WO2012142857A1 - 一种反向结构聚合物太阳电池及其制备方法 - Google Patents

一种反向结构聚合物太阳电池及其制备方法 Download PDF

Info

Publication number
WO2012142857A1
WO2012142857A1 PCT/CN2012/000384 CN2012000384W WO2012142857A1 WO 2012142857 A1 WO2012142857 A1 WO 2012142857A1 CN 2012000384 W CN2012000384 W CN 2012000384W WO 2012142857 A1 WO2012142857 A1 WO 2012142857A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
layer
acetylacetonate
electron
solar cell
Prior art date
Application number
PCT/CN2012/000384
Other languages
English (en)
French (fr)
Inventor
谭占鳌
张文庆
钱德平
徐琦
Original Assignee
华北电力大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011101017129A external-priority patent/CN102201539A/zh
Priority claimed from CN2011103295881A external-priority patent/CN102364715B/zh
Application filed by 华北电力大学 filed Critical 华北电力大学
Publication of WO2012142857A1 publication Critical patent/WO2012142857A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of polymer solar cells, in particular to a reverse structure polymer solar cell and a preparation method thereof, in particular to diisopropoxy bis(acetylacetonate) titanium or acetylacetonate titanium oxide as electron collecting layer material. Application in reverse structure polymer solar cells.
  • the photoelectric conversion efficiency of the bulk heterojunction polymer solar cell is significantly improved to 5 -8%, close to the level of amorphous silicon cells.
  • the conventional bulk heterojunction polymer solar cell is corroded by the positive electrode contact PEDOT:PSS, and the low work function negative electrode is easily oxidized, resulting in poor battery stability, which is not conducive to the stability and life of the device.
  • reverse structure polymer solar cells modified with stable electron and hole collection layers have attracted attention.
  • the widely used electron-collecting layer [(:0 3 requires vacuum evaporation or high-temperature thermal annealing to decompose into Cs 2 0; TiOx, ZnO requires sol-gel chemical synthesis and high-temperature heat) Annealing to increase mobility. High temperature processes are not conducive to the preparation of flexible plastic solar cells.
  • the reverse structure polymer solar cell mainly comprises a substrate 1 which is sequentially laminated, a transparent conductive metal oxide electrode layer 2, an electron collecting layer 3, a photoelectric active layer 4, a hole collecting layer 5, and a high work function anode layer. 6, etc., the battery is connected to the load or test device 7 by a metal wire 8, and the incident light 9 is incident from the direction of the substrate 1.
  • Diisopropoxy bis(acetylacetonate) titanium is a reddish transparent liquid, and its structure is as shown in Formula 1,
  • the relative molecular weight or atomic weight is 364.31; the density is 1.01 g/ml; the melting point is 10 ⁇ : the viscosity at 25 C is 10.0 ITI11 ⁇ 2-SO.
  • the material is soluble in isopropanol, also soluble in benzene, toluene and chloroform. Hydrolysis, upon hydrolysis, decomposes two moles of alcohol groups unrelated to the chelate. Drying in air dehydrates to an insoluble hydroxy compound. Heating the material can result in a compound having chelation properties.
  • This material is mainly used as a modifier for coatings, inks, varnishes, etc.: curing accelerators, tackifiers for surface treatment agents, and the like.
  • the present invention is first applied to a reverse structure polymer solar cell.
  • Titanium acetylacetonate also known as bis(acetylacetonate) titanium oxide
  • Its melting point is 20 (TC, the flash point is 7 L9 ° C, the boiling point at 760 mmHg is 187.6 ⁇ ; the vapor pressure at 25 ⁇ is (). 174 nmiHg.
  • the water solubility of this material at 2 () 'C is 6.6 g / L It is also soluble in isopropanol, organic solvents such as benzene, toluene and chloroform. This material is mainly used as a resin crosslinking agent and curing accelerator: as an organic synthesis catalyst.
  • the reverse structure polymer solar cell provided by the present invention comprises a substrate laminated in sequence, a transparent conductive metal oxide electrode layer, an electron collecting layer, a photoelectric active layer, a hole collecting layer and a high work function anode layer, wherein
  • the electron collecting layer is a diisopropoxy bis(acetylacetonate) titanium film or a acetylacetone titanium oxide film.
  • the preferred thickness of the diisopropoxy bis(acetylacetonate) titanium film or the acetylacetonate titanium oxide film is 10-50 ⁇ .
  • the substrate of the solar cell of the present invention may be a glass or polyester film;
  • the transparent conductive metal oxide electrode layer is an oxide of In, Sn, Zti, Cd or a composite multi-oxide thereof;
  • the photoelectric active layer is an electron donor and An electron acceptor blend film, wherein the electron donor material is selected from the group consisting of poly(p-phenylene vinylene), poly(arylene vinylene), poly(p-phenylene), poly (arylene), polythiophene, polyquinoline, porphyrin, phthalocyanine or selected from electron withdrawing conjugated units such as pyrrolopyrroledione (DPP), benzothiadiazole ( ⁇ ), a copolymer of thienopyrroledione (TP) and an electron donating conjugated unit such as carbazole (Cz), fluorene (F), benzodithiophene (BDT), dithienobenzene (BDP), etc.
  • the electron donor material is selected from the group consist
  • the electron acceptor material is selected from the group consisting of: fullerene or a derivative thereof, hydrazine or a derivative thereof, naphthalene or a derivative thereof, an anthracene or a metal oxide selected from the group consisting of III-V and II-VI semiconductor nanocrystals; Collection layer is The oxide of Mo, V, W, Ni is a composite multi-element; the high work function anode layer is Al, Ag, Au or a composite electrode thereof.
  • the preparation method of the above reverse structure polymer solar cell comprises the following steps:
  • the photoactive layer, the hole collecting layer, and the high work function anode layer are sequentially prepared on the electron collecting layer to obtain the reverse structure polymer solar cell.
  • the thickness of the diisopropoxy bis(acetylacetonate) titanium film or the titanium acetylacetonate film is mainly controlled by the rotation speed of the spin coating, and the diisopropoxy bis(acetylacetonate) titanium film is prepared.
  • the rotation speed is preferably 1000-5000 ipm, and when the titanium acetylacetonate film is prepared, the rotation speed is preferably 800-5000 i: pm.
  • the baking temperature can be from 20 to 250 ° C and the time can be from 1 minute to 48 hours.
  • the concentration of diisopropyloxybis(acetylacetonate) titanium in the mixed solution of diisopropoxy bis(acetylacetonate) titanium and a solvent is preferably 2 to 10 mg/mL.
  • the concentration of the titanium acetylacetonate in the mixed solution of the titanium acetylacetonate and the solvent is preferably 1-100 mg/mL.
  • the solvent is any one of isopropyl alcohol, isooctyl alcohol, ethanol, ethyl acetate or petroleum ether or a combination thereof.
  • the invention has the beneficial effects that: a diisopropoxy bis(acetylacetonate) titanium film or a titanium acetylacetonate film is used as an electron collecting layer material, and is introduced into a reverse structure polymer solar cell, thereby realizing efficient electrons.
  • the invention also has high photoelectric conversion efficiency, simple process, low cost, good experimental repeatability and is suitable for large-scale industrialization, compared with the existing titanium dioxide prepared by the sol-gel method. Production and other characteristics.
  • the present invention employs a diisopropoxy bis(acetylacetonate) titanium film or a acetylacetone titanium oxide film as an electron collecting layer, which can efficiently collect electrons and exhibit excellent performance in a reverse structure polymer solar cell.
  • Figure 1 is a schematic view showing the structure of a reverse structure polymer solar cell
  • Figure 3 is a graph showing the current-voltage characteristics of ITO/diisopropoxybis(acetylacetonate)titanium/P3HT:PCBMZMo0 3 /Ag:
  • Figure 4 is a graph showing the current-voltage characteristics of ITO/diisopropoxy bis(acetylacetonate) titanium/P9001:PC 7( )BM/MoO 3 /Ai:
  • Figure 5 shows the current-voltage characteristics of Glass/ITO/PEDOT:PSS/P3HT::PC 6() BM/Ca/Al:
  • Figure 6 shows the current-voltage characteristics of bismuth/acetylacetonate titanium oxide/PSHLPQMBM/MOO ⁇ AI Curve:
  • Figure 7 is the current-voltage characteristic curve of ITO/acetylacetonate titanium oxide/P3HT: PC TO BM/Mo0 3 /Al;
  • Figure 8 is ITO/acetylacetonate titanium oxide/P9001:PC 7() BM/MoO 3 / Current-voltage characteristic curve of Al.; label: 1-substrate; 2-transparent conductive metal oxide electrode layer; 3-electron collecting layer: 4-photoactive layer; 5-hole collecting layer; Work function anode layer; 7-load or test device; 8 metal wire; 9- incident light.
  • Example 1 The transparent conductive glass sputtered with indium tin oxide ( ⁇ ) was ultrasonically washed with detergent, deionized water, acetone, and isopropyl alcohol, and dried by nitrogen, and spin-coated with 3.75 mg/mL at 4000 rpm. Propoxy bis(acetylacetone) titanium isopropanol solution, baked at 150 ° C for 10 minutes, and naturally cooled to obtain an electron collecting layer. A mixed solution of 20 mg/mL of P3HT and PCBM 1 : 1 (mass ratio) was spin-coated directly on the above electron collecting layer at 800 rpm to serve as an electrophotoactive layer. Then 4x l (T 4 Pa of vacuum deposition 20nm Mo0 3, to obtain a hole collection layer.
  • Figure 2 shows the device under no sunlight and 100 milliwatts per square centimeter of simulated sunlight. Current-voltage curve The resulting device has an open circuit voltage of 0.57 volts at 100 milliwatts per square centimeter of simulated sunlight, a short circuit current of 11.27 milliamps per square centimeter, a fill factor of 0.529, and a conversion efficiency of 3.40%.
  • the transparent conductive glass sputtered with indium tin oxide (ITO) was sequentially ultrasonically cleaned with detergent, deionized water, acetone, and isopropyl alcohol, and dried by nitrogen, and spin-coated at 3.75 mg/mL at 4000 rpm.
  • a solution of diisopropoxy bis(acetylacetonate) in titanium isopropanol was baked at 150 ° C for 10 minutes and naturally cooled to obtain an electron collecting layer.
  • a mixed solution of 20 mg/mL of P3HT and PCBM 1 : 1 (mass ratio:) was spin-coated directly onto the above electron collecting layer at 1,500 rpm to obtain an electrophotoactive layer.
  • FIG. 1 shows the thickness of the diisopropoxy bis(acetylacetonate) titanium film.
  • Figure 3 shows the current of the device under no light irradiation and simulated sunlight of 100 mW per square centimeter. A voltage curve. The fabricated device has an open circuit voltage of 0.56 volts and a short circuit current of 12.20 milliamps per square centimeter at 100 milliwatts per square centimeter of simulated sunlight. The fill factor is 0.534 and the conversion efficiency is 3.65%.
  • Example 3 shows the current of the device under no light irradiation and simulated sunlight of 100 mW per square centimeter. A voltage curve. The fabricated device has an open circuit voltage of 0.56 volts and a short circuit current of 12.20 milliamps per square centimeter at 100 milliwatts per square centimeter of simulated sunlight. The fill factor is 0.534 and the conversion efficiency is 3.65%.
  • the transparent conductive glass sputtered with indium tin oxide ( ⁇ ) was ultrasonically washed with detergent, deionized water, acetone, and isopropyl alcohol, and dried by nitrogen, and spin-coated with 3.75 mg/mL at 4000 rpm.
  • the 3% additive diiodoxin was added to the mixed solution, and then the solution was directly spin-coated on the electron collecting layer at 1500 rpm as an electrophotoactive layer.
  • FIG. 4 shows the current-voltage curve of the device without light irradiation and simulated sunlight of 100 mW per square centimeter.
  • the open circuit voltage of 100 mW per square centimeter of simulated sunlight is 0.69 volts
  • short circuit current is 17.25 mA per square centimeter
  • fill factor is 0.589
  • conversion efficiency is 7.01%.
  • the transparent conductive glass sputtered with indium tin oxide (ITO) was ultrasonically cleaned with detergent, deionized water, acetone, and isopropanol, air-dried, and spin-coated PEDOT:PSS solution at 2000 rpm, 150V. After baking for 15 minutes, it was naturally cooled to obtain a hole collecting layer. 2 () mg / mL of P3HT with PC 6 . A mixed solution of BM 1: 1 (mass ratio) was directly spin-coated on the above hole collecting layer at 800 rpm to serve as a photoelectric active layer. Then, 20 nm of metallic calcium was vacuum-evaporated at 4 x 10 _ 5 Pa to obtain an electron collecting layer.
  • ITO indium tin oxide
  • Figure 5 shows the device in the absence of light A current-voltage curve illuminated and illuminated by simulated sunlight of 100 milliwatts per square centimeter. The resulting device had an open circuit voltage of 0.59 volts with a simulated sunlight of 100 milliwatts per square centimeter, a short circuit current of 9.45 milliamps per square centimeter, a fill factor of 0.618, and a conversion efficiency of 3.45%.
  • Example 5
  • the transparent conductive glass sputtered with indium tin oxide (ITO) was ultrasonically washed with detergent, deionized water, acetone, and isopropanol, and dried by nitrogen, and spin-coated at 5.8 mg./m:L at a speed of 1000 ipm.
  • the acetylacetone titanium oxide isopropanol solution was baked at 140 Torr for 5 minutes and naturally cooled to obtain an electron collecting layer.
  • a mixed solution of 20 mg/mL of P3HT and PC 6 oBM l: 1 (mass ratio) was directly spin-coated on the above electron collecting layer at 800 rpm to obtain a photoelectrically active layer.
  • FIG. 6 shows the current-voltage curve of the device under no light irradiation and simulated sunlight of 100 mW per square centimeter.
  • the device has an open circuit voltage of 0.59 volts under a simulated sunlight of 100 milliwatts per square centimeter, a short circuit current of 11.85 milliamps per square centimeter, a fill factor of 0.542, and a conversion efficiency of 3.79%.
  • the present application The designed reverse structure has higher photoelectric conversion efficiency.
  • the transparent conductive glass sputtered with indium tin oxide ( ⁇ ) is ultrasonically cleaned with detergent, deionized water, acetone, and isopropanol, and nitrogen is blown at a speed of 3 () () () r pm .
  • a solution of 5.8 mg/mL of acetylacetone in titanium isopropoxide was applied, baked at 140 Torr for 5 minutes, and naturally cooled to obtain an electron collecting layer.
  • a mixed solution of 20 mg/mL of P3HT and PC 7Q BM 1 : 1 (mass ratio) was directly spin-coated on the above electron collecting layer at 800 rpm to obtain a photoelectrically active layer.
  • FIG. 7 shows the current-voltage curve of the device after exposure to light and simulated sunlight of 100 milliwatts per square centimeter.
  • the resulting device had an open circuit voltage of 0.570 volts with a simulated sunlight of 100 milliwatts per square centimeter, a short circuit current of 11.94 milliamps per square centimeter, a fill factor of 0.517, and a conversion efficiency of 3.52%.
  • the transparent conductive glass sputtered with indium tin oxide was ultrasonically washed with detergent, deionized water, acetone, and isopropanol, and dried by nitrogen, and spin-coated 5.4 mg/mL of acetylacetone at 5000 rpm.
  • the titanium oxide isopropanol solution was baked at 140 Torr for 5 minutes and naturally cooled to obtain an electron collecting layer. Put 10mg/mL of P9001 with PC 7 .
  • a 3% additive of diiodoxin was added to the mixed solution of BM 1 : 1.5 (mass ratio), and the solution was directly spin-coated on the above electron collecting layer at 1,500 rpm as an electrophotoactive layer.
  • FIG. 8 shows the device in the absence of Light-irradiation and current-voltage curves of 100 mW/cm2 of simulated sunlight.
  • the resulting device has an open circuit voltage of 0.65 V and a short-circuit current of 15.14 under simulated sunlight of 100 mW/cm2.
  • the milliamperes per square centimeter have a fill factor of 0.522 and a conversion efficiency of 5.14%.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Description

一种反向结构聚合物太阳电池及其制备方法 技术领域
本发明属于聚合物太阳电池技术领域, 特别涉及一种反向结构聚合物太阳 电池及其制备方法, 具体涉及二异丙氧基双 (乙酰丙酮) 合钛或者乙酰丙酮氧 化钛作为电子收集层材料在反向结构聚合物太阳电池中的应用。
背景技术
近年兴起的有机和聚合物薄膜太阳能电池具有成本低、 重量轻、 制作工艺 简单、 可制备成大面积柔性器件等突出优点而备受关注。 通过优化设计合成新 型的聚合物给体材料和富勒烯衍生物受体材料以及优化活性层中给受体的微相 分离结构, 使本体异质结聚合物太阳电池光电转化效率显著提高到 5-8%, 接近 非晶硅电池的水平。 但是传统本体异质结聚合物太阳电池因正极接触的 PEDOT:PSS 会腐蚀 ΠΌ、 低功函的负极易氧化, 致使电池的稳定性不佳, 不利 于器件的稳定性和寿命的提高。 因此用稳定的电子和空穴收集层修饰的反向结 构聚合物太阳电池备受关注。 在反向结构聚合物太阳电池中, 目前广泛使用的 电子收集层〔 (:03需要真空蒸镀或高温热退火以分解成 Cs20; TiOx、 ZnO需 要溶胶-凝胶化学合成和高温热退火以提高迁移率。 高温工艺不利于与柔性塑料 太阳电池的制备。
如图 1, 反向结构聚合物太阳电池主要包含依次层叠的衬底 1 , 透明导电金 属氧化物电极层 2, 电子收集层 3, 光电活性层 4, 空穴收集层 5以及高功函阳 极层 6等, 电池以金属导线 8与负载或测试装置 7连接, 入射光 9从衬底 1方 向射入。
二异丙氧基双 (乙酰丙酮) 合钛是淡红色透明液体, 其结构如式 1 所示, 相对分子量或原子量为 364.31 ; 密度为 1.01克 /毫升; 熔点为 10Ό : 25 C时的 粘度为 10.0 ITI1½-S O 该材料溶于异丙醇, 也溶于苯、 甲苯和氯仿, 有水存在时 能水解, 水解时分解出与螯合物无关的两摩尔醇基。 在空气中干燥, 则脱水变 成不溶性羟基化合物。 对该材料加热, 可变成具有螯合性能的化合物。 该材料 主要用作涂料、 油墨、 清漆等的改性剂: 固化促进剂、 表面处理剂的增粘剂等。 本发明首次将其应用于反向结构聚合物太阳电池中。
Figure imgf000004_0001
(式 )
乙酰丙酮氧化钛, 又名双 (乙酰基丙酮酸基)钛氧化物, 是一种淡黄色固体粉 末, 其分子式为 C1()H1405Ti, 相对分子量或原子量为 262.082, 结构如式 2所示。 其熔点为 20(TC, 闪点为 7 L9°C, 在 760mmHg下的沸点为 187.6Ό ; 25Ό时蒸 汽压为().174nmiHg。该材料 2()'C时的水溶性为 6.6g/L, 同时可溶于异丙醇, 苯、 甲苯和氯仿等有机溶剂。 该材料主要用作树脂交联剂和固化促进剂: 用作有机 合成催化剂等。
Figure imgf000005_0001
(式 2)
发明内容
本发明的目的是提供一种反向结构聚合物太阳电池及其制备方法。
本发明所提供的反向结构聚合物太阳电池, 包括依次层叠的衬底、 透明导 电金属氧化物电极层、 电子收集层、 光电活性层、 空穴收集层和高功函阳极层, 其中, 所述电子收集层为二异丙氧基双 (乙酰丙酮) 合钛膜或者乙酰丙酮氧化 钛膜。
在本发明中, 二异丙氧基双 (乙酰丙酮) 合钛膜或者乙酰丙酮氧化钛膜的 优选厚度为 10-50θΑ。
其中, 本发明太阳能电池的衬底可选用玻璃或聚酯薄膜; 透明导电金属氧 化物电极层为 In、 Sn、 Zti、 Cd的氧化物或其复合多元氧化物; 光电活性层为电 子给体和电子受体共混膜, 其中所述的电子给体材料选自: 聚 (对亚苯基亚乙 烯) 类、 聚 (亚芳基亚乙烯基) 类、 聚 (对亚苯基) 类、 聚 (亚芳基) 类、 聚 噻吩类、 聚喹啉类、 卟啉类、 酞菁类或者选自由吸电子共轭单元如吡咯并吡咯 二酮 (DPP)、 苯并噻二唑 (ΒΤ)、 噻吩并吡咯二酮 (TP) 与给电子共轭单元如 咔唑 (Cz)、 芴 (F )、 苯并二噻吩 (BDT)、 二噻吩并苯 (BDP) 等偶联组成的 共聚物等, 电子受体材料选自: 富勒烯或其衍生物、 茈或其衍生物、 萘或其衍 生物、 醌类或者选自 III一 V族和 II一 VI族半导体纳米晶等; 所述空穴收集层为 Mo、 V、 W、 Ni的氧化物^¾其复合多元氧化物; 所述高功函阳极层为 Al、 Ag、 Au或其复合电极。
上述反向结构聚合物太阳电池的制备方法, 包括如下步骤:
(.1.)在衬底上制备透明导电金属氧化物电极层;
(2)在透明导电金属氧化物电极层上旋涂上二异丙氧基双 (乙酰丙酮) 合钛 与溶剂的混合溶液, 经烘烤, 得到电子收集层; 或者将乙酰丙酮氧化钛与溶剂 混合形成混合溶液, 在透明导电金属氧化物电极层上旋涂上述乙酰丙酮氧化钛 与溶剂的混合溶液, 经烘烤, 得到电子收集层;
( 在电子收集层上依次制备光电活性层、 空穴收集层和高功函阳极层, 得 到所述反向结构聚合物太阳电池。 '
在制备过程中, 主要利用旋涂的转速来控制二异丙氧基双 (乙酰丙酮) 合 钛膜或者乙酰丙酮氧化钛膜的厚度, 制备二异丙氧基双 (乙酰丙酮)合钛膜时, 转速优选 1000-5000ipm,制备乙酰丙酮氧化钛膜时, 转速优选 800- 5000i:pm。烘 烤的温度可为 20-250°C, 时间可为 1分钟到 48小时。
步骤 (2)中, 二异丙氧基双 (乙酰丙酮) 合钛与溶剂的混合溶液中二异丙氧 基双 (乙酰丙酮) 合钛的浓度优选 2-10mg/mL。 乙酰丙酮氧化钛与溶剂混合形 成的混合溶液中乙酰丙酮氧化钛的浓度优选 1- 100mg/mL。
步骤 (2)中, 所述溶剂为异丙醇、 异辛醇、 乙醇、 乙酸乙酯或石油醚中的任 意一种或它们的组合。
本发明的有益效果为: 以二异丙氧基双 (乙酰丙酮) 合钛膜或者乙酰丙酮 氧化钛膜为电子收集层材料, 将其引入反向结构聚合物太阳电池中, 实现了电 子的高效收集; 并且与现有的溶胶凝胶法制备的二氧化钛相比, 本发明也具有 光电转换效率高、 工艺简单, 成本低廉, 实验重复性好、 适合于大规模工业化 生产等特点。
本发明应用二异丙氧基双 (乙酰丙酮) 合钛膜或者乙酰丙酮氧化钛膜作为 电子收集层, 可以有效的实现电子的收集, 在反向结构聚合物太阳电池中表现 出优异的性能。
附图说明
图 1为反向结构聚合物太阳电池结构示意图;
图 2为 ITO/二异丙氧基双 (乙酰丙酮) 合钛 /P3HT:PCBMMoO3./Al的电流- 电压特性曲线;
图 3为 ITO/二异丙氧基双(乙酰丙酮)合钛 /P3HT:PCBMZMo03/Ag的电流- 电压特性曲线:
图 4为 ITO/二异丙氧基双 (乙酰丙酮) 合钛 /P9001 :PC7()BM/MoO3/Ai的电 流-电压特性曲线:
图 5为 Glass/ITO/PEDOT:PSS/P3HT::PC6()BM/Ca/Al的电流-电压特性曲线: 图 6为 ΠΌ/乙酰丙酮氧化钛 /PSHLPQMBM/MOO^AI的电流 -电压特性曲线: 图 7为 ITO/乙酰丙酮氧化钛 /P3HT:PCTOBM/Mo03/Al的电流-电压特性曲线; 图 8为 ITO/乙酰丙酮氧化钛 /P9001 :PC7()BM/MoO3/Al.的电流-电压特性曲线; 图中标号: 1-衬底; 2-透明导电金属氧化物电极层; 3-电子收集层: 4-光电 活性层; 5-空穴收集层; 6-高功函阳极层; 7-负载或测试装置; 8金属导线; 9- 入射光。
具体实施方式
下面的实施例可以使本专业技术人员更全面的理解本发明, 但不以任何方 式限制本发明。
实施例 1 将溅射有氧化铟锡(ΠΌ )的透明导电玻璃依次用洗洁精、去离子水、丙酮、 异丙醇超声清洗, 氮气吹干, 在 4000rpm的转速下旋涂 3.75mg/mL的二异丙氧 基双 (乙酰丙酮) 合钛异丙醇溶液, 150°C烘烤 10 分钟, 自然冷却, 得到电子 收集层。 将 20mg/mL的 P3HT与 PCBM 1 : 1 (质量比) 的混合溶液在 800 rpm 的转速下直接旋涂于上述电子收集层上, 作为光电活性层。 然后在 4x l(T4Pa下 真空蒸镀 20nm的 Mo03,得到空穴收集层。最后,在 4>< 10_4帕下真空蒸镀 lOOnm 的铝作电极。 所得的反向结构聚合物太阳电池中, 二异丙氧基双 (乙酰丙酮) 合钛膜的厚度为 250.A。 图 2给出了该器件在未经光照射和经 100毫瓦每平方厘 米的模拟太阳光照射下的电流—电压曲线。 所制得的器件在 100毫瓦每平方厘 米的模拟太阳光照射下开路电压为 0.57伏, 短路电流为 11.27毫安每平方厘米, 填充因子为 0.529, 转换效率为 3.40%。 实施例 2
将溅射有氧化铟锡(ITO )的透明导电玻璃依次用洗洁精、去离子水、丙酮、 异丙醇超声清 ¾:, 氮气吹干, 在 4000rpm的转速下旋涂 3.75mg/mL的二异丙氧 基双 (乙酰丙酮) 合钛异丙醇溶液, 150°C烘烤 10分钟, 自然冷却, 得到电子 收集层。 将 20mg/mL的 P3HT与 PCBM 1 : 1 (质量比:)的混合溶液在 1500 rpm 的转速下直接旋涂于上述电子收集层上, 作为光电活性层。 然后在 4x l(T4Pa下 真空蒸镀 20nm的 Mo03,得到空穴收集层。最后, 在 4χ 1(Γ4帕下真空蒸镀 50nm, 的银作电极。 所得的反向结构聚合物太阳电池中, 二异丙氧基双 (乙酰丙酮) 合钛膜的厚度为 250A。 图 3给出了该器件在未经光照射和经 100毫瓦每平方厘 米的模拟太阳光照射下的电流一电压曲线。 所制得的器件在 100毫瓦每平方厘 米的模拟太阳光照射下开路电压为 0.56伏, 短路电流为 12.20毫安每平方厘米, 填充因子为 0.534, 转换效率为 3.65%。 实施例 3
将溅射有氧化铟锡(ΓΓΟ )的透明导电玻璃依次用洗洁精、去离子水、丙酮、 异丙醇超声清洗, 氮气吹干, 在 4000rpm的转速下旋涂 3.75mg/mL的二异丙氧 基双 (乙酰丙酮)合钛异丙醇溶液, 15(TC烘烤 10分钟, 自然冷却, 得到电子 收集层。 将 12.5mg/mL的 P9001与 PC7。BM 1: 1.5 (质量比) 的混合溶液中加 入 3%的添加剂二碘辛垸, 然后将该溶液在 1500 rpm的转速下直接旋涂于上述 电子收集层上, 作为光电活性层。 然后在 4x 10— 4Pa下真空蒸镀 24nm的 MD03, 得到空穴收集层。 最后, 在 4χ 1(Τ4帕下真空蒸镀 lOOnm的铝作电极。 所得的反 向结构聚合物太阳电池中, 二异丙氧基双 (乙酰丙酮) 合钛膜的厚度为 25()A。 图 4给出了该器件在未经光照射和经 100毫瓦每平方厘米的模拟太阳光照射下 的电流一电压曲线。 所制得的器件在 100毫瓦每平方厘米的模拟太阳光照射下 开路电压为 0.69伏, 短路电流为 17.25毫安每平方厘米, 填充因子为 0.589, 转 换效率为 7.01%。 实施例 4 (对比例)
将溅射有氧化铟锡(ITO )的透明导电玻璃依次用洗洁精、去离子水、丙酮、 异丙醇超声清洗,氣气吹干,在 2000rpm的转速下旋涂 PEDOT:PSS溶液, 150V 烘烤 15分钟, 自然冷却, 得到空穴收集层。将 2()mg/mL的 P3HT与 PC6。BM 1: 1 (质量比) 的混合溶液在 800 rpm的转速下直接旋涂于上述空穴收集层上, 作 为光电活性层。 然后在 4x lO_5Pa下真空蒸镀 20nm的金属钙, 得到电子收集层。 最后, 在 4χ 10·4帕下真空蒸镀 l OOnm的铝作电极。 图 5给出了该器件在未经光 照射和经 100毫瓦每平方厘米的模拟太阳光照射下的电流一电压曲线。 所制得 的器件在 100毫瓦每平方厘米的模拟太阳光照射下开路电压为 0.59伏, 短路电 流为 9.45毫安每平方厘米, 填充因子为 0.618, 转换效率为 3.45%。 实施例 5
将溅射有氧化铟锡(ITO )的透明导电玻璃依次用洗洁精、去离子水、丙酮、 异丙醇超声清洗,氮气吹干,在 lOOOipm的转速下旋涂 5.8mg./m:L的乙酰丙酮氧 化钛异丙醇溶液, 140Ό烘烤 5分钟, 自然冷却, 得到电子收集层。 将 20mg/mL 的 P3HT与 PC6oBM l : 1 (质量比)的混合溶液在 800 rpm的转速下直接旋涂于 上述电子收集层上, 作为光电活性层。 然后在 4x l(T4Pa下真空蒸镀 24薩 的 Mo()3, 得到空穴收集层。 最后, 在 440—4帕下真空蒸镀 lOOnm的铝作电极。 所 得的反向结构聚合物太阳电池中, 乙酰丙酮氧化钛膜的厚度为 500A。 图 6给出 了该器件在未经光照射和经 100毫瓦每平方厘米的模拟太阳光照射下的电流一 电压曲线。 所制得的器件在 100毫瓦每平方厘米的模拟太阳光照射下开路电压 为 0.59伏, 短路电流为 11.85毫安每平方厘米, 填充因子为 0.542, 转换效率为 3.79%。 与实施例 4相比, 本申请所设计的反向结构具有更高的光电转换效率。 实施例 6
将溅射有氧化铟锡(ΠΌ )的透明导电玻璃依次用洗洁精、去离子水、丙酮、 异丙醇超声清洗,氮气吹千,在 3()()()rpm的转速下旋涂 5.8mg/mL的乙酰丙酮氧 化钛异丙醇溶液, 140Ό烘烤 5分钟, 自然冷却, 得到电子收集层。 将 20mg/mL 的 P3HT与 PC7QBM 1 : 1 (质量比)的混合溶液在 800 rpm的转速下直接旋涂于 上述电子收集层上, 作为光电活性层。 然后在 4>; 1()— 4Pa下真空蒸镀 24mn 的 Mo03, 得到空穴收集层。 最后, 在 4χ10_4帕下真空蒸镀 lOOnm的铝作电极。 所 得的反向结构聚合物太阳电池中, 乙酰丙酮氧化钛膜的厚度为 200A。 图 7给出 了该器件在未经光照射和经 100毫瓦每平方厘米的模拟太阳光照射下的电流一 电压曲线。 所制得的器件在 100毫瓦每平方厘米的模拟太阳光照射下开路电压 为 0.570伏, 短路电流为 11.94毫安每平方厘米, 填充因子为 0.517, 转换效率 为 3.52%。 实施例 7
将溅射有氧化铟锡(ΠΌ)的透明导电玻璃依次用洗洁精、去离子水、丙酮、 异丙醇超声清洗,氮气吹干,在 5000rpm的转速下旋涂 5.4mg/mL的乙酰丙酮氧 化钛异丙醇溶液, 140Ό烘烤 5分钟, 自然冷却, 得到电子收集层。 将 10mg/mL 的 P9001与 PC7。BM 1 : 1.5 (质量比)的混合溶液中加入 3%的添加剂二碘辛垸, 然后将该溶液在 1500 rpm的转速下直接旋涂于上述电子收集层上, 作为光电活 性层。 然后在 4H4Pa下真空蒸镀 24mn的 Mo()3, 得到空穴收集层。 最后, 在 4χ 1(Γ4帕下真空蒸镀 lOOnm的铝作电极。 所得的反向结构聚合物太阳电池中, 乙酰丙酮氧化钕膜的厚度为 100A。 图 8给出了该器件在未经光照射和经 100毫 瓦每平方厘米的模拟太阳光照射下的电流一电压曲线。 所制得的器件在 100毫 瓦每平方厘米的模拟太阳光照射下开路电压为 0.65伏, 短路电流为 15.14毫安 每平方厘米, 填充因子为 0.522, 转换效率为 5.14%。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应该以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种反向结构聚合物太阳电池, 其特征在于: 该反向结构聚合物太阳 电池包括依次层叠的衬底 (1 )、 透明导电金属氧化物电极层 (2 )、 电子收集层
( 3 ), 光电活性层 (4)、 空穴收集层 (5 ) 和高功函阳极层 (6), 其中, 所述电 子收集层为二异丙氧基双 (乙酰丙酮) 合钛膜或者乙酰丙酮氧化钛膜。
2、 根据权利要求 1所述的反向结构聚合物太阳电池, 其特征在于: 所述 二异丙氧基双 (乙酰丙酮) 合钛膜或者乙酰丙酮氧化钛膜的厚度为 10-500A。
3、 根据权利要求 1所述的反向结构聚合物太阳电池, 其特征在于: 所述衬底选用玻璃或聚酯薄膜;
所述透明导电金属氧化物电极层为 In、 Sn、 Zn、 Cc1的氧化物或其复合多元 氧化物;
所述光电活性层为电子给体和电子受体共混膜;
所述空穴收集层为 Mo、 V、 W、 Ni的氧化物或其复合多元氧化物; 所述高功函阳极层为 Al、 Ag、 Au或其复合电极。
4、 根据权利要求 3所述的反向结构聚合物太阳电池, 其特征在于: 所述 光电活性层中, 电子给体材料选自: 聚 (对亚苯基亚乙烯)类、 聚 (亚芳基亚 乙烯基) 类、 聚 (对亚苯基) 类、 聚 (亚芳基) 类、 聚噻吩类、 聚喹啉类、 卟 啉类、 酞菁类或者选自由吸电子共轭单元与给电子共轭单元偶联组成的共聚物, 电子受体材料选自: 富勒烯或其衍生物、 茈或其衍生物、 萘或其衍生物、 醌类 或者选自 III— V族和 II一 VI族半导体纳米晶。
5、 根据权利要求 4所述的反向结构聚合物太阳电池, 其特征在于: 所述 吸电子共轭单元为吡咯并吡咯二酮、 苯并噻二唑或者噻吩并吡咯二酮, 所述给 电子共轭单元为咔唑、 芴、 苯并二噻吩或者二噻吩并苯。
6、 权利要求 1至 5任意一个权利要求所述的反向结构聚合物太阳电池的 制备方法, 包括如下步骤:
(1)在衬底上制备透明导电金属氧化物电极层:
(2)在透明导电金属氧化物电极层上旋涂上二异丙氧基双 (乙酰丙酮) 合钛 与溶剂的混合溶液或者旋涂上乙酰丙酮氧化钛与溶剂的混合溶液, 经烘烤, 得 到电子收集层;
(3)在电子收集层上依次制备光电活性层、 空穴收集层和高功函阳极层, 得 到所述反向结构聚合物太阳电池。
7、 根据权利要求 6所述的方法, 其特征在于: 在制备过程中, 利用旋涂 的转速来控制二异丙氧基双(乙酰丙酮)合钛膜或者乙酰丙酮氧化钛膜的厚度, 制备二异丙氧基双 (乙酰丙酮) 合钛膜时, 转速为 1000- 5000rpm, 制备乙酰丙 酮氧化钛膜时, 转速为 8()()-5()()0rpm。
8、 根据权利要求 6所述的方法, 其特征在于: 烘烤的温度为 20-250T: , 时间为 1分钟到 48小时。
9、 根据权利要求 6所述的方法, 其特征在于: 步骤 (2)中, 二异丙氧基双 (乙酰丙酮) 合钛与溶剂的混合溶液中二异丙氧基双 (乙酰丙酮) 合钛的浓度 为 2- 1.0mg/mL, 乙酰丙酮氧化钛与溶剂的混合溶液中乙酰丙酮氧化钛的浓度为 2- 100mg/mL。
10、 根据权利要求 6所述的方法, 其特征在于: 所述溶剂为异丙醇、 异辛 醇、 乙醇、 乙酸乙酯或石油醚中的任意一种或它们的组合。
PCT/CN2012/000384 2011-04-22 2012-03-28 一种反向结构聚合物太阳电池及其制备方法 WO2012142857A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2011101017129A CN102201539A (zh) 2011-04-22 2011-04-22 一种反向结构聚合物太阳电池及其制备方法
CN201110101712.9 2011-04-22
CN201110329588.1 2011-10-26
CN2011103295881A CN102364715B (zh) 2011-10-26 2011-10-26 一种反向结构聚合物太阳电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2012142857A1 true WO2012142857A1 (zh) 2012-10-26

Family

ID=47041050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000384 WO2012142857A1 (zh) 2011-04-22 2012-03-28 一种反向结构聚合物太阳电池及其制备方法

Country Status (1)

Country Link
WO (1) WO2012142857A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594633A (zh) * 2013-11-08 2014-02-19 华北电力大学 一种氧化铈作为阴极修饰材料在聚合物太阳电池中的应用
CN111326659A (zh) * 2020-02-24 2020-06-23 杭州电子科技大学 一种金属透明电极及有机太阳能电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567270A (zh) * 2009-05-08 2009-10-28 上海大学 高锌含量介孔ZnO/TiO2复合薄膜的制备方法
CN101577313A (zh) * 2009-06-19 2009-11-11 吉林大学 反型结构聚合物太阳能电池及其制备方法
CN100563043C (zh) * 2006-08-08 2009-11-25 中国科学院化学研究所 一种聚合物太阳能电池及其制备方法
CN101620939A (zh) * 2008-07-02 2010-01-06 比亚迪股份有限公司 一种半导体电极及制法和含有该半导体电极的太阳能电池
CN102201539A (zh) * 2011-04-22 2011-09-28 华北电力大学 一种反向结构聚合物太阳电池及其制备方法
CN102364715A (zh) * 2011-10-26 2012-02-29 华北电力大学 一种反向结构聚合物太阳电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100563043C (zh) * 2006-08-08 2009-11-25 中国科学院化学研究所 一种聚合物太阳能电池及其制备方法
CN101620939A (zh) * 2008-07-02 2010-01-06 比亚迪股份有限公司 一种半导体电极及制法和含有该半导体电极的太阳能电池
CN101567270A (zh) * 2009-05-08 2009-10-28 上海大学 高锌含量介孔ZnO/TiO2复合薄膜的制备方法
CN101577313A (zh) * 2009-06-19 2009-11-11 吉林大学 反型结构聚合物太阳能电池及其制备方法
CN102201539A (zh) * 2011-04-22 2011-09-28 华北电力大学 一种反向结构聚合物太阳电池及其制备方法
CN102364715A (zh) * 2011-10-26 2012-02-29 华北电力大学 一种反向结构聚合物太阳电池及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594633A (zh) * 2013-11-08 2014-02-19 华北电力大学 一种氧化铈作为阴极修饰材料在聚合物太阳电池中的应用
CN111326659A (zh) * 2020-02-24 2020-06-23 杭州电子科技大学 一种金属透明电极及有机太阳能电池
CN111326659B (zh) * 2020-02-24 2023-08-15 杭州电子科技大学 一种金属透明电极及有机太阳能电池

Similar Documents

Publication Publication Date Title
JP5243714B2 (ja) 有機光電変換素子の製造方法及び有機光電変換素子
US20080142079A1 (en) Photovoltaic cell
WO2007029750A1 (ja) 有機薄膜光電変換素子及びその製造方法
EP2186148A1 (en) P-type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells
CN102201539A (zh) 一种反向结构聚合物太阳电池及其制备方法
KR102167492B1 (ko) 태양전지 및 이를 포함하는 태양전지 모듈
JP5862189B2 (ja) 有機光電変換素子およびこれを用いた太陽電池
JP2006351721A (ja) 積層型有機太陽電池及びその製造方法
JP5699524B2 (ja) 有機光電変換素子および太陽電池
CN102364715B (zh) 一种反向结构聚合物太阳电池及其制备方法
KR102287878B1 (ko) 금속 산화물 전자수집층의 일함수 저감용 조성물, 이를 이용한 역구조 유기 태양전지 및 상기 역구조 유기 태양전지의 제조방법
JP5359255B2 (ja) 有機光電変換素子
JP5375066B2 (ja) 有機光電変換素子の製造方法、及び有機光電変換素子
CN102201536A (zh) 一种有机薄膜太阳能电池及其制备方法
Bhargav et al. Improved performance of organic solar cells with solution processed hole transport layer
CN111613727A (zh) 含阴极缓冲层的反型钙钛矿太阳能电池及其制备方法
JP5298961B2 (ja) 有機光電変換素子の製造方法
WO2012142857A1 (zh) 一种反向结构聚合物太阳电池及其制备方法
KR102099455B1 (ko) 나노크기-분화구 형상을 가지는 전자수집층, 이를 포함하는 역구조 비-풀러렌 유기태양전지, 및 그 제조방법
WO2011052341A1 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP5691449B2 (ja) 有機光電変換素子、それを用いた太陽電池、及び光センサアレイ
JP5413055B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP2014524143A (ja) 二成分系電子選択性バッファー層及び同層を用いる光起電力電池
CN102832346A (zh) 一种基于微腔结构的聚合物太阳能电池及其制备方法
JP5326743B2 (ja) 有機薄膜太陽電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/04/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12773752

Country of ref document: EP

Kind code of ref document: A1