WO2012144002A1 - モータ用電圧変換制御装置 - Google Patents

モータ用電圧変換制御装置 Download PDF

Info

Publication number
WO2012144002A1
WO2012144002A1 PCT/JP2011/059551 JP2011059551W WO2012144002A1 WO 2012144002 A1 WO2012144002 A1 WO 2012144002A1 JP 2011059551 W JP2011059551 W JP 2011059551W WO 2012144002 A1 WO2012144002 A1 WO 2012144002A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
conversion
control
sampling timing
Prior art date
Application number
PCT/JP2011/059551
Other languages
English (en)
French (fr)
Inventor
雅志 小林
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/059551 priority Critical patent/WO2012144002A1/ja
Priority to CN201180002611.4A priority patent/CN102959852B/zh
Priority to DE112011105157.3T priority patent/DE112011105157B4/de
Priority to US13/380,166 priority patent/US8975846B2/en
Priority to JP2011543024A priority patent/JP5299519B2/ja
Publication of WO2012144002A1 publication Critical patent/WO2012144002A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/68Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more dc dynamo-electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a motor voltage that performs voltage conversion control on a voltage conversion circuit that converts a DC voltage of a power source into an input DC voltage necessary for driving the motor between a motor control circuit that controls a plurality of motors and a power source.
  • the present invention relates to a conversion control device.
  • hybrid vehicles, electric vehicles, and the like have been developed as environmentally friendly vehicles, and these vehicles include a motor as a drive source.
  • Some of these vehicles include a plurality of motors (which may be motor generators or generators).
  • An AC motor is used as this motor, and DC power is converted into three-phase AC power by an inverter, and the motor is driven by the three-phase AC power.
  • the DC voltage of the battery is boosted to DC high voltage by the boost converter, and the DC high voltage is supplied to the inverter. . Therefore, in the vehicle, in order to control the motor, inverter control for switching control of the switching element of the inverter and boost control for switching control of the switching element of the boost converter are performed.
  • a smoothing capacitor is provided between the boost converter and the inverter, and a voltage across the smoothing capacitor (a DC high voltage after boosting by the boost converter) is detected by a voltage sensor.
  • control is performed using the DC high voltage detected by the voltage sensor so as to obtain a target voltage necessary for driving the motor.
  • a target voltage required for driving is set for each motor, and the target voltage of the system is selected from the plurality of target voltages.
  • Patent Document 1 in a vehicle control device including two motor generators, based on a sensor value of a DC power supply voltage, a sensor value of a voltage across a smoothing capacitor, a motor torque command value of each motor generator, and a motor rotation speed.
  • the switching element of the inverter is controlled for each motor generator based on the sensor value of the voltage across the smoothing capacitor, the motor torque command value, and the sensor value of the motor current. It is described that the gate signal for generating each is generated.
  • FIG. 10 shows the DC high voltage time change VH 2.5 when the carrier frequency is 2.5 kHz and the DC high voltage time change VH 1.25 when the carrier frequency is 1.25 kHz.
  • VH F time variation VH 2.5 high DC voltage, the time change of the filter value obtained by filtering the VH 1.25 with a predetermined time constant.
  • the DC high voltage after the boosting is greatly fluctuated by superposing a large pulsation component when the carrier frequency is lower than when the carrier frequency is high.
  • the higher the carrier frequency the smaller the current pulsation component of the motor, but the greater the system loss due to increased heat generation of the switching element.
  • the target voltage required for driving the motor varies depending on the motor speed and torque.
  • this target voltage is high and the DC high voltage after boosting is higher than the motor induced voltage, a pulsation component is superimposed on the DC high voltage according to the voltage difference.
  • FIG. 11A shows the relationship between the voltage VH H when the DC high voltage is high, the voltage VH L when the DC high voltage is low, and the motor induced voltage Vemf.
  • Vdef H1, Vdef H2 of the DC high voltage VH H and the motor induced voltage Vemf when high is compared with the voltage difference Vdef L1, Vdef L2 of the DC high voltage VH L and the motor induced voltage Vemf lower case
  • the voltage difference Vdef is larger when the DC high voltage VH H is higher.
  • the voltage difference Vdef increases, the amount of fluctuation superimposed on the motor current increases.
  • FIG. 11B shows a carrier signal SC and a duty signal SD in the inverter control, and a gate signal for turning on / off the switching element of the inverter according to the intersection of the carrier signal SC and the duty signal SD. Is generated.
  • FIG. 11 (c) shows a target current MI T of the motor, and the actual current MI H of the motor in the case of large voltage differences Vdef H, the actual current MI L in the case of small voltage difference Vdef L motor ing.
  • the actual motor currents MI H and MI L fluctuate with respect to the target current MI T , and the pulsation component due to the switching effect of the switching element of the inverter is superimposed, and from FIGS.
  • the increase / decrease in the pulsation component changes at the intersection of the carrier signal SC and the duty signal SD (gate signal ON / OFF switching timing).
  • the larger the voltage difference Vdef the larger the pulsating component superimposed on the motor current.
  • a DC high boosted voltage VH when the actual current MI H in the case of large voltage differences Vdef H motor Fig 11 (d).
  • the DC high voltage VH pulsates according to the pulsation of the actual current of the motor and fluctuates greatly.
  • the pulsation component superimposed on the motor current due to the influence of switching in the inverter control is determined by the voltage difference Vdef between the DC high voltage VH and the motor induced voltage Vemf and the carrier frequency of the inverter control. For this reason, if the inverter frequency decreases when the voltage difference Vdef is large, the pulsating component superimposed on the motor current increases.
  • the capacity of the smoothing capacitor is small, if the pulsating component superimposed on the motor current increases, the smoothing capacity of the smoothing capacitor is exceeded, the voltage across the smoothing capacitor fluctuates greatly, and pulsation occurs in the boosted DC high voltage.
  • FIG. 11D shows an expected value of DC high voltage together with actual DC high voltage VH (intermediate value between peaks and valleys of DC high voltage VH, which is a DC high voltage that does not include a pulsating component) VH.
  • E and DC high voltage sampling timing request signals DS 1 , DS 2 , DS 3 in the step-up control are shown. Sampling timing request signals DS 1 , DS 2 , DS 3 are output every sampling timing period PS.
  • the sampling timing request signals DS 1 , DS 2 , DS 3 are output, the voltage across the smoothing capacitor is detected by the voltage sensor, and the detected DC high voltages VH 1 , VH 2 , VH 3 are used. Control to achieve the target voltage.
  • boost control becomes unstable.
  • the gate signal for controlling the switching element of the boost converter and the gate signal for controlling the switching element of the inverter of each motor generator are separately generated. Control is not linked. Therefore, when pulsation occurs in the DC high voltage after boosting by the boost converter, the sensor value of the voltage across the smoothing capacitor used for boost control includes the pulsation component, which makes the boost control unstable. Become.
  • the target voltage required for each motor is different.
  • the highest target voltage among the plurality of target voltages is selected as the system target voltage, and boost control is performed. Then, the DC high voltage is controlled so as to be the highest target voltage. Therefore, in a motor with a low target voltage that is not selected as the system target voltage, the voltage difference Vdef between the DC high voltage VH and the motor induced voltage Vemf becomes larger, so that the pulsation component superimposed on the motor current becomes larger. .
  • the present invention provides a voltage conversion control device for a motor that performs stable voltage conversion control even when the input DC voltage of the motor caused by the pulsation of the motor current is pulsated in a system including a plurality of motors. Let it be an issue.
  • a voltage conversion control device for a motor relates to a voltage conversion circuit that converts a DC voltage of a power source into an input DC voltage necessary for driving the motor between a motor control circuit that controls a plurality of motors and a power source.
  • a voltage conversion control device for a motor that performs voltage conversion control, detects a voltage across a capacitor provided between a motor control circuit and a voltage conversion circuit, and samples an input DC voltage converted by the voltage conversion circuit Sampling means, target voltage setting means for setting a target voltage of the input DC voltage for each motor, and selection means for selecting a target voltage to be converted by the voltage conversion circuit from a plurality of target voltages set by the target voltage setting means And voltage conversion based on the motor control gate signal for any one of the motors of the target voltage not selected by the selection means
  • Sampling timing generating means for generating a sampling timing for sampling the input DC voltage converted in the path, and input sampled by the sampling means in accordance with the sampling timing generated by the sampling timing generating means for each sampling timing request of voltage conversion control And a control means for performing voltage conversion control using a DC voltage.
  • This motor voltage conversion control device is a device that performs voltage conversion control on a voltage conversion circuit in a multiple motor system including a plurality of motors, a motor control circuit, a voltage conversion circuit, a power supply, and the like.
  • a capacitor is provided between the motor control circuit and the voltage conversion circuit, and the input DC voltage converted by the voltage conversion circuit is sampled by detecting the voltage across the capacitor by the sampling means.
  • the target voltage setting means sets the target voltage of the input DC voltage required for driving the motor for each motor, and the selection means converts the voltage from the target voltage for each motor. Select the target voltage to be converted by the circuit.
  • control is performed using the input DC voltage sampled by the sampling means so that the input DC voltage becomes the target voltage selected by the selection means.
  • the motor includes not only a motor having a drive function but also a motor generator and a generator having a power generation function.
  • the pulsation of the input DC voltage of the motor is caused by the pulsation of the motor current.
  • the pulsating component superimposed on the motor current is an influence of switching of motor control, and is a gate signal on the motor control side (a signal generated on the motor control side, and a gate for switching control of the switching element of the motor control circuit). Signal) and the voltage difference between the motor input DC voltage and the motor induced voltage. Therefore, the peak and valley of the motor current on which the pulsation component is superimposed are the ON / OFF switching timing of the gate signal.
  • an intermediate value between the peaks and valleys of the input DC voltage on which the pulsation component is superimposed that is, the input DC voltage from which the pulsation component is removed, and the expected value of the input DC voltage for stably performing the voltage conversion control. Is also obtained at an intermediate timing between successive switching timings of the gate signal.
  • the target voltage of the input DC voltage is set for each motor as described above, and one target voltage as the system is selected from the target voltages for each motor.
  • the voltage difference between the input DC voltage and the motor induced voltage is larger than in the motor that is selected as the target voltage of the system, and the pulsation component superimposed on the motor current is increased. .
  • the sampling timing generation means generates the input DC voltage based on the motor control gate signal for any one of the motors of the target voltage not selected by the selection means. Sampling timing for sampling is generated.
  • the gate signal of the one motor is used.
  • a motor gate signal that most affects the pulsation component of the motor current is selected from the plurality of motor gate signals.
  • the control means requests the sampling timing for the input DC voltage in the voltage conversion control (the timing at which the input DC voltage is output at the required timing in the voltage conversion control, and the gate on the motor control side Control is performed so that the target voltage as a system is obtained using the input DC voltage (actual voltage) sampled by the sampling means in accordance with the sampling timing generated by the sampling timing generating means for each time (not synchronized with the signal) Do.
  • this motor voltage conversion control device samples the input DC voltage used for the voltage conversion control in consideration of the motor gate signal not selected as the target voltage of the input DC voltage to be converted by the voltage conversion circuit.
  • the input DC voltage close to the expected value of the input DC voltage at the time of sampling timing request can be sampled, so it is actually used in the expected value of input DC voltage and voltage conversion control
  • the difference from the sampling value is reduced, and stable voltage conversion control can be performed.
  • the capacitance of the capacitor can be reduced, and the multiple motor system can be reduced in cost and size.
  • the sampling timing generating means generates a sampling timing in accordance with the switching timing of the gate signal ON and OFF, and the sampling means generates the sampling timing by the sampling timing generating means.
  • the average value of the input DC voltage converted by the voltage conversion circuit according to the current sampling timing and the input DC voltage converted by the voltage conversion circuit according to the previous sampling timing is calculated.
  • sampling timing is generated by sampling timing generation means in accordance with the ON / OFF switching timing of the gate signal.
  • the sampling means converts the input DC voltage converted by the voltage conversion circuit according to the current sampling timing and the voltage conversion circuit according to the previous sampling timing at each sampling timing.
  • the average value of the input DC voltage is calculated, and the average value of the input DC voltage is sampled.
  • the average value of the input DC voltage sampled at each successive switching timing (continuous rising timing and falling timing) of the gate signal is an intermediate value between the peaks and troughs of the input DC voltage.
  • the control unit performs control so that the target voltage is obtained by using the average value of the input DC voltages calculated by the sampling unit immediately before the sampling timing request for each sampling timing request.
  • the average value of the input DC voltages sampled at the continuous switching timing of the gate signal immediately before the sampling timing request is a voltage close to the expected value of the input DC voltage at the time of the sampling timing request.
  • this motor voltage conversion control device samples the average value of the input DC voltage sampled at successive switching timings of the motor control gate signal, thereby pulsating the input DC voltage of the motor.
  • voltage conversion control can be performed using an input DC voltage close to the expected value of the input DC voltage at the time of sampling timing request, and stable voltage conversion control can be performed.
  • the voltage conversion control device for a motor includes AD conversion means for converting the input DC voltage converted by the voltage conversion circuit from an analog value to a digital value every time the sampling timing is generated by the sampling timing generation means,
  • AD conversion means for converting the input DC voltage converted by the voltage conversion circuit from an analog value to a digital value every time the sampling timing is generated by the sampling timing generation means,
  • the sampling timing generation means may stop the generation of the sampling timing and the AD conversion means may not perform AD conversion.
  • the sampling timing generation means every time a sampling timing is generated by the sampling timing generation means, the input DC voltage converted by the voltage conversion circuit by the AD conversion means is converted from an analog value to a digital value, and the sampling means Outputs digital input DC voltage.
  • the gate signal ON / OFF switching time is shorter than the time required for AD conversion by the AD conversion means, before the AD conversion is completed by the AD conversion means, the sampling timing is generated by the sampling timing generation means. Become. In this case, even if the sampling timing is generated, AD conversion cannot be performed by the AD conversion means, and processing by the sampling means cannot be performed.
  • the sampling timing generation means stops generating the sampling timing.
  • the AD conversion means does not perform AD conversion according to the current switching timing of the gate signal. Therefore, the sampling means does not calculate the average value using the input DC voltage corresponding to the current switching timing of the gate signal.
  • the latest sampling value in the sampling means is the average value (previous value) of the input DC voltage corresponding to the previous switching timing of the gate signal and the input DC voltage corresponding to the previous switching timing of the gate signal. Become. Since this average value (previous value) is also an intermediate value between the peak and valley of the input DC voltage, the voltage is close to the expected value of the input DC voltage, and stable voltage conversion control can be performed.
  • the voltage conversion control device for a motor includes AD conversion means for converting the input DC voltage converted by the voltage conversion circuit from an analog value to a digital value every time the sampling timing is generated by the sampling timing generation means, When the switching time of the gate signal ON and OFF is shorter than the AD conversion time in the AD conversion means, the sampling timing generation means generates a sampling timing immediately after the AD conversion in the AD conversion means is completed, and the AD conversion means The AD conversion may be started immediately after the conversion is completed.
  • AD conversion means is provided in the same manner as the above-mentioned motor voltage conversion control device, and the ON / OFF switching time of the gate signal is shorter than the AD conversion time in the AD conversion means.
  • the sampling timing generating means performs sampling immediately after the AD conversion in the AD conversion means is completed. Generate timing.
  • the AD conversion means starts AD conversion immediately after the end of AD conversion. Therefore, the sampling means calculates an average value of the input DC voltage corresponding to the timing slightly delayed from the current switching timing of the gate signal and the input DC voltage corresponding to the previous switching timing of the gate signal.
  • the input DC voltage with a slight delay from the current switching timing of the gate signal is used, but the average value using the input DC voltage at the previous switching timing does not deviate significantly from the expected value of the input DC voltage. Stable voltage conversion control can be performed.
  • the plurality of motors are two motors
  • the target voltage setting means sets the target voltages of the two motors
  • the selection means sets the target voltage setting.
  • the target voltage to be converted by the voltage conversion circuit is selected from the target voltages of the two motors set by the means, and the sampling timing generating means determines the voltage based on the motor gate signal of the target voltage not selected by the selection means. Sampling timing for sampling the input DC voltage converted by the conversion circuit is generated.
  • the input DC voltage of the motor is sampled by sampling the input DC voltage used for voltage conversion control in consideration of the gate signal of the motor that is not selected as the target voltage of the input DC voltage to be converted by the voltage conversion circuit. Even if there is pulsation, it is possible to sample the input DC voltage that is close to the expected value of the input DC voltage when the sampling timing is requested, so the difference between the expected value of the input DC voltage and the sampling value actually used in voltage conversion control is small. Thus, stable voltage conversion control can be performed.
  • the motor voltage conversion control device is a motor ECU [Electronic Control Unit] of a vehicle (for example, a hybrid vehicle, an electric vehicle, or a fuel cell vehicle) of a two motor system having two motors.
  • a vehicle for example, a hybrid vehicle, an electric vehicle, or a fuel cell vehicle
  • the DC voltage of the battery is boosted by a boost converter and converted to a DC high voltage necessary for driving the motor, and the DC high voltage is supplied to each DC motor by the inverter of each motor. Electric power is converted into three-phase AC power of each motor, and each motor is driven by each three-phase AC power.
  • there are three forms in which the method of setting the timing for sampling the DC high voltage after boosting is different.
  • the first embodiment is a basic form, and the second and third embodiments are the same.
  • the form is a form in which an additional function is added to the first embodiment.
  • FIG. 1 is a block diagram showing a configuration of a two-motor system according to the first embodiment.
  • FIG. 2 is an explanatory diagram of a method for calculating the target voltage of each motor.
  • FIG. 3 is an explanatory diagram of a method for determining a target voltage in a two-motor system, where (a) is a flow of the determination method, and (b) is a map of system voltage and system loss for two motors. It is an example.
  • FIG. 4 is an explanatory diagram of the sampling timing of the DC high voltage according to the first embodiment.
  • FIG. 4A is a relationship diagram between the case where the DC high voltage is high and low and the motor induced voltage.
  • (c) is the gate signal in the inverter control
  • (d) is the motor target current and the motor actual current
  • (e) is the DC high voltage and sampling. Timing request signal.
  • the two-motor system 1 includes a battery 10, a filter capacitor 11, a boost converter 12, a smoothing capacitor 13, a first inverter 14, a second inverter 15, a first motor 16, a second motor 17, and a motor ECU 18.
  • the battery 10 corresponds to the power source described in the claims
  • the boost converter 12 corresponds to the voltage conversion circuit described in the claims
  • the smoothing capacitor 13 corresponds to the capacitor described in the claims.
  • the first inverter 14 and the second inverter 15 correspond to the motor control circuit described in the claims
  • the first motor 16 and the second motor 17 correspond to the plurality of motors described in the claims. .
  • the DC power of the battery 10 is converted into three-phase AC power for the motors 16, 17 according to the motor torque commands DT 1 , DT 2 for the motors 16, 17 from the travel control ECU 19, respectively.
  • the three-phase AC power is supplied to the motors 16 and 17, respectively. Therefore, the motor ECU 18, and select the target voltage VH T of the system from the target voltage VH T1, VH T2 required for the drive of the motors 16 and 17, as a system from low DC voltage VL of the battery 10
  • the boost converter 12 is boosted, and the motor torque commands DT 1 and DT 2 for generating the motor torque commands DT 1 and DT 2 from the DC power are generated.
  • Inverter control is performed on each of the inverters 14 and 15 in order to convert into phase AC power.
  • the motor ECU 18 controls the inverters of the motors 16 and 17 in order to perform stable boost control even when there is a pulsation of the DC high voltage VH caused by the pulsation of the motor current due to the influence of switching noise on the inverter control side.
  • the travel control ECU 19 is an ECU for controlling the travel of the vehicle.
  • the travel control ECU 19 is required for the target motor torque required by the first motor 16 and the second motor based on the travel state of the vehicle at that time in response to an accelerator request or a brake request by the driver or automatic driving.
  • the target motor torque is calculated, and each target motor torque is output to the motor ECU 18 as motor torque commands DT 1 and DT 2 .
  • the battery 10 is a direct current power source and a secondary battery.
  • Filter capacitor 11 is provided between battery 10 and boost converter 12, and is connected to battery 10 in parallel.
  • the filter capacitor 11 smoothes the DC voltage of the battery 10 and stores the electric charge of the DC voltage.
  • the voltage across the filter capacitor 11 is a DC low voltage VL.
  • the filter capacitor 11 is a capacitor for preventing a pulsating current due to switching from flowing to the battery 10 side.
  • Boost converter 12 includes a reactor 12a, switching elements 12b and 12c, and freewheeling diodes 12d and 12e.
  • the high voltage side of the filter capacitor 11 is connected to one end of the reactor 12a.
  • a connection point between the switching element 12b and the switching element 12c is connected to the other end of the reactor 12a.
  • the IL sensor 12f detects a current IL (analog value) flowing through the reactor 12a, and outputs the detected current IL to the motor ECU 18.
  • the switching element 12b and the switching element 12c are connected in series, the high voltage side of the smoothing capacitor 13 is connected to the collector of the switching element 12b, and the low voltage side of the smoothing capacitor 13 is connected to the emitter of the switching element 12c.
  • Free-wheeling diodes 12d and 12e are connected in antiparallel to the switching elements 12b and 12c, respectively.
  • the boost converter 12 performs switching control of the switching elements 12b and 12c based on the gate signals output from the motor ECU 18 to the switching elements 12b and 12c, respectively, so that the DC low voltage VL of the filter capacitor 11 is reduced. Convert to DC high voltage VH.
  • the smoothing capacitor 13 is provided between the boost converter 12 and the first inverter 14 and the second inverter 15. Smoothing capacitor 13 smoothes the DC voltage boosted by boost converter 12 and stores the charge of the DC voltage. The voltage across the smoothing capacitor 13 is the DC high voltage VH.
  • the VH sensor 13 a detects the voltage (analog value) VH across the smoothing capacitor 13 and outputs the detected voltage to the motor ECU 18.
  • the first inverter 14 is an inverter that converts DC power into three-phase AC power in order to drive the first motor 16 in the two-motor system.
  • the second inverter 15 is an inverter that converts DC power into three-phase AC power to drive the second motor 17 in the two-motor system.
  • the first inverter 14 and the second inverter 15 are similar circuits, and are conventional general inverter circuits that convert DC power into three-phase AC power. Therefore, description of the detailed circuit configuration is omitted.
  • the DC high voltage VH of the smoothing capacitor 13 is supplied, and each gate signal for the switching element corresponding to each phase (U phase, V phase, W phase) of the first motor 16 output from the motor ECU 18.
  • the switching elements of the respective phases are subjected to switching control to convert DC power into three-phase AC power and supply it to the first motor 16.
  • DC power is converted into three-phase AC power based on each gate signal GS 2 corresponding to each phase of the second motor 17 output from the motor ECU 18. Supply.
  • the first motor 16 and the second motor 17 are AC motors and are driving sources of the vehicle.
  • the first motor 16 is driven to rotate by supplying the three-phase AC power from the first inverter 14 to coils (not shown) of each phase.
  • the second motor 17 is driven to rotate by supplying the three-phase AC power from the second inverter 15 to the coils (not shown) of each phase.
  • One of the two motors may be a generator or a motor generator, or both may be motor generators.
  • the motor ECU 18 is an electronic control unit including a microcomputer and various memories, and performs motor control.
  • the motor ECU 18 controls the inverters 14 and 15 and controls the inverter converter functions (first motor control 18a, second motor control 18b, first motor gate generation 18c, second motor gate generation 18d) and the boost converter 12.
  • Boost control function (first motor target voltage calculation 18e, second motor target voltage calculation 18f, voltage control 18g, current control 18h, gate generation 18i, gate selection & target voltage selection 18j, VH sensor sampling timing generator 18k, VH sensor data update & binary averaging process 18l).
  • the inverter control function and the boost control function may be configured by the same microcomputer or may be configured by separate microcomputers.
  • the first motor target voltage calculation 18e and the second motor target voltage calculation 18f correspond to the target voltage setting means described in the claims
  • the gate selection & target voltage selection 18j is the claim.
  • the VH sensor sampling timing generator 18k corresponds to the sampling timing generation means described in the claims
  • the voltage control 18g corresponds to the control means described in the claims
  • Reference numeral 13a, the AD converter 18m, and the VH sensor data update & binary averaging process 18l correspond to the sampling means described in the claims.
  • the inverter control function will be described.
  • the first motor control 18a and the first motor gate generation 18c perform inverter control on the first inverter 14 (and thus the first motor 16), and the second motor control 18b and the second motor gate generation 18d 2 Inverter control for the inverter 15 (and consequently the second motor 17) is performed.
  • the first motor torque command DT 1 from the travel control ECU19 to the first motor 16 is input, the motor current detected by the motor angle and a current sensor which is detected by the angle sensor from the first motor 16
  • the first carrier signal SC 1 and the first duty signal SD 1 for generating the target motor torque of the first motor torque command DT 1 are generated and output to the first motor gate generation 18 c.
  • the second motor torque command DT 2 from running control ECU19 for the second motor 17 is input, the motor current detected by the motor angle and a current sensor which is detected by the angle sensor from the second motor 17 used to generate a second carrier signal SC 2 and the second duty signal SD 2 for generating a motor torque to be the second motor torque instruction DT 2 target, and outputs the second motor gate generator 18d.
  • the second motor control 18b and it outputs the second motor rotation speed MR 2 of the second motor 17 and the second motor torque command DT 2 in the second motor target voltage calculation 18f of the step-up control function.
  • the first motor control 18a first carrier signal SC 1 and the first duty signal SD 1 is inputted, the first inverter based first carrier signal SC 1 and the first duty signal SD 1
  • the gate signals GS 1 (for example, PWM signals) of the switching elements of the 14 phases are respectively generated and output to the first inverter 14. Further, the first motor gate generator 18c, and outputs a first gate signal GS 1 to VH sensor sampling timing generator 18k of the boost control function.
  • the second motor gate generator 18 d the second motor control 18b and the second carrier signal SC 2 second duty signal SD 2 is inputted, the second inverter based second carrier signal SC 2 to the second duty signal SD 2
  • the gate signals GS 2 of the switching elements of the 15 phases are respectively generated and output to the second inverter 15.
  • the second motor gate generator 18 d and it outputs the second gate signal GS 2 to VH sensor sampling timing generator 18k of the boost control function.
  • FIG. 4B shows an example of the second carrier signal SC 2 and the second duty signal SD 2 for inverter control of the second motor 17.
  • the second carrier signal SC 2 and the second duty signal SD 2 are switching elements of the second inverter 15 at the intersection of timing is oN / OFF gate signal GS 2 is generated, indicating the gate signal GS 2 in FIG. 4 (c).
  • the carrier signal SC is a carrier frequency and is a switching frequency of the switching elements of the inverters 14 and 15.
  • the carrier signal SC is, for example, a triangular wave having peaks and valleys as vertices.
  • the duty signal SD is a signal for determining the ON / OFF duty ratio of the switching elements of the inverters 14 and 15.
  • the duty signal SD is, for example, a sine wave as shown in FIG.
  • the gate signal GS is a signal for turning on / off the switching elements of the inverters 14 and 15.
  • the gate signal GS is, for example, a PWM signal.
  • the switching elements of the inverters 14 and 15 are switched at the ON / OFF switching timing of the gate signals GS 1 and GS 2 , and a pulsation component is superimposed on the motor current due to the influence of the switching.
  • a pulsation component is superimposed on the motor current due to the influence of the switching. 4
  • the (d) the real of the second motor 17 when the target current MI T of the second motor 17 that is generated from the second gate signal GS 2 of FIG. 4 (c), a large pulsating component superimposed
  • the current MI H and the actual current MI L of the second motor 17 when a small pulsation component is superimposed are shown.
  • the actual current MI H of the second motor 17, the MI L becomes peaks and valleys at the rising timing and falling timing of the gate signal GS 2, a change point of increase or decrease of the pulsating component ing.
  • the boost control function will be described.
  • first motor rotational speed from the first motor control 18a MR 1 a first motor torque command DT 1 inverter control function is input, the first motor rotation speed MR 1 and the first motor torque It calculates a first target voltage VH T1 for the first motor 16 in accordance with a command DT 1, and outputs the gate selection & target voltage selection 18j.
  • the second motor control 18b of the inverter control function and the second motor rotation speed MR 2 second motor torque command DT 2 is input, the second motor rotation speed MR 2 and the second motor torque second calculating a second target voltage VH T2 for motor 17 based on the command DT 2, and outputs the gate selection & target voltage selection 18j.
  • the first motor target voltage calculation 18e and the second motor target voltage calculation 18f calculate the target voltage by the same process, and the process will be described below.
  • an intersection point P1 between the motor rotational speeds MR 1 and MR 2 and the motor torques of the motor torque commands DT 1 and DT 2 is extracted from a map M1 between the motor rotational speed and the motor torque.
  • This map M1 has a field weakening control area A1 (area shown by oblique lines) and a PWM control area A2.
  • the range of the control area changes depending on the level of the system voltage (DC high voltage VH) of the two-motor system 1.
  • the map M2 of system voltages and system losses vary depending on the intersection P1, calculates a target voltage VH T system loss is minimum point.
  • the system loss is a loss in a switching element or the like in the 2-motor system 1.
  • the motors 16 and 17 are likely to rotate, but the system loss increases.
  • the method using the map as described above has been described, but other methods may be used.
  • the VH sensor sampling timing request signal DS is output to the VH sensor data update & binary averaging process 18l every sampling timing period PS, and the VH sensor sampling timing request signal DS is output. Accordingly, the average value VHA of the DC high voltage VH (digital value) sampled for use in the boost control is input from the VH sensor data update & binary averaging process 18l.
  • the sampling timing period PS may be a predetermined fixed value or a variable value. Since the sampling timing period PS is set irrespective of inverter control, the VH sensor sampling timing request signal DS is not synchronized with the inverter control gate signal GS.
  • the voltage control 18 g it is the target voltage VH T is input as a system from gate selection & target voltage selection 18j, using the average value VHA of the DC high voltage VH (digital value) from the VH sensor data update & binary averaging processing 18l Te, it performs control for the voltage across the smoothing capacitor 13 (the DC high voltage) reaches a target voltage VH T.
  • the voltage control 18 g calculates a target current IL T required for the control, and outputs the current control 18h.
  • the current control 18h the target current IL T from the voltage controlled 18g is input, using a current flowing through the reactor 12a IL (digital value), the current flowing through the reactor 12a performs control to become a target current IL T.
  • the current IL (digital value) used for control is a current (digital value) obtained by AD-converting the current (analog value) detected by the IL sensor 12f by the AD converter 18n in the motor ECU 18.
  • the gate generation 18i based on the control to become target current IL T in the control and the current control 18h to become a target voltage VH T of voltage control 18 g, the switching element 12b of the boost converter 12, the gates of 12c Each signal (for example, PWM signal) is generated and output to the boost converter 12.
  • the first target voltage VH T1 is input from the first motor target voltage calculation 18e and the second target voltage VH T2 is input from the second motor target voltage calculation 18f to the gate selection & target voltage selection 18j.
  • the system loss map M2a corresponding to the intersection of the first motor target voltage calculation 18e first motor rotation speed MR 1 and the first motor torque of the motor torque command DT 1 in the first motor 16 side
  • the first target voltage VH T1 is calculated to a minimum
  • the map corresponding to the intersection of the second motor target voltage calculation 18f second motor rotation speed MR 2 and the second motor torque of the motor torque command DT 2 M2b From the second motor 17 side, the second target voltage VH T2 that minimizes the system loss is calculated.
  • the first target voltage VH T1 and the second target voltage VH T2 are calculated separately from the motor rotation speed and the motor torque command for each of the motors 16 and 17. Have different voltages. Therefore, it is necessary to select a target voltage as the two-motor system 1 from the two first target voltage VH T1 and second target voltage VH T2, and the system efficiency is shown in FIG. As described above, the maximum value (larger voltage) of the first target voltage VH T1 and the second target voltage VH T2 is set as the command value of the target voltage for the two-motor system 1.
  • the gate selection & target voltage selection 18j every time the first target voltage VH T1 and the second target voltage VH T2 are input, the larger of the first target voltage VH T1 and the second target voltage VH T2 selecting a voltage as second target voltage VH T of the motor system 1. Then, the gate selection and target voltage selection 18j, and outputs the target voltage VH T to the voltage control 18 g. Moreover, the gate selection and target voltage selection 18j, 2 VH sensor sampling timing generator gate selection signal GSS for selecting the gate signal of the motor target voltage of the person who has not been selected as the target voltage VH T of the motor system 1 Output to 18k.
  • the gate selection signals GSS for example, a signal indicating the other hand one (motor 2 who are not selected as the target voltage VH T of the motor system 1) of the first motor 16 and second motor 17.
  • the VH sensor sampling timing generator 18k together with the second gate signal GS 2 from the first gate signal GS 1 and the second motor gate generator 18d from the first motor gate generator 18c of the inverter control function are input, the gate A gate selection signal GSS is input from the selection & target voltage selection 18j. Then, the VH sensor sampling timing generator 18k, on the basis of the gate selection signal GSS, motor who have not been selected as the first gate signal GS 1 and the second gate signal target voltage VH T of GS 2 from 2 motor system 1 Is selected as the gate signal GS S used for generating the VH sensor sampling timing TS.
  • the VH sensor sampling timing generator 18k determines the switching timing (falling timing) from ON to OFF and the switching timing (rising timing) from OFF to ON of the selected gate signal GS S as the VH sensor sampling timing TS. (AD conversion start signal) is output to the AD converter 18m.
  • the AD converter 18m every time the VH sensor sampling timing TS is input from the VH sensor sampling timing generator 18k, the DC high voltage (analog value) VH detected by the VH sensor 13a is AD converted, and after AD conversion The DC high voltage (digital value) VH is output to the VH sensor data update & binary averaging process 18l.
  • the gate signals from the first and second motor gate generators 18c and 18d may be any of the three-phase U-phase, V-phase, and W-phase gate signals.
  • the DC high voltage (digital value) VH is stored in time series. Further, in the VH sensor data update & binary averaging process 18l, the average value of the DC high voltage (digital value) VH inputted this time and the DC high voltage (digital value) VH inputted last time stored in time series. VHA is calculated, and the average value VHA of the current and previous DC high voltages is stored in time series. Here, only the latest average value VHA may be stored.
  • VH sensor data update & binary averaging process 18l every time the VH sensor sampling timing request signal DS is input from the voltage control 18g, the average of the DC high voltage calculated immediately before the VH sensor sampling timing request signal DS The value VHA is output to the voltage control 18g as a VH sensor value used for boost control.
  • the pulsating component is superimposed on the voltage across the smoothing capacitor (DC high voltage after boosting) due to the switching noise of the inverter control.
  • the target voltage required for driving the motor varies depending on the motor speed and torque. However, the higher the target voltage and the higher the DC high voltage VH with respect to the motor induced voltage Vemf, the greater the voltage difference Vdef. In addition, the pulsating component of the DC high voltage also increases.
  • FIG. 4A shows the relationship between the voltage VH H when the DC high voltage VH is high and the voltage VH L when the DC high voltage VH is low, and the motor induced voltage Vemf.
  • the case of two motor system 1 has selected as the first target voltage VH T1 and larger target voltage VH T voltage of 2 motor system 1 of the second target voltage VH T2 of each motor 16, 17 , high DC voltage VH is controlled to be the target voltage VH T. Therefore, in the second motor system 1 of the target voltage motor side who have not been selected as the VH T, the motor induced voltage Vemf against high DC voltage VH becomes lower, the DC high voltage VH and the voltage of the motor induced voltage Vemf The difference Vdef becomes larger.
  • FIG. 4 (e) shows a DC high voltage VH when the motor current MI H in the case of large voltage differences Vdef H.
  • High DC voltage VH pulsating components according to the pulsation component of the motor current MI H is superimposed, increase or decrease of the pulsating component is switched at the rising timing and falling timing of the gate signal GS 2 shown in FIG. 4 (c).
  • the inverter-side in particular, 2 motor system 1 of the inverter side of the motor of the person who has not been selected as the target voltage VH T
  • the pulsation component is superimposed.
  • the switching of the second motor system 1 of the inverter side of the motor of a side selected as the target voltage VH T also, pulsation of the motor current (and hence, the pulsation of the DC high voltage after boosting) affects the two motor system very small compared to the influence by the motor on the inverter side of the switching of the direction which is not selected as the first target voltage VH T.
  • the pulsation component (variation) superimposed on the motor current MI by switching by the inverter control includes the voltage difference Vdef between the DC high voltage VH and the motor induced voltage Vemf and the carrier frequency of the inverter control (carrier signal SC (gate signal GS )).
  • the pulsating component is 2 motor inverter control those who are not selected as the target voltage VH T of the motor system 1 affected by the switching.
  • the pulsation component due to switching by inverter control is switched between increasing and decreasing at the rising timing and falling timing of the gate signal.
  • FIG. 4 (c) the as can be seen from (d)
  • the motor current MI intermediate value between peaks and valleys is obtained at an intermediate timing of the fall timing and the rise timing of consecutive gate signal GS 2. Therefore, as can be seen from FIGS. 4C and 4E, the intermediate value between the peaks and valleys of the DC high voltage VH on which the pulsation component is superimposed (that is, the DC high voltage for stably performing the boost control).
  • Expected value VH E is also obtained at an intermediate timing between the rising timing and falling timing of the gate signal GS 2 .
  • the average value of the DC high voltage VH at the rising timing and the falling timing of consecutive gate signal GS 2 is substantially coincident with the expected value VH E of the DC high voltage ing.
  • the expected value VH E of the DC high voltage is an intermediate value between the peak and valley of the DC high voltage VH, and is a DC high voltage from which the pulsation component has been substantially removed.
  • VH in the sensor sampling timing generator 18k the motor of those who have not been selected as the target voltage VH T of 2 motor system 1 to provide a greater effect on the pulsation of a motor current of the gate signal GS
  • a VH sensor sampling timing TS is generated at each ON / OFF switching timing, and a DC high voltage (analog value) VH detected by the VH sensor 13a in the AD converter 18m is AD converted at each VH sensor sampling timing TS, DC high voltage (digital value) VH is acquired.
  • VH sensor value VH sensor value
  • the AD is immediately before the VH sensor sampling timing request signal DS.
  • the voltage control 18g is performed by using the average value VHA of the DC high voltage (digital value) VH at the continuous ON / OFF switching timing of the gate signal GS immediately before the VH sensor sampling timing request signal DS, thereby obtaining VH Control can be performed using the average value VHA of the DC high voltage close to the expected value VH E of the DC high voltage at the time of the sensor sampling timing request signal DS.
  • the 2-motor system 1 (in particular, step-up control of the motor ECU 18) according to the direct current used for the boosting control based on the second gate signal unselected towards the motor inverter control as the target voltage VH T of the motor system 1
  • VH average value VHA
  • inverter control and boost control are linked
  • the DC high voltage VH close to the expected value VH E of the DC high voltage at the time can be sampled, and is actually used in the boost control with the expected value VH E of the DC high voltage at the time of the VH sensor sampling timing request signal DS.
  • the difference from the VH sensor value is reduced, and stable boost control can be performed. Thereby, the capacity
  • the second motor system 1 selects the gate signal of the unselected direction of the motor inverter control as the target voltage VH T of the motor system 1, a succession of the selected gate signal
  • the average value VHA of the DC high voltage VH at the rising timing and falling timing is sampled, and the continuous rising timing of the gate signal GS sampled immediately before the VH sensor sampling timing request signal DS
  • the sensor value of the DC high voltage VH close to the expected value VH E of the DC high voltage at the time of the VH sensor sampling timing request signal DS is obtained.
  • Boost control can be performed using a stable boost control Ukoto can.
  • FIG. 5 is a block diagram showing a configuration of a two-motor system according to the second embodiment.
  • FIG. 6 is a relationship diagram between AD conversion time and gate signal switching time.
  • FIG. 7 is an explanatory diagram of a DC high voltage sampling timing according to the second embodiment, where (a) is a DC high voltage, (b) is a gate signal in inverter control, and (c). Is a gate signal switching timing, (d) is an AD conversion start signal to the AD converter, (e) is an averaging inhibition signal, and (f) is an AD conversion end signal from the AD converter. Yes, (g) is an AD converted value by the AD converter, and (h) is a binary averaged value.
  • the two-motor system 2 includes a battery 10, a filter capacitor 11, a boost converter 12, a smoothing capacitor 13, a first inverter 14, a second inverter 15, a first motor 16, a second motor 17, and a motor ECU 28.
  • the two-motor system 2 differs from the two-motor system 1 according to the first embodiment in control by the motor ECU 28.
  • the motor ECU 28 stops the AD conversion and uses the previous value as the average value VHA of the DC high voltage in the boost control.
  • the motor ECU 28 will be described in detail.
  • FIG. 6 shows an example of the gate signal GS, the AD conversion start signal SS (VH sensor sampling timing TS) to the AD converter, and the AD conversion end signal ES from the AD converter.
  • the AD conversion time CH is determined by the AD converter and is a fixed time.
  • the switching times SH 1 and SH 2 of the gate signal GS are long to some extent, even if the AD conversion activation signals SS 1 and SS 2 are output at the ON / OFF switching timing of the gate signal GS, the switching times SH 1 and SH 2
  • the AD conversion end signals ES 1 and ES 2 are output from the AD converter until the AD conversion ends and the next ON / OFF switching timing of the gate signal GS is reached.
  • the switching time SH 3 of the gate signal GS is shortened, with ON / OFF switching timing of the gate signal GS be output AD conversion start signal SS 3, until the next ON / OFF switching timing of the gate signal GS
  • the AD conversion is not completed, and the AD conversion start signal SS 4 is output before the AD conversion end signal ES 3 is output from the AD converter.
  • the AD converter can not AD conversion for AD conversion start signal SS 4. Therefore, the motor ECU 28 has an additional function that can cope with such a case.
  • the motor ECU 28 is an electronic control unit including a microcomputer and various memories, and performs motor control.
  • the motor ECU 28 controls the inverters 14 and 15 and controls the inverter converter function (first motor control 28a, second motor control 28b, first motor gate generation 28c, second motor gate generation 28d) and the boost converter 12.
  • Boost control function (first motor target voltage calculation 28e, second motor target voltage calculation 28f, voltage control 28g, current control 28h, gate generation 28i, gate selection & target voltage selection 28j, VH sensor sampling timing generator & switching A time determination unit 28k, a VH sensor data update & binary averaging process 28l).
  • the inverter control function and the boost control function may be configured by the same microcomputer or may be configured by separate microcomputers.
  • the first motor target voltage calculation 28e and the second motor target voltage calculation 28f correspond to the target voltage setting means described in the claims
  • the gate selection & target voltage selection 28j is the claim.
  • the VH sensor sampling timing generator & switching time determination unit 28k corresponds to the sampling timing generation unit described in the claims
  • the voltage control 28g corresponds to the control unit described in the claims.
  • the VH sensor 13a, the AD converter 28m, and the VH sensor data update & binary averaging process 28l correspond to the sampling means described in the claims
  • the AD converter 28m corresponds to the AD conversion means described in the claims. Equivalent to.
  • motor gate generation 18d, first motor target voltage calculation 18e, second motor target voltage calculation 18f, voltage control 18g, current control 18h, gate generation 18i, gate selection & target voltage selection 18j, and AD converter 18n Since this is done, the description is omitted.
  • VH sensor sampling timing generator & The changeover determination unit 28k first a first gate signal GS 1 from the motor gate generation 28c second gate signal GS 2 is input from the second motor gate generator 28d inverter control function Then, an AD conversion end signal ES is input from the AD converter 28m, and a gate selection signal GSS is input from the gate selection & target voltage selection 28j. Then, the VH sensor sampling timing generator & changeover determination unit 28k, on the basis of the gate selection signal GSS, is selected first gate signal GS 1 and the second gate signal GS 2 of 2 motor system 2 target voltage VH T The gate signal of the motor that did not exist is selected as the gate signal GS S that is used to generate the VH sensor sampling timing TS.
  • the VH sensor sampling timing generator & switching time determination unit 28k outputs an AD conversion end signal for the VH sensor sampling timing TS (AD conversion start signal) every time the VH sensor sampling timing TS (AD conversion start signal) is output. based on the switching timing of the next oN / OFF of the ES and the gate signal GS S, following the case became switching timing of oN / OFF the next oN gate signal GS S after AD conversion end signal ES.
  • the VH sensor sampling timing TS (AD conversion start signal) is output to the AD converter 28m according to the / OFF switching timing, and the next ON / OFF switching timing of the gate signal GS S before the AD conversion end signal ES.
  • the next ON / OFF switching timing When it becomes, the next ON / OFF switching timing And outputs the VH sensor sampling timing TS (AD conversion start signal) to the AD converter 28m does not output (AD conversion discontinued) with averaging inhibition signal RS the VH sensor data update & binary averaging processing 28l for.
  • the ON timing of the averaging inhibition signal RS is the next switching timing of the gate signal GS S after the AD conversion is stopped, and the OFF timing of the averaging inhibition signal RS is the next switching timing of the gate signal GS S.
  • the AD converter 28m AD converts the DC high voltage (analog value) VH detected by the VH sensor 13a every time the VH sensor sampling timing TS is input from the VH sensor sampling timing generator & switching time determination unit 28k.
  • the DC high voltage (digital value) VH after AD conversion is output to the VH sensor data update & binary averaging process 28l.
  • the AD converter 28m outputs an AD conversion end signal ES to the VH sensor sampling timing generator & switching determination unit 28k.
  • the AD converter 28m A / D conversion is stopped.
  • the DC high voltage (digital value) VH is stored in time series. Further, in the VH sensor data update & binary averaging process 28l, the average value of the DC high voltage (digital value) VH input this time and the DC high voltage (digital value) VH previously input stored in time series. VHA is calculated, and the average value VHA of the current and previous DC high voltages is stored in time series.
  • the averaging prohibition signal RS is input from the VH sensor sampling timing generator & switching determination unit 28k, the calculation of the average value VHA of the DC high voltage is prohibited in the VH sensor data update & binary averaging process 28l. To do. In this case, the average value VHA of the DC high voltage calculated last time is held as the latest value. Then, in the VH sensor data update & binary averaging process 28l, every time the VH sensor sampling timing request signal DS is input from the voltage control 28g, the average of the DC high voltage calculated immediately before the VH sensor sampling timing request signal DS The value VHA (the latest average value VHA held) is output to the voltage control 28g as a VH sensor value used for boost control. Therefore, when the averaging prohibition signal RS is input, the average value VHA of the DC high voltage calculated last time is output.
  • FIG. 7A shows the DC high voltage VH
  • FIG. 7B shows the gate signal GS
  • FIG. 7C shows the ON / OFF switching timing ST of the gate signal GS.
  • FIG. 7 (a) shows B value, C value, D value,...
  • FIG. 7D shows an AD conversion start signal SS 1 , output from the VH sensor sampling timing generator & switching time determination unit 28 k in accordance with the switching timings ST 1 , ST 2 , ST 3 ,. SS 2 , SS 3 ,... (Corresponding to VH sensor sampling timing TS) are shown.
  • FIG. 7F shows an AD conversion end signal output from the AD converter 28m when AD conversion performed in response to the AD conversion start signals SS 1 , SS 2 , SS 3 ,. ES 1 , ES 2 , ES 3 ,... FIG.
  • FIG. 7G shows the A value, the B value, and the C value that are the DC voltage values ADC after AD conversion that are output from the AD converter 28m and held in the VH sensor data update & binary averaging process 28l. , D value,... (Each peak and valley value of the DC high voltage VA). Further, FIG. 7 (h) shows (A + B) / 2, (B + C) / 2,... As the average value VHA of DC high voltage values calculated and held by the VH sensor data update & binary averaging process 28l. Indicates.
  • VH sensor sampling timing generator & in accordance with the switching time determiner switching timing ST 1 In 28k outputs the AD conversion start signal SS 1, start the AD converter 28m in AD conversion, the DC high voltage AD conversion is completed ( and it outputs the B value as a digital value) the AD conversion end signal ES 1 and outputs the VH sensor data update & binary averaging processing 28l to VH sensor sampling timing generator & changeover determination unit 28k.
  • the B value is held, and the average value (A + B) / 2 is calculated using the previously held A value and the current B value. Holds the value (A + B) / 2. Then, because it was the switching timing ST 2 brat after VH sensor sampling timing generator & changeover determination unit 28k in AD conversion end signal ES 1, and outputs the AD conversion start signal SS 2 in response to the switching timing ST 2, start the AD converter 28m in AD conversion, VH sensor AD conversion end signal ES 2 with AD conversion and outputs the C value as a DC high voltage (digital value) and ending VH sensor data update & binary averaging processing 28l Output to the sampling timing generator & switching determination unit 28k.
  • the VH sensor data update & binary averaging process 28l In this case, in the VH sensor data update & binary averaging process 28l, the C value is held, the average value (B + C) / 2 is calculated using the previously held B value and the current C value, and the average Holds the value (B + C) / 2. Thereafter, when the VH sensor sampling timing request signal DS is input from the voltage control 28g, the VH sensor data update & binary averaging process 28l outputs an average value (B + C) / 2 to the voltage control 28g.
  • VH sensor sampling timing generator & in accordance with the switching time determiner switching timing ST 5 In 28k outputs the AD conversion start signal SS 5, starts AD converter 28m in AD conversion, the DC high voltage AD conversion is completed ( the F value and outputs an AD conversion end signal ES 5 and outputs the VH sensor data update & binary averaging processing 28l to VH sensor sampling timing generator & changeover determination unit 28k as a digital value).
  • the F value is held, and the average value (E + F) / 2 is calculated using the previously held E value and the current F value. Holds the value (E + F) / 2.
  • the VH sensor sampling timing generator & changeover determination unit 28k because it was the switching timing ST 6 brat before AD conversion end signal ES 5, does not output the AD conversion start signal in response to the switching timing ST 6. Therefore, the AD converter 28 m, the AD conversion in accordance with the switching timing ST 6 not performed.
  • the F value is kept as the latest DC high voltage and (E + F) / 2 is kept as the latest average value.
  • the VH sensor sampling timing request signal DS is input from the voltage control 28g
  • the VH sensor data update & binary averaging process 28l outputs an average value (E + F) / 2 to the voltage control 28g.
  • the VH sensor sampling timing generator & changeover determination unit 28k the averaging inhibition signal RS to output during that until the next switching timing ST 8.
  • the calculation of the average value is prohibited in accordance with the averaging prohibition signal RS, and the previous average value (E + F) / 2 is continuously held.
  • the VH sensor sampling timing generator & changeover determination unit 28k and outputs the AD conversion start signal SS 7 in accordance with the switching timing ST 7, starts AD converter 28m in AD conversion, the AD conversion is completed DC and it outputs a high voltage (digital value) as the H value VH sensor data AD conversion end signal ES 7 and outputs updated and the binary averaging processing 28l VH sensor sampling timing generator & changeover determination unit 28k.
  • the VH sensor data update & binary averaging process 28l the H value is held, but the calculation of the average value is prohibited.
  • the VH sensor data update & binary averaging process 28l outputs an average value (E + F) / 2 to the voltage control 28g.
  • This average value (E + F) / 2 is the previous value, but is an intermediate value between the peaks and valleys of the DC high voltage VH, and is close to the expected value VH E of the DC high voltage.
  • the two-motor system 2 (particularly, the boost control by the motor ECU 28), the same effect as that of the two-motor system 1 according to the first embodiment is obtained.
  • the AD conversion time is shorter than the switching time of the gate signal GS, the AD conversion is stopped and the calculation of the average value VHA of the DC high voltage VH is also prohibited.
  • the boost control the previous value of the average value VHA of the DC high voltage VH is used. Since the previous value of the average value VHA is also a voltage close to the expected value VH E of the DC high voltage, stable voltage conversion control can be performed.
  • FIG. 8 is a block diagram showing a configuration of a two-motor system according to the third embodiment.
  • FIG. 9 is an explanatory diagram of a DC high voltage sampling timing according to the third embodiment, where (a) is a DC high voltage, (b) is a gate signal in inverter control, and (c). Is a gate signal switching timing, (d) is an AD conversion start signal to the AD converter, (e) is an AD conversion end signal from the AD converter, and (f) is an AD converter AD signal. It is a converted value, and (g) is a binary averaged value.
  • the two-motor system 3 includes a battery 10, a filter capacitor 11, a boost converter 12, a smoothing capacitor 13, a first inverter 14, a second inverter 15, a first motor 16, a second motor 17, and a motor ECU 38.
  • the two-motor system 3 differs from the two-motor system 1 according to the first embodiment only in control by the motor ECU 38.
  • the motor ECU 38 immediately starts AD conversion immediately after the end of AD conversion.
  • the motor ECU 38 will be described in detail.
  • the motor ECU 38 is an electronic control unit including a microcomputer, various memories, and the like, and performs motor control.
  • the motor ECU 38 controls the inverters 14 and 15 and controls the inverter converter functions (first motor control 38a, second motor control 38b, first motor gate generation 38c, second motor gate generation 38d) and the boost converter 12.
  • Boost control function first motor target voltage calculation 38e, second motor target voltage calculation 38f, voltage control 38g, current control 38h, gate generation 38i, gate selection & target voltage selection 38j, VH sensor sampling timing generator & switching
  • the inverter control function and the boost control function may be configured by the same microcomputer or may be configured by separate microcomputers.
  • the first motor target voltage calculation 38e and the second motor target voltage calculation 38f correspond to the target voltage setting means described in the claims
  • the gate selection & target voltage selection 38j is the claim.
  • the VH sensor sampling timing generator & switching time determination unit 38k corresponds to the sampling timing generation unit described in the claims
  • the voltage control 38g corresponds to the control unit described in the claims.
  • the VH sensor 13a, the AD converter 38m, and the VH sensor data update & binary averaging process 38l correspond to the sampling means described in the claims
  • the AD converter 38m serves as the AD conversion means described in the claims. Equivalent to.
  • VH Sensor sampling timing generator & The changeover determination unit 38k first a first gate signal GS 1 from the motor gate generation 38c second gate signal GS 2 is input from the second motor gate generator 38d inverter control function Then, an AD conversion end signal ES is input from the AD converter 38m, and a gate selection signal GSS is input from the gate selection & target voltage selection 38j. Then, the VH sensor sampling timing generator & changeover determination unit 38k, on the basis of the gate selection signal GSS, is selected first gate signal GS 1 and the second gate signal GS 2 of 2 motor system 2 target voltage VH T The gate signal of the motor that did not exist is selected as the gate signal GS S that is used to generate the VH sensor sampling timing TS.
  • VH sensor sampling timing generator & switching time determination unit 38k outputs the VH sensor sampling timing TS (AD conversion start signal), the AD conversion end signal ES corresponding to the VH sensor sampling timing TS (AD conversion start signal) based on the switching timing of the next oN / OFF of the gate signal GS S, following the case became switching timing of oN / OFF the next oN / OFF of the gate signal GS S after AD conversion end signal ES
  • the VH sensor sampling timing TS (AD conversion start signal) is output to the AD converter 38m in accordance with the switching timing, and the next ON / OFF switching timing of the gate signal GS S comes before the AD conversion end signal ES.
  • VH sensor sample according to AD conversion end signal ES Grayed timing TS and (AD conversion start signal) to the AD converter 38m.
  • the AD converter 38m AD converts the DC high voltage (analog value) VH detected by the VH sensor 13a every time the VH sensor sampling timing TS is input from the VH sensor sampling timing generator & switching time determination unit 38k. Then, the DC high voltage (digital value) VH after AD conversion is output to the VH sensor data update & binary averaging process 38l.
  • the AD converter 38m outputs an AD conversion end signal ES to the VH sensor sampling timing generator & switching time determination unit 38k.
  • the AD converter 38m When the next ON / OFF switching timing of the gate signal GS S comes before the AD conversion end signal ES (when the switching time of the gate signal GS S is shorter than the AD conversion time), the AD converter 38m The AD conversion is started immediately after the end of the AD conversion.
  • FIG. 9A shows the DC high voltage VH
  • FIG. 9B shows the gate signal GS
  • FIG. 9C shows the ON / OFF switching timing ST of the gate signal GS.
  • FIG. 9A shows B value, C value, D value,... As DC high voltage values at the switching timings ST 1 , ST 2 , ST 3 ,.
  • FIG. 9A shows B value, C value, D value,... As DC high voltage values at the switching timings ST 1 , ST 2 , ST 3 ,.
  • FIG. 9D shows an AD conversion start signal SS 1 , output from the VH sensor sampling timing generator & switching time determination unit 38 k in accordance with the switching timings ST 1 , ST 2 , ST 3 ,. SS 2 , SS 3 ,... Are shown.
  • FIG. 9E shows an AD conversion end signal output from the AD converter 38m when AD conversion performed in response to the AD conversion start signals SS 1 , SS 2 , SS 3 ,. ES 1 , ES 2 , ES 3 ,...
  • FIG. 9F shows the A value, the B value, and the C value that are the DC voltage values ADC after AD conversion that are output from the AD converter 38m and held in the VH sensor data update & binary averaging process 38l. , D value,...
  • FIG. 9 (g) shows (A + B) / 2, (B + C) / 2,...
  • VHA average value of the DC high voltage value calculated and held in the VH sensor data update & binary averaging process 38l.
  • VH sensor sampling timing generator & in accordance with the switching time determiner switching timing ST 5 In 38k outputs the AD conversion start signal SS 5, starts AD converter 38m in AD conversion, the DC high voltage AD conversion is completed ( the F value and outputs an AD conversion end signal ES 5 and outputs the VH sensor data update & binary averaging processing 38l to VH sensor sampling timing generator & changeover determination unit 38k as a digital value).
  • the VH sensor sampling timing generator & changeover determination unit 38k because it was the switching timing ST 6 brat before AD conversion end signal ES 5, temporarily output of the AD conversion start signal in response to the switching timing ST 6 I waited, when the AD conversion end signal ES 5 is input and outputs the AD conversion start signal SS 6.
  • the AD converter 38m to start AD conversion in accordance with the AD conversion start signal SS 6 (therefore, will initiate the AD conversion immediately after the AD conversion is completed), a DC high voltage AD conversion is completed (digital value) G 'value and outputs an AD conversion end signal ES 6 VH sensor sampling timing generator & the changeover determination unit 38k outputs the VH sensor data update & binary averaging process 38l as.
  • the G 'value is a value close slightly smaller from G value when the switching timing ST 6 of the gate signal GS in the DC high voltage VH.
  • the G ′ value is held, and the average value (F + G ′) / 2 is calculated using the previously held F value and the current G ′ value.
  • the average value (F + G ′) / 2 is held.
  • the VH sensor data update & binary averaging process 38l outputs an average value (F + G ′) / 2 to the voltage control 38g.
  • This average value (F + G ′) / 2 is a little smaller than the G value when the G ′ value is a peak of the DC high voltage VH, but is an average value with the F value when the DC high voltage is a valley. The value is close to the expected value of the high voltage value.
  • the two-motor system 3 (particularly, boost control by the motor ECU 38), the same effect as that of the two-motor system 1 according to the first embodiment is obtained.
  • the AD conversion time is shorter than the switching time of the gate signal GS
  • the AD conversion is performed immediately after the end of the AD conversion, and the direct current high due to the AD conversion immediately thereafter is performed.
  • An average value VHA is calculated using the voltage VH, and the average value VHA is used for boost control. Since the average value VHA using the DC high voltage VH by AD conversion immediately after the AD conversion is also a voltage close to the expected value of the DC high voltage, stable voltage conversion control can be performed.
  • the present embodiment is applied to a two-motor system vehicle, it can be applied to various devices such as a two-motor system device and a moving body. Moreover, it is applicable also to a motor system provided with three or more motors. Further, a motor generator or a generator can be applied as the plurality of motors.
  • the present invention is applied to the step-up control for the step-up converter, but can also be applied to the step-down control for the step-down converter and the step-up / step-down control for the step-up / step-down converter.
  • the larger one of the target voltages of the two motors is selected as the system target voltage, and the sampling timing is set by using the gate signal of the motor not selected as the target voltage.
  • a system target voltage is selected from each target voltage of three or more motors, and a motor is selected from a plurality of motor gate signals that are not selected as target voltages.
  • the motor gate signal that most affects the current pulsation is selected, and the sampling timing is set using the selected gate signal.
  • the present invention relates to a motor voltage that performs voltage conversion control on a voltage conversion circuit that converts a DC voltage of a power source into an input DC voltage necessary for driving the motor between a motor control circuit that controls a plurality of motors and a power source.
  • a conversion control device that samples the input DC voltage used for voltage conversion control in consideration of the gate signal of the motor that is not selected as the target voltage of the input DC voltage to be converted by the voltage conversion circuit. Even when there is pulsation in the voltage, the input DC voltage close to the expected value of the input DC voltage at the time of sampling timing request can be sampled, so the difference between the expected value of the input DC voltage and the actual sampling value used in voltage conversion control The voltage conversion becomes smaller and stable voltage conversion control can be performed.
  • first motor target voltage calculation 18f , 28f, 38f ... second motor target voltage calculation, 18g, 28g, 38g ... voltage control, 18h, 8h, 38h ... current control, 18i, 28i, 38i ... gate generation, 18j, 28j, 38j ... gate selection & target voltage selection, 18k ... VH sensor sampling timing generator, 28k, 38k ... VH sensor sampling timing generator & switching Time determination unit, 18l, 28l, 38l ... VH sensor data update & binary averaging process, 18m, 18n, 28m, 28n, 38m, 38n ... AD converter, 19 ... travel control ECU.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

 複数個のモータ16,17を制御するモータ制御回路14,15と電源10との間の電圧変換回路12に対する電圧変換制御を行う制御装置18であって、電圧変換後の直流電圧をサンプリングするサンプリング手段13a,18l,18mと、複数個のモータ16,17の目標電圧VHT1,VHT2を設定する目標電圧設定手段18e,18fと、複数の目標電圧VHT1,VHT2の中から電圧変換回路12で変換する目標電圧VHを選択する選択手段18jと、選択されなかった目標電圧のモータのうちのいずれか1個のモータのゲート信号GSorGSに基づいてサンプリングタイミングTSを発生する発生手段18kと、電圧変換制御のサンプリングタイミング要求DS毎にサンプリングタイミングTSに応じてサンプリング手段13a,18l,18mでサンプリングされた直流電圧を用いて電圧変換制御を行う制御手段18gを備えることを特徴とする。

Description

モータ用電圧変換制御装置
 本発明は、複数個のモータを制御するモータ制御回路と電源との間で電源の直流電圧をモータの駆動に必要となる入力直流電圧に変換する電圧変換回路に対する電圧変換制御を行うモータ用電圧変換制御装置に関する。
 近年、環境に配慮した車両としてハイブリッド車両や電気自動車等が開発されており、これらの車両は駆動源としてモータを備えている。このような車両には、複数個のモータ(モータジェネレータやジェネレータの場合もある)を備えるものもある。このモータとしては交流モータが用いられ、インバータによって直流電力を三相交流電力に変換して、三相交流電力によってモータを駆動している。さらに、モータで高回転や高トルクを出力するためには高電圧が必要となるので、昇圧コンバータによってバッテリの直流電圧を直流高電圧に昇圧して、その直流高電圧をインバータに供給している。そのため、車両では、モータを制御するために、インバータのスイッチング素子をスイッチング制御するためのインバータ制御と昇圧コンバータのスイッチング素子をスイッチング制御するための昇圧制御を行っている。昇圧コンバータとインバータとの間には平滑コンデンサが設けられ、この平滑コンデンサの両端間の電圧(昇圧コンバータによる昇圧後の直流高電圧)が電圧センサで検出される。昇圧制御では、この電圧センサで検出された直流高電圧を用いて、モータの駆動に必要となる目標電圧になるように制御を行っている。特に、複数個のモータを備えるシステムの場合、モータ毎に駆動に必要となる目標電圧をそれぞれ設定し、その複数の目標電圧の中からシステムの目標電圧を選択している。
 特許文献1には、2個のモータジェネレータを備える車両の制御装置において、直流電源の電圧のセンサ値、平滑コンデンサの両端電圧のセンサ値、各モータジェネレータのモータトルク指令値及びモータ回転数に基づいて昇圧コンバータのスイッチング素子を制御するためのゲート信号を生成するとともに、モータジェネレータ毎に平滑コンデンサの両端電圧のセンサ値、モータトルク指令値及びモータ電流のセンサ値に基づいてインバータのスイッチング素子を制御するためのゲート信号をそれぞれ生成することが記載されている。
特開2009-201195号公報
 車両開発では低コスト化や小型化が求められるので、昇圧コンバータとインバータとの間の平滑コンデンサの容量の低減が求められている。平滑コンデンサの容量を小さくするほど、インバータのスイッチング素子のスイッチングに応じた平滑コンデンサへの電荷の出し入れの比率が大きくなるので、平滑コンデンサの平滑能力を超えると平滑コンデンサの両端電圧が大きく変動し、昇圧後の直流高電圧に脈動が発生する。
 具体的には、走行状態の制約(例えば、インバータのスイッチング素子の温度が高い場合)等により一時的にインバータ制御のキャリア周波数(インバータのスイッチング素子をON/OFFするためのスイッチング周波数)を低くすると、スイッチング素子をON/OFFする周期が長くなり、インバータ制御のスイッチングノイズが平滑コンデンサの両端電圧(昇圧後の直流高電圧)に大きな変動分(脈動成分)として重畳される。図10には、キャリア周波数が2.5kHzの場合の直流高電圧の時間変化VH2.5とキャリア周波数が1.25kHzの場合の直流高電圧の時間変化VH1.25を示している。また、符号VHで示す曲線は、直流高電圧の時間変化VH2.5,VH1.25を所定の時定数でフィルタリングしたフィルタ値の時間変化である。この図10からも判るように、昇圧後の直流高電圧は、キャリア周波数が高い場合より低い場合に大きな脈動成分が重畳し、大きく変動する。ちなみに、キャリア周波数が高いほど、モータの電流脈動成分が少なくなるが、スイッチング素子の発熱が大きくなる等によりシステム損失が大きくなる。
 また、モータの回転数やトルクによって、モータの駆動に必要となる目標電圧が変わる。この目標電圧が高く、昇圧後の直流高電圧がモータ誘起電圧に対して高くなると、その電圧差に応じて直流高電圧に脈動成分が重畳される。
 図11(a)には、直流高電圧が高い場合の電圧VH及び低い場合の電圧VHとモータ誘起電圧Vemfとの関係を示している。高い場合の直流高電圧VHとモータ誘起電圧Vemfとの電圧差VdefH1,VdefH2と、低い場合の直流高電圧VHとモータ誘起電圧Vemfとの電圧差VdefL1,VdefL2とを比較すると、電圧差Vdefは、高い場合の直流高電圧VHのときの方が大きくなる。この電圧差Vdefが大きくなるほど、モータ電流に重畳される変動分が大きくなる。
 図11(b)には、インバータ制御でのキャリア信号SCとデューティ信号SDを示しており、このキャリア信号SCとデューティ信号SDの交点に応じてインバータのスイッチング素子をON/OFFするためのゲート信号を生成している。また、図11(c)には、モータの目標電流MIと、大きい電圧差Vdefの場合のモータの実電流MIと、小さい電圧差Vdefの場合のモータの実電流MIを示している。モータの実電流MI,MIは、目標電流MIに対して変動しており、インバータのスイッチング素子のスイッチングの影響による脈動成分が重畳しており、図11(b)、(c)から判るようにキャリア信号SCとデューティ信号SDの交点(ゲート信号のON/OFFの切り替えタイミング)で脈動成分の増減が変化している。この図11(c)から判るように、電圧差Vdefが大きいほど、モータ電流に重畳される脈動成分が大きくなる。さらに、図11(d)には、大きい電圧差Vdefの場合のモータの実電流MIのときの昇圧後の直流高電圧VHを示している。直流高電圧VHは、モータの実電流の脈動に応じて脈動し、大きく変動している。
 つまり、インバータ制御でのスイッチングの影響によってモータ電流に重畳される脈動成分は、直流高電圧VHとモータ誘起電圧Vemfとの電圧差Vdef及びインバータ制御のキャリア周波数によって決まる。そのため、電圧差Vdefが大きいときにインバータ周波数が低くなると、モータ電流に重畳される脈動成分が大きくなる。平滑コンデンサの容量が小さい場合、モータ電流に重畳される脈動成分が大きくなると、平滑コンデンサの平滑能力を超え、平滑コンデンサの両端電圧が大きく変動し、昇圧後の直流高電圧に脈動が発生する。
 図11(d)には、実際の直流高電圧VHとともに直流高電圧の期待値(直流高電圧VHの山と谷との中間値であり、脈動成分が含まれない直流高電圧である)VH及び昇圧制御における直流高電圧のサンプリングタイミング要求信号DS,DS,DSを示している。サンプリングタイミング要求信号DS,DS,DSは、サンプリングタイミング周期PS毎に出力される。従来の昇圧制御では、サンプリングタイミング要求信号DS,DS,DSが出力されると電圧センサによって平滑コンデンサの両端電圧を検出し、その検出した直流高電圧VH,VH,VHを用いて目標電圧になるように制御を行う。しかし、例えば、サンプリングタイミング要求信号DSで検出した直流高電圧VHの場合、インバータ制御側のスイッチングノイズによるモータ電流の脈動成分の影響により大きな脈動成分が加味されており、直流高電圧の期待値VHE1から大きく乖離している。このような直流高電圧VHを用いて昇圧制御を行った場合、昇圧制御が不安定になる。
 特許文献1に記載の制御では、昇圧コンバータのスイッチング素子を制御するためのゲート信号と各モータジェネレータのインバータのスイッチング素子を制御するためのゲート信号とを別々に生成しており、昇圧制御とインバータ制御とが連携していない。そのため、昇圧コンバータで昇圧後の直流高電圧に脈動が発生している場合には、昇圧制御に用いられる平滑コンデンサの両端電圧のセンサ値にはその脈動成分が含まれ、昇圧制御が不安定になる。
 特に、複数個のモータを備えるシステムの場合、各モータで必要となる目標電圧が異なり、通常の制御ではその複数の目標電圧の中で最も高い目標電圧をシステムの目標電圧として選択し、昇圧制御ではその最も高い目標電圧になるように直流高電圧を制御する。そのため、システムの目標電圧として選択されていない目標電圧が低いモータでは上記した直流高電圧VHとモータ誘起電圧Vemfとの電圧差Vdefがより大きくなるので、モータ電流に重畳される脈動成分が大きくなる。
 そこで、本発明は、複数個のモータを備えるシステムにおいてモータ電流の脈動によって引き起こされるモータの入力直流電圧に脈動がある場合でも安定した電圧変換制御を行うモータ用電圧変換制御装置を提供することを課題とする。
 本発明に係るモータ用電圧変換制御装置は、複数個のモータを制御するモータ制御回路と電源との間で電源の直流電圧をモータの駆動に必要となる入力直流電圧に変換する電圧変換回路に対する電圧変換制御を行うモータ用電圧変換制御装置であって、モータ制御回路と電圧変換回路との間に設けられたコンデンサの両端電圧を検出し、電圧変換回路で変換された入力直流電圧をサンプリングするサンプリング手段と、モータ毎に入力直流電圧の目標電圧をそれぞれ設定する目標電圧設定手段と、目標電圧設定手段で設定した複数の目標電圧の中から電圧変換回路で変換する目標電圧を選択する選択手段と、選択手段で選択されなかった目標電圧のモータのうちのいずれか1個のモータに対するモータ制御のゲート信号に基づいて電圧変換回路で変換された入力直流電圧をサンプリングするサンプリングタイミングを発生するサンプリングタイミング発生手段と、電圧変換制御のサンプリングタイミング要求毎にサンプリングタイミング発生手段で発生したサンプリングタイミングに応じてサンプリング手段でサンプリングされた入力直流電圧を用いて電圧変換制御を行う制御手段とを備えることを特徴とする。
 このモータ用電圧変換制御装置では、複数個のモータ、モータ制御回路、電圧変換回路、電源等を備える複数モータシステムにおいて、電圧変換回路に対する電圧変換制御を行う装置である。モータ制御回路と電圧変換回路との間にはコンデンサが設けられており、サンプリング手段によってそのコンデンサの両端電圧を検出することにより電圧変換回路で電圧変換された入力直流電圧をサンプリングしている。また、モータ用電圧変換制御装置では、目標電圧設定手段によってモータ毎にモータの駆動に必要となる入力直流電圧の目標電圧をそれぞれ設定し、選択手段によってそのモータ毎の目標電圧の中から電圧変換回路で変換する目標電圧を選択する。そして、モータ用電圧変換制御装置では、サンプリング手段でサンプリングされた入力直流電圧を用いて、入力直流電圧が選択手段で選択された目標電圧になるように制御を行っている。なお、モータは、駆動機能を有するモータだけでなく、発電機能を有するモータジェネレータやジェネレータも含む。
 モータの入力直流電圧の脈動は、モータ電流の脈動によって引き起こされる。モータ電流に重畳される脈動成分は、モータ制御のスイッチングによる影響であり、モータ制御側のゲート信号(モータ制御側で生成される信号であり、モータ制御回路のスイッチング素子をスイッチング制御するためのゲート信号)及びモータの入力直流電圧とモータ誘起電圧との電圧差によって決まる。そのため、脈動成分が重畳されているモータ電流の山と谷は、ゲート信号のON/OFFの切り替えタイミングとなる。したがって、脈動成分が重畳された入力直流電圧の山と谷との中間値(すなわち、脈動成分が除かれた入力直流電圧であり、電圧変換制御を安定に行うための入力直流電圧の期待値)も、ゲート信号の連続する切り替えタイミングの中間のタイミングで得られる。また、複数個のモータを備えるシステムの場合、上記のようにモータ毎に入力直流電圧の目標電圧を設定し、モータ毎の目標電圧の中からシステムとしての目標電圧を1つ選択している。そのため、目標電圧として選択されなかったモータでは、システムの目標電圧として選択されたモータよりも、入力直流電圧とモータ誘起電圧との電圧差が大きくなり、モータ電流に重畳される脈動成分が大きくなる。
 そこで、このモータ用電圧変換制御装置では、サンプリングタイミング発生手段によって、選択手段で選択されなかった目標電圧のモータのうちのいずれか1個のモータに対するモータ制御のゲート信号に基づいて入力直流電圧をサンプリングするためのサンプリングタイミングを発生する。選択手段で選択されなかった目標電圧のモータが1個の場合にはその1個のモータのゲート信号を用い、選択手段で選択されなかった目標電圧のモータが複数個の場合には、例えば、その複数個のモータのゲート信号の中からモータ電流の脈動成分に最も影響を与えるモータのゲート信号を選択する。そして、モータ用電圧変換制御装置では、制御手段によって、電圧変換制御における入力直流電圧に対するサンプリングタイミング要求(電圧変換制御において入力直流電圧が必要なタイミングで出力されるタイミングであり、モータ制御側のゲート信号とは同期していない)毎に、サンプリングタイミング発生手段で発生したサンプリングタイミングに応じてサンプリング手段でサンプリングされた入力直流電圧(実電圧)を用いてシステムとしての目標電圧になるように制御を行う。このように、このモータ用電圧変換制御装置は、電圧変換回路で変換する入力直流電圧の目標電圧として選択されなかったモータのゲート信号を考慮して電圧変換制御に用いる入力直流電圧をサンプリングすることにより、モータの入力直流電圧に脈動がある場合でも、サンプリングタイミング要求のときの入力直流電圧の期待値に近い入力直流電圧をサンプリングできるので、入力直流電圧の期待値と電圧変換制御において実際に用いるサンプリング値との差が小さくなり、安定した電圧変換制御を行うことができる。これによって、コンデンサの容量を低減することができ、複数モータシステムの低コスト及び小型化を図ることができる。
 本発明の上記モータ用電圧変換制御装置では、サンプリングタイミング発生手段は、ゲート信号のONとOFFとの切り替えタイミングに応じてサンプリングタイミングを発生し、サンプリング手段は、サンプリングタイミング発生手段でサンプリングタイミングを発生する毎に、今回のサンプリングタイミングに応じて電圧変換回路で変換された入力直流電圧と前回のサンプリングタイミングに応じて電圧変換回路で変換された入力直流電圧との平均値を算出し、制御手段は、電圧変換制御のサンプリングタイミング要求毎に、該サンプリングタイミング要求直前にサンプリング手段で算出されている入力直流電圧の平均値を用いて電圧変換制御を行うと好適である。
 このモータ用電圧変換制御装置では、サンプリングタイミング発生手段によって、ゲート信号のON/OFFの切り替えタイミングに応じてサンプリングタイミングを発生する。そして、モータ用電圧変換制御装置では、サンプリング手段によって、そのサンプリングタイミング毎に、今回のサンプリングタイミングに応じて電圧変換回路で変換された入力直流電圧と前回のサンプリングタイミングに応じて電圧変換回路で変換された入力直流電圧との平均値を算出し、その入力直流電圧の平均値をサンプリングしておく。このゲート信号の連続する切り替えタイミング(連続する立ち上がりタイミングと立ち下がりタイミング)でそれぞれサンプリングされた入力直流電圧の平均値は入力直流電圧の山と谷との中間値である。そして、モータ用電圧変換制御装置では、制御手段によって、サンプリングタイミング要求毎に、サンプリングタイミング要求直前にサンプリング手段で算出された入力直流電圧の平均値を用いて目標電圧になるように制御を行う。このサンプリングタイミング要求直前のゲート信号の連続する切り替えタイミングでそれぞれサンプリングされた入力直流電圧の平均値は、サンプリングタイミング要求のときの入力直流電圧の期待値に近い電圧である。このように、このモータ用電圧変換制御装置は、モータ制御のゲート信号の連続する切り替えタイミングでそれぞれサンプリングされた入力直流電圧の平均値をサンプリングしておくことにより、モータの入力直流電圧に脈動がある場合でも、サンプリングタイミング要求のときの入力直流電圧の期待値に近い入力直流電圧を用いて電圧変換制御ができ、安定した電圧変換制御を行うことができる。
 本発明の上記モータ用電圧変換制御装置では、サンプリングタイミング発生手段でサンプリングタイミングを発生する毎に、電圧変換回路で変換された入力直流電圧をアナログ値からデジタル値に変換するAD変換手段を備え、AD変換手段でのAD変換時間よりもゲート信号のONとOFFとの切り替え時間が短い場合、サンプリングタイミング発生手段はサンプリングタイミングの発生を中止し、AD変換手段はAD変換を行わない構成としてもよい。
 このモータ用電圧変換制御装置では、サンプリングタイミング発生手段でサンプリングタイミングを発生する毎に、AD変換手段によって電圧変換回路で変換された入力直流電圧をアナログ値からデジタル値に変換し、サンプリング手段にそのデジタル値の入力直流電圧を出力する。AD変換手段でのAD変換に要する時間よりもゲート信号のON/OFFの切り替え時間が短い場合、AD変換手段でAD変換が終了する前に、サンプリングタイミング発生手段でのサンプリングタイミングを発生するタイミングになる。この場合、サンプリングタイミングを発生しても、AD変換手段でAD変換を行えず、サンプリング手段での処理も行えない。そこで、モータ用電圧変換制御装置では、AD変換手段でのAD変換時間よりもゲート信号のONとOFFとの切り替え時間が短い場合、サンプリングタイミング発生手段がサンプリングタイミングの発生を中止する。この場合、AD変換手段では、ゲート信号の今回の切り替えタイミングに応じたAD変換を行わない。したがって、サンプリング手段では、ゲート信号の今回の切り替えタイミングに応じた入力直流電圧を用いた平均値の算出が行われない。その結果、サンプリング手段での最新のサンプリング値としては、ゲート信号の前回の切り替えタイミングに応じた入力直流電圧とゲート信号の前々回の切り替えタイミングに応じた入力直流電圧との平均値(前回値)となる。この平均値(前回値)も、入力直流電圧の山と谷との中間値であるので、入力直流電圧の期待値に近い電圧であり、安定した電圧変換制御を行うことができる。
 本発明の上記モータ用電圧変換制御装置では、サンプリングタイミング発生手段でサンプリングタイミングを発生する毎に、電圧変換回路で変換された入力直流電圧をアナログ値からデジタル値に変換するAD変換手段を備え、AD変換手段でのAD変換時間よりもゲート信号のONとOFFとの切り替え時間が短い場合、サンプリングタイミング発生手段はAD変換手段でのAD変換終了直後にサンプリングタイミングを発生し、AD変換手段はAD変換終了直後にAD変換を開始する構成としてもよい。
 このモータ用電圧変換制御装置では、上記のモータ用電圧変換制御装置と同様にAD変換手段を備えており、AD変換手段でのAD変換時間よりもゲート信号のON/OFFの切り替え時間が短い場合には同様の問題が発生する。そこで、モータ用電圧変換制御装置では、AD変換手段でのAD変換時間よりもゲート信号のONとOFFとの切り替え時間が短い場合、サンプリングタイミング発生手段がAD変換手段でのAD変換終了直後にサンプリングタイミングを発生する。この場合、AD変換手段ではAD変換終了直後にAD変換を開始する。したがって、サンプリング手段では、ゲート信号の今回の切り替えタイミングから少し遅れたタイミングに応じた入力直流電圧とゲート信号の前回の切り替えタイミングに応じた入力直流電圧との平均値を算出することになる。ゲート信号の今回の切り替えタイミングから少し遅れたタイミングの入力直流電圧を用いるが、その値と前回の切り替えタイミングの入力直流電圧を用いた平均値は入力直流電圧の期待値から大きくずれることはないので、安定した電圧変換制御を行うことができる。
 本発明の上記モータ用電圧変換制御装置では、複数個のモータは、2個のモータであり、目標電圧設定手段では、2個のモータの目標電圧をそれぞれ設定し、選択手段では、目標電圧設定手段で設定した2個のモータの目標電圧の中から電圧変換回路で変換する目標電圧を選択し、サンプリングタイミング発生手段では、選択手段で選択されなかった目標電圧のモータのゲート信号に基づいて電圧変換回路で変換された入力直流電圧をサンプリングするサンプリングタイミングを発生する。
 本発明によれば、電圧変換回路で変換する入力直流電圧の目標電圧として選択されなかったモータのゲート信号を考慮して電圧変換制御に用いる入力直流電圧をサンプリングすることにより、モータの入力直流電圧に脈動がある場合でも、サンプリングタイミング要求のときの入力直流電圧の期待値に近い入力直流電圧をサンプリングできるので、入力直流電圧の期待値と電圧変換制御において実際に用いるサンプリング値との差が小さくなり、安定した電圧変換制御を行うことができる。
第1の実施の形態に係る2モータシステムの構成を示すブロック図である。 各モータの目標電圧の算出方法の説明図である。 2モータシステムでの目標電圧の決定方法の説明図であり、(a)が決定方法の流れであり、(b)が2個のモータについてのシステム電圧とシステム損失とのマップの一例である。 第1の実施の形態に係る直流高電圧のサンプリングタイミングの説明図であり、(a)が直流高電圧が高い場合及び低い場合とモータ誘起電圧との関係図であり、(b)がインバータ制御でのキャリア信号とデューティ信号であり、(c)がインバータ制御でのゲート信号であり、(d)がモータ目標電流とモータ実電流であり、(e)が直流高電圧とサンプリングタイミング要求信号である。 第2の実施の形態に係る2モータシステムの構成を示すブロック図である。 AD変換時間とゲート信号の切り替え時間との関係図である。 第2の実施の形態に係る直流高電圧のサンプリングタイミングの説明図であり、(a)が直流高電圧であり、(b)がインバータ制御でのゲート信号であり、(c)がゲート信号の切り替えタイミングであり、(d)がAD変換器へのAD変換起動信号であり、(e)が平均化禁止信号であり、(f)がAD変換器からのAD変換終了信号であり、(g)がAD変換器によるAD変換値であり、(h)が2値平均化値である。 第3の実施の形態に係る2モータシステムの構成を示すブロック図である。 第3の実施の形態に係る直流高電圧のサンプリングタイミングの説明図であり、(a)が直流高電圧であり、(b)がインバータ制御でのゲート信号であり、(c)がゲート信号の切り替えタイミングであり、(d)がAD変換器へのAD変換起動信号であり、(e)がAD変換器からのAD変換終了信号であり、(f)がAD変換器によるAD変換値であり、(g)が2値平均化値である。 キャリア周波数が高い場合と低い場合の直流高電圧の変化を示す図である。 直流高電圧の脈動の発生の説明図であり、(a)が直流高電圧が高い場合及び低い場合とモータ誘起電圧との関係図であり、(b)がインバータ制御でのキャリア信号とデューティ信号であり、(c)がモータ目標電流とモータ実電流であり、(d)が直流高電圧とサンプリングタイミング要求信号である。
 以下、図面を参照して、本発明に係るモータ用電圧変換制御装置の実施の形態を説明する。なお、各図において同一又は相当する要素については同一の符号を付し、重複する説明を省略する。
 本実施の形態では、本発明に係るモータ用電圧変換制御装置を、2個のモータを有する2モータシステムの車両(例えば、ハイブリッド車両、電気自動車、燃料電池車両)のモータECU[Electronic Control Unit]における昇圧制御機能に適用する。本実施の形態に係る2モータシステムでは、昇圧コンバータによってバッテリの直流電圧を昇圧してモータの駆動に必要となる直流高電圧に変換し、その直流高電圧が供給される各モータのインバータによって直流電力を各モータの三相交流電力にそれぞれ変換して、各三相交流電力によって各モータをそれぞれ駆動する。本実施の形態には、昇圧後の直流高電圧をサンプリングするタイミングの設定方法が異なる3つの形態があり、第1の実施の形態が基本となる形態であり、第2及び第3の実施の形態が第1の実施の形態に追加機能を加えた形態である。
 図1~図4を参照して、第1の実施の形態に係る2モータシステム1について説明する。図1は、第1の実施の形態に係る2モータシステムの構成を示すブロック図である。図2は、各モータの目標電圧の算出方法の説明図である。図3は、2モータシステムでの目標電圧の決定方法の説明図であり、(a)が決定方法の流れであり、(b)が2個のモータについてのシステム電圧とシステム損失とのマップの一例である。図4は、第1の実施の形態に係る直流高電圧のサンプリングタイミングの説明図であり、(a)が直流高電圧が高い場合及び低い場合とモータ誘起電圧との関係図であり、(b)がインバータ制御でのキャリア信号とデューティ信号であり、(c)がインバータ制御でのゲート信号であり、(d)がモータ目標電流とモータ実電流であり、(e)が直流高電圧とサンプリングタイミング要求信号である。
 2モータシステム1は、バッテリ10、フィルタコンデンサ11、昇圧コンバータ12、平滑コンデンサ13、第1インバータ14、第2インバータ15、第1モータ16、第2モータ17及びモータECU18を備えている。なお、本実施の形態では、バッテリ10が請求の範囲に記載する電源に相当し、昇圧コンバータ12が請求の範囲に記載する電圧変換回路に相当し、平滑コンデンサ13が請求の範囲に記載するコンデンサに相当し、第1インバータ14及び第2インバータ15が請求の範囲に記載するモータ制御回路に相当し、第1モータ16及び第2モータ17が請求の範囲に記載する複数個のモータに相当する。
 2モータシステム1では、走行制御ECU19からの各モータ16,17に対するモータトルク指令DT,DTに応じて、バッテリ10の直流電力を各モータ16,17に対する三相交流電力にそれぞれ変換し、その各三相交流電力をモータ16,17にそれぞれ供給する。そのために、モータECU18では、各モータ16,17の駆動に必要となる目標電圧VHT1,VHT2の中からシステムとしての目標電圧VHを選択し、バッテリ10の直流低電圧VLからシステムとしての目標電圧VH(直流高電圧VH)まで昇圧するために昇圧コンバータ12に対する昇圧制御を行うとともに、直流電力から各モータ16,17に対するモータトルク指令DT,DTを発生させるために必要な三相交流電力にそれぞれ変換するために各インバータ14,15に対するインバータ制御をそれぞれ行う。特に、モータECU18では、インバータ制御側でのスイッチングノイズの影響によるモータ電流の脈動によって引き起こされる直流高電圧VHの脈動がある場合でも安定した昇圧制御を行うために、各モータ16,17のインバータ制御のゲート信号GS,GSの中からシステムの目標電圧VHとして選択されなかった方のモータのインバータ制御のゲート信号を選択し、その選択したゲート信号の連続する切り替えタイミング(連続する立ち上がりタイミングと立ち下がりタイミング)の直流高電圧(平滑コンデンサ13の両端電圧)VHの平均値VHAを算出してサンプリングしておき、VHセンササンプリングタイミング要求信号DS毎にその要求信号DS直前のゲート信号GSの連続する立ち上がりタイミングと立ち下がりタイミングの直流高電圧の平均値VHAを用いて昇圧制御を行う。
 なお、走行制御ECU19は、車両の走行を制御するためのECUである。走行制御ECU19では、運転者あるいは自動運転によるアクセル要求やブレーキ要求に応じて、そのときの車両の走行状態に基づいて第1モータ16で必要となる目標のモータトルク及び第2モータで必要となる目標のモータトルクを算出し、その目標の各モータトルクをモータトルク指令DT,DTとしてモータECU18に出力している。
 バッテリ10は、直流電源であり、二次電池である。フィルタコンデンサ11は、バッテリ10と昇圧コンバータ12との間に設けられ、バッテリ10に並列に接続される。フィルタコンデンサ11では、バッテリ10の直流電圧を平滑化し、その直流電圧の電荷を蓄電する。このフィルタコンデンサ11の両端電圧が、直流低電圧VLである。なお、フィルタコンデンサ11は、スイッチングによる脈動電流をバッテリ10側に流さないようにするためのコンデンサである。
 昇圧コンバータ12は、リアクトル12a、スイッチング素子12b,12c、還流ダイオード12d,12eからなる。リアクトル12aの一端には、フィルタコンデンサ11の高電圧側が接続される。リアクトル12aの他端には、スイッチング素子12bとスイッチング素子12cの接続点が接続される。ILセンサ12fでは、このリアクトル12aに流れる電流IL(アナログ値)を検出し、その検出した電流ILをモータECU18に出力する。スイッチング素子12bとスイッチング素子12cとは直列に接続され、スイッチング素子12bのコレクタに平滑コンデンサ13の高電圧側が接続され、スイッチング素子12cのエミッタに平滑コンデンサ13の低電圧側が接続される。スイッチング素子12b,12cには、還流ダイオード12d,12eがそれぞれ逆並列接続される。このような回路構成によって、昇圧コンバータ12では、モータECU18から出力されるスイッチング素子12b,12cに対する各ゲート信号に基づいてスイッチング素子12b,12cがそれぞれスイッチング制御され、フィルタコンデンサ11の直流低電圧VLを直流高電圧VHに変換する。
 平滑コンデンサ13は、昇圧コンバータ12と第1インバータ14及び第2インバータ15との間に設けられる。平滑コンデンサ13は、昇圧コンバータ12で昇圧された直流電圧を平滑化し、その直流電圧の電荷を蓄電する。この平滑コンデンサ13の両端電圧が、直流高電圧VHである。VHセンサ13aでは、この平滑コンデンサ13の両端電圧(アナログ値)VHを検出し、その検出した電圧をモータECU18に出力する。
 第1インバータ14は、2モータシステムにおける第1モータ16を駆動するために、直流電力を三相交流電力に変換するインバータである。第2インバータ15は、2モータシステムにおける第2モータ17を駆動するために、直流電力を三相交流電力に変換するインバータである。第1インバータ14と第2インバータ15は、同様の回路であり、直流電力を三相交流電力に変換する従来の一般的なインバータ回路であるので、詳細な回路構成については説明を省略する。第1インバータ14では、平滑コンデンサ13の直流高電圧VHが供給され、モータECU18から出力される第1モータ16の各相(U相、V相、W相)に対応したスイッチング素子に対する各ゲート信号GSに基づいて各相のスイッチング素子がそれぞれスイッチング制御され、直流電力を三相交流電力に変換し、第1モータ16に供給する。同様に、第2インバータ15でも、モータECU18から出力される第2モータ17の各相に対応した各ゲート信号GSに基づいて、直流電力を三相交流電力に変換し、第2モータ17に供給する。
 第1モータ16及び第2モータ17は、交流モータであり、車両の駆動源である。第1モータ16は、第1インバータ14からの三相交流電力が各相のコイル(図示せず)に供給され、回転駆動する。第2モータ17は、第2インバータ15からの三相交流電力が各相のコイル(図示せず)に供給され、回転駆動する。なお、2個のモータのうち一方のモータがジェネレータあるいはモータジェネレータでもよいし、2個共にモータジェネレータでもよい。
 モータECU18は、マイクロコンピュータ(マイコン)や各種メモリ等からなる電子制御ユニットであり、モータ制御を行う。特に、モータECU18は、インバータ14,15に対する制御を行うインバータ制御機能(第1モータ制御18a、第2モータ制御18b、第1モータゲート生成18c、第2モータゲート生成18d)と昇圧コンバータ12に対する制御を行う昇圧制御機能(第1モータ目標電圧算出18e、第2モータ目標電圧算出18f、電圧制御18g、電流制御18h、ゲート生成18i、ゲート選択&目標電圧選択18j、VHセンササンプリングタイミング発生器18k、VHセンサデータ更新&2値平均化処理18l)を有している。インバータ制御機能と昇圧制御機能とを同じマイコンで構成してもよいし、別々のマイコンで構成してもよい。なお、第1の実施の形態では、第1モータ目標電圧算出18e及び第2モータ目標電圧算出18fが請求の範囲に記載する目標電圧設定手段に相当し、ゲート選択&目標電圧選択18jが請求の範囲に記載する選択手段に相当し、VHセンササンプリングタイミング発生器18kが請求の範囲に記載するサンプリングタイミング発生手段に相当し、電圧制御18gが請求の範囲に記載する制御手段に相当し、VHセンサ13a、AD変換器18m及びVHセンサデータ更新&2値平均化処理18lが請求の範囲に記載するサンプリング手段に相当する。
 インバータ制御機能について説明する。インバータ制御機能では、第1モータ制御18aと第1モータゲート生成18cが第1インバータ14(ひいては、第1モータ16)に対するインバータ制御を行い、第2モータ制御18bと第2モータゲート生成18dが第2インバータ15(ひいては、第2モータ17)に対するインバータ制御を行う。
 第1モータ制御18aでは、走行制御ECU19から第1モータ16に対する第1モータトルク指令DTが入力され、第1モータ16から角度センサで検出されたモータ角度及び電流センサで検出されたモータ電流を用いて、第1モータトルク指令DTの目標となるモータトルクを発生させるための第1キャリア信号SCと第1デューティ信号SDを生成し、第1モータゲート生成18cに出力する。また、第1モータ制御18aでは、第1モータ16の第1モータ回転数MRと第1モータトルク指令DTを昇圧制御機能の第1モータ目標電圧算出18eに出力する。
 第2モータ制御18bでは、走行制御ECU19から第2モータ17に対する第2モータトルク指令DTが入力され、第2モータ17から角度センサで検出されたモータ角度及び電流センサで検出されたモータ電流を用いて、第2モータトルク指令DTの目標となるモータトルクを発生させるための第2キャリア信号SCと第2デューティ信号SDを生成し、第2モータゲート生成18dに出力する。また、第2モータ制御18bでは、第2モータ17の第2モータ回転数MRと第2モータトルク指令DTを昇圧制御機能の第2モータ目標電圧算出18fに出力する。
 第1モータゲート生成18cでは、第1モータ制御18aから第1キャリア信号SCと第1デューティ信号SDが入力され、第1キャリア信号SCと第1デューティ信号SDに基づいて第1インバータ14の各相のスイッチング素子のゲート信号GS(例えば、PWM信号)をそれぞれ生成し、第1インバータ14に出力する。また、第1モータゲート生成18cでは、第1ゲート信号GSを昇圧制御機能のVHセンササンプリングタイミング発生器18kに出力する。
 第2モータゲート生成18dでは、第2モータ制御18bから第2キャリア信号SCと第2デューティ信号SDが入力され、第2キャリア信号SCと第2デューティ信号SDに基づいて第2インバータ15の各相のスイッチング素子のゲート信号GSをそれぞれ生成し、第2インバータ15に出力する。また、第2モータゲート生成18dでは、第2ゲート信号GSを昇圧制御機能のVHセンササンプリングタイミング発生器18kに出力する。図4(b)には第2モータ17のインバータ制御の第2キャリア信号SCと第2デューティ信号SDの一例を示しており、第2キャリア信号SCと第2デューティ信号SDとの交点のタイミングで第2インバータ15のスイッチング素子がON/OFFするゲート信号GSが生成され、図4(c)にそのゲート信号GSを示す。
 キャリア信号SCは、キャリア周波数であり、インバータ14,15のスイッチング素子のスイッチング周波数である。キャリア信号SCは、図4(b)に示すように、例えば、山と谷を頂点とする三角波である。モータ16,17を高回転や高トルクにするためには、キャリア周波数を高くする必要がある。しかし、インバータ14,15のスイッチング素子が高温度になる等によってシステム損失が大きくなると、キャリア周波数を低くする必要がある。デューティ信号SDは、インバータ14,15のスイッチング素子のONとOFFのデューティ比を決めるための信号である。デューティ信号SDは、図4(b)に示すように、例えば、正弦波である。ゲート信号GSは、インバータ14,15のスイッチング素子をON/OFFするための信号である。ゲート信号GSは、図4(c)に示すように、例えば、PWM信号である。
 ゲート信号GS,GSのON/OFFの切り替えタイミングでインバータ14,15のスイッチング素子がスイッチングし、そのスイッチングの影響によってモータ電流には脈動成分が重畳する。図4(d)には、図4(c)の第2ゲート信号GSから生成される第2モータ17の目標電流MIと、大きな脈動成分が重畳された場合の第2モータ17の実電流MIと、小さい脈動成分が重畳された場合の第2モータ17の実電流MIを示している。図4(d)から判るように、第2モータ17の実電流MI,MIでは、ゲート信号GSの立ち上がりタイミングと立ち下がりタイミングで山と谷となり、脈動成分の増減の変化点となっている。
 昇圧制御機能について説明する。第1モータ目標電圧算出18eでは、インバータ制御機能の第1モータ制御18aから第1モータ回転数MRと第1モータトルク指令DTが入力され、第1モータ回転数MRと第1モータトルク指令DTに基づいて第1モータ16についての第1目標電圧VHT1を算出し、ゲート選択&目標電圧選択18jに出力する。第2モータ目標電圧算出18fでは、インバータ制御機能の第2モータ制御18bから第2モータ回転数MRと第2モータトルク指令DTが入力され、第2モータ回転数MRと第2モータトルク指令DTに基づいて第2モータ17についての第2目標電圧VHT2を算出し、ゲート選択&目標電圧選択18jに出力する。
 第1モータ目標電圧算出18eと第2モータ目標電圧算出18fは同様の処理で目標電圧を算出しており、その処理を以下で説明する。図2に示すように、まず、モータ回転数とモータトルクとのマップM1から、モータ回転数MR,MRとモータトルク指令DT,DTのモータトルクとの交点P1を抽出する。このマップM1には、弱め界磁制御領域A1(斜線で示す領域)とPWM制御領域A2があり、2モータシステム1のシステム電圧(直流高電圧VH)の高低によりその制御領域の範囲が変わる。図2に示す例では、交点P1が弱め界磁制御領域A1内に入っているので、弱め界磁制御となる。さらに、図2に示すように、その交点P1に応じて変わるシステム電圧とシステム損失とのマップM2から、システム損失が最小点となる目標電圧VHを算出する。
 なお、システム損失は、2モータシステム1におけるスイッチング素子等における損失である。システム電圧が高電圧になると、モータ16,17が回転し易くなるが、システム損失が大きくなる。なお、昇圧制御の目標電圧の求める方法については、上記のようにマップを利用した方法を説明したが、他の方法でもよい。
 電圧制御18gでは、図4(e)に示すように、サンプリングタイミング周期PS毎にVHセンササンプリングタイミング要求信号DSをVHセンサデータ更新&2値平均化処理18lに出力し、VHセンササンプリングタイミング要求信号DSに応じてVHセンサデータ更新&2値平均化処理18lから昇圧制御で用いるためにサンプリングされた直流高電圧VH(デジタル値)の平均値VHAが入力される。サンプリングタイミング周期PSは、予め決められた固定値でもよいしあるいは可変値でもよい。サンプリングタイミング周期PSはインバータ制御とは関係なく設定されているので、VHセンササンプリングタイミング要求信号DSはインバータ制御のゲート信号GSとは同期していない。電圧制御18gでは、ゲート選択&目標電圧選択18jからシステムとしての目標電圧VHが入力され、VHセンサデータ更新&2値平均化処理18lからの直流高電圧VH(デジタル値)の平均値VHAを用いて、平滑コンデンサ13の両端電圧(直流高電圧)が目標電圧VHになるための制御を行う。この際、電圧制御18gでは、その制御に必要な目標電流ILを算出し、電流制御18hに出力する。
 電流制御18hでは、電圧制御18gから目標電流ILが入力され、リアクトル12aに流れる電流IL(デジタル値)を用いて、リアクトル12aに流れる電流が目標電流ILになるための制御を行う。制御に用いる電流IL(デジタル値)は、ILセンサ12fによって検出された電流(アナログ値)をモータECU18内のAD変換器18nでAD変換された電流(デジタル値)である。
 ゲート生成18iでは、電圧制御18gでの目標電圧VHになるための制御と電流制御18hでの目標電流ILになるための制御に基づいて、昇圧コンバータ12のスイッチング素子12b,12cの各ゲート信号(例えば、PWM信号)をそれぞれ生成し、昇圧コンバータ12に出力する。
 ゲート選択&目標電圧選択18jには、第1モータ目標電圧算出18eから第1目標電圧VHT1が入力されるとともに、第2モータ目標電圧算出18fから第2目標電圧VHT2が入力される。図3に示すように、第1モータ目標電圧算出18eでは第1モータ回転数MRと第1モータトルク指令DTのモータトルクとの交点に対応したマップM2aから第1モータ16側でシステム損失が最小となる第1目標電圧VHT1を算出しており、第2モータ目標電圧算出18fでは第2モータ回転数MRと第2モータトルク指令DTのモータトルクとの交点に対応するマップM2bから第2モータ17側でシステム損失が最小となる第2目標電圧VHT2を算出している。図3の例からも判るように、第1目標電圧VHT1と第2目標電圧VHT2とは、各モータ16,17についてのモータ回転数とモータトルク指令から別々に算出されているので、通常は異なる電圧となる。そのため、その2つの第1目標電圧VHT1と第2目標電圧VHT2から2モータシステム1としての目標電圧を選択する必要があり、システム効率が最適になるように、図3(a)で示すように第1目標電圧VHT1と第2目標電圧VHT2のうちの最大値(大きいほうの電圧)を2モータシステム1として目標電圧の指令値としている。そこで、ゲート選択&目標電圧選択18jでは、第1目標電圧VHT1と第2目標電圧VHT2が入力される毎に、第1目標電圧VHT1と第2目標電圧VHT2のうちの大きい方の電圧を2モータシステム1の目標電圧VHとして選択する。そして、ゲート選択&目標電圧選択18jでは、その目標電圧VHを電圧制御18gに出力する。さらに、ゲート選択&目標電圧選択18jでは、2モータシステム1の目標電圧VHとして選択されなかった方の目標電圧のモータのゲート信号を選択するためのゲート選択信号GSSをVHセンササンプリングタイミング発生器18kに出力する。ゲート選択信号GSSとしては、例えば、第1モータ16と第2モータ17のいずれかを一方(2モータシステム1の目標電圧VHとして選択されなかった方のモータ)を示す信号とする。
 VHセンササンプリングタイミング発生器18kには、インバータ制御機能の第1モータゲート生成18cからの第1ゲート信号GSと第2モータゲート生成18dからの第2ゲート信号GSが入力されるとともに、ゲート選択&目標電圧選択18jからゲート選択信号GSSが入力される。そして、VHセンササンプリングタイミング発生器18kでは、ゲート選択信号GSSに基づいて、第1ゲート信号GSと第2ゲート信号GSから2モータシステム1の目標電圧VHとして選択されなかった方のモータのゲート信号をVHセンササンプリングタイミングTSの発生に利用するゲート信号GSとして選択する。さらに、VHセンササンプリングタイミング発生器18kでは、その選択したゲート信号GSのONからOFFへの切り替えのタイミング(立ち下がりタイミング)及びOFFからONへの切り替えタイミング(立ち上がりタイミング)をVHセンササンプリングタイミングTS(AD変換起動信号)としてAD変換器18mに出力する。AD変換器18mでは、VHセンササンプリングタイミング発生器18kからVHセンササンプリングタイミングTSが入力される毎に、VHセンサ13aで検出されている直流高電圧(アナログ値)VHをAD変換し、AD変換後の直流高電圧(デジタル値)VHをVHセンサデータ更新&2値平均化処理18lに出力する。なお、第1、第2モータゲート生成18c,18dからのゲート信号としては、3相のU相、V相、W相のいずれのゲート信号でもよい。
 VHセンサデータ更新&2値平均化処理18lでは、AD変換器18mから直流高電圧(デジタル値)VHが入力される毎に、その直流高電圧(デジタル値)VHを時系列で記憶しておく。さらに、VHセンサデータ更新&2値平均化処理18lでは、今回入力された直流高電圧(デジタル値)VHと時系列で記憶している前回入力された直流高電圧(デジタル値)VHとの平均値VHAを算出し、その今回と前回の直流高電圧の平均値VHAを時系列で記憶しておく。ここでは、最新の平均値VHAだけを記憶しておいてもよい。そして、VHセンサデータ更新&2値平均化処理18lでは、電圧制御18gからVHセンササンプリングタイミング要求信号DSが入力される毎に、そのVHセンササンプリングタイミング要求信号DSの直前に算出した直流高電圧の平均値VHAを昇圧制御に用いるVHセンサ値として電圧制御18gに出力する。
 ここで、図4を参照して、上記のような昇圧制御機能における処理より、インバータ制御側でのスイッチングの影響によるモータ電流の脈動によって引き起こされる直流高電圧VHの脈動がある場合でも安定した昇圧制御を行うことができる理由について説明する。なお、図4に示す例は、2モータシステム1の目標電圧VHとして選択されなかった方のモータが第2モータ17の場合である。
 システム損失を抑えるためにインバータ制御におけるキャリア周波数を低くすると、インバータ制御のスイッチングノイズにより、平滑コンデンサの両端電圧(昇圧後の直流高電圧)に脈動成分が重畳される。また、モータの回転数やトルクによってモータの駆動に必要となる目標電圧が変わるが、目標電圧が高くなり、直流高電圧VHがモータ誘起電圧Vemfに対して高くなるほど、その電圧差Vdefが大きくなり、直流高電圧の脈動成分も大きくなる。
 図4(a)には、直流高電圧VHが高い場合の電圧VH及び低い場合の電圧VHとモータ誘起電圧Vemfとの関係を示している。高い直流高電圧VHとモータ誘起電圧Vemfとの電圧差VdefH1,VdefH2と、低い直流高電圧VHとモータ誘起電圧Vemfとの電圧差VdefL1,VdefL2とを比較すると、電圧差Vdefは高い直流高電圧VHのときの方が大きくなる。この電圧差Vdefが大きくなるほど、モータ電流に重畳される脈動成分が大きくなる。特に、2モータシステム1の場合、各モータ16,17の第1目標電圧VHT1と第2目標電圧VHT2のうちの大きいほうの電圧を2モータシステム1の目標電圧VHとして選択しており、この目標電圧VHになるように直流高電圧VHが制御されている。そのため、2モータシステム1の目標電圧VHとして選択されなかった方のモータ側では、直流高電圧VHに対してモータ誘起電圧Vemfがより低くなり、直流高電圧VHとモータ誘起電圧Vemfとの電圧差Vdefがより大きくなる。
 図4(d)には、第2モータ17の目標電流MIと、大きい電圧差Vdefの場合の第2モータ17の実電流MIと、小さい電圧差Vdefの場合の第2モータ17の実電流MIを示している。第2モータ17の実電流MI,MIには、第2インバータ15のスイッチング素子のスイッチングに応じて脈動成分が重畳しており、図4(c)に示すゲート信号GSの立ち上がりタイミングと立ち下がりタイミング(図4(b)に示す第2キャリア信号SCと第2デューティ信号SDとの交点)で脈動成分の増減が切り替わる。この図4(d)から判るように、電圧差Vdefが大きいほど、モータ電流MIに重畳される脈動成分が大きくなる。特に、上記したように、2モータシステム1の場合、2モータシステム1の目標電圧VHとして選択されなかった方のモータ側の電圧差Vdefがより大きくなるので、2モータシステム1の目標電圧VHとして選択されなかった方のモータの実電流MIに重畳される脈動成分がより大きくなる。
 さらに、図4(e)には、大きい電圧差Vdefの場合のモータ電流MIのときの直流高電圧VHを示している。直流高電圧VHは、モータ電流MIの脈動成分に応じて脈動成分が重畳され、図4(c)に示すゲート信号GSの立ち上がりタイミングと立ち下がりタイミングで脈動成分の増減が切り替わる。このように、インバータ側(特に、2モータシステム1の目標電圧VHとして選択されなかった方のモータのインバータ側)のスイッチングの影響によってモータ電流に脈動が発生すると、昇圧後の直流高電圧にも脈動成分が重畳される。なお、2モータシステム1の目標電圧VHとして選択された方のモータのインバータ側のスイッチングも、モータ電流の脈動(ひいては、昇圧後の直流高電圧の脈動)に影響を与えるが、2モータシステム1の目標電圧VHとして選択されなかった方のモータのインバータ側のスイッチングによる影響と比べると非常に小さい。
 つまり、インバータ制御によるスイッチングによってモータ電流MIに重畳される脈動成分(変動分)は、直流高電圧VHとモータ誘起電圧Vemfとの電圧差Vdef及びインバータ制御のキャリア周波数(キャリア信号SC(ゲート信号GS))によって決まる。そのため、電圧差Vdefが大きいときにインバータ周波数が低くなると、モータ電流MIに重畳される脈動成分が大きくなる。特に、その脈動成分は、2モータシステム1の目標電圧VHとして選択されなかった方のモータのインバータ制御のスイッチングの影響を受ける。平滑コンデンサ13の容量が小さい場合、モータ電流MIに重畳される脈動成分が大きくなると、平滑コンデンサ13の平滑能力を超え、平滑コンデンサ13の両端電圧(直流高電圧)VHにも脈動成分が重畳され、昇圧後の直流高電圧VHが大きく変動する。なお、2モータシステム1の低コスト化や小型化を進める上、容量の大きい平滑コンデンサ13の容量を出来る限り小さくすることが求められている。したがって、その要求に応じて平滑コンデンサ13の容量を小さくすると、上記のように、直流高電圧VHに脈動が発生することになる。
 上記したように、インバータ制御によるスイッチングによる脈動成分は、ゲート信号の立ち上がりタイミングと立ち下がりタイミングで脈動成分の増減が切り替わる。したがって、図4(c)、(d)からも判るように、ゲート信号GSの立ち上がりタイミングと立ち下がりタイミングが脈動成分が重畳されているモータ電流MIの山と谷となるので、モータ電流MIの山と谷との中間値はゲート信号GSの連続する立ち上がりタイミングと立ち下がりタイミングの中間タイミングで得られる。したがって、図4(c)、(e)からも判るように、脈動成分が重畳されている直流高電圧VHの山と谷との中間値(すなわち、昇圧制御を安定に行うための直流高電圧の期待値VH)も、ゲート信号GSの連続する立ち上がりタイミングと立ち下がりタイミングの中間タイミングで得られる。図4(e)に示す例からも判るように、ゲート信号GSの連続する立ち上がりタイミングと立ち下がりタイミングでの直流高電圧VHの平均値は、直流高電圧の期待値VHと略一致している。直流高電圧の期待値VHは、直流高電圧VHの山と谷との中間値であり、脈動成分が略除去された直流高電圧である。
 そこで、モータECU18の昇圧制御機能では、VHセンササンプリングタイミング発生器18kにおいて、モータ電流の脈動により大きな影響を与える2モータシステム1の目標電圧VHとして選択されなかった方のモータのゲート信号GSのON/OFFの切り替えタイミング毎にVHセンササンプリングタイミングTSを発生し、VHセンササンプリングタイミングTS毎にAD変換器18mにおいてVHセンサ13aで検出されている直流高電圧(アナログ値)VHをAD変換し、直流高電圧(デジタル値)VHを取得している。
 さらに、図4(e)に示す例からも判るように、VHセンササンプリングタイミング要求信号DS、DS,DSのタイミングでの直流高電圧の期待値VHE1、VHE2,VHE3と、VHセンササンプリングタイミング要求信号DS、DS,DS直前のゲート信号GSの立ち上がりタイミングと立ち下がりタイミングのときの直流高電圧VHC1と直流高電圧VHC2の平均値、直流高電圧VHC3と直流高電圧VHC4の平均値、直流高電圧VHC5と直流高電圧VHC6の平均値とを比較すると、その差は非常に小さい。したがって、VHセンササンプリングタイミング要求信号DS直前のゲート信号GSの連続する立ち上がりタイミングと立ち下がりタイミングのときの直流高電圧VH(VHセンサ値)の平均値VHAを取得することにより、VHセンササンプリングタイミング要求信号DSのタイミングのときの直流高電圧の期待値VHに非常に近い値を得ることができる。
 そこで、モータECU18の昇圧制御機能では、VHセンサデータ更新&2値平均化処理18lにおいて、電圧制御18gからVHセンササンプリングタイミング要求信号DSが入力される毎に、VHセンササンプリングタイミング要求信号DS直前にAD変換器18mから入力されたゲート信号GSのON/OFF切り替えタイミングの直流高電圧(デジタル値)VHと前回入力されたゲート信号GSのON/OFF切り替えタイミングの直流高電圧(デジタル値)VHの平均値VHAを算出し、電圧制御18gに出力している。電圧制御18gでは、このVHセンササンプリングタイミング要求信号DS直前のゲート信号GSの連続するON/OFF切り替えタイミングの直流高電圧(デジタル値)VHの平均値VHAを用いて昇圧制御を行うことにより、VHセンササンプリングタイミング要求信号DSのときの直流高電圧の期待値VHに近い直流高電圧の平均値VHAを用いて制御を行うことができる。
 この2モータシステム1(特に、モータECU18での昇圧制御)によれば、2モータシステム1の目標電圧VHとして選択されなかった方のモータのインバータ制御のゲート信号に基づいて昇圧制御に用いる直流高電圧VH(平均値VHA)をサンプリングすることにより(インバータ制御と昇圧制御とを連携させている)、直流高電圧VHに脈動成分が重畳されている場合でも、VHセンササンプリングタイミング要求信号DSのときの直流高電圧の期待値VHに近い直流高電圧VH(平均値VHA)をサンプリングでき、VHセンササンプリングタイミング要求信号DSのときの直流高電圧の期待値VHと昇圧制御において実際に用いるVHセンサ値との差が小さくなり、安定した昇圧制御を行うことができる。これによって、平滑コンデンサ13の容量を限界まで低減することができ、2モータシステム1の低コスト及び小型化を図ることができる。
 特に、第1の実施の形態に係る2モータシステム1では、2モータシステム1の目標電圧VHとして選択されなかった方のモータのインバータ制御のゲート信号を選択し、その選択したゲート信号の連続する立ち上がりタイミングと立ち下がりタイミング(ON/OFF切り替えタイミング)での直流高電圧VHの平均値VHAをサンプリングしておき、VHセンササンプリングタイミング要求信号DS直前にサンプリングされたゲート信号GSの連続する立ち上がりタイミングと立ち下がりタイミングでの直流高電圧VHの平均値VHAを昇圧制御に用いることにより、VHセンササンプリングタイミング要求信号DSのときの直流高電圧の期待値VHに近い直流高電圧VHのセンサ値を用いて昇圧制御ができ、安定した昇圧制御を行うことができる。
 次に、図5~図7を参照して、第2の実施の形態に係る2モータシステム2について説明する。図5は、第2の実施の形態に係る2モータシステムの構成を示すブロック図である。図6は、AD変換時間とゲート信号の切り替え時間との関係図である。図7は、第2の実施の形態に係る直流高電圧のサンプリングタイミングの説明図であり、(a)が直流高電圧であり、(b)がインバータ制御でのゲート信号であり、(c)がゲート信号の切り替えタイミングであり、(d)がAD変換器へのAD変換起動信号であり、(e)が平均化禁止信号であり、(f)がAD変換器からのAD変換終了信号であり、(g)がAD変換器によるAD変換値であり、(h)が2値平均化値である。
 2モータシステム2は、バッテリ10、フィルタコンデンサ11、昇圧コンバータ12、平滑コンデンサ13、第1インバータ14、第2インバータ15、第1モータ16、第2モータ17及びモータECU28を備えている。2モータシステム2は、第1の実施の形態に係る2モータシステム1と比較すると、モータECU28での制御が異なる。モータECU28では、AD変換時間がゲート信号GSのON/OFFの切り替え時間よりも短い場合、AD変換を中止し、昇圧制御では直流高電圧の平均値VHAとして前回値を用いる。ここでは、モータECU28についてのみ詳細に説明する。
 ここで、図6を参照して、AD変換時間とゲート信号GSのON/OFFの切り替え時間(ON時間、OFF時間)の関係について説明する。図6には、ゲート信号GS、AD変換器へのAD変換起動信号SS(VHセンササンプリングタイミングTS)、AD変換器からのAD変換終了信号ESの一例を示している。AD変換時間CHはAD変換器によって決まっており、一定の時間である。ゲート信号GSの切り替え時間SH,SHがある程度長い場合、ゲート信号GSのON/OFF切り替えタイミングでAD変換起動信号SS,SSが出力されても、切り替え時間SH,SH内にAD変換が終了し、ゲート信号GSの次のON/OFF切り替えタイミングになるまでにAD変換器からAD変換終了信号ES,ESが出力される。しかし、ゲート信号GSの切り替え時間SHが短くなると、ゲート信号GSのON/OFF切り替えタイミングでAD変換起動信号SSが出力されても、ゲート信号GSの次のON/OFF切り替えタイミングになるまでにAD変換が終了せず、AD変換器からAD変換終了信号ESが出力され前にAD変換起動信号SSが出力されることになる。このような場合、AD変換器では、AD変換起動信号SSに対するAD変換ができない。そこで、モータECU28は、このような場合に対応できる追加機能を有している。
 モータECU28は、マイクロコンピュータや各種メモリ等からなる電子制御ユニットであり、モータ制御を行う。特に、モータECU28は、インバータ14,15に対する制御を行うインバータ制御機能(第1モータ制御28a、第2モータ制御28b、第1モータゲート生成28c、第2モータゲート生成28d)と昇圧コンバータ12に対する制御を行う昇圧制御機能(第1モータ目標電圧算出28e、第2モータ目標電圧算出28f、電圧制御28g、電流制御28h、ゲート生成28i、ゲート選択&目標電圧選択28j、VHセンササンプリングタイミング発生器&切替時判定器28k、VHセンサデータ更新&2値平均化処理28l)を有している。インバータ制御機能と昇圧制御機能とを同じマイコンで構成してもよいし、別々のマイコンで構成してもよい。なお、第2の実施の形態では、第1モータ目標電圧算出28e及び第2モータ目標電圧算出28fが請求の範囲に記載する目標電圧設定手段に相当し、ゲート選択&目標電圧選択28jが請求の範囲に記載する選択手段に相当し、VHセンササンプリングタイミング発生器&切替時判定器28kが請求の範囲に記載するサンプリングタイミング発生手段に相当し、電圧制御28gが請求の範囲に記載する制御手段に相当し、VHセンサ13a、AD変換器28m及びVHセンサデータ更新&2値平均化処理28lが請求の範囲に記載するサンプリング手段に相当し、AD変換器28mが請求の範囲に記載するAD変換手段に相当する。
 なお、第1モータ制御28a、第2モータ制御28b、第1モータゲート生成28c、第2モータゲート生成28d、第1モータ目標電圧算出28e、第2モータ目標電圧算出28f、電圧制御28g、電流制御28h、ゲート生成28i、ゲート選択&目標電圧選択28j、AD変換器28nについては、第1の実施の形態に係る第1モータ制御18a、第2モータ制御18b、第1モータゲート生成18c、第2モータゲート生成18d、第1モータ目標電圧算出18e、第2モータ目標電圧算出18f、電圧制御18g、電流制御18h、ゲート生成18i、ゲート選択&目標電圧選択18j、AD変換器18nと同様の処理を行うので、説明を省略する。
 VHセンササンプリングタイミング発生器&切替時判定器28kには、インバータ制御機能の第1モータゲート生成28cからの第1ゲート信号GSと第2モータゲート生成28dからの第2ゲート信号GSが入力され、AD変換器28mからAD変換終了信号ESが入力され、ゲート選択&目標電圧選択28jからゲート選択信号GSSが入力される。そして、VHセンササンプリングタイミング発生器&切替時判定器28kでは、ゲート選択信号GSSに基づいて、第1ゲート信号GSと第2ゲート信号GSから2モータシステム2の目標電圧VHとして選択されなかった方のモータのゲート信号をVHセンササンプリングタイミングTSの発生に利用するゲート信号GSとして選択する。そして、VHセンササンプリングタイミング発生器&切替時判定器28kでは、VHセンササンプリングタイミングTS(AD変換起動信号)を出力する毎に、そのVHセンササンプリングタイミングTS(AD変換起動信号)に対するAD変換終了信号ESとゲート信号GSの次のON/OFFの切り替えタイミングとに基づいて、AD変換終了信号ESの後にゲート信号GSの次のON/OFFの切り替えタイミングになった場合にはその次のON/OFFの切り替えタイミングに応じてVHセンササンプリングタイミングTS(AD変換起動信号)をAD変換器28mに出力し、AD変換終了信号ESの前にゲート信号GSの次のON/OFFの切り替えタイミングになった場合にはその次のON/OFFの切り替えタイミングに対するVHセンササンプリングタイミングTS(AD変換起動信号)をAD変換器28mに出力しない(AD変換中止)とともに平均化禁止信号RSをVHセンサデータ更新&2値平均化処理28lに出力する。平均化禁止信号RSのONタイミングはAD変換中止後のゲート信号GSの次の切り替えタイミングであり、平均化禁止信号RSのOFFタイミングはゲート信号GSのその次の切り替えタイミングである。AD変換器28mでは、VHセンササンプリングタイミング発生器&切替時判定器28kからVHセンササンプリングタイミングTSが入力される毎に、VHセンサ13aで検出されている直流高電圧(アナログ値)VHをAD変換し、AD変換後の直流高電圧(デジタル値)VHをVHセンサデータ更新&2値平均化処理28lに出力する。AD変換器28mでは、AD変換が終了すると、AD変換終了信号ESをVHセンササンプリングタイミング発生器&切替時判定器28kに出力する。特に、AD変換終了信号ESの前にゲート信号GSの次のON/OFFの切り替えタイミングになった場合(AD変換時間よりゲート信号GSの切り替え時間が短い場合)、AD変換器28mでは、AD変換を中止する。
 VHセンサデータ更新&2値平均化処理28lでは、AD変換器28mから直流高電圧(デジタル値)VHが入力される毎に、その直流高電圧(デジタル値)VHを時系列で記憶しておく。さらに、VHセンサデータ更新&2値平均化処理28lでは、今回入力された直流高電圧(デジタル値)VHと時系列で記憶している前回入力された直流高電圧(デジタル値)VHとの平均値VHAを算出し、その今回と前回の直流高電圧の平均値VHAを時系列で記憶しておく。特に、VHセンササンプリングタイミング発生器&切替時判定器28kから平均化禁止信号RSが入力されている場合、VHセンサデータ更新&2値平均化処理28lでは、直流高電圧の平均値VHAの算出を禁止する。この場合、前回算出されている直流高電圧の平均値VHAが最新値として保持されている。そして、VHセンサデータ更新&2値平均化処理28lでは、電圧制御28gからVHセンササンプリングタイミング要求信号DSが入力される毎に、そのVHセンササンプリングタイミング要求信号DSの直前に算出した直流高電圧の平均値VHA(保持している最新の平均値VHA)を昇圧制御に用いるVHセンサ値として電圧制御28gに出力する。したがって、平均化禁止信号RSが入力されている場合、前回算出した直流高電圧の平均値VHAを出力することになる。
 ここで、図7を参照して、上記のような昇圧制御機能において、目標電圧VHとして選択されなかった方のモータのゲート信号GSの切り替え時間がAD変換時間より長い場合とゲート信号GSの切り替え時間がAD変換時間より短い場合のゲート信号GSの連続するON/OFF切り替えタイミングの直流高電圧VHの平均値VHAの算出過程について説明する。図7(a)には直流高電圧VHを示しており、図7(b)にはゲート信号GSを示しており、図7(c)にはゲート信号GSのON/OFFの切り替えタイミングSTを示しており、図7(a)には切り替えタイミングST,ST,ST,・・・のときの直流高電圧値としてB値,C値,D値,・・・(山と谷の各値)を示している。また、図7(d)には、切り替えタイミングST,ST,ST,・・・に応じてVHセンササンプリングタイミング発生器&切替時判定器28kから出力されるAD変換起動信号SS,SS,SS,・・・(VHセンササンプリングタイミングTSに相当)を示している。さらに、図7(f)には、AD変換起動信号SS,SS,SS,・・・に応じて行われるAD変換が終了したときにAD変換器28mから出力されるAD変換終了信号ES,ES,ES,・・・を示している。また、図7(g)には、AD変換器28mから出力されてVHセンサデータ更新&2値平均化処理28lで保持されるAD変換後の直流電圧値ADCであるA値,B値,C値,D値,・・・(直流高電圧VAの山と谷の各値)を示している。さらに、図7(h)には、VHセンサデータ更新&2値平均化処理28lで算出され、保持される直流高電圧値の平均値VHAとして(A+B)/2,(B+C)/2,・・・を示している。
 ゲート信号GSの切り替え時間がAD変換時間より長い場合、例えば、ゲート信号GSの切り替えタイミングST,STのときで説明する。VHセンササンプリングタイミング発生器&切替時判定器28kでは切り替えタイミングSTに応じてAD変換起動信号SSを出力し、AD変換器28mではAD変換を開始し、AD変換が終了すると直流高電圧(デジタル値)としてB値をVHセンサデータ更新&2値平均化処理28lに出力するとともにAD変換終了信号ESをVHセンササンプリングタイミング発生器&切替時判定器28kに出力する。この場合、VHセンサデータ更新&2値平均化処理28lでは、B値を保持するとともに、前回保持しているA値と今回のB値を用いて平均値(A+B)/2を算出し、その平均値(A+B)/2を保持する。次に、VHセンササンプリングタイミング発生器&切替時判定器28kではAD変換終了信号ESの後に切り替えタイミングSTがきたので、その切り替えタイミングSTに応じてAD変換起動信号SSを出力し、AD変換器28mではAD変換を開始し、AD変換が終了すると直流高電圧(デジタル値)としてC値をVHセンサデータ更新&2値平均化処理28lに出力するとともにAD変換終了信号ESをVHセンササンプリングタイミング発生器&切替時判定器28kに出力する。この場合、VHセンサデータ更新&2値平均化処理28lでは、C値を保持するとともに、前回保持しているB値と今回のC値を用いて平均値(B+C)/2を算出し、その平均値(B+C)/2を保持する。この後に、電圧制御28gからVHセンササンプリングタイミング要求信号DSが入力されると、VHセンサデータ更新&2値平均化処理28lでは、平均値(B+C)/2を電圧制御28gに出力する。
 ゲート信号GSの切り替え時間がAD変換時間より短い場合、例えば、ゲート信号GSの切り替えタイミングST,STのときで説明する。VHセンササンプリングタイミング発生器&切替時判定器28kでは切り替えタイミングSTに応じてAD変換起動信号SSを出力し、AD変換器28mではAD変換を開始し、AD変換が終了すると直流高電圧(デジタル値)としてF値をVHセンサデータ更新&2値平均化処理28lに出力するとともにAD変換終了信号ESをVHセンササンプリングタイミング発生器&切替時判定器28kに出力する。この場合、VHセンサデータ更新&2値平均化処理28lでは、F値を保持するとともに、前回保持しているE値と今回のF値を用いて平均値(E+F)/2を算出し、その平均値(E+F)/2を保持する。次に、VHセンササンプリングタイミング発生器&切替時判定器28kでは、AD変換終了信号ESの前に切り替えタイミングSTがきたので、その切り替えタイミングSTに応じたAD変換起動信号を出力しない。したがって、AD変換器28mでは、切り替えタイミングSTに応じたAD変換が行われない。VHセンサデータ更新&2値平均化処理28lでは、最新の直流高電圧としてF値を保持し続けるとともに、最新の平均値として(E+F)/2を保持し続ける。この後に、電圧制御28gからVHセンササンプリングタイミング要求信号DSが入力されると、VHセンサデータ更新&2値平均化処理28lでは、平均値(E+F)/2を電圧制御28gに出力する。やがて、次の切り替えタイミングSTがくると、VHセンササンプリングタイミング発生器&切替時判定器28kでは、平均化禁止信号RSをその次の切り替えタイミングSTまでの間出力する。VHセンサデータ更新&2値平均化処理28lでは、平均化禁止信号RSに応じて平均値の算出を禁止し、前回の平均値(E+F)/2を保持し続ける。また、VHセンササンプリングタイミング発生器&切替時判定器28kでは、切り替えタイミングSTに応じてAD変換起動信号SSを出力し、AD変換器28mではAD変換を開始し、AD変換が終了すると直流高電圧(デジタル値)としてH値をVHセンサデータ更新&2値平均化処理28lに出力するとともにAD変換終了信号ESをVHセンササンプリングタイミング発生器&切替時判定器28kに出力する。この場合、VHセンサデータ更新&2値平均化処理28lでは、H値を保持するが、平均値の算出を禁止している。この後に、電圧制御28gからVHセンササンプリングタイミング要求信号DSが入力されると、VHセンサデータ更新&2値平均化処理28lでは、平均値(E+F)/2を電圧制御28gに出力する。この平均値(E+F)/2は、前回値であるが、直流高電圧VHの山と谷の中間値なので、直流高電圧の期待値VHに近い値である。
 この2モータシステム2(特に、モータECU28での昇圧制御)によれば、第1の実施の形態に係る2モータシステム1と同様の効果を有する。特に、第2の実施の形態に係る2モータシステム2では、AD変換時間がゲート信号GSの切り替え時間よりも短い場合でも、AD変換を中止するとともに直流高電圧VHの平均値VHAの算出も禁止し、昇圧制御には直流高電圧VHの平均値VHAの前回値を用いる。この平均値VHAの前回値も直流高電圧の期待値VHに近い電圧であるので、安定した電圧変換制御を行うことができる。
 次に、図8及び図9を参照して、第3の実施の形態に係る2モータシステム3について説明する。図8は、第3の実施の形態に係る2モータシステムの構成を示すブロック図である。図9は、第3の実施の形態に係る直流高電圧のサンプリングタイミングの説明図であり、(a)が直流高電圧であり、(b)がインバータ制御でのゲート信号であり、(c)がゲート信号の切り替えタイミングであり、(d)がAD変換器へのAD変換起動信号であり、(e)がAD変換器からのAD変換終了信号であり、(f)がAD変換器によるAD変換値であり、(g)が2値平均化値である。
 2モータシステム3は、バッテリ10、フィルタコンデンサ11、昇圧コンバータ12、平滑コンデンサ13、第1インバータ14、第2インバータ15、第1モータ16、第2モータ17及びモータECU38を備えている。2モータシステム3は、第1の実施の形態に係る2モータシステム1と比較すると、モータECU38での制御だけが異なる。モータECU38では、AD変換時間がゲート信号GSのON/OFFの切り替え時間よりも短い場合、AD変換終了直後にAD変換を直ちに開始する。ここでは、モータECU38についてのみ詳細に説明する。
 モータECU38は、マイクロコンピュータや各種メモリ等からなる電子制御ユニットであり、モータ制御を行う。特に、モータECU38は、インバータ14,15に対する制御を行うインバータ制御機能(第1モータ制御38a、第2モータ制御38b、第1モータゲート生成38c、第2モータゲート生成38d)と昇圧コンバータ12に対する制御を行う昇圧制御機能(第1モータ目標電圧算出38e、第2モータ目標電圧算出38f、電圧制御38g、電流制御38h、ゲート生成38i、ゲート選択&目標電圧選択38j、VHセンササンプリングタイミング発生器&切替時判定器38k、VHセンサデータ更新&2値平均化処理38l)を有している。インバータ制御機能と昇圧制御機能とを同じマイコンで構成してもよいし、別々のマイコンで構成してもよい。なお、第3の実施の形態では、第1モータ目標電圧算出38e及び第2モータ目標電圧算出38fが請求の範囲に記載する目標電圧設定手段に相当し、ゲート選択&目標電圧選択38jが請求の範囲に記載する選択手段に相当し、VHセンササンプリングタイミング発生器&切替時判定器38kが請求の範囲に記載するサンプリングタイミング発生手段に相当し、電圧制御38gが請求の範囲に記載する制御手段に相当し、VHセンサ13a、AD変換器38m及びVHセンサデータ更新&2値平均化処理38lが請求の範囲に記載するサンプリング手段に相当し、AD変換器38mが請求の範囲に記載するAD変換手段に相当する。
 なお、第1モータ制御38a、第2モータ制御38b、第1モータゲート生成38c、第2モータゲート生成38d、第1モータ目標電圧算出38e、第2モータ目標電圧算出38f、電圧制御38g、電流制御38h、ゲート生成38i、ゲート選択&目標電圧選択38j、VHセンサデータ更新&2値平均化処理38l、AD変換器38nについては、第1の実施の形態に係る第1モータ制御18a、第2モータ制御18b、第1モータゲート生成18c、第2モータゲート生成18d、第1モータ目標電圧算出18e、第2モータ目標電圧算出18f、電圧制御18g、電流制御18h、ゲート生成18i、ゲート選択&目標電圧選択18j、VHセンサデータ更新&2値平均化処理18l、AD変換器18nと同様の処理を行うので、説明を省略する。
 VHセンササンプリングタイミング発生器&切替時判定器38kには、インバータ制御機能の第1モータゲート生成38cからの第1ゲート信号GSと第2モータゲート生成38dからの第2ゲート信号GSが入力され、AD変換器38mからAD変換終了信号ESが入力され、ゲート選択&目標電圧選択38jからゲート選択信号GSSが入力される。そして、VHセンササンプリングタイミング発生器&切替時判定器38kでは、ゲート選択信号GSSに基づいて、第1ゲート信号GSと第2ゲート信号GSから2モータシステム2の目標電圧VHとして選択されなかった方のモータのゲート信号をVHセンササンプリングタイミングTSの発生に利用するゲート信号GSとして選択する。VHセンササンプリングタイミング発生器&切替時判定器38kでは、VHセンササンプリングタイミングTS(AD変換起動信号)を出力する毎に、そのVHセンササンプリングタイミングTS(AD変換起動信号)に対するAD変換終了信号ESとゲート信号GSの次のON/OFFの切り替えタイミングとに基づいて、AD変換終了信号ESの後にゲート信号GSの次のON/OFFの切り替えタイミングになった場合にはその次のON/OFFの切り替えタイミングに応じてVHセンササンプリングタイミングTS(AD変換起動信号)をAD変換器38mに出力し、AD変換終了信号ESの前にゲート信号GSの次のON/OFFの切り替えタイミングになった場合にはAD変換終了信号ESに応じてVHセンササンプリングタイミングTS(AD変換起動信号)をAD変換器38mに出力する。AD変換器38mでは、VHセンササンプリングタイミング発生器&切替時判定器38kからVHセンササンプリングタイミングTSが入力される毎に、VHセンサ13aで検出されている直流高電圧(アナログ値)VHをAD変換し、AD変換後の直流高電圧(デジタル値)VHをVHセンサデータ更新&2値平均化処理38lに出力する。AD変換器38mでは、AD変換が終了すると、AD変換終了信号ESをVHセンササンプリングタイミング発生器&切替時判定器38kに出力する。特に、AD変換終了信号ESの前にゲート信号GSの次のON/OFFの切り替えタイミングになった場合(AD変換時間よりゲート信号GSの切り替え時間が短い場合)、AD変換器38mでは、AD変換終了直後にAD変換を開始する。
 ここで、図9を参照して、上記のような昇圧制御機能において、目標電圧VHとして選択されなかった方のモータのゲート信号GSの切り替え時間がAD変換時間より長い場合とゲート信号GSの切り替え時間がAD変換時間より短い場合のゲート信号GSの連続するON/OFF切り替えタイミングの直流高電圧VHの平均値VHAの算出過程について説明する。図9(a)には直流高電圧VHを示しており、図9(b)にはゲート信号GSを示しており、図9(c)にはゲート信号GSのON/OFFの切り替えタイミングSTを示しており、図9(a)には切り替えタイミングST,ST,ST,・・・のときの直流高電圧値としてB値,C値,D値,・・・を示している。また、図9(d)には、切り替えタイミングST,ST,ST,・・・に応じてVHセンササンプリングタイミング発生器&切替時判定器38kから出力されるAD変換起動信号SS,SS,SS,・・・を示している。さらに、図9(e)には、AD変換起動信号SS,SS,SS,・・・に応じて行われるAD変換が終了したときにAD変換器38mから出力されるAD変換終了信号ES,ES,ES,・・・を示している。また、図9(f)には、AD変換器38mから出力されてVHセンサデータ更新&2値平均化処理38lで保持されるAD変換後の直流電圧値ADCであるA値,B値,C値,D値,・・・を示している。さらに、図9(g)には、VHセンサデータ更新&2値平均化処理38lで算出され、保持される直流高電圧値の平均値VHAとして(A+B)/2,(B+C)/2,・・・を示している。なお、ゲート信号GSの切り替え時間がAD変換時間より長い場合については、第2の実施の形態での説明と同様なので、説明を省略する。
 ゲート信号GSの切り替え時間がAD変換時間より短い場合、例えば、ゲート信号GSの切り替えタイミングST,STのときで説明する。VHセンササンプリングタイミング発生器&切替時判定器38kでは切り替えタイミングSTに応じてAD変換起動信号SSを出力し、AD変換器38mではAD変換を開始し、AD変換が終了すると直流高電圧(デジタル値)としてF値をVHセンサデータ更新&2値平均化処理38lに出力するとともにAD変換終了信号ESをVHセンササンプリングタイミング発生器&切替時判定器38kに出力する。この場合、VHセンサデータ更新&2値平均化処理38lでは、F値を保持するとともに、前回保持しているE値と今回のF値を用いて平均値(E+F)/2を算出し、その平均値(E+F)/2を保持する。次に、VHセンササンプリングタイミング発生器&切替時判定器38kでは、AD変換終了信号ESの前に切り替えタイミングSTがきたので、その切り替えタイミングSTに応じたAD変換起動信号の出力を一時待機し、AD変換終了信号ESが入力されるとAD変換起動信号SSを出力する。AD変換器38mでは、AD変換起動信号SSに応じてAD変換を開始し(したがって、AD変換終了直後にAD変換を開始することになる)、AD変換が終了すると直流高電圧(デジタル値)としてG’値をVHセンサデータ更新&2値平均化処理38lに出力するとともにAD変換終了信号ESをVHセンササンプリングタイミング発生器&切替時判定器38kに出力する。このG’値は、直流高電圧VHにおけるゲート信号GSの切り替えタイミングSTのときのG値から少し小さくなるが近い値である。この場合、VHセンサデータ更新&2値平均化処理38lでは、G’値を保持するとともに、前回保持しているF値と今回のG’値を用いて平均値(F+G’)/2を算出し、その平均値(F+G’)/2を保持する。この後に、電圧制御38gからVHセンササンプリングタイミング要求信号DSが入力されると、VHセンサデータ更新&2値平均化処理38lでは、平均値(F+G’)/2を電圧制御38gに出力する。この平均値(F+G’)/2は、G’値が直流高電圧VHの山のときのG値から少し小さいが、直流高電圧の谷のときのF値との平均値なでので、直流高電圧値の期待値に近い値である。
 この2モータシステム3(特に、モータECU38での昇圧制御)によれば、第1の実施の形態に係る2モータシステム1と同様の効果を有する。特に、第3の実施の形態に係る2モータシステム3では、AD変換時間がゲート信号GSの切り替え時間よりも短い場合でも、AD変換終了直後にAD変換を行い、その直後のAD変換による直流高電圧VHを用いて平均値VHAを算出し、昇圧制御にはその平均値VHAを用いる。このAD変換直後のAD変換による直流高電圧VHを用いた平均値VHAも直流高電圧の期待値に近い電圧であるので、安定した電圧変換制御を行うことができる。
 以上、本発明に係る実施の形態について説明したが、本発明は上記実施の形態に限定されることなく様々な形態で実施される。
 例えば、本実施の形態では2モータシステムの車両に適用したが、2モータシステムの装置や移動体等の様々なものに適用できる。また、3個以上のモータを備えるモータシステムにも適用できる。また、複数個のモータとしては、モータジェネレータやジェネレータも適用できる。
 また、本実施の形態では昇圧コンバータに対する昇圧制御に適用したが、降圧コンバータに対する降圧制御、昇降圧コンバータに対する昇降圧制御にも適用可能である。
 また、本実施の形態では昇圧制御に用いる直流高電圧のサンプリングのタイミングについてインバータ制御のゲート信号を利用した3つの設定方法を示したが、インバータ制御のゲート信号を利用した他の設定方法でもよい。
 また、本実施の形態では2個のモータの各目標電圧から大きい方をシステムの目標電圧として選択し、目標電圧として選択されなかった方のモータのゲート信号を利用してサンプリングタイミングを設定する構成としたが、3個以上のモータを備えるシステムの場合、3個以上のモータの各目標電圧からシステムの目標電圧を選択し、目標電圧として選択されなかった複数のモータのゲート信号の中からモータ電流の脈動に最も影響を与えるモータのゲート信号を選択し、その選択したゲート信号を利用してサンプリングタイミングを設定するようにする。
 本発明は、複数個のモータを制御するモータ制御回路と電源との間で電源の直流電圧をモータの駆動に必要となる入力直流電圧に変換する電圧変換回路に対する電圧変換制御を行うモータ用電圧変換制御装置であって、電圧変換回路で変換する入力直流電圧の目標電圧として選択されなかったモータのゲート信号を考慮して電圧変換制御に用いる入力直流電圧をサンプリングすることにより、モータの入力直流電圧に脈動がある場合でも、サンプリングタイミング要求のときの入力直流電圧の期待値に近い入力直流電圧をサンプリングできるので、入力直流電圧の期待値と電圧変換制御において実際に用いるサンプリング値との差が小さくなり、安定した電圧変換制御を行うことができる。
 1,2,3…2モータシステム、10…バッテリ、11…フィルタコンデンサ、12…昇圧コンバータ、12a…リアクトル、12b,12c…スイッチング素子、12d,12e…還流ダイオード、12f…ILセンサ、13…平滑コンデンサ、13a…VHセンサ、14…第1インバータ、15…第2インバータ、16…第1モータ、17…第2モータ、18,28,38…モータECU、18a,28a,38a…第1モータ制御、18b,28b,38b…第2モータ制御、18c,28c,38c…第1モータゲート生成、18d,28d,38d…第2モータゲート生成、18e,28e,38e…第1モータ目標電圧算出、18f,28f,38f…第2モータ目標電圧算出、18g,28g,38g…電圧制御、18h,28h,38h…電流制御、18i,28i,38i…ゲート生成、18j,28j,38j…ゲート選択&目標電圧選択、18k…VHセンササンプリングタイミング発生器、28k,38k…VHセンササンプリングタイミング発生器&切替時判定器、18l,28l,38l…VHセンサデータ更新&2値平均化処理、18m,18n,28m,28n,38m,38n…AD変換器、19…走行制御ECU。

Claims (5)

  1.  複数個のモータを制御するモータ制御回路と電源との間で前記電源の直流電圧を前記モータの駆動に必要となる入力直流電圧に変換する電圧変換回路に対する電圧変換制御を行うモータ用電圧変換制御装置であって、
     前記モータ制御回路と前記電圧変換回路との間に設けられたコンデンサの両端電圧を検出し、前記電圧変換回路で変換された入力直流電圧をサンプリングするサンプリング手段と、
     前記モータ毎に入力直流電圧の目標電圧をそれぞれ設定する目標電圧設定手段と、
     前記目標電圧設定手段で設定した複数の目標電圧の中から前記電圧変換回路で変換する目標電圧を選択する選択手段と、
     前記選択手段で選択されなかった目標電圧のモータのうちのいずれか1個のモータに対するモータ制御のゲート信号に基づいて前記電圧変換回路で変換された入力直流電圧をサンプリングするサンプリングタイミングを発生するサンプリングタイミング発生手段と、
     電圧変換制御のサンプリングタイミング要求毎に前記サンプリングタイミング発生手段で発生したサンプリングタイミングに応じて前記サンプリング手段でサンプリングされた入力直流電圧を用いて電圧変換制御を行う制御手段と、
     を備えることを特徴とするモータ用電圧変換制御装置。
  2.  前記サンプリングタイミング発生手段は、前記ゲート信号のONとOFFとの切り替えタイミングに応じてサンプリングタイミングを発生し、
     前記サンプリング手段は、前記サンプリングタイミング発生手段でサンプリングタイミングを発生する毎に、今回のサンプリングタイミングに応じて前記電圧変換回路で変換された入力直流電圧と前回のサンプリングタイミングに応じて前記電圧変換回路で変換された入力直流電圧との平均値を算出し、
     前記制御手段は、電圧変換制御のサンプリングタイミング要求毎に、該サンプリングタイミング要求直前に前記サンプリング手段で算出されている入力直流電圧の平均値を用いて電圧変換制御を行うことを特徴とする請求項1に記載のモータ用電圧変換制御装置。
  3.  前記サンプリングタイミング発生手段でサンプリングタイミングを発生する毎に、前記電圧変換回路で変換された入力直流電圧をアナログ値からデジタル値に変換するAD変換手段を備え、
     前記AD変換手段でのAD変換時間よりも前記ゲート信号のONとOFFとの切り替え時間が短い場合、前記サンプリングタイミング発生手段はサンプリングタイミングの発生を中止し、前記AD変換手段はAD変換を行わないことを特徴とする請求項2に記載のモータ用電圧変換制御装置。
  4.  前記サンプリングタイミング発生手段でサンプリングタイミングを発生する毎に、前記電圧変換回路で変換された入力直流電圧をアナログ値からデジタル値に変換するAD変換手段を備え、
     前記AD変換手段でのAD変換時間よりも前記ゲート信号のONとOFFとの切り替え時間が短い場合、前記サンプリングタイミング発生手段は前記AD変換手段でのAD変換終了直後にサンプリングタイミングを発生し、前記AD変換手段はAD変換終了直後にAD変換を開始することを特徴とする請求項2に記載のモータ用電圧変換制御装置。
  5.  前記複数個のモータは、2個のモータであり、
     前記目標電圧設定手段では、前記2個のモータの目標電圧をそれぞれ設定し、
     前記選択手段では、前記目標電圧設定手段で設定した2個のモータの目標電圧の中から前記電圧変換回路で変換する目標電圧を選択し、
     前記サンプリングタイミング発生手段では、前記選択手段で選択されなかった目標電圧のモータのゲート信号に基づいて前記電圧変換回路で変換された入力直流電圧をサンプリングするサンプリングタイミングを発生することを特徴とする請求項1~請求項4のいずれか1項に記載のモータ用電圧変換制御装置。
PCT/JP2011/059551 2011-04-18 2011-04-18 モータ用電圧変換制御装置 WO2012144002A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/059551 WO2012144002A1 (ja) 2011-04-18 2011-04-18 モータ用電圧変換制御装置
CN201180002611.4A CN102959852B (zh) 2011-04-18 2011-04-18 电机用电压转换控制装置
DE112011105157.3T DE112011105157B4 (de) 2011-04-18 2011-04-18 Motorspannungswandlungssteuervorrichtung
US13/380,166 US8975846B2 (en) 2011-04-18 2011-04-18 Motor voltage conversion control device
JP2011543024A JP5299519B2 (ja) 2011-04-18 2011-04-18 モータ用電圧変換制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059551 WO2012144002A1 (ja) 2011-04-18 2011-04-18 モータ用電圧変換制御装置

Publications (1)

Publication Number Publication Date
WO2012144002A1 true WO2012144002A1 (ja) 2012-10-26

Family

ID=47041154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059551 WO2012144002A1 (ja) 2011-04-18 2011-04-18 モータ用電圧変換制御装置

Country Status (5)

Country Link
US (1) US8975846B2 (ja)
JP (1) JP5299519B2 (ja)
CN (1) CN102959852B (ja)
DE (1) DE112011105157B4 (ja)
WO (1) WO2012144002A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9611835B1 (en) 2013-01-11 2017-04-04 Google Inc. Motor control topology for airborne power generation and systems using same
CN103795299A (zh) * 2013-08-09 2014-05-14 科蒂斯技术(苏州)有限公司 用于电动车的多路软启动系统
US9294016B2 (en) 2013-12-19 2016-03-22 Google Inc. Control methods and systems for motors and generators operating in a stacked configuration
JP6007939B2 (ja) * 2014-04-23 2016-10-19 株式会社デンソー スイッチング制御装置
JP6387852B2 (ja) * 2015-02-16 2018-09-12 株式会社デンソー スイッチング素子の駆動装置
CN104993745A (zh) * 2015-07-31 2015-10-21 苏州路之遥科技股份有限公司 一种自测定绕组内阻电机控制器
CN112114539B (zh) * 2020-09-25 2023-11-28 成都易慧家科技有限公司 一种双电机驱动推拉门窗的控制系统及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015254A1 (fr) * 2001-08-02 2003-02-20 Toyota Jidosha Kabushiki Kaisha Appareil de commande d'entrainement de moteur
JP2007236110A (ja) * 2006-03-01 2007-09-13 Toyota Motor Corp モータ駆動装置
JP2009112164A (ja) * 2007-10-31 2009-05-21 Aisin Aw Co Ltd 電動機制御装置,駆動装置およびハイブリッド駆動装置
JP2009201195A (ja) * 2008-02-19 2009-09-03 Toyota Motor Corp 電力変換回路の保護制御装置
JP2010029023A (ja) * 2008-07-23 2010-02-04 Denso Corp 電力変換装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593973B2 (ja) 2004-05-26 2010-12-08 トヨタ自動車株式会社 モータ駆動装置
JP4879657B2 (ja) 2006-05-31 2012-02-22 本田技研工業株式会社 電動機の制御装置
EP2403103B1 (en) * 2009-02-25 2017-03-22 Toyota Jidosha Kabushiki Kaisha Control apparatus and method for vehicle
KR101031217B1 (ko) * 2009-10-21 2011-04-27 주식회사 오리엔트전자 고정 시비율로 동작하는 llc 공진 컨버터를 사용한 2단 방식 절연형 양방향 dc/dc 전력변환기
JP5522269B2 (ja) 2010-12-08 2014-06-18 トヨタ自動車株式会社 モータ用電圧変換制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015254A1 (fr) * 2001-08-02 2003-02-20 Toyota Jidosha Kabushiki Kaisha Appareil de commande d'entrainement de moteur
JP2007236110A (ja) * 2006-03-01 2007-09-13 Toyota Motor Corp モータ駆動装置
JP2009112164A (ja) * 2007-10-31 2009-05-21 Aisin Aw Co Ltd 電動機制御装置,駆動装置およびハイブリッド駆動装置
JP2009201195A (ja) * 2008-02-19 2009-09-03 Toyota Motor Corp 電力変換回路の保護制御装置
JP2010029023A (ja) * 2008-07-23 2010-02-04 Denso Corp 電力変換装置

Also Published As

Publication number Publication date
DE112011105157B4 (de) 2018-07-19
JP5299519B2 (ja) 2013-09-25
CN102959852B (zh) 2015-07-01
DE112011105157T5 (de) 2014-01-23
JPWO2012144002A1 (ja) 2014-07-28
US8975846B2 (en) 2015-03-10
US20140042939A1 (en) 2014-02-13
CN102959852A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5299519B2 (ja) モータ用電圧変換制御装置
JP5522269B2 (ja) モータ用電圧変換制御装置
CN102449891B (zh) 转换器的控制装置以及具备它的电动车辆
JP5737309B2 (ja) 電力変換装置
US20160311426A1 (en) Motor controller for hybrid vehicle
AU2017336112B2 (en) Control device for power converter
EP3057214B1 (en) Blend-over between ccm and dcm in forward boost reverse buck converter
JP2011091962A (ja) 電流センサの異常判定装置および異常判定方法
JP5807524B2 (ja) 電圧変換装置の制御装置
JP5644786B2 (ja) 電圧変換装置の制御装置
JP5633462B2 (ja) モータ用電圧変換制御装置
JP7377083B2 (ja) 制御装置、プログラム
JP6210024B2 (ja) スイッチング制御装置
JP2010022162A (ja) 交流モータの制御装置
JP5578046B2 (ja) モータ用電圧変換制御装置
JP5991212B2 (ja) 電力変換装置
JP2010220306A (ja) モータの制御装置
JP5686110B2 (ja) 交流電機駆動システムの制御装置
JP6323323B2 (ja) 昇圧制御装置
JP5618012B2 (ja) 電圧変換装置の制御装置及び制御方法
JP2012205389A (ja) 電動機装置および電気自動車
JP2010273518A (ja) 交流電動機の制御装置
JP6477397B2 (ja) 電力制御方法、及び、電力制御装置
JP2010226780A (ja) 交流電動機の制御システム
JP2010259227A (ja) モータの制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002611.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011543024

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13380166

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120111051573

Country of ref document: DE

Ref document number: 112011105157

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863801

Country of ref document: EP

Kind code of ref document: A1