位相指示値を調節する加速度調節手段を含む、
     請求項1に記載のモータ制御装置。
  5.  前記加速度調節手段は、
     前記誘起電圧電気角及び前記電流電気角の差の変動量が、前記第1のしきい値よりも小さい第2のしきい値を超える場合に、前記同期モータの回転速度を上昇させないように前記起動用電圧位相指示値を調節する、
     請求項4に記載のモータ制御装置。
  6.  前記電流検出手段で検出される電流に基づいて電流波高値及び電流電気角を検出する電流波高値・電気角検出手段と、
     前記電流検出手段で検出される電流と前記印加電圧検出手段で検出される印加電圧とに基づいて誘起電圧波高値及び誘起電圧電気角を検出する誘起電圧波高値・電気角検出手段と、
     をさらに含み、
     前記ロータ位置検出手段は、
     前記電流電気角又は前記誘起電圧電気角を変数として含むと共に、前記電流波高値又は前記誘起電圧波高値と前記誘起電圧電気角及び前記電流電気角の差とに基づいて求められる電流位相又は誘起電圧位相を変数として含む前記ロータ位置計算式を使用して、前記同期モータのロータ位置を検出する、
     請求項1に記載のモータ制御装置。
  7.  同期モータのステータコイルに流れる電流を検出する電流検出手段と、
     前記ステータコイルに印加される印加電圧を検出する印加電圧検出手段と、
     前記電流検出手段で検出される電流及び前記印加電圧検出手段で検出される印加電圧に基づいて求められる電流変数及び電圧変数を含む所定のロータ位置計算式を使用して、前記同期モータのロータ位置を検出するロータ位置検出手段と、
     前記ロータ位置検出手段で検出されるロータ位置に基づいて回転速度を検出する速度・速度変動検出手段と、
     起動モードにおいて起動用電圧指示値及び起動用電圧位相指示値を出力し、これら指示値に基づいて駆動される前記同期モータの回転速度を所定の加速度で上昇させる起動手段と、
     前記速度・速度変動検出手段で検出される回転速度の変動量に基づいて前記起動用電圧位相指示値を調節する加速度調節手段と、
     を含んで構成されるモータ制御装置。
  8.  前記電流検出手段で検出される電流に基づいて電流波高値及び電流電気角を検出する電流波高値・電気角検出手段と、
     前記電流検出手段で検出される電流と前記印加電圧検出手段で検出される印加電圧とに基づいて誘起電圧波高値及び誘起電圧電気角を検出する誘起電圧波高値・電気角検出手段と、
     をさらに含み、
     前記ロータ位置検出手段は、
     前記電流電気角又は前記誘起電圧電気角を変数として含むと共に、前記電流波高値又は前記誘起電圧波高値と前記誘起電圧電気角及び前記電流電気角の差とに基づいて求められる電流位相又は誘起電圧位相を変数として含む前記ロータ位置計算式を使用して、前記同期モータのロータ位置を検出する、
     請求項7に記載のモータ制御装置。
  9.  同期モータのステータコイルに流れる電流を検出する電流検出手段と、
     前記ステータコイルに印加される印加電圧を検出する印加電圧検出手段と、
     前記電流検出手段で検出される電流に基づいて電流電気角を検出する電流電気角検出手段と、
     前記電流検出手段で検出される電流と前記印加電圧検出手段で検出される印加電圧とに基づいて誘起電圧電気角を検出する誘起電圧電気角検出手段と、
     起動モードにおいて起動用電圧指示値及び起動用電圧位相指示値を出力し、これら指示値に基づいて駆動される前記同期モータの回転速度を所定の加速度で上昇させる起動手段と、
     前記誘起電圧電気角及び前記電流電気角の差に基づいて前記起動用電圧位相指示値を調節する加速度調節手段と、
     を含んで構成されるモータ制御装置。
PCT/JP2012/055224 2011-04-22 2012-03-01 モータ制御装置 WO2012144276A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280019595.4A CN103493362B (zh) 2011-04-22 2012-03-01 电动机控制装置
US14/113,357 US9246420B2 (en) 2011-04-22 2012-03-01 Motor control device
EP12774052.0A EP2696496B1 (en) 2011-04-22 2012-03-01 Motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011095661A JP5838038B2 (ja) 2011-04-22 2011-04-22 モータ制御装置
JP2011-095661 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012144276A1 true WO2012144276A1 (ja) 2012-10-26

Family

ID=47041398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055224 WO2012144276A1 (ja) 2011-04-22 2012-03-01 モータ制御装置

Country Status (5)

Country Link
US (1) US9246420B2 (ja)
EP (1) EP2696496B1 (ja)
JP (1) JP5838038B2 (ja)
CN (1) CN103493362B (ja)
WO (1) WO2012144276A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107960145A (zh) * 2015-08-28 2018-04-24 松下知识产权经营株式会社 电动机驱动装置、和使用其的压缩机的驱动装置以及冷藏库
CN113030724A (zh) * 2021-03-17 2021-06-25 东莞市鸿盈电子科技有限公司 一种测试多极电机启动死角的方法以及装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748051B2 (ja) * 2011-05-10 2015-07-15 サンデンホールディングス株式会社 同期モータの印加電圧電気角設定方法とモータ制御装置
JP6354523B2 (ja) * 2014-10-31 2018-07-11 株式会社デンソー 電動機の制御装置
KR20160104166A (ko) * 2015-02-25 2016-09-05 한국전자통신연구원 모터 구동 장치, 모터를 제어하는 제어 방법, 그리고 모터의 각 정보를 계산하는 계산 장치
DE102015224254A1 (de) * 2015-12-03 2017-06-08 Röchling Automotive SE & Co. KG Verfahren zum Bestimmen eines Betriebsbereitschaftszustands eines Elektromotors
CN109072854B (zh) * 2016-02-11 2021-12-14 塞德马克机电私人有限公司 起动内燃发动机的方法和系统
EP3211788A1 (en) * 2016-02-23 2017-08-30 NRG Tech Ltd. Doubly fed induction motor
JP6646484B2 (ja) 2016-03-15 2020-02-14 サンデン・オートモーティブコンポーネント株式会社 モータ制御装置
FR3049410A1 (fr) * 2016-03-24 2017-09-29 Valeo Japan Co Ltd Procede de demarrage pour une machine synchrone, dispositif de commande, machine synchrone, et compresseur associes.
JP2019097315A (ja) * 2017-11-23 2019-06-20 株式会社デンソー 制御装置
JP6936172B2 (ja) 2018-02-28 2021-09-15 サンデン・オートモーティブコンポーネント株式会社 モータ制御装置
JP6936171B2 (ja) 2018-02-28 2021-09-15 サンデン・オートモーティブコンポーネント株式会社 モータ制御装置
CN109104049A (zh) * 2018-09-14 2018-12-28 珠海格力电器股份有限公司 电机系统和空调
CN109818541B (zh) * 2019-03-13 2020-10-02 东南大学 一种用于磁链观测的记忆电机绕组复用控制方法及系统
CN110572090A (zh) * 2019-09-11 2019-12-13 珠海凯邦电机制造有限公司 一种无霍尔元件的电机控制装置、方法和存储介质
CN113949325B (zh) * 2021-10-29 2024-04-09 歌尔股份有限公司 线性马达的控制方法、控制装置、设备以及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333886A (ja) * 2002-05-15 2003-11-21 Sanyo Electric Co Ltd 永久磁石型同期モータの駆動方法、駆動制御装置および空気調和装置
JP2005094853A (ja) 2003-09-12 2005-04-07 Sanden Corp モータ制御装置
JP2011010438A (ja) 2009-06-25 2011-01-13 Sanden Corp モータ制御装置
JP2011024401A (ja) * 2009-07-16 2011-02-03 E-Bike Corp ブラシレスモータの始動方法と駆動方法及びその駆動装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565957A (en) * 1983-06-30 1986-01-21 Borg-Warner Corporation Method and system for starting a motor-commutated SCR inverter
KR940003005B1 (ko) * 1991-01-26 1994-04-09 삼성전자 주식회사 동기형 교류 서보모터의 속도제어방법
JPH09117186A (ja) * 1995-10-13 1997-05-02 Zexel Corp 直流ブラシレスモータ駆動装置
JP3832257B2 (ja) * 2001-02-26 2006-10-11 株式会社日立製作所 同期モータの起動制御方法と制御装置
JP3843757B2 (ja) * 2001-04-25 2006-11-08 株式会社日立製作所 モータ制御装置
JP2004222382A (ja) * 2003-01-14 2004-08-05 Mitsubishi Heavy Ind Ltd モータの運転制御装置、及び、モータの運転制御方法
JP4589093B2 (ja) * 2004-12-10 2010-12-01 日立オートモティブシステムズ株式会社 同期モータ駆動装置及び方法
JP4607691B2 (ja) * 2005-07-13 2011-01-05 日立アプライアンス株式会社 永久磁石同期電動機の制御装置
US7227326B1 (en) 2006-04-24 2007-06-05 Rockwell Automation Technologies, Inc. System and method for transient-based motor speed estimation with transient excitation
US7932691B2 (en) * 2008-04-22 2011-04-26 GM Global Technology Operations LLC Permanent magnet motor start-up
US8872466B2 (en) * 2009-08-24 2014-10-28 Toshiba Mitsubishi-Electric Industrial Systems Corporation Synchronous-machine starting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333886A (ja) * 2002-05-15 2003-11-21 Sanyo Electric Co Ltd 永久磁石型同期モータの駆動方法、駆動制御装置および空気調和装置
JP2005094853A (ja) 2003-09-12 2005-04-07 Sanden Corp モータ制御装置
JP2011010438A (ja) 2009-06-25 2011-01-13 Sanden Corp モータ制御装置
JP2011024401A (ja) * 2009-07-16 2011-02-03 E-Bike Corp ブラシレスモータの始動方法と駆動方法及びその駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2696496A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107960145A (zh) * 2015-08-28 2018-04-24 松下知识产权经营株式会社 电动机驱动装置、和使用其的压缩机的驱动装置以及冷藏库
CN107960145B (zh) * 2015-08-28 2020-11-03 松下知识产权经营株式会社 电动机驱动装置、和使用其的压缩机的驱动装置以及冷藏库
CN113030724A (zh) * 2021-03-17 2021-06-25 东莞市鸿盈电子科技有限公司 一种测试多极电机启动死角的方法以及装置
CN113030724B (zh) * 2021-03-17 2023-11-21 东莞市鸿盈电子科技有限公司 一种测试多极电机启动死角的方法以及装置

Also Published As

Publication number Publication date
EP2696496A1 (en) 2014-02-12
CN103493362B (zh) 2016-02-24
EP2696496A4 (en) 2015-08-19
EP2696496B1 (en) 2018-02-21
US9246420B2 (en) 2016-01-26
JP2012228127A (ja) 2012-11-15
JP5838038B2 (ja) 2015-12-24
US20140049201A1 (en) 2014-02-20
CN103493362A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5838038B2 (ja) モータ制御装置
JP5748051B2 (ja) 同期モータの印加電圧電気角設定方法とモータ制御装置
US9590552B2 (en) Motor drive device and electric compressor
JP4625116B2 (ja) モータ制御装置、モータ制御システム、モータ制御モジュール、及び冷凍装置
JP4067949B2 (ja) モータ制御装置
JP3888082B2 (ja) モータ装置およびその制御方法
JP4764124B2 (ja) 永久磁石型同期モータの制御装置及びその方法
JP5652610B2 (ja) モータ制御装置
US7375482B2 (en) Driving device of motor
WO2017022083A1 (ja) 同期電動機制御装置、圧縮機駆動装置、空気調和機及び同期電動機の制御方法
US20150188461A1 (en) Motor driving control apparatus and method, and motor driving system using the same
JP4367279B2 (ja) 同期モータの制御装置
JP6309173B2 (ja) モータ駆動装置ならびにモータ駆動装置を用いたヒートポンプ装置、冷凍空調装置および送風装置
JP5250603B2 (ja) モータ制御装置
JP7024289B2 (ja) モータ制御装置
JP2008148437A (ja) 永久磁石型同期モータの制御装置
JP4281376B2 (ja) 電動機の駆動装置
JP2005039889A (ja) 電動機の制御方法
JP2010028981A (ja) 同期モータの回転子位置推定方法および同期モータの制御装置
JP4735287B2 (ja) 同期モータの制御装置およびこの同期モータの制御装置を用いた制御方法
JP2010288348A (ja) 同期モータの制御装置とそれを用いた冷凍装置および空調装置
JP2002136198A (ja) 電動機の制御装置
JP2004180494A (ja) モータ制御装置
JP2006121898A (ja) モータ駆動方法およびその装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280019595.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14113357

Country of ref document: US