WO2012143966A1 - Solder jet nozzle and soldering device - Google Patents
Solder jet nozzle and soldering device Download PDFInfo
- Publication number
- WO2012143966A1 WO2012143966A1 PCT/JP2011/002257 JP2011002257W WO2012143966A1 WO 2012143966 A1 WO2012143966 A1 WO 2012143966A1 JP 2011002257 W JP2011002257 W JP 2011002257W WO 2012143966 A1 WO2012143966 A1 WO 2012143966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solder
- jet
- jet nozzle
- groove
- molten solder
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3457—Solder materials or compositions; Methods of application thereof
- H05K3/3468—Applying molten solder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K3/00—Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
- B23K3/06—Solder feeding devices; Solder melting pans
- B23K3/0646—Solder baths
- B23K3/0653—Solder baths with wave generating means, e.g. nozzles, jets, fountains
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3447—Lead-in-hole components
Definitions
- the present invention relates to a solder jet nozzle that jets molten solder, and a soldering apparatus that jets molten solder from the solder jet nozzle and solders electronic components to a printed circuit board.
- the conventional solder jet nozzle has a problem that when a lead component such as a connector and a switch is locally soldered to a printed circuit board, an overflow flow from the solder jet nozzle contacts a lead wire of an adjacent component.
- a lead component such as a connector and a switch
- the molten solder blows up inside the cylindrical body of the jet nozzle to the opening edge, and is discharged to the side wall of the cylindrical body that is appropriately lowered from the opening edge. By opening the mouth, the released solder was prevented from contacting the lead wires of adjacent components.
- the conventional solder jet nozzle is configured as described above, an oxide film is formed on the surface of the molten solder blown to the opening edge of the cylindrical body, and foreign matters such as dross, oxide and carbide are accumulated. In other words, there was a problem of inhibiting soldering.
- the overflowed solder is caused by partial oxidation and carbonization of the nozzle outer surface. It becomes difficult to fit in the part, corrodes and blackens, and the jet flows in an uncontrollable direction, which becomes an obstacle to soldering.
- the present invention has been made to solve the above-described problems, and minimizes the influence of disturbance caused by at least one of solder oxidation, carbonization, and jet fluctuation on the outer surface of the solder jet nozzle.
- the purpose is to suppress jet turbulence and improve the quality of soldering.
- the solder jet nozzle of the present invention jets the molten solder supplied from the molten solder flow path from the jet opening through the internal flow path, and is applied to one or both of the entire periphery of the jet opening and the outer surface. A groove is provided.
- the soldering apparatus of the present invention comprises a molten solder tank for storing molten solder, a molten solder flow path formed in the molten solder tank, and the above-described solder jet nozzle.
- the groove structure provided in the solder jet nozzle can minimize the influence of disturbance caused by at least one of solder oxidation, carbonization, and jet fluctuation on the outer surface. Disturbance is suppressed and the quality of soldering can be improved.
- FIG. 3 is a perspective view showing an example of a solder jet nozzle used in the soldering apparatus according to Embodiment 1.
- FIG. It is a perspective view which shows another example of the solder jet nozzle used for the soldering apparatus which concerns on Embodiment 1.
- FIG. It is a perspective view which shows another example of the solder jet nozzle used for the soldering apparatus which concerns on Embodiment 1.
- FIG. It is a perspective view which shows another example of the solder jet nozzle used for the soldering apparatus which concerns on Embodiment 1.
- FIG. It is a perspective view which shows another example of the solder jet nozzle used for the soldering apparatus which concerns on Embodiment 1.
- FIG. It is a perspective view which shows another example of the solder jet nozzle used for the soldering apparatus which concerns on Embodiment 1.
- FIG. 3 is a perspective view showing an example of a pyramid-shaped solder jet nozzle used in the soldering apparatus according to Embodiment 1.
- FIG. 3 is a perspective view showing an example of a cylindrical solder jet nozzle used in the soldering apparatus according to Embodiment 1.
- FIG. 3 is a perspective view showing an example of a pyramid-shaped solder jet nozzle used in the soldering apparatus according to Embodiment 1.
- FIG. 1 A soldering apparatus 1 shown in FIG. 1 includes a molten solder tank 3 that stores molten solder 2, a molten solder flow path component 4 that has a molten solder flow path 5 in which molten solder 2 circulates, and a molten solder flow path.
- a solder jet nozzle 10 attached to the component 4 and jetting the molten solder 2.
- the solder jet nozzle 10 has a substantially conical shape, a jet port 11 is opened at the apex, and an internal flow path 12 communicating with the molten solder flow path 5 is formed inside.
- FIG. 1 shows an example in which a plurality of grooves 21 are formed uniformly over the entire periphery of the jet port 11. Details of the groove structure will be described later.
- FIG. 2 is a view for explaining a soldering method by the soldering apparatus 1 and shows a cross section of the solder jet nozzle 10 and the molten solder flow path component 4.
- An attachment base 14 is provided on the bottom surface side of the cone of the solder jet nozzle 10, and the attachment base 14 is attached to the end of the molten solder flow path component 4 to communicate the internal flow path 12 and the molten solder flow path 5. .
- the attachment method may be any method such as screw fastening.
- the molten solder 2 is sent to the molten solder flow path component 4 at a predetermined jet pressure by a jet generation drive device (for example, a pump) (not shown) provided in the molten solder tank 3 and supplied to the solder jet nozzle 10.
- a jet generation drive device for example, a pump
- jet solder The supplied molten solder 2 flows through the internal flow path 12 and jets from the jet port 11, and the overflowed solder flows down the outer surface 13 by its own weight and returns to the molten solder tank 3 again.
- jet solder the molten solder 2 that has jetted from the jet port 11 and overflowed.
- a lead component 103 in which lead wires 104 and 105 are inserted into the through holes 101 and 102 of the printed circuit board 100 is disposed at a position facing the jet port 11, and the through holes 101 and 102 are formed by jet solder jetted from the jet port 11.
- the lead wires 104 and 105 are soldered.
- a groove is provided in one or both of the entire periphery of the jet port 11 of the solder jet nozzle 10 and the outer surface 13.
- a configuration example of the groove will be described.
- FIG.3 (b) is sectional drawing which cut
- the jet solder is likely to be accumulated in the groove 21, so that it is difficult to oxidize and carbonize at this position. Moreover, since solder becomes easy to adjust when the jet solder accumulates in the groove 21, the overflow flow can flow in the entire circumferential direction without flowing only in a specific direction from the jet port 11, and the jet solder can flow at the edge of the jet port 11. It does not spread greatly when played. Therefore, the jet solder does not oxidize and carbonize by entraining the outside air, and the jet solder does not come into contact with the adjacent parts when the lead part 103 is soldered. As shown in FIGS. 1 and 2, the same effect can be obtained even in the case where only the groove 21 is provided in the solder jet nozzle 10.
- the vertical groove 22 becomes a path through which the jet solder overflowed. Since this solder jet nozzle 10 has a conical shape, its outer surface area increases as it goes downward. However, a vertical groove 22 is provided partway from the jet port 11 so that the outer surface area is adjusted to be the same between the upper and lower nozzles. Therefore, the thickness in the vertical direction of the overflow flow layer flowing on the outer surface 13 can be kept constant to some extent. Therefore, the overflow flow is not interrupted at a part of the outer surface 13, and oxidation and carbonization of the outer surface 13 at the interrupted portion can be suppressed. Therefore, corrosion and blackening of the outer surface 13 can also be prevented.
- jet solder is likely to be accumulated in the lateral groove 23, so that it is difficult to oxidize and carbonize at this position. Further, when the jet solder accumulates in the lateral groove 23, the overflowed solder solder becomes easy to be adapted, and the solder accumulated in the lateral groove 23 is transferred and flows down. As a result, the overflow flow is not interrupted at a part of the outer surface 13, and oxidation and carbonization of the outer surface 13, and consequently corrosion and blackening can be suppressed.
- the solder jet nozzle 10 is provided with three types of grooves, that is, the groove 21, the longitudinal groove 22, and the lateral groove 23.
- a plurality of types of grooves may be provided in combination.
- FIG. 4A shows a configuration example in which the groove 21 of the jet port 11 and the vertical groove 22 of the outer surface 13 are provided
- FIG. 4B shows a cross-sectional view and how the jet solder flows.
- FIG. 5A shows a configuration example in which the lateral grooves 23 of the outer surface 13 are provided
- FIG. 5B shows a cross-sectional view and a state in which the jet solder flows.
- the solder jet nozzle 10 having the configuration shown in FIG. 5 shows the same effect as that of the lateral groove 23 described above can be obtained.
- the outer surface 13 of the solder jet nozzle 10 is provided with one or both of the longitudinal grooves 22 and the lateral grooves 23, but the present invention is not limited to this, and the spiral grooves are not limited thereto. May be provided.
- the solder jet nozzle 10 shown in FIG. 6 is provided with a spiral groove 24 having a shape that runs spirally on the outer surface 13.
- the solder jet nozzle 10 has a conical shape.
- the present invention is not limited to this, and may be a pyramid shape such as a triangular pyramid or a quadrangular pyramid.
- the solder jet nozzle 10 may be a column such as a cylinder or a prism instead of a cone.
- FIG. 7 shows a configuration example when the solder jet nozzle 10 has a quadrangular pyramid shape.
- This solder jet nozzle 10 has a quadrangular pyramid shape with an internal flow path 12, a jet port 11 is provided at the apex, a groove 21 is formed, an attachment base 14 is formed on the bottom surface, and each of the four surfaces of the outer surface 13.
- a vertical groove 22 and a horizontal groove 23 are formed in the upper part.
- the solder jet nozzle 10 has a cylindrical shape (cylindrical shape) in which an internal flow path 12 is formed.
- the solder jet nozzle 10 is provided with a jet port 11 at one end to form a groove 21, an attachment base 14 at the other end, and an outer surface 13.
- a vertical groove 22 and a horizontal groove 23 are formed in the upper part.
- illustration is omitted, in the case of any shape of a cone and a column, at least one of the four types of grooves of the groove 21, the vertical groove 22, the horizontal groove 23, and the spiral groove 24 may be provided. Alternatively, a plurality of types of grooves may be provided in combination. Even in the case of a cone and a column, the same effect as described above can be obtained by providing a groove.
- the outer surface 13 of the solder jet nozzle 10 may be solder-plated.
- the overflowing solder flows easily into the outer surface 13, and the overflow flow is difficult to be interrupted at a part of the outer surface 13, thereby suppressing oxidation and carbonization.
- the grooves (vertical grooves 22, lateral grooves 23, and spiral grooves 24) formed on the outer surface 13 may be formed on a part of the outer surface 13 or on the entire surface.
- the solder jet nozzle 10 used in the soldering apparatus 1 is configured so as to provide a groove in one or both of the entire peripheral edge of the jet port 11 and the outer surface 13.
- this groove structure it is possible to minimize the influence of disturbance caused by oxidation or carbonization of the outer surface 13 or fluctuation of jet solder, and to suppress jet turbulence. As a result, it is possible to improve the soldering quality.
- the frequency of maintenance of the solder jet nozzle can be reduced, and workability can be improved.
- the soldering apparatus 1 may be configured to include at least one of the molten solder bath 3, the molten solder flow path component 4, and the solder jet nozzle 10, and is used for point dip by using one solder jet nozzle 10.
- the soldering apparatus 1 may be configured, or a plurality of solder jet nozzles 10 may be used to configure the multi-dip soldering apparatus 1.
- the solder jet nozzle according to the present invention suppresses jet turbulence from the jet port and improves the quality of soldering. Therefore, the solder jet nozzle is used for a local soldering apparatus for point dip and multi-dip use. Suitable for
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Molten Solder (AREA)
Abstract
A solder jet nozzle (10) suppresses jet turbulence by being provided with a groove structure of at least one type of groove from among: a groove (21) provided uniformly to the entire margin of a jet aperture (11); a vertical groove (22) on the outer surface (13) having a shape running along the direction that the solder jetting from the jet aperture (11) flows due to the dead weight of the solder; and a transverse groove (23) on the outer surface (13) having a shape running along the direction roughly perpendicular to the vertical groove (22).
Description
この発明は、溶融はんだを噴流するはんだ噴流ノズル、および当該はんだ噴流ノズルから溶融はんだを噴流してプリント基板に電子部品をはんだ付けするはんだ付け装置に関する。
The present invention relates to a solder jet nozzle that jets molten solder, and a soldering apparatus that jets molten solder from the solder jet nozzle and solders electronic components to a printed circuit board.
従来のはんだ噴流ノズルは、プリント基板にコネクタおよびスイッチ等のリード部品を局所はんだ付けするに際し、はんだ噴流ノズルからのオーバーフロー流が隣接する部品のリード線等に接触する問題があった。そこで、例えば特許文献1に係る噴流ノズル構造では、溶融はんだが噴流ノズルの筒状体内部を開口縁部まで吹き上がる構造をなし、開口縁部より適宜距離の下がった筒状体の側壁に放流口を開設することにより、放流したはんだを隣接部品のリード線に接触させないようにしていた。
The conventional solder jet nozzle has a problem that when a lead component such as a connector and a switch is locally soldered to a printed circuit board, an overflow flow from the solder jet nozzle contacts a lead wire of an adjacent component. Thus, for example, in the jet nozzle structure according to Patent Document 1, the molten solder blows up inside the cylindrical body of the jet nozzle to the opening edge, and is discharged to the side wall of the cylindrical body that is appropriately lowered from the opening edge. By opening the mouth, the released solder was prevented from contacting the lead wires of adjacent components.
従来のはんだ噴流ノズルは以上のように構成されているので、筒状体の開口縁部に吹き上がった溶融はんだの表面に酸化膜が形成されたり、ドロス、酸化物および炭化物などの異物が溜まったりして、はんだ付けを阻害するという課題があった。
Since the conventional solder jet nozzle is configured as described above, an oxide film is formed on the surface of the molten solder blown to the opening edge of the cylindrical body, and foreign matters such as dross, oxide and carbide are accumulated. In other words, there was a problem of inhibiting soldering.
また、はんだ噴流ノズルの外表面に接触させながらオーバーフロー流を流す場合、特にオーバーフロー流をノズル外表面全体に流す構成の場合には、ノズル外表面が部分的に酸化および炭化するとオーバーフローしたはんだがその部分でなじみにくくなったり腐食および黒色化したりして、噴流が制御不能な方向へ偏って流れてしまい、はんだ付けの阻害要因となる。
In addition, when an overflow flow is caused to flow while being in contact with the outer surface of the solder jet nozzle, particularly in a configuration in which the overflow flow is caused to flow over the entire outer surface of the nozzle, the overflowed solder is caused by partial oxidation and carbonization of the nozzle outer surface. It becomes difficult to fit in the part, corrodes and blackens, and the jet flows in an uncontrollable direction, which becomes an obstacle to soldering.
この発明は、上記のような課題を解決するためになされたもので、はんだ噴流ノズル外表面におけるはんだの酸化、炭化、または噴流の揺らぎのうちの少なくとも1つを要因とする外乱の影響を最小限にして噴流乱れを抑制し、はんだ付けの品質向上を図ることを目的とする。
The present invention has been made to solve the above-described problems, and minimizes the influence of disturbance caused by at least one of solder oxidation, carbonization, and jet fluctuation on the outer surface of the solder jet nozzle. The purpose is to suppress jet turbulence and improve the quality of soldering.
この発明のはんだ噴流ノズルは、溶融はんだ流路から供給される溶融はんだを内部の流路を通して噴流口から噴流するものであって、噴流口の周縁全体および外表面のいずれか一方、または両方に溝を設けるようにしたものである。
The solder jet nozzle of the present invention jets the molten solder supplied from the molten solder flow path from the jet opening through the internal flow path, and is applied to one or both of the entire periphery of the jet opening and the outer surface. A groove is provided.
また、この発明のはんだ付け装置は、溶融はんだを貯留する溶融はんだ槽と、溶融はんだ槽に形成された溶融はんだ流路と、上述のはんだ噴流ノズルとを備えるものである。
The soldering apparatus of the present invention comprises a molten solder tank for storing molten solder, a molten solder flow path formed in the molten solder tank, and the above-described solder jet nozzle.
この発明によれば、はんだ噴流ノズルに設けた溝構造により、外表面におけるはんだの酸化、炭化、または噴流の揺らぎのうちの少なくとも1つを要因とする外乱の影響を最小限にできるので、噴流乱れが抑制され、はんだ付けの品質を向上させることができる。
According to the present invention, the groove structure provided in the solder jet nozzle can minimize the influence of disturbance caused by at least one of solder oxidation, carbonization, and jet fluctuation on the outer surface. Disturbance is suppressed and the quality of soldering can be improved.
以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1に示すはんだ付け装置1は、溶融はんだ2を貯留する溶融はんだ槽3と、溶融はんだ2の流通する溶融はんだ流路5を内部に設けた溶融はんだ流路部品4と、溶融はんだ流路部品4に取り付けられて溶融はんだ2を噴流するはんだ噴流ノズル10とを備える。はんだ噴流ノズル10は略円錐形状であり、頂点には噴流口11が開設され、内部には溶融はんだ流路5に連通する内部流路12が形成されている。図1では、噴流口11の周縁全体に、複数本の溝21が均等に形成された例を示す。溝構造の詳細は後述する。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
A soldering apparatus 1 shown in FIG. 1 includes amolten solder tank 3 that stores molten solder 2, a molten solder flow path component 4 that has a molten solder flow path 5 in which molten solder 2 circulates, and a molten solder flow path. A solder jet nozzle 10 attached to the component 4 and jetting the molten solder 2. The solder jet nozzle 10 has a substantially conical shape, a jet port 11 is opened at the apex, and an internal flow path 12 communicating with the molten solder flow path 5 is formed inside. FIG. 1 shows an example in which a plurality of grooves 21 are formed uniformly over the entire periphery of the jet port 11. Details of the groove structure will be described later.
実施の形態1.
図1に示すはんだ付け装置1は、溶融はんだ2を貯留する溶融はんだ槽3と、溶融はんだ2の流通する溶融はんだ流路5を内部に設けた溶融はんだ流路部品4と、溶融はんだ流路部品4に取り付けられて溶融はんだ2を噴流するはんだ噴流ノズル10とを備える。はんだ噴流ノズル10は略円錐形状であり、頂点には噴流口11が開設され、内部には溶融はんだ流路5に連通する内部流路12が形成されている。図1では、噴流口11の周縁全体に、複数本の溝21が均等に形成された例を示す。溝構造の詳細は後述する。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
A soldering apparatus 1 shown in FIG. 1 includes a
図2は、はんだ付け装置1によるはんだ付け方法を説明する図であり、はんだ噴流ノズル10と溶融はんだ流路部品4の断面を示す。はんだ噴流ノズル10の円錐の底面側には取付基部14が設けられており、この取付基部14を溶融はんだ流路部品4の端部に取り付けて内部流路12と溶融はんだ流路5を連通する。取り付け方法はねじ締結など任意の方法で良い。
溶融はんだ槽3に具備された不図示の噴流発生駆動装置(例えば、ポンプ)により所定の噴流圧力で溶融はんだ2を溶融はんだ流路部品4へ送り出して、はんだ噴流ノズル10へ供給する。供給された溶融はんだ2は、内部流路12を流れて噴流口11から噴流し、その全周方向へオーバーフローしたはんだは外表面13を自重により流れ落ちて再び溶融はんだ槽3へ戻る。これ以降、噴流口11から噴流してオーバーフローした溶融はんだ2を噴流はんだと称する。 FIG. 2 is a view for explaining a soldering method by the soldering apparatus 1 and shows a cross section of thesolder jet nozzle 10 and the molten solder flow path component 4. An attachment base 14 is provided on the bottom surface side of the cone of the solder jet nozzle 10, and the attachment base 14 is attached to the end of the molten solder flow path component 4 to communicate the internal flow path 12 and the molten solder flow path 5. . The attachment method may be any method such as screw fastening.
Themolten solder 2 is sent to the molten solder flow path component 4 at a predetermined jet pressure by a jet generation drive device (for example, a pump) (not shown) provided in the molten solder tank 3 and supplied to the solder jet nozzle 10. The supplied molten solder 2 flows through the internal flow path 12 and jets from the jet port 11, and the overflowed solder flows down the outer surface 13 by its own weight and returns to the molten solder tank 3 again. Hereinafter, the molten solder 2 that has jetted from the jet port 11 and overflowed is referred to as jet solder.
溶融はんだ槽3に具備された不図示の噴流発生駆動装置(例えば、ポンプ)により所定の噴流圧力で溶融はんだ2を溶融はんだ流路部品4へ送り出して、はんだ噴流ノズル10へ供給する。供給された溶融はんだ2は、内部流路12を流れて噴流口11から噴流し、その全周方向へオーバーフローしたはんだは外表面13を自重により流れ落ちて再び溶融はんだ槽3へ戻る。これ以降、噴流口11から噴流してオーバーフローした溶融はんだ2を噴流はんだと称する。 FIG. 2 is a view for explaining a soldering method by the soldering apparatus 1 and shows a cross section of the
The
噴流口11に対面する位置には、プリント基板100のスルーホール101,102にリード線104,105が挿入されたリード部品103が配置され、噴流口11から噴流した噴流はんだでスルーホール101,102にリード線104,105がはんだ付けされる。
A lead component 103 in which lead wires 104 and 105 are inserted into the through holes 101 and 102 of the printed circuit board 100 is disposed at a position facing the jet port 11, and the through holes 101 and 102 are formed by jet solder jetted from the jet port 11. The lead wires 104 and 105 are soldered.
本実施の形態1では、噴流口11から噴流した噴流はんだの流れを制御するために、はんだ噴流ノズル10の噴流口11の周縁全体および外表面13のいずれか一方、または両方に溝を設ける。以下、溝の構成例を説明する。
In the first embodiment, in order to control the flow of the jet solder jetted from the jet port 11, a groove is provided in one or both of the entire periphery of the jet port 11 of the solder jet nozzle 10 and the outer surface 13. Hereinafter, a configuration example of the groove will be described.
図3(a)に示すはんだ噴流ノズル10の外表面13には、噴流口11から噴流するはんだが自重により流れる方向に沿って走る複数本の縦溝22が周方向に均等に設けられていると共に、当該自重により流れる方向と略直交する方向に走る複数本の横溝23が設けられている。これに加え、図1および図2と同様に、噴流口11の周縁全体に複数本の溝21が均等に設けられている。
図3(b)は、図3(a)に示すAA線に沿ってはんだ噴流ノズル10を切断した断面図であり、噴流はんだの流れる様子を矢印で模式的に示す。噴流口11に溝21を設けることにより、噴流はんだがこの溝21に溜まりやすくなるので、この位置で酸化および炭化しにくくなる。また、噴流はんだが溝21に溜まるとはんだがなじみやすくなるので、オーバーフロー流が噴流口11から特定方向のみに流れることなく全周方向へ流れるようにできると共に、噴流はんだが噴流口11の縁に弾かれて大きく広がることがない。よって、噴流はんだが外気を巻き込んで酸化および炭化することがなく、かつ、リード部品103をはんだ付けする際に隣接部品に噴流はんだが接触することもない。
なお、図1および図2に示すように、はんだ噴流ノズル10に溝21のみ設けた構成の場合にも同様の効果を得ることができる。 On theouter surface 13 of the solder jet nozzle 10 shown in FIG. 3A, a plurality of vertical grooves 22 that run along the direction in which the solder jetted from the jet port 11 flows by its own weight are evenly provided in the circumferential direction. In addition, a plurality of lateral grooves 23 are provided that run in a direction substantially orthogonal to the direction of flow due to the dead weight. In addition to this, similarly to FIGS. 1 and 2, a plurality of grooves 21 are equally provided on the entire periphery of the jet port 11.
FIG.3 (b) is sectional drawing which cut | disconnected thesolder jet nozzle 10 along the AA line shown to Fig.3 (a), and shows a mode that a jet solder flows with an arrow. By providing the groove 21 in the jet port 11, the jet solder is likely to be accumulated in the groove 21, so that it is difficult to oxidize and carbonize at this position. Moreover, since solder becomes easy to adjust when the jet solder accumulates in the groove 21, the overflow flow can flow in the entire circumferential direction without flowing only in a specific direction from the jet port 11, and the jet solder can flow at the edge of the jet port 11. It does not spread greatly when played. Therefore, the jet solder does not oxidize and carbonize by entraining the outside air, and the jet solder does not come into contact with the adjacent parts when the lead part 103 is soldered.
As shown in FIGS. 1 and 2, the same effect can be obtained even in the case where only thegroove 21 is provided in the solder jet nozzle 10.
図3(b)は、図3(a)に示すAA線に沿ってはんだ噴流ノズル10を切断した断面図であり、噴流はんだの流れる様子を矢印で模式的に示す。噴流口11に溝21を設けることにより、噴流はんだがこの溝21に溜まりやすくなるので、この位置で酸化および炭化しにくくなる。また、噴流はんだが溝21に溜まるとはんだがなじみやすくなるので、オーバーフロー流が噴流口11から特定方向のみに流れることなく全周方向へ流れるようにできると共に、噴流はんだが噴流口11の縁に弾かれて大きく広がることがない。よって、噴流はんだが外気を巻き込んで酸化および炭化することがなく、かつ、リード部品103をはんだ付けする際に隣接部品に噴流はんだが接触することもない。
なお、図1および図2に示すように、はんだ噴流ノズル10に溝21のみ設けた構成の場合にも同様の効果を得ることができる。 On the
FIG.3 (b) is sectional drawing which cut | disconnected the
As shown in FIGS. 1 and 2, the same effect can be obtained even in the case where only the
外表面13に縦溝22を設けることにより、この縦溝22がオーバーフローした噴流はんだの流れ落ちる経路となる。このはんだ噴流ノズル10は円錐形状のため下方へ向かうにつれ外表面積が広がるが、噴流口11から途中まで縦溝22を設けてノズル上部と下部とで外表面積をある程度同じになるよう調整しているので、外表面13上を流れるオーバーフロー流の層の上下方向の厚みもある程度同じに保って流すことができる。従って、オーバーフロー流が外表面13の一部で途切れることがなくなり、途切れた部分の外表面13の酸化および炭化を抑制できる。よって、外表面13の腐食および黒色化も防ぐことができる。
加えて、この縦溝22の流路断面が小さいためにここを流れるはんだの流速が速まるので、噴流口11から噴流して外表面13を流れるはんだが縦溝22を流れるはんだに引っ張られながら安定して流れ落ちるようになる。 By providing thevertical groove 22 on the outer surface 13, the vertical groove 22 becomes a path through which the jet solder overflowed. Since this solder jet nozzle 10 has a conical shape, its outer surface area increases as it goes downward. However, a vertical groove 22 is provided partway from the jet port 11 so that the outer surface area is adjusted to be the same between the upper and lower nozzles. Therefore, the thickness in the vertical direction of the overflow flow layer flowing on the outer surface 13 can be kept constant to some extent. Therefore, the overflow flow is not interrupted at a part of the outer surface 13, and oxidation and carbonization of the outer surface 13 at the interrupted portion can be suppressed. Therefore, corrosion and blackening of the outer surface 13 can also be prevented.
In addition, since the flow passage cross section of thevertical groove 22 is small, the flow velocity of the solder flowing therethrough increases, so that the solder flowing from the jet port 11 and flowing through the outer surface 13 is stable while being pulled by the solder flowing through the vertical groove 22. Then it starts to flow down.
加えて、この縦溝22の流路断面が小さいためにここを流れるはんだの流速が速まるので、噴流口11から噴流して外表面13を流れるはんだが縦溝22を流れるはんだに引っ張られながら安定して流れ落ちるようになる。 By providing the
In addition, since the flow passage cross section of the
外表面13に横溝23を設けることにより、この横溝23に噴流はんだが溜まりやすくなるので、この位置で酸化および炭化しにくくなる。また、噴流はんだが横溝23に溜まるとオーバーフローした噴流はんだがなじみやすくなり、かつ、横溝23に溜まったはんだを乗り継いで流れ落ちるようになる。これにより、オーバーフロー流が外表面13の一部で途切れることがなくなり、外表面13の酸化および炭化、ひいては腐食および黒色化を抑制できる。
By providing the lateral groove 23 on the outer surface 13, jet solder is likely to be accumulated in the lateral groove 23, so that it is difficult to oxidize and carbonize at this position. Further, when the jet solder accumulates in the lateral groove 23, the overflowed solder solder becomes easy to be adapted, and the solder accumulated in the lateral groove 23 is transferred and flows down. As a result, the overflow flow is not interrupted at a part of the outer surface 13, and oxidation and carbonization of the outer surface 13, and consequently corrosion and blackening can be suppressed.
図3の例では、はんだ噴流ノズル10に溝21、縦溝22および横溝23の3種類の溝を設けたが、これに限定されるものではなく、少なくともいずれか1種類の溝を設けてもよいし、複数種類の溝を組み合わせて設けてもよい。
図4(a)に、噴流口11の溝21と外表面13の縦溝22とを設けた構成例を示し、図4(b)に断面図と噴流はんだの流れる様子を示す。図4に示す構成のはんだ噴流ノズル10においても、上述した溝21および縦溝22と同様の効果をそれぞれ得ることができる。
図5(a)に、外表面13の横溝23を設けた構成例を示し、図5(b)に断面図と噴流はんだの流れる様子を示す。図5に示す構成のはんだ噴流ノズル10においても、上述した横溝23と同様の効果を得ることができる。 In the example of FIG. 3, thesolder jet nozzle 10 is provided with three types of grooves, that is, the groove 21, the longitudinal groove 22, and the lateral groove 23. Alternatively, a plurality of types of grooves may be provided in combination.
FIG. 4A shows a configuration example in which thegroove 21 of the jet port 11 and the vertical groove 22 of the outer surface 13 are provided, and FIG. 4B shows a cross-sectional view and how the jet solder flows. Also in the solder jet nozzle 10 having the configuration shown in FIG. 4, the same effects as those of the groove 21 and the vertical groove 22 described above can be obtained.
FIG. 5A shows a configuration example in which thelateral grooves 23 of the outer surface 13 are provided, and FIG. 5B shows a cross-sectional view and a state in which the jet solder flows. Also in the solder jet nozzle 10 having the configuration shown in FIG. 5, the same effect as that of the lateral groove 23 described above can be obtained.
図4(a)に、噴流口11の溝21と外表面13の縦溝22とを設けた構成例を示し、図4(b)に断面図と噴流はんだの流れる様子を示す。図4に示す構成のはんだ噴流ノズル10においても、上述した溝21および縦溝22と同様の効果をそれぞれ得ることができる。
図5(a)に、外表面13の横溝23を設けた構成例を示し、図5(b)に断面図と噴流はんだの流れる様子を示す。図5に示す構成のはんだ噴流ノズル10においても、上述した横溝23と同様の効果を得ることができる。 In the example of FIG. 3, the
FIG. 4A shows a configuration example in which the
FIG. 5A shows a configuration example in which the
図3~図5の例では、はんだ噴流ノズル10の外表面13に、縦溝22および横溝23のいずれか一方、または両方を設けたが、これに限定されるものではなく、螺旋状の溝を設けてもよい。
図6に示すはんだ噴流ノズル10は、外表面13に螺旋状に走る形状の螺旋溝24が設けられている。外表面13に螺旋溝24を設けることにより、噴流口11からオーバーフローする噴流はんだの量が少ない場合は螺旋溝24に沿って外表面13を螺旋状に流れ落ちるようになる。オーバーフローする噴流はんだの量が多い場合は、外表面13を流れ落ちる噴流はんだが螺旋溝24を流れる噴流はんだに引っ張られながら流れ落ちるようになる。よって、オーバーフロー流が外表面13の一部で途切れることがなく、外表面13の酸化および炭化を抑制できる。
図示は省略するが、外表面13の螺旋溝24に、噴流口11の溝21を組み合わせてもよい。 3 to 5, theouter surface 13 of the solder jet nozzle 10 is provided with one or both of the longitudinal grooves 22 and the lateral grooves 23, but the present invention is not limited to this, and the spiral grooves are not limited thereto. May be provided.
Thesolder jet nozzle 10 shown in FIG. 6 is provided with a spiral groove 24 having a shape that runs spirally on the outer surface 13. By providing the spiral groove 24 on the outer surface 13, when the amount of jet solder overflowing from the jet port 11 is small, the outer surface 13 flows down spirally along the spiral groove 24. When the amount of the jet solder that overflows is large, the jet solder that flows down the outer surface 13 flows down while being pulled by the jet solder that flows through the spiral groove 24. Therefore, the overflow flow is not interrupted at a part of the outer surface 13, and oxidation and carbonization of the outer surface 13 can be suppressed.
Although not shown, thegroove 21 of the jet port 11 may be combined with the spiral groove 24 of the outer surface 13.
図6に示すはんだ噴流ノズル10は、外表面13に螺旋状に走る形状の螺旋溝24が設けられている。外表面13に螺旋溝24を設けることにより、噴流口11からオーバーフローする噴流はんだの量が少ない場合は螺旋溝24に沿って外表面13を螺旋状に流れ落ちるようになる。オーバーフローする噴流はんだの量が多い場合は、外表面13を流れ落ちる噴流はんだが螺旋溝24を流れる噴流はんだに引っ張られながら流れ落ちるようになる。よって、オーバーフロー流が外表面13の一部で途切れることがなく、外表面13の酸化および炭化を抑制できる。
図示は省略するが、外表面13の螺旋溝24に、噴流口11の溝21を組み合わせてもよい。 3 to 5, the
The
Although not shown, the
また、図1~図6の例では、はんだ噴流ノズル10を円錐形にしたが、これに限定されるものではなく、三角錐、四角錘などの角錐形にしてもよい。さらに、はんだ噴流ノズル10を錐体ではなく、円柱、角柱などの柱体にしてもよい。
図7に、はんだ噴流ノズル10を四角錘形にした場合の構成例を示す。このはんだ噴流ノズル10は、内部流路12を形成した四角錘形であり、頂点に噴流口11を設けて溝21を形成し、底面に取付基部14を形成し、外表面13の4面それぞれに縦溝22および横溝23を形成している。
図8に、はんだ噴流ノズル10を円柱形にした場合の構成例を示す。このはんだ噴流ノズル10は、内部流路12を形成した円柱形(円筒形)であり、一端に噴流口11を設けて溝21を形成し、他端に取付基部14を形成し、外表面13に縦溝22および横溝23を形成している。
図示は省略するが、錐体および柱体いずれの形状の場合にも、溝21、縦溝22、横溝23および螺旋溝24の4種類の溝のうち少なくともいずれか1種類の溝を設けてもよいし、複数種類の溝を組み合わせて設けてもよい。錐体および柱体であっても溝を設けることにより上記同様の効果を得ることができる。 1 to 6, thesolder jet nozzle 10 has a conical shape. However, the present invention is not limited to this, and may be a pyramid shape such as a triangular pyramid or a quadrangular pyramid. Further, the solder jet nozzle 10 may be a column such as a cylinder or a prism instead of a cone.
FIG. 7 shows a configuration example when thesolder jet nozzle 10 has a quadrangular pyramid shape. This solder jet nozzle 10 has a quadrangular pyramid shape with an internal flow path 12, a jet port 11 is provided at the apex, a groove 21 is formed, an attachment base 14 is formed on the bottom surface, and each of the four surfaces of the outer surface 13. A vertical groove 22 and a horizontal groove 23 are formed in the upper part.
FIG. 8 shows a configuration example when thesolder jet nozzle 10 is formed in a cylindrical shape. The solder jet nozzle 10 has a cylindrical shape (cylindrical shape) in which an internal flow path 12 is formed. The solder jet nozzle 10 is provided with a jet port 11 at one end to form a groove 21, an attachment base 14 at the other end, and an outer surface 13. A vertical groove 22 and a horizontal groove 23 are formed in the upper part.
Although illustration is omitted, in the case of any shape of a cone and a column, at least one of the four types of grooves of thegroove 21, the vertical groove 22, the horizontal groove 23, and the spiral groove 24 may be provided. Alternatively, a plurality of types of grooves may be provided in combination. Even in the case of a cone and a column, the same effect as described above can be obtained by providing a groove.
図7に、はんだ噴流ノズル10を四角錘形にした場合の構成例を示す。このはんだ噴流ノズル10は、内部流路12を形成した四角錘形であり、頂点に噴流口11を設けて溝21を形成し、底面に取付基部14を形成し、外表面13の4面それぞれに縦溝22および横溝23を形成している。
図8に、はんだ噴流ノズル10を円柱形にした場合の構成例を示す。このはんだ噴流ノズル10は、内部流路12を形成した円柱形(円筒形)であり、一端に噴流口11を設けて溝21を形成し、他端に取付基部14を形成し、外表面13に縦溝22および横溝23を形成している。
図示は省略するが、錐体および柱体いずれの形状の場合にも、溝21、縦溝22、横溝23および螺旋溝24の4種類の溝のうち少なくともいずれか1種類の溝を設けてもよいし、複数種類の溝を組み合わせて設けてもよい。錐体および柱体であっても溝を設けることにより上記同様の効果を得ることができる。 1 to 6, the
FIG. 7 shows a configuration example when the
FIG. 8 shows a configuration example when the
Although illustration is omitted, in the case of any shape of a cone and a column, at least one of the four types of grooves of the
なお、図1~図8の構成例において、はんだ噴流ノズル10の外表面13をはんだめっきしてもよい。これにより、オーバーフローする噴流はんだが外表面13になじみやすくなり、オーバーフロー流が外表面13の一部で途切れにくくなって酸化および炭化を抑制できる。
また、外表面13に形成する溝(縦溝22、横溝23および螺旋溝24)は、外表面13の一部に形成してもよいし全体に形成してもよい。 1 to 8, theouter surface 13 of the solder jet nozzle 10 may be solder-plated. As a result, the overflowing solder flows easily into the outer surface 13, and the overflow flow is difficult to be interrupted at a part of the outer surface 13, thereby suppressing oxidation and carbonization.
Further, the grooves (vertical grooves 22, lateral grooves 23, and spiral grooves 24) formed on the outer surface 13 may be formed on a part of the outer surface 13 or on the entire surface.
また、外表面13に形成する溝(縦溝22、横溝23および螺旋溝24)は、外表面13の一部に形成してもよいし全体に形成してもよい。 1 to 8, the
Further, the grooves (
以上より、実施の形態1によれば、はんだ付け装置1に使用するはんだ噴流ノズル10は、噴流口11の周縁全体および外表面13のいずれか一方、または両方に溝を設けるように構成した。この溝構造により、外表面13の酸化もしくは炭化、または噴流はんだの揺らぎを少なくとも要因とする外乱の影響を最小限にすることができ、噴流乱れを抑制することができる。この結果、はんだ付けの品質を向上させることが可能となる。また、外表面13の酸化および炭化、ひいては腐食および黒色化などの発生を抑制できるので、はんだ噴流ノズルのメンテナンスの頻度を軽減することが可能になり、工作性を向上させることが可能となる。
As described above, according to the first embodiment, the solder jet nozzle 10 used in the soldering apparatus 1 is configured so as to provide a groove in one or both of the entire peripheral edge of the jet port 11 and the outer surface 13. With this groove structure, it is possible to minimize the influence of disturbance caused by oxidation or carbonization of the outer surface 13 or fluctuation of jet solder, and to suppress jet turbulence. As a result, it is possible to improve the soldering quality. In addition, since the occurrence of oxidation and carbonization of the outer surface 13, and thus corrosion and blackening can be suppressed, the frequency of maintenance of the solder jet nozzle can be reduced, and workability can be improved.
なお、はんだ付け装置1は、溶融はんだ槽3、溶融はんだ流路部品4およびはんだ噴流ノズル10を少なくとも一つ以上備えた構成であればよく、一つのはんだ噴流ノズル10を使用してポイントディップ用のはんだ付け装置1を構成してもよいし、複数のはんだ噴流ノズル10を使用してマルチディップ用のはんだ付け装置1を構成してもよい。
The soldering apparatus 1 may be configured to include at least one of the molten solder bath 3, the molten solder flow path component 4, and the solder jet nozzle 10, and is used for point dip by using one solder jet nozzle 10. The soldering apparatus 1 may be configured, or a plurality of solder jet nozzles 10 may be used to configure the multi-dip soldering apparatus 1.
以上説明した以外にも、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
In addition to the above description, the present invention can be modified in any component in the embodiment or omitted in any component within the scope of the invention.
以上のように、この発明に係るはんだ噴流ノズルは、噴流口からの噴流乱れを抑制してはんだ付けの品質向上を可能にしたので、ポイントディップ用およびマルチディップ用などの局所はんだ付け装置に用いるのに適している。
As described above, the solder jet nozzle according to the present invention suppresses jet turbulence from the jet port and improves the quality of soldering. Therefore, the solder jet nozzle is used for a local soldering apparatus for point dip and multi-dip use. Suitable for
1 はんだ付け装置、2 溶融はんだ、3 溶融はんだ槽、4 溶融はんだ流路部品、5 溶融はんだ流路、10 はんだ噴流ノズル、11 噴流口、12 内部流路、13 外表面、14 取付基部、21 溝、22 縦溝、23 横溝、24 螺旋溝、100 プリント基板、101,102 スルーホール、103 リード部品、104,105 リード線。
DESCRIPTION OF SYMBOLS 1 Soldering apparatus, 2 Molten solder, 3 Molten solder tank, 4 Molten solder flow path component, 5 Molten solder flow path, 10 Solder jet nozzle, 11 Jet port, 12 Internal flow path, 13 Outer surface, 14 Mounting base, 21 Groove, 22 longitudinal groove, 23 transverse groove, 24 spiral groove, 100 printed circuit board, 101, 102 through hole, 103 lead component, 104, 105 lead wire.
Claims (9)
- 溶融はんだ槽に形成された溶融はんだ流路に連通され、当該溶融はんだ流路から供給される溶融はんだを内部の流路を通して噴流口から噴流するはんだ噴流ノズルであって、
前記噴流口の周縁全体に溝を設けたことを特徴とするはんだ噴流ノズル。 A solder jet nozzle that communicates with a molten solder flow path formed in a molten solder tank and jets the molten solder supplied from the molten solder flow path from a jet port through an internal flow path,
A solder jet nozzle characterized in that a groove is provided in the entire periphery of the jet port. - 外表面にも溝を設けたことを特徴とする請求項1記載のはんだ噴流ノズル。 2. A solder jet nozzle according to claim 1, wherein a groove is also provided on the outer surface.
- 外表面の溝は、当該外表面の一部または全部に設けられ、噴流口から噴流する溶融はんだが自重により流れる方向に沿う形状、および当該自重により流れる方向と略直交する方向に沿う形状のいずれか一方、または両方であることを特徴とする請求項2記載のはんだ噴流ノズル。 The groove on the outer surface is provided on a part or all of the outer surface, and has either a shape along the direction in which the molten solder jetted from the jet port flows by its own weight or a shape along a direction substantially perpendicular to the direction in which the molten solder flows. 3. The solder jet nozzle according to claim 2, wherein the solder jet nozzle is one or both of them.
- 外表面の溝は、当該外表面の一部または全部に設けられ、螺旋状であることを特徴とする請求項2記載のはんだ噴流ノズル。 3. The solder jet nozzle according to claim 2, wherein the groove on the outer surface is provided in a part or all of the outer surface and has a spiral shape.
- はんだ噴流ノズルは錐体状であり、頂点部分に噴流口が形成されたことを特徴とする請求項1記載のはんだ噴流ノズル。 2. The solder jet nozzle according to claim 1, wherein the solder jet nozzle has a cone shape, and a jet port is formed at an apex portion. 3.
- はんだ噴流ノズルは柱体状であり、一端部に噴流口が形成されたことを特徴とする請求項1記載のはんだ噴流ノズル。 The solder jet nozzle according to claim 1, wherein the solder jet nozzle has a columnar shape, and a jet port is formed at one end.
- 溶融はんだ槽に形成された溶融はんだ流路に連通され、当該溶融はんだ流路から供給される溶融はんだを内部の流路を通して噴流口から噴流するはんだ噴流ノズルであって、
前記外表面に溝を設けたことを特徴とするはんだ噴流ノズル。 A solder jet nozzle that communicates with a molten solder flow path formed in a molten solder tank and jets the molten solder supplied from the molten solder flow path from a jet port through an internal flow path,
A solder jet nozzle, characterized in that a groove is provided on the outer surface. - 噴流口の周縁全体にも溝を設けたことを特徴とする請求項7記載のはんだ噴流ノズル。 The solder jet nozzle according to claim 7, wherein a groove is also provided in the entire periphery of the jet port.
- 溶融はんだを貯留する溶融はんだ槽と、
前記溶融はんだ槽に形成された溶融はんだ流路と、
前記溶融はんだ流路に連通し、当該溶融はんだ流路から供給される溶融はんだを内部の流路を通して噴流する噴流口を有し、当該噴流口の周縁全体および外表面のいずれか一方、または両方に溝を設けたはんだ噴流ノズルとを備えるはんだ付け装置。 A molten solder tank for storing molten solder;
A molten solder flow path formed in the molten solder bath;
There is a jet port that communicates with the molten solder flow path and jets the molten solder supplied from the molten solder flow path through an internal flow path, and either or both of the entire periphery and the outer surface of the jet port A soldering apparatus comprising a solder jet nozzle provided with a groove.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/002257 WO2012143966A1 (en) | 2011-04-18 | 2011-04-18 | Solder jet nozzle and soldering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/002257 WO2012143966A1 (en) | 2011-04-18 | 2011-04-18 | Solder jet nozzle and soldering device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012143966A1 true WO2012143966A1 (en) | 2012-10-26 |
Family
ID=47041124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/002257 WO2012143966A1 (en) | 2011-04-18 | 2011-04-18 | Solder jet nozzle and soldering device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012143966A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011155058A (en) * | 2010-01-26 | 2011-08-11 | Mitsubishi Electric Corp | Solder jet device |
US20130306711A1 (en) * | 2010-09-01 | 2013-11-21 | Alexander J. Ciniglio | Soldering nozzle for delivering molten solder to the underside of a pcb, method of reducing the rate of occurence of dewetting of a solder nozzle |
WO2014199694A1 (en) * | 2013-06-13 | 2014-12-18 | 富士通テン株式会社 | Soldering device and soldering method |
EP3785837A1 (en) * | 2019-08-27 | 2021-03-03 | Illinois Tool Works, Inc. | Nozzle, system and method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5386439U (en) * | 1976-12-17 | 1978-07-15 | ||
JPS63127763U (en) * | 1987-02-13 | 1988-08-22 | ||
JPH0287559U (en) * | 1988-12-22 | 1990-07-11 | ||
JPH0447862U (en) * | 1990-08-21 | 1992-04-23 | ||
JP2004195539A (en) * | 2002-12-20 | 2004-07-15 | Tokyo Seisan Giken Kk | Soldering device |
JP2006136946A (en) * | 2004-09-21 | 2006-06-01 | Mitsuo Ebisawa | Soldering apparatus, manufacturing method thereof and soldering method using the apparatus |
WO2007138310A2 (en) * | 2006-05-30 | 2007-12-06 | Pillarhouse International Limited | Soldering apparatus |
-
2011
- 2011-04-18 WO PCT/JP2011/002257 patent/WO2012143966A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5386439U (en) * | 1976-12-17 | 1978-07-15 | ||
JPS63127763U (en) * | 1987-02-13 | 1988-08-22 | ||
JPH0287559U (en) * | 1988-12-22 | 1990-07-11 | ||
JPH0447862U (en) * | 1990-08-21 | 1992-04-23 | ||
JP2004195539A (en) * | 2002-12-20 | 2004-07-15 | Tokyo Seisan Giken Kk | Soldering device |
JP2006136946A (en) * | 2004-09-21 | 2006-06-01 | Mitsuo Ebisawa | Soldering apparatus, manufacturing method thereof and soldering method using the apparatus |
WO2007138310A2 (en) * | 2006-05-30 | 2007-12-06 | Pillarhouse International Limited | Soldering apparatus |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011155058A (en) * | 2010-01-26 | 2011-08-11 | Mitsubishi Electric Corp | Solder jet device |
US20130306711A1 (en) * | 2010-09-01 | 2013-11-21 | Alexander J. Ciniglio | Soldering nozzle for delivering molten solder to the underside of a pcb, method of reducing the rate of occurence of dewetting of a solder nozzle |
WO2014199694A1 (en) * | 2013-06-13 | 2014-12-18 | 富士通テン株式会社 | Soldering device and soldering method |
CN105324203A (en) * | 2013-06-13 | 2016-02-10 | 富士通天株式会社 | Soldering device and soldering method |
CN105324203B (en) * | 2013-06-13 | 2018-04-17 | 富士通天株式会社 | Brazing device and method for welding |
EP3785837A1 (en) * | 2019-08-27 | 2021-03-03 | Illinois Tool Works, Inc. | Nozzle, system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012143966A1 (en) | Solder jet nozzle and soldering device | |
JP4941289B2 (en) | Jet solder bath | |
WO2007123237A1 (en) | Jet solder tank | |
JP3311547B2 (en) | Soldering equipment | |
JP4868078B2 (en) | Point flow soldering equipment | |
JP4473566B2 (en) | Jet soldering equipment | |
JP4605222B2 (en) | Jet solder bath | |
WO2010087341A1 (en) | Jet solder bath | |
JP2010267785A (en) | Jet solder bath | |
WO2012143967A1 (en) | Solder jet nozzle, soldering device, and soldering method | |
JP5815082B2 (en) | Soldering apparatus and soldering method | |
JP2003200090A (en) | Spray nozzle for printed circuit board and wet line facility using the nozzle | |
JP5165270B2 (en) | Rectification nozzle for soldering equipment, soldering equipment | |
JP2011146638A (en) | Flow soldering nozzle, soldering device, and soldering method | |
JP5569007B2 (en) | Solder jet device | |
JP2021053703A (en) | Local soldering nozzle and local soldering device | |
JP5391500B2 (en) | Soldering nozzle and soldering device | |
JP2016178273A (en) | Nozzle tip member, nozzle, soldering device, and method of manufacturing substrate device | |
JP5508185B2 (en) | Terminal and terminal soldering structure | |
JP6145644B2 (en) | Printed wiring board | |
KR20180006238A (en) | Nozzle for soldering apparatus | |
JP2018041891A (en) | Circuit board | |
JP2009141106A (en) | Printed circuit board, air conditioner, and soldering method for printed circuit board | |
JP2016201469A (en) | Local soldering nozzle, solder jet device using the same, and local soldering method | |
JP2008060501A (en) | Flow soldering apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11864114 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11864114 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |