WO2012142855A1 - 一种抗菌肽及其制备方法和应用 - Google Patents

一种抗菌肽及其制备方法和应用 Download PDF

Info

Publication number
WO2012142855A1
WO2012142855A1 PCT/CN2012/000079 CN2012000079W WO2012142855A1 WO 2012142855 A1 WO2012142855 A1 WO 2012142855A1 CN 2012000079 W CN2012000079 W CN 2012000079W WO 2012142855 A1 WO2012142855 A1 WO 2012142855A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
polypeptide
peptide
antibacterial
antimicrobial
Prior art date
Application number
PCT/CN2012/000079
Other languages
English (en)
French (fr)
Inventor
陈育新
Original Assignee
江阴普莱医药生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴普莱医药生物技术有限公司 filed Critical 江阴普莱医药生物技术有限公司
Priority to ES12774269.0T priority Critical patent/ES2661860T3/es
Priority to US14/112,064 priority patent/US9273095B2/en
Priority to EP12774269.0A priority patent/EP2735570B1/en
Publication of WO2012142855A1 publication Critical patent/WO2012142855A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4723Cationic antimicrobial peptides, e.g. defensins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention belongs to the field of polypeptide technology, and in particular to a novel antimicrobial peptide, a preparation method thereof and the use of the antimicrobial peptide in the preparation of a therapeutic pharmaceutical composition for controlling microbial infection. Background technique
  • Antibiotics are drugs that fight pathogenic microorganisms and are the largest class of antibacterial and anti-inflammatory drugs.
  • Antibiotics are substances produced by bacteria, fungi or other microorganisms in the course of life. They have the function of inhibiting or killing pathogenic microorganisms such as bacteria, fungi, spirochetes, mycoplasma, and chlamydia, so they can cure diseases.
  • pathogenic microorganisms such as bacteria, fungi, spirochetes, mycoplasma, and chlamydia
  • Antibiotics are widely used in a variety of infectious diseases, and their variety is numerous. The clinical use of traditional antibiotics in excess has produced many medically relevant resistant strains.
  • Cationic antibacterial peptides can represent a new class of antibiotics.
  • all cationic amphiphilic antibacterial peptides interact with cell membranes, which are the main targets of antimicrobial peptides. Aggregation on the cell membrane leads to an increase in permeability and loss of the barrier function of the cell membrane. The generation of such resistance requires substantial changes in the lipid component of the microbial cell membrane, and therefore, it is almost impossible to produce resistance against the antibacterial peptides of these membrane activities.
  • X-helical and ⁇ -sheet type antimicrobial peptides are the two most important class of cationic antimicrobial peptides.
  • ⁇ -sheet type antimicrobial peptides include cyclic peptides immobilized by intramolecular disulfide bonds, such as defensins and protectins, and A covalently bonded polypeptide of the terminal to the C-terminus, such as gramicidin S and bacillus tyrosin.
  • the oc-spiral antimicrobial peptide is a more linear molecule, which is in an aqueous medium. Disordered structures exist, but they interact in an amphiphilic helix state by interaction with hydrophobic cell membranes, such as mothone, maganin and melittin.
  • antibacterial peptides discovered by humans are directly purified from organisms, such as Magainin obtained from the epidermis, Melittin obtained from bees, etc. These polypeptides are composed of L-form amino acids. .
  • Antibacterial peptides obtained directly from organisms have exclusivity to other organisms, so it is difficult to apply directly to humans. That is, such antibacterial peptides are highly toxic to humans, and many antibacterial peptides are due to toxicity. It is impossible to achieve the goal of becoming a medicine.
  • certain polypeptides composed of L-form amino acids are easily degraded by proteases and become inactivated, so the onset of action is severely limited.
  • the invention synthesizes polypeptides and related compounds which can be used as an antimicrobial preparation by the technology of solid phase synthesis of polypeptides, solves the increasingly serious problem of drug resistance, and solves the pain caused by stubborn infection to a large number of patients.
  • the antibacterial peptide of the present invention can be applied to various intractable infectious diseases and common infections, and is an excellent substitute or auxiliary drug for existing antibiotics.
  • the polypeptide of the present invention which can be used as an antimicrobial preparation has an amino acid sequence of Ac-Phe-Lys-Lys-Leu-Lys-Lys-Leu-Phe-Ser-Lys-Leu-butyl-Asn-Trp- Lys-NH 2 (SEQ ID No. 1); includes L-form (designated PL-13) and D-form (designated PL-18) enantiomers.
  • Leu in the amino acid sequence of the antimicrobial peptide is substituted with any one of the amino acid residues lie, Val, norleucine and norvaline.
  • the Phe in the amino acid sequence of the antimicrobial peptide is substituted with any one of amino acid residues of Trp, Tyr, Leu, He, Val, norleucine and norvaline.
  • the Trp in the amino acid sequence of the antimicrobial peptide is substituted with any amino acid residue of Phe, Tyr, Leu, He, Val, norleucine or norvaline.
  • the antimicrobial peptide comprises a full L-form and a full D-form enantiomer; or any one or several amino acids of the antibacterial peptide are substituted with an L-form or a D-form amino acid.
  • the antibacterial peptide sequence is substituted in a different manner for some of the amino acids or by extending the polypeptide sequence and the truncated polypeptide sequence to obtain a sequence having 85 to 100% amino acid similarity and related compounds thereof.
  • the invention also provides a method for solid phase synthesis of the polypeptide according to the first aspect of the invention, comprising the steps of:
  • a solid phase method coupling is used to sequentially couple the amino acid having a protecting group, and a side chain fully protected linear peptide is synthesized;
  • a pure peptide is prepared by linear elution of AB by high performance liquid chromatography using a C 4 , or C 8 , or C 18 reversed phase column, and the elution rate is 0.5-5 ml/min ; wherein, A flow
  • the phase is an aqueous solution containing 0.01-0.5% TFA
  • the B mobile phase is acetonitrile containing 0.01-0.5% TFA.
  • the prepared pure peptide is analyzed by analytical reversed-phase high performance liquid chromatography RP-HPLC according to the following method: using C 4 , or C 8 , or C 18 column, linear elution of AB is pure
  • the peptide has an elution rate of 0.1 to 5 ml/min ; wherein the mobile phase A is an aqueous solution containing 0.01-0.5% TFA, and the mobile phase B is acetonitrile containing 0.01-0.5% TFA.
  • the antimicrobial peptides of the present invention can be used in the preparation of therapeutic pharmaceutical compositions, such as antimicrobial agents, for controlling microbial infections. If prepared as an antibacterial agent, the dosage range of the antimicrobial peptide in the antibacterial agent is: 0.1-50 mg/kg for injection; 0.1-50 mg/kg for oral preparation; 1/10000-10%/dos for external use; eye drops 1/10000 - 10% / support; lotion 1 / 10000 - 1% 0 / support.
  • the antibacterial peptide of the present invention has antibacterial activity and can kill bacteria, fungi, viruses and protozoa. These antimicrobial peptides generally have an effect on any organism having a cell membrane or a lipid bilayer membrane component. It can be used as a human drug and/or livestock drug, a veterinary drug or as an agricultural, food and industrially effective compound reagent.
  • the present invention has been studied for the structure-activity relationship of natural and synthetic antimicrobial peptides. We have found that some physical properties of antimicrobial peptides are critical for their antibacterial activity. These characteristics include: a suitable charge number at a mild pH, a hydrophobic residue and a basic residue, an amphiphilic, inducible or preformed two that separates the hydrophobic residue from the basic residue. Grade structure ( ⁇ -helix or ⁇ -sheet).
  • the invention also provides an antibacterial peptide, comprising an antibacterial peptide amino acid sequence Amino acid sequence of Ac-Phe-Lys-Lys-Leu-Lys-Lys-Leu-Phe-Ser-Lys-Leu-Trp-Asn-Trp-Lys-NH 2 (SEQ ID No. 1).
  • the present invention also provides a method of treating a microbial infection by administering to a patient an antimicrobial peptide compound of the present invention.
  • microbial infections include infections caused by one or more pathogens of bacteria, viruses, fungi or protozoa. For example, infections caused by two different bacteria at the same time.
  • the object of the present invention is to treat complex and drug-resistant pathogen infections by means of a mode of administration (antibacterial peptides).
  • PL-13 and its analogs are synthesized by a technique in which the polypeptide solid phase is designed from the beginning. These polypeptides have very strong antibacterial and fungal activity and are very toxic to human cells. In terms of sequence composition, these polypeptides have an amino acid homology with PL-13 of more than 85% (composed of 13-17 homologous amino acids, see the sequence information table in Example 1 for details).
  • the polypeptide molecules of the present invention exhibit a certain secondary structure (e.g., a helical structure) in a hydrophobic environment.
  • a certain secondary structure e.g., a helical structure
  • CD circular dichroism
  • a preferred antimicrobial peptide of the invention is a potentially biologically active helical analog which is detected by circular dichroism in a mild environment (non-denaturing medium such as 50 mM phosphate buffer containing 100 mM potassium chloride, pH 7). It has few ⁇ -helical structures. This structural feature may be important for the mechanism of antimicrobial peptide activity, such as: a) reducing the ability to form aggregates in a mild environment, ie, self-interaction; b) allowing antimicrobial peptide molecules to more easily cross the cell wall to the cell membrane of the microorganism.
  • the destruction of the ⁇ -helical structure in a mild environment does not affect the electrostatic attraction of the antimicrobial peptide (positive) and the cell wall (negative) of the microorganism; however, the lack of a specific structure can reduce the cell wall surface pair.
  • the affinity of the antimicrobial peptide (the hydrophobic interaction between the hydrophobic group in the cell wall and the hydrophobic surface of the polypeptide), allowing the antimicrobial peptide to more easily pass through the cell wall, into the pro-/hydrophobic critical surface of the cell membrane, where antimicrobial peptides and membranes The surface is in a parallel state.
  • the antimicrobial peptide can be induced into an a-helical structure by the hydrophobic environment of the cell membrane. Due to this ⁇ -helical structure, we hypothesize that the non-polar surface of the antimicrobial peptide can interact with the hydrophobic portion of the cell membrane, while the polar group and the positively charged group on the polar surface can be combined with the phospholipid on the cell membrane surface. Sexual head (negative) interaction. When the antimicrobial peptide is in an alpha-helical structure, the antimicrobial peptide molecules exhibit a net positive charge and amphiphilicity.
  • an alpha-helical antimicrobial peptide has a non-polar or hydrophobic surface on one side of the molecule and a polar or positively charged surface on the other side of the molecule, i.e., an amphiphilic molecule.
  • the ability of some antimicrobial peptide analogs to self-interact in solution was evaluated by high performance liquid chromatography reverse phase column RP-HPLC temperature monitoring technique in the range of 5 °C to 80 °C.
  • the self-interaction ability of antimicrobial peptides is another important indicator for measuring their antibacterial activity and hemolytic activity.
  • the high self-interacting ability in solution is directly related to the lower antibacterial activity and stronger hemolytic activity of the antimicrobial peptide.
  • Biological studies have shown that the strong hemolytic activity of antimicrobial peptides is generally positively correlated with high hydrophobicity, high amphiphilicity and high helicity. In most cases, an antimicrobial peptide having a D-type amino acid substitution has stronger antibacterial activity than the L-isomer.
  • polypeptide PL-13 and its D-enantiomer polypeptide PL-18 which contain the following amino acid sequence, are preferred in the present invention.
  • the subscript letter D after the amino acid in the single alphabet indicates that the amino acid is a D-type amino acid; similarly, the subscript L indicates that the amino acid is an L-type amino acid.
  • the capital letter D- (non-subscript) indicates that the antimicrobial peptide consists entirely of D-form amino acids except for the specific site.
  • Ac indicates that the N-terminus of the polypeptide is acetylated, and NH 2 represents a C-terminal amidation.
  • antimicrobial peptides and compositions thereof can be prepared for administration to a patient suffering from an infection in any form of a medically usable biological carrier or preparation.
  • the preferred dosage form of the drug substance of the present invention is in the range of 0.01 to 50 mg by weight.
  • Common excipients for preparing the injection preparation of the present invention include: disodium edetate, Tween 80, mannitol, Glycerin, propylene glycol.
  • excipients for preparing the oral solid preparation of the present invention include: microcrystalline cellulose, low-substituted-hydroxypropyl cellulose, polyvinylpyrrolidone, micro-silica gel, starch, dextrin, sucrose, lactose, talc, magnesium stearate, carboxy Sodium methyl starch, cross-linked polyvinylpyrrolidone, pregelatinized starch, and the like.
  • the common auxiliary materials include: mannitol, polysorbate-80, polyethylene glycol, polyoxyl stearate, glycerin, carbomer, triethanolamine, ethanol, polyvinylpyrrolidone, Tartaric acid, sodium hydrogencarbonate, polyvinyl alcohol, sodium benzoate, microcrystalline cellulose, hydroxypropyl methylcellulose, and the like.
  • Preparation of the oral liquid preparation auxiliary of the present invention includes: ethanol, hydroxyethyl ester, methylparaben, polysorbate-80, sodium benzoate, sorbic acid, honey, sucrose, sodium hydrogen sulfite, sodium thiosulfate, ascorbic acid, sulfur Urea, disodium edetate, phosphoric acid, citric acid, glycerin, lactose, and the like.
  • the above raw material component can be matched with a certain proportion of commonly used pharmaceutical excipients, and can be prepared into injections, tablets, capsules, granules, oral liquids, ointments, creams, gels, eye drops according to conventional methods in the art.
  • the formulation and process for preparing the usual dosage forms are as described in the following examples.
  • the dosage range of the antibacterial peptide in the antibacterial agent is: 0.1-50 mg/kg for injection ; 0.1-50 mg/kg for oral preparation; 1/10000-10%/branch for external preparation; 1/10000-10%/branch for eye drops; Lotion 1/100000-1%. / Branch.
  • Figure 1 is a schematic representation of the amino acid sequence of PL-13 and the helical wheel and helix.
  • Figure 2 is a circular dichroic chromatogram of antimicrobial peptides and analogs thereof.
  • Figure 3 shows the reversed-phase high performance liquid chromatography temperature curves of antimicrobial peptides and their analogues.
  • Figure 4 is a calibration curve of the reversed-phase high performance liquid chromatography temperature curve of the antimicrobial peptide and its analog.
  • Polypeptide PL-12 is composed of 15 amino acid residues, the sequence is Ac-FKRLEKLFSKIWNWK-NH 2 , and has two polar surfaces and one non-polar surface.
  • the paternal alpha-helical antimicrobial peptide was used as a template polypeptide in this study.
  • Its polar surface consists of 7 hydrophilic amino acids (3 lysine, 1 arginine, 1 glutamic acid, 1 serine, 1 asparagine) and 1 hydrophobic amino acid (1 color ammonia) Acid) composition.
  • its non-polar surface contains 6 hydrophobic amino acids (2 leucine, 1 isoleucine, 2 phenylalanine, 1 tryptophan) and 1 hydrophilic amino acid (1 a lysine) composition.
  • Fig. 1 shows the amino acid sequence of the preferred polypeptide PL-13 and the pattern of the helical wheel and the helical network in the present invention.
  • a four-boxed amino acid residue indicates a non-polar/hydrophobic surface amino acid located on a helix
  • a circled amino acid indicates a hydrophilic amino acid residue on a non-polar/hydrophobic surface
  • an amino acid in a hexagonal box indicates a hydrophilic surface.
  • PL-12, PL-13 are all composed of L-type amino acids, and we designed the enantiomers PL-17, PL-18CPL-17, PL-18 all composed of D-type amino acids). Therefore, PL-17, PL-18 is completely opposite in stereochemistry to the corresponding PL-12, PL-13.
  • PL-23 and PL-24 are one of the polypeptide analogs formed by substitution of different charged amino acids, and are obtained by selecting the amino acid in the substituted PL-13 sequence to change the performance of the charged amino acid.
  • the amino acid selected for substitution is preferably a charged amino acid, in particular the net charge is a positively charged amino acid.
  • Charged amino acids include Lys, Arg, Om, His, diaminobutyric acid and diaminopropionic acid.
  • Orn has a ⁇ -amino group instead of the ⁇ -amino group of Lys, that is, its side chain is reduced by one carbon atom; diaminobutyric acid has a ⁇ amino group, that is, one carbon atom less than the side chain of Orn; diaminopropionic acid is more than Orn branch Two fewer carbon atoms, ie Has a beta amino group.
  • PL-34 and PL-35 are the D-enantiomers of the above two polypeptides.
  • PL-25 ⁇ 27 is a polypeptide analog formed by multi-point substitution of PL-13.
  • Polypeptides formed by multiple substitutions at different sites of the inventive polypeptide can remain active.
  • multi-point substitution at the center of the non-polar face will have at least the same effect as single-point substitution.
  • the polypeptide having a similarity to the amino acid composition of the PL-13 sequence of 85% or more has a good biological activity.
  • PL-36 to 38 are the enantiomers of the above two polypeptides.
  • PL-28 ⁇ 30 is a polypeptide which is obtained by intercepting amino acids at the N-terminus and the C-terminus of the polypeptide to obtain a polypeptide which is shorter than the polypeptide of the invention, and which is obtained by removing PL-13-terminal or 1-2 amino acids at both ends, Its amino acid similarity is still above 85%, thus maintaining the activity comparable to PL-13 antibacterial.
  • PL-39 to 41 are the enantiomers of the above two polypeptides.
  • Hydrophobic amino acids on the surface of the polypeptide form a hydrophobic surface of the polypeptide by hydrophobic interaction.
  • the non-polar surface of PL-13 consists of Fl, L4, L7, F8, LI 1, W14, K15.
  • the polar surface consists of K2, K3, K5, K6, S9, K10, W12, N13.
  • Recombination of amino acid residues comprising PL-13, particularly hydrophobic amino acids may be the recombination of hydrophobic amino acid residues on non-polar surfaces, recombination of polar amino acid residues on polar surfaces, or on polar surfaces And the non-polar surface for the recombination of amino acid residues without substantially changing the amphiphilic combination of the polypeptide molecules)
  • the polypeptides still have good biological activity, and PL-31 33 is partial sequence information (any 2 is selected)
  • the amino acids are exchanged at a site. This recombination maintains 100% homology with PL-13 in amino acid composition homology, and thus its activity is comparable to that of PL-13.
  • PL-42 to 44 are the enantiomers of the above two polypeptides.
  • the polypeptide of the present invention is a polypeptide analog formed by increasing N-terminal or C-terminal 1-2 amino acid residues.
  • PL-46 a hydrophobic amino acid on the hydrophobic side of the PL-13 (N-terminus), increased the hydrophobic surface of the peptide;
  • PL-47 a hydrophilic amino acid added to the PL-46. This change in length preserves more than 85% amino acid similarity and has similar biological activity as PL-13.
  • More polypeptides in the present invention are formed by substitution of a single site-like hydrophobic amino acid residue. Things. Substitution of a single hydrophobic amino acid with an amino acid having a similar hydrophobic side chain typically results in a biologically active polypeptide.
  • polypeptides of the present invention are all synthesized by solid phase synthesis of polypeptides using a classical technique for polypeptide synthesis, and are synthesized using a method of Fmoc t-butoxycarbonyl protection and MBHA resin (4-toluidine hydrochloride resin) (0.97 mmol/g). It should be noted that, from a technical point of view, the polypeptide of the present invention can be synthesized and produced by other synthetic strategies and synthetic methods. The synthesized crude peptide was separated and purified by preparative reversed phase high performance liquid chromatography.
  • the experimental conditions were as follows: Zorbax 300 SB-C 8 column (250 x 9.4 mm inner diameter; 6.5 ⁇ particle size, 300 ⁇ pore size; Agilent), ⁇ linear wash The gradient was removed (0.2% acetonitrile/min) at an elution rate of 2 ml/min, wherein the mobile phase A was an aqueous solution containing 0.1% TFA and the mobile phase B was acetonitrile containing 0.1% TFA.
  • the prepared pure peptide was analyzed by the following method using analytical reverse phase high performance liquid chromatography RP-HPLC. Further identification of the polypeptide product employs mass spectrometry methods and amino acid component analysis methods.
  • the 15-residue polypeptide having the sequence Ac-FKRLEKLFSKIWNWK-NH 2 (PL-12) was used as a template to study the hydrophobicity/hydrophilicity of the polypeptide caused by substitution with one or more amino acids, The effect of changes in affinity and helix on the biological activity of the polypeptide.
  • These studies confirm: 1) the importance of peptide self-interaction parameters for the biological activity of ⁇ -helical antimicrobial peptides; 2) these substitutions can enhance the antimicrobial activity of the peptide, reduce toxicity and increase antimicrobial specificity while maintaining the fungus, Gram Broad-spectrum antibacterial properties of negative and positive bacteria.
  • the 500 ⁇ M polypeptide mother liquor was diluted 10-fold and added to a 0.02 cm quartz test tube, and the average residue molar ellipticity of the polypeptide was obtained by scanning from 190 to 250 nm.
  • the average residue molar ellipticity of the polypeptide measured at a wavelength of 222 nm was used to assess the alpha-helix relative content of the polypeptide.
  • the parent polypeptide PL-12 is only partially helical in the sputum buffer; however, in the presence of 50% TFE, all three L-peptides are fully folded into an alpha-helical structure and show similar Molar ellipticity and helicity. As expected, the D-peptide map was completely mirrored with the L-peptide map, and the average residue molar ellipticity was also positively and negatively correlated (Table 5).
  • the polypeptides are sorted in order of increasing hydrophobicity, ie, at a pH of 2, at a temperature of 5 °C, the retention times (t R ) of the polypeptides in RP-HPLC are sequentially increased.
  • the helix content (percentage) of the polypeptide indicates the average residue molar ellipticity of the polypeptide molecule and the average residue molar ellipticity (100%) of PL-5 I in 50% trifluoroethanol. The relative ratio.
  • Figure 2 shows a circular dichroism spectrum of an antimicrobial peptide of a representative polypeptide at pH 7.4, 25 ° C, containing 100 mM phosphate buffer of 100 mM KCl, wherein KP buffer (50 mM KH 2 P0 4 , K 2 HP0 4 , 100) mM KC1, pH 7.4) mimics the hydrophilic environment; KP buffer-TFE (l:l [vol/vol]) mimics the hydrophobic environment of the cell membrane.
  • the top panel represents a circular dichroism CD spectrum of an antimicrobial peptide in an aqueous solution containing no trifluoroethanol.
  • the lower panel represents a map of the polypeptide in a solution containing 50% trifluoroethanol.
  • Solid squares representing PL-40 Solid circles On behalf of PL-34, the solid upper triangle represents PL-26, the solid lower triangle represents PL-18, the open square represents PL-13, the open circle represents PL-17, the hollow upper triangle represents PL-12, and the hollow upper triangle represents PL-12.
  • the solid pentagonal represents PL-51.
  • the retention behavior of RP-HPLC is a common method for determining the hydrophobicity of a polypeptide. It is well known that the hydrophobic binding domain produced by the secondary structure of the polypeptide affects the binding of the polypeptide to the stationary phase of the reverse phase column, a phenomenon that is particularly pronounced in amphiphilic polypeptides. Due to this preferential binding domain, the amphiphilic alpha-helical peptide will retain longer than the non-amphiphilic polypeptide with the same amino acid composition.
  • RP-HPLC chromatographic conditions hydrophobic stationary phase, non-polar eluent
  • the change in hydrophobicity caused by the substitution of different amino acids can be directly reflected in the retention time of RP-HPLC.
  • RP-HPLC temperature monitoring technology has been applied to many different types of molecules since its inception, including cyclic folded peptides, monomeric alpha-helical peptides and dimeric alpha-helical peptides, and dimers forming supercoiled structures. Spiral peptide.
  • the elution of the peptide on the reversed-phase column is mainly based on the adsorption and desorption mechanism. Even if a polypeptide is strongly bound to the hydrophobic stationary phase, the peptide will remain in the mobile phase when the concentration of acetonitrile in the mobile phase reaches a certain height. Assign between phases.
  • the mechanism is based on four hypotheses: 1) amphiphilic a-helical molecules capable of forming dimers at low temperatures, which must form two in aqueous solutions (hydrophobic, non-polar surfaces) of reversed-phase chromatography. 2) At high temperatures, due to the destruction of the dimer, the monomer-dimer equilibrium tends to be monomer; 3) when the temperature is high enough, only the monomer exists in the aqueous solution; 4) the polypeptide can only be monomeric The form is bound to the stationary phase of the column, ie the dimer can only be present in the solution, and only the dimer that has been destroyed can be combined with the stationary phase of the column.
  • polypeptide C A polypeptide having a disordered structure (polypeptide C) was used as a control polypeptide when the polymerase ability of the polypeptide was measured by high performance liquid chromatography reverse phase column temperature monitoring.
  • peptide C Since peptide C is monomer-unordered in both aqueous and hydrophobic media, its change in retention behavior from 5 ° C to 80 ° C only reflects the effect of temperature on the retention behavior of the peptide, ie the peptide retention time with temperature The elevated retention time decreases linearly due to the higher solute diffusivity and enhanced mass transfer caused by high temperatures between the stationary phase and the mobile phase. Therefore, after the retention time of polypeptide C is used as a standard control, the polypeptide retention behavior only represents the ability of the polypeptide to self-interact. The higher the devaluation, the stronger the self-interaction ability, and the self-interaction ability of the three pairs of polypeptide counterparts is directly related to the hydrophobicity of the polypeptide. In addition to the above temperature effects, the ⁇ -helical structure is destroyed at elevated temperature, the polypeptide The increase in the disordered structure and the decrease in retention time.
  • the peptide retention time data is shown in Table 6. It records the retention time of 5 ° C in the temperature profile, the maximum retention time and the retention time at 80 ⁇ . 5 ° C and 80 ° C are the upper and lower limits of the temperature of the RP-HPLC temperature profile.
  • the polypeptide is present in a polymer state at 5 ° C, and the polypeptide is denatured at 80 ° C due to high temperature, and the polymer is decomposed into monomers.
  • the maximum retention time represents the point at which the polypeptide is completely converted from a polymer to a monomer. Table 6. Correlation between hydrophobicity of peptide analogs and peptide self-interaction ability in RP-HPLC temperature curve
  • 0 represents the retention time of different polypeptides at 5 ° C and 80 ° C as determined by RP-HPLC and the maximum retention time of the polypeptide measured during temperature changes.
  • P A represents the dissociation constant of each peptide in RP-HPLC temperature monitoring.
  • the maximum retention time difference of the polypeptide is ((t R X -t R S helix peptide) - (i R l -i R 5 control peptide C)), where (t R f -t R 5 ) indicates the difference between the retention time of the polypeptide at a particular temperature ( ⁇ ) condition and its retention time at 5 "C.
  • Peptide C is a control polypeptide with a disordered structure whose retention behavior in RP-HPLC can reflect changes in the RP-HPLC system due to temperature changes. It is used to deduct the influence of chromatographic conditions caused by temperature changes on the retention time of the polypeptide, and thus only reflects the physical properties of the polypeptide at different temperatures.
  • the ability of the D-type polypeptide to self-interact is also determined by RP-HPLC temperature control techniques.
  • the L- and D-polypeptide enantiomers have substantially identical behavioral characteristics over this temperature range. This is due to the enantiomeric polypeptide, which The same secondary structure, the same hydrophobic surface, and the same hydrophobic nature are used when interacting with the reversed phase column.
  • the elution time of RP-HPLC is often used to measure the relative hydrophobicity of polypeptide analogs.
  • the retention time data in Table 6 can be used to reflect the difference in hydrophobicity of the polypeptide analog.
  • the retention time data of the peptide analogs designed in Table 6 at 5 ⁇ and 80 ⁇ are compared with the retention time of the original polypeptide PL-13 at the corresponding temperature, which can more intuitively reveal the change in hydrophobicity of the polypeptide.
  • Figure 3 is a graph showing retention times of polypeptides in RP-HPLC as a function of temperature (5 ° C - 80 ° C).
  • the self-interaction of the polypeptide as described above is temperature dependent.
  • the partitioning of the polypeptide in PR_HPLC is in the dynamic equilibrium of polymer-to-cell interactions, and the polypeptide tends to exist as a dimer or multimer at low temperatures (self-interaction).
  • self-interaction is achieved by the hydrophobic interaction of the hydrophobic surface of the peptide, which results in a weaker binding of the polymer to the stationary phase of the column and therefore a relatively low retention time.
  • the ability of the monomer to bind to the stationary phase of the column is strong, so that the retention time reaches a maximum. Above this critical temperature, we can observe that the retention time of the polypeptide begins to decrease as the temperature continues to rise. This is mainly due to the reduction of mobile phase viscosity and increased mass transfer as well as the denaturation of polypeptide molecules caused by high temperatures.
  • the control structure of the disordered structure C introduced by RP-HPLC temperature monitoring technology is used to reflect the change of column conditions during temperature change, thereby removing the influence of changes in chromatographic conditions on the retention behavior of the peptide.
  • Figure 4 shows the change in retention time difference ((t R tt R 5 of the polypeptide) - (the maximum value of t R tt R of polypeptide C is defined as the polypeptide self-interaction coefficient (P A ), used to quantify the polypeptide in aqueous solution The ability to form a polymer.
  • Figure 3 shows the reversed-phase HPLC temperature profile of antimicrobial peptides and their analogues.
  • Test conditions RP-HPLC, Agilent Zorbax 300 SB-C 8 column (150 4.6-mm 5- ⁇ , 300- ⁇ ), 1% linear gradient elution, flow rate 1 ml/min, mobile phase A: water containing 0.1% trifluoroacetic acid, mobile phase B: acetonitrile containing 0.1% trifluoroacetic acid.
  • the polypeptide (polypeptide C) was used as a control polypeptide.
  • the experimental data was collected for every 5 ° C temperature change from 5 ° C to 80 ° C.
  • Solid squares represent PL-40
  • solid circles represent PL-34
  • the solid upper triangle represents PL-26
  • the solid lower triangle represents PL-18
  • the open circle represents PL-17
  • the hollow lower triangle represents PL-43
  • the solid pentagonal represents PL-51
  • the hollow pentagonal represents polypeptide C.
  • Figure 4 is a graph showing the calibration curve of the reversed-phase high performance liquid chromatography temperature curve of the antimicrobial peptide and its analog. The temperature curves were all corrected for the retention behavior of the disordered structural peptide C1. The analytical column and experimental conditions are shown in Figure 3. The retention behavior of the antimicrobial peptide was corrected by the following formula: Antibacterial peptide (t R tt R 5 )-disordered structural peptide CI (t R tt R 5 ), defined as A to indicate the ability of the antimicrobial peptide to be self-aggregating.
  • t R t represents the retention time of the antimicrobial peptide or the disordered structural peptide C1 under specific temperature conditions; t R 5 represents the retention time at 5 °C.
  • Solid squares represent PL-40, solid circles represent PL-34, solid triangles represent PL-26, solid lower triangles represent PL-18, open circles represent PL-17, hollow lower triangles represent PL-43 , the solid pentagonal represents PL-51, and the polypeptide C is represented by a dotted line.
  • Example 3 Antifungal drug sensitivity test of PL-13 and related series of antimicrobial peptides
  • Candida albicans Candida albicans (Candida albicans), Candida glabrata, Candida krusei, Candida tropicalis, Aspergillus fumigatus
  • the antibacterial peptides to be tested, PL-13, etc. were all provided by Jiangyin Pulai Pharmaceutical Biotechnology Co., Ltd.
  • the control drug Fluconazol (FCZ) (purchased from Shanghai 3D Pharmaceutical Co., Ltd.) and Itraconazole (ICZ) (purchased from SIGMA) were standard powders with a purity of 99% or more.
  • the strains stored on the slant of the PDA were inoculated on a PDA plate and a slant medium, and the strain was activated at 25 ° C (Aspergillus) or 37 ° C (Candida) at a humidity of 60%.
  • the RPMI1640 solution was used as a diluent to dilute the polypeptide storage solution to be tested in 10 steps.
  • the starting concentration of the polypeptide to be tested was set to 64 ⁇ ⁇ /ml
  • the termination concentration was set to 0.125 ⁇ ⁇ /ml
  • the concentration from the first well to the 10th well was from high to low.
  • ⁇ 11 wells each well was added with ⁇ bacteria suspension
  • the concentration of bacterial suspension per well was 0.5 ⁇ 1.5xl0 3 CFU/ml
  • the 12th hole was not added.
  • the 11th well served as a growth control well and the 12th well served as a blank control well.
  • FCZ and ICZ stock solutions were diluted in 10 steps to make the initial concentration of FCZ 64 g/ml, the final concentration was 0.125 g/ml, and the initial concentration of ICZ was 16 g/ml.
  • the termination concentration was 0.03 g/ml.
  • Other operations are the same as above.
  • Table 7 Minimum antifungal concentrations of various peptides to be tested (g/ml)
  • Example 4 Antibacterial sensitivity test of PL-13 and related series of antibacterial peptides
  • test strains consisted of 37 laboratory-preserved standard strains and clinical isolates including resistant bacteria.
  • the control bacteria were selected from Staphylococcus aureus ATCC29213, Enterococcus faecalis ATCC29212, Escherichia coli ATCC25922, Pseudomonas aeruginosa ATCC27853, and pneumonia Bacillus bacillus ATCC700603.
  • MH agar medium was purchased by China National Institute for the Control of Pharmaceutical and Biological Products, and MH broth medium and brain heart infusion medium were products of American DIFCO Company.
  • the antibacterial peptide to be tested PL-13 and the like are provided by Jiangyin Pulai Pharmaceutical Biotechnology Co., Ltd.
  • the reference drug levofloxacin is the standard of China National Institute for the Control of Pharmaceutical and Biological Products.
  • the drug sensitivity test was carried out by using the plate double dilution method and the Denlay multi-point inoculator, and the test bacteria were supplemented with nutrient broth and brain heart infusion.
  • test bacteria (10 4 CFU/dot) were inoculated with a multi-point inoculator, and the results were observed after incubation at 35 ° C for 18 hours.
  • the minimum concentration of the drug contained in the aseptically grown plate is the minimum inhibitory concentration (MIC).
  • the sample was diluted in sterile PBS at a concentration of 1000, 500, 250, 125, 64, 32, 16, 8, 4 g/ml, and placed in a 96-well plate at 100 ⁇ l per empty.
  • the concentration of OD value higher than 0.1 is determined as the hemolysis concentration.
  • ICR mice 20 ⁇ 2 g, same sex, a total of 50, male. Randomly grouped by weight, 10 in each group, 5 in total, and 10 animals were housed in the same plastic box. Divided into infection-negative control group, Baidubang positive control group, 1% concentration cream preparation group, 1%. Concentration cream formulation group and blank matrix control group. Using picric acid labeling, the marked parts are white, head, neck, back and tail. Ordinary animal houses are raised, fed with normal feed, freely watered, and illuminated for 12 hours.
  • Concentration preparation and blank matrix preparation provided by Jiangyin Pulai Pharmaceutical Biotechnology Co., Ltd.), Baidubang (Zhongmei Tianjin Shike Pharmaceutical Co., Ltd.).
  • Blank matrix control 10 224 25280 121 27 Table U PL-13/18 topical agent on skin infection of epifidobacteria ATCC12228 (CFU / dish n 10) Number of animals in the group (only) Whole blood skin (1:10) Liver ( 1:5) Spleen (1:5) Infection control 10 129 10762 87 34
  • Blank matrix control 10 94 9802 50 30 The above results show that PL-13 and PL-18 external preparations can effectively inhibit the skin infection of Staphylococcus aureus and S. epidermidis.
  • Example 7 Treatment of PL-18 injections against bacterially infected animals
  • the animal species are ICR mice, 18-22 g, half male and half female. Randomly grouped by weight, 10 in each group, 6 in total, and 10 words in each of the same plastic boxes. Divided into blank control group, negative control group, levofloxacin positive control group, PL-13 high, medium and low dose groups. Using picric acid labeling method, the common animal house is raised, fed with common vocabulary, free water, light and alternating for 12 hours.
  • PL-18 freeze-dried powder needle (provided by Jiangyin Pulai Pharmaceutical Biotechnology Co., Ltd.), levofloxacin hydrochloride sodium chloride injection (Yangtongjiang Pharmaceutical Group Co., Ltd.), 0.9% sodium chloride injection (Chifeng Rongjitang Pharmaceutical) Limited).
  • each mouse was intraperitoneally injected with a concentration of lxl0 9 CFU/ml of Pseudomonas aeruginosa or lxl0 8 CFU/ml of Staphylococcus aureus 0.2 ml.
  • mice infected with Pseudomonas aeruginosa and Staphylococcus aureus were shown in Table 12-13.
  • Blank control 10 Saline ⁇ ⁇ 0 0 0 0 ⁇ Negative control 10 ⁇ ⁇ 7 3 0 0 0 1. 3
  • ICR mice 18-22 g, half male and half female. Randomly grouped by weight, 10 in each group, a total of 6 groups.
  • the tinidazole positive control group, the three test drug groups, the negative control group and the blank control group were set.
  • the test group was: high, medium and low dose groups.
  • Adopt bitter Taste acid labeling method feeding in common animal houses, feeding with ordinary feed, free water intake, alternating light and dark for 12 hours.
  • PL-34 Oral Preparation (provided by Jiangyin Pulai Pharmaceutical Biotechnology Co., Ltd.), Tinidazole Tablets (Shandong Lukang Pharmaceutical Group Saite Co., Ltd.), 0.9% Sodium Chloride Injection (Chifeng Rongjitang Pharmaceutical Co., Ltd.) the company).
  • each mouse was intraperitoneally injected with Escherichia coli at a concentration of lx10 7 CFU/ml or 0.2 ml of L. dysenteriae solution of l10 5 CFU/ml.
  • Blank control 10 saline 1 0 0 0 0 0 0 0 0 0
  • Negative control 10 ⁇ 1 2 2 3 1 1 6.4
  • Tinidazole 10 tinidazole 80 1 2 2 1 1 2 7.5*
  • the animal species are ICR mice, 18-22 g, half male and half female. Randomly grouped by weight, 20 in each group, a total of 6 groups. Divided into blank control group, negative control group, levofloxacin positive control group, PL-18 high, medium and low dose groups. Using picric acid labeling method, the common animal house is raised, fed with common vocabulary, free water intake, and light and light alternate for 12 hours.
  • PL-18 freeze-dried powder needle (provided by Jiangyin Pulai Pharmaceutical Biotechnology Co., Ltd.), levofloxacin hydrochloride sodium chloride injection (Yangtongjiang Pharmaceutical Group Co., Ltd.), 0.9% sodium chloride injection (Chifeng Rongjitang Pharmaceutical) Limited).
  • Blank control 20 Saline ⁇ 0 0 0 0 0 ⁇ Negative control 20 ⁇ ⁇ 8 7 3 2 0 2.0 Levofloxacin 20 Ofloxacin 30 8 6 2 0 0 3.9*
  • the results of the multiple mixed infection test showed that 20 animals in the negative control group died within 4 days after modeling (20/20).
  • the average survival days in the high dose group was 5.3 days
  • the average survival days in the low dose group was 4.4 days
  • the average survival days in the middle dose group was 5.7 days.
  • the difference between the average survival days of the PL-18 middle dose group and the high dose group was significantly higher than that of the negative control group (p ⁇ 0.01), indicating that the PL-18 high and medium doses were resistant to multiple mixed infections. The effect was better.
  • Antibacterial peptide such as PL-18
  • antibacterial peptides such as PL-13, 75 g of auxiliary microcrystalline cellulose, 75 g of low-substituted-hydroxypropyl cellulose, and 30 g of sodium carboxymethyl starch.
  • the isodification method is mixed with an antimicrobial peptide such as PL-13 to be uniform.
  • Using 5% polyvinylpyrrolidone 50% ethanol solution as a binder granulation by fluidized spray granulation technique, adding 10 g of sodium carboxymethyl starch, lg magnesium stearate, mixing evenly, and tableting.
  • the raw materials are passed through a 100 mesh sieve. Take 10 grams of starch to make 12% starch paste. In addition, the raw materials except talc powder and magnesium stearate are mixed evenly, and starch paste is added to make a granule. Dry at 55-60 °C. The dry granules are meshed with a 40-mesh sieve, and the talc powder and magnesium stearate are uniformly mixed and filled into capsules to obtain a finished product.
  • Example 15 PL-34 and other 10m g / branch oral liquid preparation (10g / support)
  • polyethylene glycol 4000 and polyethylene glycol 400 water baths were heated to 60 ° C and stirred well.
  • Azone and Tween 80 are mixed evenly, added to the mixed solution of polyethylene glycol, and stirred evenly. Place at room temperature.
  • the PL-13 is dissolved in water for injection, with polyethylene glycol
  • Example 17 PL-18, etc. lmg/g cream (5g/piece)
  • the prescription oil phase ingredients ie, glyceryl stearate, stearic acid, liquid paraffin, petrolatum, lanolin
  • the raw material was added to the aqueous phase component (triethanolamine, hydroxyethyl ester dissolved in distilled water), and the mixture was uniformly stirred and heated to 80 °C.
  • the molten oil phase is added to the aqueous phase and stirred to form an emulsion. Fill at room temperature. Get the finished product.
  • the raw materials were dissolved in 60% of the water for injection and stirred until uniform.
  • the water for injection containing 10% of the prescription amount was heated to 60 ° C, and dissolved in hydroxyethyl ester.
  • the aqueous raw material solution and the aqueous solution of hydroxyethyl ester are mixed, and the uniformly mixed prescription azone and Tween 80 are added, and water is added to 1000 ml to pass the test, and then filled into a spray bottle to obtain a finished product.
  • Example 22 PL-13 and the like 0.5 mg / lotion (50 ml / support)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Communicable Diseases (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

一种抗菌肽及其制备方法和应用
技术领域
本发明属于多肽技术领域,尤其是涉及一种新型的抗菌肽及其制备方法和该 抗菌肽在制备用于控制微生物感染的治疗药物组合物中的应用。 背景技术
抗生素是能抵抗致病微生物的药物, 是抗菌消炎药中最大的一类。抗生素是 由细菌、 真菌或其他微生物在生活过程中所产生的物质, 具有抑制或杀灭细菌、 真菌、 螺旋体、 支原体、 衣原体等致病微生物的作用, 故能治病。 还有的抗生素 可治疗恶性肿瘤。抗生素类药物广泛地应用于各种感染性疾病, 其品种繁多。在 临床上过量地使用传统抗生素已经产生许多医学上相关抗药性菌种。然而, 在过 去的四十年中, 只有三种在结构上创新的抗生素被投入到临床实践中 (恶唑烷酮 类的利奈唑胺、 链霉杀阳菌素和脂肽-达托霉素), 因此研发新类型抗生素具有重 要意义。阳离子抗菌肽可以代表一类新型的抗生素, 虽然阳离子抗菌肽的作用模 式尚未完全确定,但所有的阳离子两亲性抗菌肽都会与细胞膜相互作用, 细胞膜 是抗菌肽的主要靶点,抗菌肽分子在细胞膜上的聚集会导致通透性的增加并使细 胞膜丧失其屏障功能。 产生这种抗药性需要对微生物细胞膜脂成分的实质性改 变, 因此, 针对这些膜活性的抗菌肽产生抗药性是几乎不可能的。
(X-螺旋型和 β-折叠型抗菌肽是最主要的两大类阳离子抗菌肽。 β-折叠型抗菌 肽包括由分子内二硫键固定的环形多肽, 例如防卫素和保护素, 以及具有 Ν末 端到 C末端的共价键的多肽,例如短杆菌肽 S和短杆菌酪肽。与 β-折叠型抗菌肽 不同, oc-螺旋型抗菌肽是更加线性的分子, 其在水介质中以无序结构存在, 但它 们通过与疏水细胞膜相互作用,呈两亲螺旋状态,例如蛾血素,马加宁和蜂毒肽。
目前人类发现的抗菌肽大多数由生物体直接提纯得来的,例如由蟾蜍表皮得 到的蟾蜍肽 (Magainin)、 蜜蜂体内得到的蜂毒肽 (Melittin) 等, 这些多肽均由 L-型氨基酸组成。 生物体直接得来的抗菌肽具有对其它生物体的排他性,因此很难直接应用在 人体上, 即这一类的抗菌肽对人体有很强的毒性,有很多抗菌肽正是因为毒性原 因, 无法实现成为药品的目标。 同时, 某些 L-型氨基酸所构成的多肽进入体内 后容易被蛋白酶降解而失活, 因而起效作用受到严重限制。
发明内容
本发明通过多肽固相合成的技术合成了可以用作抗微生物制剂的多肽及其 相关化合物,解决日益严重的抗药性问题,解决顽固感染对广大患者造成的痛苦。 本发明中的抗菌肽可以应用于各种顽固感染性疾病及普通感染,作为现有抗生素 的优良替代药物或辅助药物。
为实现上述发明目的, 本发明采用如下技术方案:
本发明所述的可以用作抗微生物制剂的多肽, 其氨基酸的序列为 Ac-Phe-Lys-Lys-Leu-Lys-Lys-Leu-Phe-Ser-Lys-Leu-丁 rp-Asn-Trp-Lys-NH2 ( SEQ ID No.l ); 包括 L-型 (命名为 PL-13 ) 和 D-型 (命名为 PL-18) 对映异构体。
优选的是:所述抗菌肽氨基酸序列中的 Leu由 lie, Val, 正亮氨酸, 正缬氨酸中 任一氨基酸残基取代。
优选是: 所述抗菌肽氨基酸序列中的 Phe由 Trp, Tyr, Leu, He, Val, 正亮氨 酸, 正缬氨酸中任一氨基酸残基取代。
优选是: 所述抗菌肽氨基酸序列中的 Trp由 Phe, Tyr, Leu, He, Val, 正亮氨酸, 正缬氨酸中任一氨基酸残基取代。
优选的是: 所述的抗菌肽包括全 L-型和全 D-型对映异构体; 或者所述的抗 菌肽任意一个或几个氨基酸用 L-型或 D-型氨基酸取代。
优选的是:所述抗菌肽序列中以不同方式取代其中某些氨基酸或延长多肽序 列及截短多肽序列的方式以所得的具有 85— 100%氨基酸相似的序列及其的相关 化合物。 本发明还提供了一种多肽固相合成前一发明技术方案所述抗菌肽的方法,包 括步骤:
1 ) 由酰胺类树脂、 Fmoc保护氨基酸、 偶联试剂和有机碱为起始原料, 在保 护的有机溶剂中反应得到 Fmoc保护氨基酸-酰胺类树脂偶联物;
2) 采用固相法偶联逐一偶联依次连接具有保护基团的氨基酸, 合成得到侧 链全保护线性肽;
3 ) 多肽 N末端的最后一个氨基酸连接到树脂上之后, 脱去其 Fmoc保护, 进行适当的化学修饰;
4) 加入剪切试剂, 将多肽从树脂上剪切下来, 真空冷冻干燥得到多肽的粗
P
0P。
优选的是: 采用 C4, 或 C8, 或 C18反相色谱柱, 利用高效液相色谱方法进 行 AB线性洗脱制备纯品肽, 洗脱速度为 0.5~5ml/min; 其中, A流动相为含有 0.01-0.5%TFA的水溶液, B流动相为含有 0.01-0.5 %TFA的乙腈。
更优的是: 制备得到的纯品肽采用分析型反相高效液相色谱 RP-HPLC按照 下述方法进行分析: 采用 C4, 或 C8, 或 C18柱, 进行 AB线性洗脱制备纯品肽, 洗 脱速度为 0.1~5ml/min; 其中, A流动相为含有 0.01-0.5 %TFA的水溶液, B流动相 为含有 0.01-0.5 %TFA的乙腈。
本发明所述的抗菌肽可以用于制备控制微生物感染的治疗药物组合物,如抗 菌剂等。 如制备成抗菌剂, 所述抗菌剂中抗菌肽的剂量范围为: 注射剂 0.1-50mg/kg; 口服剂 0.1-50mg/kg; 外用剂 1/10000- 10%/支; 滴眼剂 1/10000- 10%/ 支; 洗剂 1/10000-1%0/支。
本发明所述的抗菌肽具有抗菌活性,可以杀死细菌、真菌、病毒和原生动物。 这些抗菌肽总体上对任何具有细胞膜或脂双层膜组分的生物体均有作用。可以用 作人类药物和 /或牲畜药物、 兽用药物或者作为农业、 食品及工业上有效的化合 物试剂。
本发明经过对天然的及人工合成的抗菌肽的构效关系研究,我们发现抗菌肽 的一些物理特性对于其抗菌活性是至关重要的。 这些特性包括: 在温和 pH值下 带有适宜的电荷数, 同时存在疏水残基与碱性残基,将疏水残基与碱性残基分开 的两亲性, 可诱导的或预先形成的二级结构 (α-螺旋或 β-折叠)。
本发明还提供 了 一种抗菌肽 , 抗菌肽氨基酸序列 中包括 Ac-Phe-Lys-Lys-Leu-Lys-Lys-Leu-Phe-Ser-Lys-Leu-Trp-Asn-Trp-Lys-NH2 ( SEQ ID No.l ) 氨基酸序列。
本发明还提供了一种治疗微生物感染的方法,即对患者给予本发明的抗菌肽 化合物进行治疗。 在临床实践中, 微生物感染包括细菌、 病毒、 真菌或原生动物 的一种或多种病原体所引起的感染。 例如, 两种不同的细菌同时引起的感染等。 然而, 临床检测是哪种感染的过程及确定治疗方案, 相对繁琐。本发明的目的是 通过一种给药方式 (抗菌肽), 治疗复杂型及耐药型病原体感染。
本发明中利用多肽固相从头设计的技术, 合成得到了 PL-13 及其类似物。 这些多肽具有非常强的抗细菌和真菌活性, 同时对人体细胞毒性很低。序列组成 上, 这些多肽与 PL-13的氨基酸同源性在 85%以上(可由 13-17个同源氨基酸组 成, 详见实施例 1中序列信息表)。
本发明所述的多肽分子在疏水环境中呈一定的二级结构 (例如螺旋结构)。 我们己经利用圆二色谱 (CD) 监测了抗菌肽分子在 50%三氟乙醇 (细胞膜疏水 环境的模拟) 中的 α-螺旋结构。
本发明优选的抗菌肽是具有潜在的生物学活性的螺旋类似物,通过圆二色谱 检测,该抗菌肽在温和环境中(非变性介质,如含有 lOOmM氯化钾, pH7的 50mM 磷酸缓冲液)具有很少的 α-螺旋结构。该结构特征可能对抗菌肽活性机理有重要 意义, 例如: a)降低在温和环境中形成聚合体的能力, 即自我相互作用能力; b) 允许抗菌肽分子更容易穿过细胞壁到达微生物的细胞膜。并且,在温和环境中对 α-螺旋结构的破坏, 不会对抗菌肽 (正电性)与微生物的细胞壁 (负电性) 的静电 吸引作用产生影响; 然而,特定结构的缺少可以降低细胞壁表面对抗菌肽的亲和 作用 (细胞壁中的疏水基团与多肽疏水面的疏水相互作用), 从而允许抗菌肽更 易于通过细胞壁, 进入到细胞膜的亲 /疏水的临界面, 在该区域抗菌肽与膜表面 呈平行状态。在膜内, 抗菌肽可以被细胞膜的疏水环境诱导成 a-螺旋结构。 由于 此 α-螺旋结构, 我们猜测抗菌肽的非极性面可以和细胞膜的疏水部分相互作用, 而其极性面上的极性基团和带正电的基团可以和细胞膜表面上磷脂极性头部(负 电性) 相互作用。 当抗菌肽呈 α-螺旋结构时, 抗菌肽分子呈现带净正电和两亲性。 例如, α- 螺旋型抗菌肽在分子的一侧有非极性或疏水表面,在分子另一侧有极性或者带正 电荷的表面, 即两亲性分子。
通过高效液相色谱反相柱 RP-HPLC的温度监控技术,在 5 °C~80°C的范围内, 对一些抗菌肽类似物在溶液中的自我相互作用的能力进行评估。抗菌肽的自我相 互作用能力是衡量其抗菌活性与溶血活性的另一个重要指标。一般来说,在溶液 中的高自我相互作用能力与抗菌肽较低的抗菌活性和较强的溶血活性直接相关。 生物学研究表明抗菌肽强的溶血活性一般与高疏水性、高两亲性及高螺旋性呈正 相关。 多数情况下, 带有 D-型氨基酸取代的抗菌肽具有比 L-型异构体更强的抗 菌活性。 通过利用一系列选定的 D-或者 L-型氨基酸替换在这些两亲分子的非极 性和极性面上的疏水或者亲水的氨基酸残基,我们进一步证实了本方法可以用来 合理设计具有增强的活性的抗菌肽。
本发明优选多肽 PL-13以及其 D型对映体多肽 PL-18, 其含有下面氨基酸序 列。
表 1多肽及其氨基酸序列
Figure imgf000007_0001
这里, 单字母表中氨基酸后面的下标字母 D代表该氨基酸是 D-型氨基酸; 与此相同的, 下标 L代表该氨基酸是 L-型氨基酸。 在抗菌肽名称中, 大写字母 D- (非下标) 表示除特指位点外, 该抗菌肽全部由 D-型氨基酸所组成。 Ac表示 多肽的 N端被乙酰化, NH2表示 C端酰胺化。
上述抗菌肽及其组合物可以制备为任何一种医学上可用的生物载体或制剂 形式给予感染疾病患者。
本发明原料药优选制剂剂量范围是 0.01-50mg重量份。
制备本发明注射制剂常用辅料包括: 乙二胺四乙酸二钠、 吐温 80、 甘露醇、 甘油、 丙二醇。
制备本发明口服固体制剂常用的辅料包括: 微晶纤维素、 低取代-羟丙基纤 维素、 聚乙烯吡咯烷酮、 微粉硅胶、 淀粉、 糊精、 蔗糖、 乳糖、 滑石粉、 硬脂酸 镁、 羧甲基淀粉钠、 交联聚乙烯吡咯垸酮、 预胶化淀粉等。
制备本发明外用制剂所述常用辅料包括: 甘露醇、 聚山梨酯 -80、 聚乙二醇、 硬脂酸聚烃氧酯、 甘油、 卡波姆、 三乙醇胺、 乙醇、 聚乙烯吡咯垸酮、 酒石酸、 碳酸氢钠、 聚乙烯醇、 苯甲酸钠、 微晶纤维素、 羟丙基甲基纤维素等。
制备本发明口服液体制剂辅料包括: 乙醇、 羟苯乙酯、 羟苯甲酯、 聚山梨酯 -80、 苯甲酸钠、 山梨酸、 蜂蜜、 蔗糖、 亚硫酸氢钠、 硫代硫酸钠、 抗坏血酸、 硫脲、 乙二胺四乙酸二钠、 磷酸、 枸椽酸、 甘油、 乳糖等。
上述原料组分可与一定比例的常用药用辅料相配,按照本领域常规方法可制 成包含注射剂、 片剂、 胶囊剂、 颗粒剂、 口服液、 软膏剂、 乳膏剂、 凝胶剂、 滴 眼剂、 喷雾剂、 气雾剂、 贴剂、 涂膜剂、 洗剂中的一种。 常用剂型制备处方和工 艺参见下述实施例。
所述抗菌剂中抗菌肽的剂量范围为: 注射剂 0.1 -50mg/kg ; 口服剂 0.1-50mg/kg;外用剂 1/10000-10%/支;滴眼剂 1/10000- 10%/支;洗剂 1/100000-1%。/ 支。
附图说明
图 1为 PL-13的氨基酸序列及螺旋轮和螺旋网示意图。
图 2为抗菌肽及其类似物的圆二色谱图。
图 3为抗菌肽及其类似物反相高效液相色谱温度曲线。
图 4为抗菌肽及其类似物的反相高效液相色谱温度曲线的校正曲线。
具体实施方式
下面结合具体实施例对本发明做进一步详细说明。 实施例 1 衍生自 PL-12的相关抗菌肽序列信息 多肽 PL-12是由 15个氨基酸残基所组成, 序列为 Ac-FKRLEKLFSKIWNWK-NH2, 具有一 个极性表面和一个非极性表面的两亲性 α-螺旋型抗菌肽, 在本研究中作为模板多肽。 它的极 性表面由 7个亲水氨基酸 (3个赖氨酸、 1个精氨酸、 1个谷氨酸、 1个丝氨酸、 1个天冬酰胺) 和 1个疏水氨基酸 (1个色氨酸) 组成。 相比之下, 其非极性表面含有 6个疏水氨基酸 (2个亮 氨酸、 1个异亮氨酸、 2个苯丙氨酸、 1个色氨酸) 和 1个亲水氨基酸 (1个赖氨酸) 组成。
通过氨基酸取代, 我们得到了系列 PL-13多肽类似物 (附图 1 ), 图 1表明在本发明中优 选多肽 PL-13的氨基酸序列及螺旋轮和螺旋网的图形。 带四方框的氨基酸残基表示位于螺旋 的非极性 /疏水表面氨基酸, 带圆圈的氨基酸表示位于非极性 /疏水表面上的亲水氨基酸残基, 六方形框中的氨基酸表示位于亲水面上的疏水氨基酸。 在螺旋轮中, 亲水表面用空心的弓形 表示, 疏水表面用实心的弓形表示。 Ac指 N端乙酰化, NH2指 C端酰胺化。 氨基酸残基用 单字母编码表示并以此为基础进行进一步改造, 得到了一组活性基本一致的相关抗菌多肽。 多肽 PL-12, PL- 13全部是由 L-型氨基酸组成,我们设计了对映异构体多肽 PL-17, PL-18CPL-17, PL-18全部由 D-型氨基酸组成)。 因此, PL-17, PL-18在立体化学上与相应的 PL-12, PL-13完 全相反。
PL-23及 PL-24为不同带电氨基酸取代形成的多肽类似物之一, 通过选择取代 PL-13序 列中氨基酸改变带电氨基酸的性能而得到的。选择用于取代的氨基酸优选是带电荷的氨基酸, 特别是净电荷为带正电荷的氨基酸。 带电荷的氨基酸包括 Lys、 Arg、 Om、 His, 二氨基丁酸 和二氨基丙酸。 Orn具有 δ-氨基来替代 Lys的 ε-氨基, 即其侧链减少一个碳原子; 二氨基丁 酸具有 γ氨基, 即其比 Orn的侧链少一个碳原子; 二氨基丙酸比 Orn支链少两个碳原子, 即 具有 β氨基。 PL-34及 PL-35为上述两条多肽的 D型对映异构体。
PL-25〜27为多点取代 PL-13形成的多肽类似物。 在发明多肽的不同位点进行多点取代 形成的多肽 (如双取代) 能够依然保持活性。 对于多点取代形成的特定多肽, 这样的在非极 性面中心的多点取代至少会与单点取代具有同样的效果。 考虑到多肽序列的氨基酸组成, 特 别是疏水氨基酸在生物活性中的重要性, 认为具有与 PL-13序列的氨基酸组成 85%以上的相 似度的多肽, 具有很好的生物学活性。 PL-36〜38为上述两条多肽的对映异构体。
PL-28〜30为对多肽的 N端和 C端的氨基酸进行截取,获得比发明多肽更短的多肽之一, 这种去除 PL-13—端或两端 1-2个氨基酸而产生的多肽, 其氨基酸相似性仍在 85%以上, 从 而保持了与 PL-13抗菌相当的活性。 PL-39〜41为上述两条多肽的对映异构体。
多肽表面的疏水氨基酸通过疏水相互作用, 构成多肽整体疏水面。 PL-13 的非极性表面 上由 Fl, L4, L7, F8, LI 1, W14, K15组成。同样,极性表面由 K2, K3, K5,K6, S9, K10, W12, N13 组成。 对组成 PL-13的氨基酸残基特别是疏水氨基酸进行重组 (可以是将非极性表面上疏水 氨基酸残基进行重组, 将极性表面上的极性氨基酸残基进行重组, 或在极性表面及非极性表 面进行氨基酸残基的重组而不会实质改变多肽分子的两亲性的组合) 组成的多肽仍然具有很 好的生物学活性, PL-31 33为部分序列信息 (选取了任意 2个氨基酸进行位点互换) , 这种 重组在氨基酸组成同源性中与 PL-13保持了 100%的同源性,因而其活性与 PL-13抗菌活性相 当。 PL-42〜44为上述两条多肽的对映异构体。
表 2 部分多肽序列信息汇总表
Figure imgf000010_0001
对映异构体 B D D D D D D D D D D D D D D D
14 PL-17 F K R L E K L F S K 1 W N W K
15 PL-18 F K L K L F S K L W N W K
16 PL-34 F K K L K K K F s K L w N w K
17 PL-35 F K K L K K R F s K L w N w K
18 PL-36 L K K L K K L L s K L w N w K
19 PL-37 F K K L K K L F s K L L N L K
20 PL-38 L K K L K K L F s K L L N L K
21 PL-39 F K K L K K L F s K L w N
22 PL-40 K L K K L F s K L w N w K
23 PL-41 K K L K K L F s K L w N w
24 PL-42 W K K L K K L F s K L w N F K
25 PL-43 F K K F K K L L s K L w N w K
26 PL-44 F K K L K K L F s K L K N w w
实施例 1一 1. 延长 PL-13形成的多肽类似物
本发明中多肽是通过增加 N端或 C端 1-2个氨基酸残基形成的多肽类似物。 PL-46, 在 PL-13疏水面上 (N端) 增加一个疏水氨基酸, 加大了多肽疏水面; PL-47 , 在 PL-46基础上 增加一个亲水氨基酸。 这种长度变化保存了 85%以上的氨基酸相似性, 具有与 PL-13相似的 生物学活性。
表 3 延长 PL-13两端氨基酸形成的多肽序列
Figure imgf000011_0001
实施例 1-2. 相似的疏水氨基酸取代形成的多肽类似物
本发明中更多的多肽是通过单一位点相似的疏水性氨基酸残基的取代来形成的多肽类似 物。 采用具有类似疏水性侧链的氨基酸来进行单个疏水性氨基酸的取代通常会产生具有生物 学活性的多肽。
表 4 可用于同源氨基酸取代的氨基酸残基
Figure imgf000012_0001
实施例 2 PL-13及相关抗菌肽制备及相关参数检测
本发明中的多肽全部采用多肽合成的经典技术, 进行多肽固相合成, 使用 Fmoc叔丁氧 羰基保护的方法和 MBHA树脂 (4-甲苯氢胺树脂) (0.97mmol/g)合成。 需要指出的是, 从技 术角度来说, 本发明中的多肽可以采用其它的合成策略与合成方法进行合成和生产。 合成的 多肽粗产物通过制备型反相高效液相色谱进行分离纯化, 实验条件如下: Zorbax 300 SB-C8 柱 (250x9.4mm内径; 6.5μηι 粒径, 300Α孔径;安捷伦公司), ΑΒ线性洗脱梯度 (0.2%乙腈 /min), 洗脱速度为 2ml/min,其中, A流动相为含有 0.1 %TFA的水溶液, B流动相为含有 0.1 %TFA 的乙腈。 制备得到的纯品肽采用分析型反相高效液相色谱 RP-HPLC按照下述方法进行分析。 多肽产物的进一步鉴定采用质谱方法和氨基酸组分分析方法。
多肽的 RP-HPLC分析 -采用安捷伦 1200系列液相色谱进行多肽产物的分析 (Little Falls, DE)。 实验条件如下: Zorbax 300 SB-C8柱 ( 150 <4.6内径; 5 μηι粒径; 300Α孔径), ΑΒ线性 洗脱梯度 (1%乙腈 /min), 洗脱速度为 lml/min。 其中, A流动相为含有 0.05 %TFA的水溶液, B流动相为含有 0.05 %TFA的乙腈。
在下面阐述的研究中, 拥有序列 Ac-FKRLEKLFSKIWNWK-NH2 (PL-12)的 15-残基多肽 被作为模板来研究用一个或多个氨基酸取代所引起的多肽疏水性 /亲水性、 两亲性及螺旋性的 变化对多肽生物活性的影响。这些研究证实了: 1 )多肽自我相互作用参数对 α-螺旋型抗菌肽 生物活性的重要性; 2)这些取代可以增强多肽抗菌活性, 降低毒性并且增加抗菌特异性, 同 时保持对真菌、 革兰氏阴性和阳性细菌的广谱抗菌性。
螺旋结构的表征 -利用 Jasco J-720 圆二色谱 (CD) 仪 (Jasco, Easton, MD), 在 25 °C温和 条件(50mM KH2P04/K2HP04/ 100 mM KC1, pH 7)和含有 50%α-螺旋诱导试剂 2,2,2-三氟乙 醇 (TFE)的溶液 (50mM KH2PO4/K2HPO4/100mM KCL, pH7缓冲溶液 /50%TFE) 中, 分别测 定抗菌肽的平均残基摩尔椭圆率。将 500μΜ的多肽母液经过 10倍稀释以后加入到 0.02cm石 英测试管中, 在 190到 250 nm区间扫描得到多肽的平均残基摩尔椭圆率。 在 222nm波长下 测得的多肽平均残基摩尔椭圆率用于评估多肽的 α-螺旋性相对含量。
为了测定不同环境下的多肽二级结构,我们在近生理 ρΗ和离子强度条件下( 100 mM KC1 的 50 mM磷酸缓冲液 pH 7)及含有 50%三氟乙醇溶液来模拟细胞膜疏水环境的条件下对多 肽类似物进行圆二色谱的测定。 我们在温和条件 (100 mM KCl, 50 mM KH2PO4/K2HPO4, pH 7, 叫做 KP缓冲液) 以及 50%三氟乙醇(TFE) 中 (模拟细胞膜的疏水环境) 中测定这些 多肽类似物的圆二色谱。 如附图 2所示, 亲本多肽 PL-12在 ΚΡ缓冲液中只呈部分螺旋; 然 而, 在含有 50%TFE时, 全部 3个 L-多肽均充分折叠成 α-螺旋结构并显示出相似的摩尔椭圆 率和螺旋性。 正如所预想的一样, D-多肽图谱与 L-多肽图谱呈完全镜像关系, 其平均残基摩 尔椭圆率也呈正负关系的相近数值 (表 5 )。
表 5 多肽类似物的生物物理数据
Figure imgf000013_0001
a. 组成多肽的氨基酸序列见表 2及表 3。
b. 多肽按照疏水性升高的顺序进行排序 即在 pH 为 2, 温度为 5 °C条件下, 多肽在 RP-HPLC中的保留时间 (tR) 的升 高顺序进行排列。
c 在 25° C条件下, 利用圆二色谱仪分别测定多肽分子在温和缓冲液 (l OOmM KCL 50mM P04, pH7.0 ) 或含有 50 %三氟乙醇的缓冲液中在 222nm波长处的平均残基摩尔椭圆率, [θ]222,(deg.Cm2.dm0r')。 平均残基摩尔椭圆率为负 值表示右手螺旋, 正值表示左手螺旋
d. 多肽的螺旋含量(百分数)表示多肽分子的平均残基摩尔椭圆率与 PL-5 I在 50%三氟乙醇中的平均残基摩尔椭圆率(100%) 的相对比值。
多肽类似物的圆二图谱见附图 2所示。
图 2表明代表性多肽在 PH7.4, 25 °C , 包含 lOOmM KCl 的 50mM磷酸缓冲液的条件下 抗菌肽的圆二色谱图谱, 其中 KP buffer (50mM KH2P04, K2HP04, 100 mM KC1, pH 7.4)模拟亲 水环境; KP buffer-TFE (l :l [vol/vol])模拟细胞膜的疏水环境。 上图代表抗菌肽在不含三氟乙 醇水溶液中的圆二色谱 CD图谱, 下图代表多肽在含有 50%三氟乙醇溶液中的图谱, 使用的 符号有: 实心方块代表 PL-40, 实心圆圈代表 PL-34, 实心上三角代表 PL-26, 实心下三角代 表 PL-18, 空心方块代表 PL-13, 空心圆圈代表 PL-17, 空心上三角代表 PL-12, 空心下三角 代表 PL-43, 实心五角代表 PL-51。
RP-HPLC的保留行为是判断多肽疏水性的常用方法。 众所周知, 由多肽的二级结构而产 生的疏水结合域会影响多肽与反相柱固定相的相互结合, 这种现象在两亲性的多肽中尤为明 显。 由于这种优先结合域, 两亲性的 α-螺旋肽会比与其具有同样氨基酸组成的非两亲多肽保 留时间更长。 另外, RP-HPLC的色谱条件 (疏水固定相, 非极性洗脱剂) 也可以在潜在的螺 旋多肽中以与螺旋诱导溶剂 TFE相似的方式诱导并稳定螺旋结构。这样一来由不同氨基酸取 代所带来的疏水性的变化可以直接反应在 RP-HPLC的保留时间上。
我们进一步利用高效液相色谱反相柱温度监控技术来确定 PL-13各种类似物自我相互作 用的能力, 自我相互作用是通过这些两亲性多肽的 α-螺旋的非极性表面相互作用而实现的。 我们利用 0.05%TFA乙腈水溶液和色谱反相柱的疏水条件 (疏水的固定相和在流动相中的疏 水有机试剂), 反相柱的疏水环境也可以诱导 α-螺旋结构。 RP-HPLC温度监控技术自发明至 今己经应用在许多不同类型的分子上, 其中包括环状 折叠多肽, 单体 α-螺旋肽和二聚体 α- 螺旋肽及形成超螺旋结构的二聚体螺旋肽。 多肽在色谱反相柱上的洗脱主要靠吸附和去吸附 机理, 即使一个多肽强烈结合在疏水固定相上, 当流动相中的乙腈的浓度达到一定高度时该 多肽还是会在流动相与固定相之间进行分配。 总体来说, 机理基于 4种假设: 1 )低温时有能 力形成二聚体的两亲性 a-螺旋分子, 它一定会在反相色谱的水溶液 (疏水性, 非极性表面)中 形成二聚体; 2)在高温时由于二聚体被破坏, 单体-二聚体的平衡倾向于单体; 3 ) 温度足够 高时水溶液中只有单体存在; 4)多肽只能以单体的形式结合到色谱柱固定相上, 即二聚体只 能存在溶液中, 只有己被破坏的二聚体才能与色谱柱固定相相结合。
在利用高效液相色谱反相柱温度监控来衡量多肽聚合能力时,一个呈无序结构的多肽(多 肽 C)被作为对照多肽。这个序列为乙酰- ELEKGGLEGEKGGKELEK-酰胺的 18个残基多肽, 即使在低温 5°C和强 α-螺旋诱导剂 50%三氟乙醇(TFE)存在的条件下,依然呈无序结构 ([θ]222 = -3,950)。 由于肽 C在水相和疏水介质中均呈单体无序状态, 它由 5°C到 80°C内保留行为的 变化仅仅体现了温度对多肽保留行为的影响, 即肽保留时间随着温度的升高保留时间呈线性 降低, 这是由于在固定相和流动相之间高温所引起的更高的溶质扩散性和增强的质量转移。 因此以多肽 C的保留时间做标准对照后, 多肽保留行为仅代表多肽自我相互作用能力。 Α值 越高代表自我相互作用能力越强, 三对多肽对应体的自我相互作用能力与多肽的疏水性直接 相关, 除了由于上述的温度作用以外, 升高温度时 α-螺旋结构被破坏, 多肽的无序结构的增 多, 保留时间下降。
多肽保留时间数据如表 6所示, 它记录了温度曲线图中 5°C的保留时间, 最大保留时间 及在 80Ό的保留时间。 5°C和 80°C是 RP-HPLC温度曲线图的温度上限和下限, 在 5°C多肽呈 聚合体状态存在, 而在 80°C由于高温使多肽变性, 聚合体分解成单体。 最大保留时间代表着 多肽由聚合体全部转变成单体的界点。 表 6.在 RP-HPLC温度曲线中, 多肽类似物的疏水性与多肽自我相互作用能力的相关性
tR(m\n)b AiR(X-Peptide C)(min)c PA
Peptides0
5 °C Max 80 °C 5 °C 80 °C (mm )
PL-40 33.16 33.16 30.94 10.60 11.01 0.55
PL-34 34.76 34.76 32.75 12.20 12.82 0.81
PL-26 35.66 35.66 33.49 13.10 13.56 0.68
PL-13 35.75 35.75 33.37 13.19 13.45 0.56
PL-18 35.75 35.75 33.37 13.19 13.45 0.56
PL-17 38.02 38.04 36.10 15.46 16.19 0.93
PL-43 41.64 41.97 40.52 19.08 20.60 1.65
PL-51 42.59 42.96 41.35 20.02 21.42 1.63
d 22.56 22.56 19.91
0 表示经 RP-HPLC测定的不同多肽在 5 °C和 80 °C 的保留时间以及在温度变化过程中所测得的多肽最大保 留时间。
表示在不同温度下 (5 ° (:和 80 °C), 多肽的保留时间与对照多肽 C的保留时间之差, 代表了多肽类似物 的相对疏水性。
f. PA表示在 RP-HPLC控温监测中, 每种肽的解离常数。 在温度变化范围内, 用多肽最大的保留时间差值即 ((tR X-tR S螺旋肽) - (iR l-iR 5对照肽 C))来表示, 其中, (tR f-tR 5)表示多肽在特定温度 (ί)条件下的保留时间与其在 5 "C 条件下的保留时间的差值。
d. 多肽 C是无序结构的对照多肽,其在 RP-HPLC的保留行为可以反映因温度变化导致 RP-HPLC体系的变化。 用于扣除因温度变化引起的色谱条件对多肽保留时间的影响, 从而仅反映多肽在不同温度下的物理性质变 化。
D-型多肽的自我相互作用能力也由 RP-HPLC 温度控制技术来测定。 意料之中的是, L- 和 D-多肽对映体在这个温度范围内具有基本一致的行为特征。 这是由于对于对映体多肽, 其 与反相柱相互作用时采用相同的二级结构, 相同的疏水面, 相同的疏水性质。
RP-HPLC的洗脱时间经常用来衡量多肽类似物的相对疏水性。因此表 6中的保留时间数 据可以用来反应多肽类似物疏水性的不同。 表 6中设计的多肽类似物在 5Ό和 80Ό时的保留 时间数据与原始多肽 PL-13在相应温度下的保留时间相对比, 可以更加直观的展现多肽疏水 性的变化。
附图 3表示随温度变化 (5°C— 80°C) 多肽在 RP— HPLC中的保留时间变化曲线。 如上 所述多肽的自我相互作用是与温度相关的。 多肽在 PR_HPLC中的分配呈聚合体一单体间互 相转化的动态平衡中, 低温下多肽倾向于以二聚体或多聚体形式存在(自我相互作用)。 通常 自我相互作用是通过多肽疏水面的疏水相互作用实现的, 这样造成聚合体与色谱柱固定相的 结合能力变弱, 因此保留时间相对低。 随着温度的升高, 聚合体一单体相互转化的平衡向更 易于形成单体的方向移动。高浓度的单体在色谱柱上的分配增加了多肽与色谱柱的结合机率, 所以保留时间相对增加。 值得注意的是升高温度同时也引入其它的作用, 如降低流动相粘度 和增加在流动相与固定相之间的质量转移等。 正如无序结构对照肽 C的保留时间所示, 随着 温度的增加, 其保留时间会呈线性的降低。 相反地, 对于聚合的多肽而言, 升高温度会破坏 聚合体而转换成单体, 单体结合色谱柱固定相的能力强, 这样保留时间会达到最大值。 在这 一临界温度之上, 我们可以观察到随着温度继续升高多肽的保留时间开始下降。 这主要是由 于降低流动相粘度和增加质量转移以及高温造成多肽分子变性所引起的。 RP-HPLC的温度监 控技术引入的无序结构的对照多肽 C, 其保留行为用来反映温度变化过程中, 色谱柱条件的 变化状况, 从而去除因色谱条件变化对多肽保留行为的影响。 图 3中的多肽各温度点的保留 时间减去其在 5°C的保留时间用来与对照肽 C相比较并按照 5°C的保留时间归零, 后者以虚 线的形式表示在附图 4中。
本研究中的多肽类似物在水溶液中表现出不同的自我相互作用能力 (附图 4)。 附图 4内 保留时间差值变化 ((多肽的 tRt-tR 5)- (多肽 C的 tRt-tR 的最大数值被定义为多肽自我相互作用 系数 (PA), 用来量化多肽在水溶液中形成聚合体的能力。 图 3表明抗菌肽及其类似物反相高效液相色谱温度曲线。 测试条件: RP-HPLC, Agilent Zorbax 300 SB-C8 色谱柱 (150 4.6-mm 5-μηι, 300-Α), 1%线性梯度洗脱, 流速 1 ml/min, 流 动相 A:含 0.1%三氟乙酸的水, 流动相 B: 含 0.1%三氟乙酸的乙腈。 一个呈无序结构的多肽 (多肽 C)被作为对照多肽。在 5 °C 到 80 °C的温度变化范围内, 每升温 5 °C收集一次实验 数据。 图中使用的符号: 实心方块代表 PL-40, 实心圆圈代表 PL-34, 实心上三角代表 PL-26, 实心下三角代表 PL-18, 空心圆圈代表 PL-17, 空心下三角代表 PL-43 , 实心五角代表 PL-51 , 空心五角表示多肽 C。
图 4表示抗菌肽及其类似物的反相高效液相色谱温度曲线的校正曲线。 温度曲线都以无 序结构肽 C1的保留行为为标准进行校正。 分析柱和实验条件见图 3。 抗菌肽的保留行为都通 过如下公式来进行校正: 抗菌肽 (tRt-tR 5)-无序结构肽 CI (tRt-tR 5), 定义为 A来表示抗菌肽得自 聚集能力。 tRt表示抗菌肽或者无序结构肽 C1在特定温度条件下的保留时间; tR 5表示 5°C条 件下的保留时间。 图中使用的符号: 实心方块代表 PL-40, 实心圆圈代表 PL-34, 实心上 三角代表 PL-26, 实心下三角代表 PL-18, 空心圆圈代表 PL-17, 空心下三角代表 PL-43 , 实 心五角代表 PL-51 , 多肽 C以虚线的形式表示。 实施例 3 PL- 13及相关系列抗菌肽抗真菌药物敏感性试验
1. 实验菌株
( 1 ) 受试菌株: 白假丝酵母 (白色念珠菌)、 光滑假丝酵母、 克柔假丝酵母、 热带假丝酵母、 烟曲霉黄曲霉
(2) 质控菌株: 克柔假丝酵母 JLC30366 (ATCC6258)
2. 试剂
葡萄糖马铃薯琼脂培养基 (PDA) Difco 公司
葡萄糖马铃薯肉汤培养基 (PDB ) Difco 公司
RPMI- 1640液体培养基 Gibco BRL公司
3-N-吗啡啉丙磺酸 (MOPS) 百奥生物有限责任公司
3. 抗真菌药物
待测抗菌肽 PL-13 等均由江阴普莱医药生物技术有限公司提供。 对照药物氟康唑 (Fluconazol, FCZ) (购于上海三维药业公司 )、伊曲康唑(Itraconazole, ICZ) (购于 SIGMA), 均为标准粉剂, 纯度为 99%以上。
4. 实验步骤
( 1 )取保存于 PDA斜面的菌株, 分别接种于 PDA平板及斜面培养基, 25°C (曲霉)或 37°C (假丝酵母) 、 湿度 60%进行菌株的活化。 (2)以含 0.5% Tween-80的 0.9 % 无菌生理盐水制备受试菌悬液, 用血细胞计数板将其 浓度调至菌悬液浓度为 〜 3xl06CFU/ml (0.5麦氏单位), 作为原液 -20°C 保存备用。 药敏试 验时, 用 RPMI1640 液基稀释 1000倍, 至菌悬液浓度为 l〜3xl03 CFU/ml。
(3) 用 RPMI1640液作稀释液将待测多肽贮存液作 10级倍比稀释。 根据预试验结果, 将待测多肽的起始浓度定为 64μ§ /ml, 终止浓度定为 0.125μ§ /ml, 从第 1孔至第 10孔浓度由 高到低。 Ί〜11孔, 每孔分别加入 ΙΟΟμΙ 菌悬液, 每孔菌悬液浓度为 0.5〜1.5xl03 CFU/ml, 第 12孔不加。 第 11孔作为生长对照孔, 第 12孔作为空白对照孔。
(4) 用 RPMI1640液作稀释液将 FCZ、 ICZ贮存液作 10级倍比稀释, 使 FCZ起始浓度 为 64 g/ml, 终止浓度为 0.125 g/ml, ICZ起始浓度为 16 g/ml, 终止浓度为 0.03 g/ml。 其它操作同上。
5.实验结果
各种待测多肽抗真菌的检测结果见表 7。 表 7 各种待测多肽的最低抗真菌浓度 ( g/ml)
Figure imgf000018_0001
实验表明, 上述抗菌肽对于假丝酵母的抑制作用都相对较高, 对于烟曲霉抑制作用相对 较低。
实施例 4: PL- 13及相关系列抗菌肽抗细菌药物敏感性试验
1. 实验菌株
试验菌株为 37株实验室保存标准菌株和临床分离菌包括耐药菌,质控菌选用金黄色葡萄 球菌 ATCC29213、粪肠球菌 ATCC29212、大肠埃希菌 ATCC25922、铜绿假单胞菌 ATCC27853、 肺炎克雷伯杆菌 ATCC700603。
2. 培养基
MH琼脂培养基由中国药品生物制品检定所购进, MH 肉汤培养基和脑心浸液培养基为 美国 DIFCO公司产品。
3. 药物
待测抗菌肽 PL-13等由江阴普莱医药生物技术有限公司提供。
对照药左氧氟沙星为中国药品生物制品检定所标准品。
4. 实验步骤
( 1 ) 采用平皿二倍稀释法和 Denlay多点接种器进行药敏实验, 试验菌用营养肉汤及脑 心浸液增菌。
(2) 药物溶解后用 MH肉汤二倍稀释成各种所需浓度, 分别加适量到平皿中。
(3 ) MH琼脂培养基溶化后定量注入含药液平皿内混匀, 药物的终浓度分别为 0.03, 0.06, 0.125…… 128 g/ml。
(4)平皿中培养基凝固后用多点接种器接种试验菌(104CFU/点) , 置 35°C恒温培养 18 小时后观察结果。
(5 ) 无菌生长的平皿中所含药物最小的浓度即为最低抑菌浓度 (MIC)。
5.实验结果
PL-13等样品及其对照药左氧氟沙星对 37株细菌的抗菌作用见表 7。 由下表可见, 对于 常见敏感细菌, PL-13 等抗菌肽杀菌效果与阳性对照左氧氟沙星基本相当, 而对于耐药菌, 抗菌肽则显示出明显的杀菌优势。 表 8 各种待测多肽的最低抗细菌浓度 (μΜ) 菌株 PL- 12 PL- 13 PL- 26 PL- 34 PL- 17 PL- 18 PL- 34 PL-43 左氧氟沙星 金葡菌 ATCC29213 1.3 0.7 1.3 0.7 0.3 0.7 2.6 1 .3 0.60 金葡菌 ATCC25923 1.3 0.7 1.3 0.7 0.3 0.7 2.6 1.3 0.30
15 1.3 0.7 1.3 0.7 0.3 0.7 2.6 1.3 0.30
08-49 (MSSA) 甲氧
0.7 2.7 1.3 1 .3 0.7 0.7 5.3 0.3 0.30 西林敏感株
08-52 (MRSA) 甲氧
1.3 2.7 1 .3 0.7 5.3 2.7 3.3 3.3 76.92 西林耐药株
表葡菌 ATCC12228 1.3 0.3 0.7 1.3 1.0 0.7 1.3 0.3 0.30
08- 17 (MSSE ) 甲氧
2.7 1.3 2.7 1.7 1.0 0.7 1 .3 1.7 1.20 西林敏感株
08-18 (MRSE) 甲氧
1.3 0.7 2.7 6.7 1.0 0.7 1 .3 6.7 55.49 西林耐药株
粪肠球菌
1.3 5.3 5.3 0.3 5.3 5.3 1.7 1.7 1.20 ATCC29212
HH22* (AMEs) 产氨
0.3 1.7 6.7 0.3 10.7 1 .7 0.3 0.3 1.20 基糖苷类修饰酶
06-7 5.3 1 .3 5.3 6.7 5.3 2.7 21.3 10.67 19.23
06-71 (VRE) 万古霉
0.3 1.7 1.7 1 .3 1.7 1.3 1.3 0.7 2.40 素耐药株
屎肠球菌 06-1 5.3 5.3 1.3 1.3 10.7 5.3 1 .3 6.7 2.40
06-12 ( VREF ) 万古
1.3 5.3 5.3 0.3 1.7 5.3 0.7 1.7 2.40 霉素耐药株
大肠埃希菌 ATCC
0.03 0.03 0.3 0.3 0.2 1 .3 0.1 0.03 0.14 25922
08-5 (ESBLs) 产超
1 .3 0.7 1.3 1.7 0.3 1.3 5.3 6.7 76.92 广谱 -内酰胺酶
26 1.3 0.7 0.7 1.3 0.3 <0.08 2.7 6.7 <0.7
272 ( TEM-88 ) 0.7 0.3 1.3 6.7 0.3 <0.08 1 .3 1.7 <0.7
274 (TEM- 15) 1.3 0.3 1.3 0.3 0.3 0.08 2.7 0.3 0.2
276 (TEM-52) 1 .3 0.7 0.7 0.03 0.7 <0.08 2.7 0.3 <0.2 铜绿假单胞菌
5.3 1.3 5.3 0.3 1.3 0.3 1.7 0.3 1 .20 ATCC27853
17 2.7 1 .3 1.7 0.3 2.7 0.2 1.3 1 .7 0.7 肺炎克雷白杆菌
2.7 0.7 5.3 0.7 2.7 0.3 2.7 0.3 1 .2 ATCC700603 08-2 (ESBLs) 5.3 0.7 1.3 6.7 0.3 2.7 10.7 5.3 76.92
7 5.3 1.3 2.7 6.7 0.3 <0.04 5.3 5.3 <16 阴沟肠杆菌 45301 0.3 1.3 1.7 0.3 1.3 0.04 1.3 0.03 0.1 醋酸钙不动杆菌
0.03 .3 6.7 1.3 1.3 1.7 1.3 0.3 0.1 25001
产气肠杆菌 45102 0.03 2.7 1.3 0.3 1.3 0.04 0.03 0.003 <0.02 粘质沙雷氏菌
0.03 0.3 0.02 0.02 1.3 0.04 0.7 0.3 0.1 41002
宋内志贺氏菌
2.7 0.7 1.3 0.04 0.3 0.04 2.7 0.3 0.1 51592
±力口 力口
JQ>、贝 贝 p 1 困 1.7 0.7 0.3 0.7 0.3 1.3 <0.01 1.7 <0.02 福志贺氏菌 2.7 0.7 1.3 0.3 0.3 0.0 2.7 0.7 0.1 鼠伤寒杆菌 5.3 1.3 5.3 0.3 1.3 0.3 5.3 0.3 <0.02 伤寒杆菌 H901 5.3 1.3 2.7 0.3 0.7 0.3 5.3 0.7 <0.02 费劳地枸橼酸杆菌
5.3 1.3 2.7 1.7 2.7 0.3 1.3 0.3 0.1 48001
普通变形杆菌 56 0.3 0. 3 6.7 1.7 5.3 5.3 1.3 0.3 <0.007 实施例 5: PL-13等溶血活性检测结果
1.实验步骤:
( 1 )样品以无菌 PBS倍比稀释,浓度依次为 1000、 500、 250、 125、 64、 32、 16、 8、 4 g/ml, 铺于 96孔板中, 每空 100μ1。
(2) 阳性对照采用蒸馏水参比, 阴性对照采用无菌 PBS参比, 空白孔仅铺入 PBS溶液 200μ1, 以上各浓度均设三复孔。
(3 ) 取健康志愿者全血 3ml, 以无菌 PBS缓冲液洗涤 3次, 制备新鲜 2%红细胞悬液, 以上每孔中加入 100μ1, 于 37Ό培养箱中孵育 4小时后, 甩板离心机离心取上清, 于 570nm 处测定吸光度 (OD值), 比较各浓度溶血水平差异。
(4) 按文献标准判定, OD值高于 0.1的浓度判定为溶血浓度。
2. 实验结果
PL-13等抗菌肽溶血活性检测结果 (见表 9)。 表 9 待测多肽溶血活性检测结果 (n=3) 抗菌肽浓度( μ
阳性 PL- 13 PL- 17 PL- 26 PL- 34 阴性 空白 g/ml)
1000 0.416 0.310 0.339 0.327 0.317 0.093 0.059
500 0.406 0.220 0.152 0.121 0.135 0.074 0.037
250 0.402 0.184 0.082 0.089 0.087 0.070 0.052
125 0.400 0.117 0.078 0.075 0.073 0.077 0.053
62.5 0.394 0.090 0.065 0.068 0.061 0.077 0.059
31.25 0.392 0.065 0.063 0.057 0.054 0.071 0.044
15.625 0.380 0.059 0.056 0.047 0.041 0.088 0.047
7.8125 0.371 0.043 0.033 0.020 0.032 0.071 0.044
实验结果表明, PL-13、 17、 26、 34 抗菌肽溶血率基本相当, 证明本发明涉及的各剂型 药物溶血毒性很小, 具有良好的开发前景。 实施例 6: PL-13/PL-18皮肤外用剂抗感染试验
1. 实验菌株: 表皮葡萄球菌 ATCC12228和金葡菌 ATCC25923
2. 实验系统:
ICR小鼠, 20±2g, 同一性别, 共 50只, 雄性。 按体重随机分组, 每组 10只, 共 5组, 每 10只动物饲养于同一塑料盒中。 分为感染阴性对照组, 百多邦阳性对照组, 1%浓度乳膏 制剂组, 1%。浓度乳膏制剂组和空白基质对照组。采用苦味酸标记法,标记部位分别为白、头、 颈、 背和尾。 普通级动物房饲养, 喂以普通饲料, 自由摄水, 光照 12小时明暗交替。
3. 抗感染皮肤外用剂
1%浓度制剂, 1%。浓度制剂及空白基质制剂 (由江阴普莱医药生物技术有限公司提 供) , 百多邦 (中美天津史克制药有限公司) 。
4. 实验步骤
(1) 取保存于液氮的菌株, 分别接种于 MHB平板, 37°C过夜培养。
(2) 将固体菌种接种于 MHB液体培养基中, 220rpm,37°C振荡过夜培养。
(3) 将过夜培养的菌液稀释至 5xl06CFU/ml, 备用。
(4) 皮肤造模: 将小鼠背部剪毛, 脱毛膏脱毛, 待毛全部褪去后, 用 60 目砂纸打磨至 渗血。 皮下注射浓度为 5xl06CFU/ml的菌液, 0.1ml。 (5) 给药: 除感染阴性对照组外, 其他各组均对应涂抹不同的外用乳膏, 剂量为 0.1ml, 每天早晚各外用 1次, 连续 7天一疗程。
(6) 7天后, 无菌取各脏器、 血液及感染部位的皮肤, 检测活菌并计数统计。
5.实验结果
各脏器及血液活菌检测结果见表 10- 11。
表 10 PL-13/18外用剂对金葡菌 ATCC25923皮肤感染影响 (CFU/皿 n=10) 组别 动物数(只) 全血 皮肤 (1:10) 肝脏 (1:5) 脾脏 (1:5) 感染对照 10 304 35925 157 70
百多邦 10 12 1032 12 16
1 PL-13 10 8 852 10 6
Figure imgf000023_0001
1%PL-18 10 16 997 9 8
1 0PL-18 10 12 1051 11 15
空白基质对照 10 224 25280 121 27 表 U PL-13/18外用剂对表葡菌 ATCC12228皮肤感染影响 (CFU/皿 n=10) 组别 动物数(只) 全血 皮肤 (1:10) 肝脏 (1:5) 脾脏 (1:5) 感染对照 10 129 10762 87 34
百多邦 10 28 439 23 15
1%PL-13 10 10 369 12 5
Figure imgf000023_0002
1。 PL- 18 10 16 276 17 5
Figure imgf000023_0003
空白基质对照 10 94 9802 50 30 上述结果显示 PL-13及 PL-18外用剂可有效抑制金葡菌及表葡菌的皮肤感染。 实施例 7: PL-18注射剂对细菌全身感染动物的治疗试验
1.实验动物:
动物种属为 ICR小鼠, 18-22g, 雌雄各半。 按体重随机分组, 每组 10只, 共 6组, 每 10只动物词养于同一塑料盒中。分为空白对照组,阴性对照组,左氧氟沙星阳性对照组, PL-13 高、 中、 低剂量组。 采用苦味酸标记法, 普通级动物房饲养, 喂以普通词料, 自由摄水, 光 照 12小时明暗交替。
2.感染菌种: 绿脓杆菌和金黄色葡萄球菌
3.抗感染药物
PL-18 冻干粉针 (由江阴普莱医药生物技术有限公司提供) , 盐酸左氧氟沙星氯化 钠注射液 (扬子江药业集团有限公司) , 0.9%氯化钠注射液 (赤峰荣济堂药业有限公司)。
4.实验步骤
(1) 菌液制备方法同上。
(2) 将过夜培养的绿脓杆菌液稀释至 lxl09CFU/ml, 过夜培养的金葡菌液稀释至 l l08CFU/mL 备用。
(3 ) 除空白对照组外, 每只小鼠腹腔注射浓度为 lxl09CFU/ml 的绿脓杆菌液或 lxl08CFU/ml的金葡菌液 0.2ml造模。 '
(4) 给药: 造模后立即按体重给药, 除空白对照组和感染阴性对照组外, 其他各组均 尾静脉注射不同剂量的各注射剂, 2次 /日, 连续给药 3天, 观察 14天。
(5) 观察动物死亡情况, 记录动物存活时间。
5.实验结果
PL-18 注射剂对绿脓杆菌及金黄色葡萄球菌全身感染小鼠存活时间影响试验结果详见表 12-13。
PL- 18注射剂对绿脓杆菌全身感染小鼠存活时间的影响 (n=10) 感染后不同天数
组别 动物数 (只) 药物 剂 t (mg/kg) 小鼠死亡数 (只) 平均存活天数 (天)
1 2 3 4 5
空白对照 10 生理盐水 0 0 0 0 0 ― 阴性对照 10 一 ― 6 4 0 0 0 1.4
**
左氧氟沙星 10 氧氟沙星 30 4 2 0 0 0 6.4
PL- 18 (高) 10 PL- 18 5 0 1 2 2 0 8. 6"
PL- 18 (中) 10 PL-18 1 0 1 2 2 1 7. 7**
PL- 18 (低) 10 PL-18 0. 2 0 2 1 2 2 6. 7**
PL-18注射剂对金葡菌全身感染小鼠存活时间的影响 (n=10) 感染后不同天数
动物数
组别 药物 剂量 (mg/kg) 小鼠死亡数 (只) 平均存活天数 (天)
(只)
1 2 3 4 5
空白对照 10 生理盐水 ― Ό 0 0 0 0 ― 阴性对照 10 ― ― 7 3 0 0 0 1. 3 左氧氟沙星 10 氧氟沙星 30 5 2 0 0 0 5. 4**
PL- 18 (高) 10 PL- 18 5 0 1 1 1 2 9. 9"
PL- 18 (中) 10 PL-18 1 1 2 1 1 1 7. 3**
PL- 18 (低) 10 PL-18 0. 2 1 2 1 2 1 6. 3** 注: 与阴性对照组比较 *P<0.05, **P<0.01 由表 12-13可知, 直至试验结束, PL-18高、 中、 低剂量组和左氧氟沙星阳性对照组与阴 性对照组比较小白鼠平均存活天数相比差异均极显著 (p<0.01 ), 说明 PL-18高、 中、 低剂量 的抗感染效果均很好; 与左氧氟沙星比较, PL-18试药组明显优于阳性对照。 实施例 8: PL-34口服制剂对细菌全身感染动物的治疗试验
1. 实验动物:
ICR小鼠, 18-22g, 雌雄各半。 按体重随机分组, 每组 10只, 共 6组。 设替硝唑阳性对 照组、 3 个试药组、 阴性对照组和空白对照组。 试药组分别为: 高、 中、 低剂量组。 采用苦 味酸标记法, 普通级动物房饲养, 喂以普通饲料, 自由摄水, 光照 12小时明暗交替。
2. 感染菌种: 大肠埃希菌和痢疾杆菌
3. 抗感染药物
PL-34 口服制剂 (由江阴普莱医药生物技术有限公司提供) , 替硝唑片 (山东鲁抗医药 集团赛特有限责任公司) , 0.9%氯化钠注射液 (赤峰荣济堂药业有限公司)。
4. 实验步骤
( 1 ) 菌液制备方法同上。
( 2 ) 将过夜培养的大肠埃希菌液稀释至 l x l 07CFU/ml, 过夜培养的痢疾杆菌液稀释至 l l 05CFU/ml, 备用。
( 3 ) 除空白对照组外, 每只小鼠腹腔注射浓度为 l x l07CFU/ml 的大肠埃希菌液或 l l05CFU/ml的痢疾杆菌液 0.2ml造模。
(4) 给药: 造模后立即按体重给药, 除空白对照组和感染阴性对照组外, 其他各组均灌 胃不同剂量药物, 3次 /日, 连续灌胃给药 7天, 观察 14天。
(5) 观察动物死亡情况, 记录动物存活时间。
5.实验结果
PL-34片剂对大肠埃希菌及痢疾杆菌全身感染小鼠存活时间影响的试验结果。(见表 14-15 )。
表 14 PL-34片对大肠埃希菌全身感染小鼠存活时间的影响 (n=10) 感染后不同天数
动物数
组别 药物 剂量 (mg/kg) 小鼠死亡数 (只) 平均存活天数 (天)
(只)
4 5 6 7 8 9
空白对照 10 生理盐水 一 0 0 0 0 0 0 一
阴性对照 10 一 ― 1 2 2 3 1 1 6.4
替硝唑 10 替硝唑 80 1 2 2 1 1 2 7.5*
PL- 34 (高) 10 PL-34 30 0 2 1 0 1 1 10.3**
PL- 34 (中) 10 PL- 34 10 0 2 2 1 1 1 8.8**
PL- 34 (低) 10 PL-34 3 1 1 2 1 2 2 7.6* 表 15 PL-34片对痢疾杆菌全身感染小鼠存活时间的影响 (n=10)
感染后不同天数
动物数 剂量 小鼠死亡数 (只) 平均存活: .数 组别 药物
(只) (mg/kg)
4 5 6 7 8 9 (天) 空白对照 10 生理盐水 ― 0 0 0 0 0 0 ― 阴性对照 10 一 ― 2 2 2 3 1 0 5.9
替硝唑 10 替硝唑 80 2 1 2 2 1 1 7.0*
PL-34 高) 10 PL- 34 30 1 1 2 2 2 1 7.4*
PL- 34 (中) 10 PL-34 10 1 2 2 1 1 0 8.3**
PL- 34 (低) 10 PL-34 3 1 2 2 2 1 1 7.1*
注: *与阴性对照组比较 *P<0.05.**与阴性对照组比较 **P<0.01.
由表 14, 15可知, 直至试验结束, PL-34各剂量组和替硝唑阳性对照组与阴性对照组 比较小白鼠平均存活天数相比差异均为显著(p<0.01或 0.05 ), 说明 PL-34口服制剂对控制小 鼠大肠埃希菌和痢疾杆菌感染具有较好的疗效。 实施例 9: PL-18注射剂对多重混合感染动物的治疗试验
1. 实验动物:
动物种属为 ICR小鼠, 18-22g, 雌雄各半。 按体重随机分组, 每组 20只, 共 6组。 分为 空白对照组, 阴性对照组, 左氧氟沙星阳性对照组, PL-18 高、 中、 低剂量组。 采用苦味酸 标记法, 普通级动物房饲养, 喂以普通词料, 自由摄水, 光照 12小时明暗交替。
2. 感染菌种: 白色念珠菌和大肠埃希菌
3. 抗感染药物
PL-18 冻干粉针 (由江阴普莱医药生物技术有限公司提供) , 盐酸左氧氟沙星氯化 钠注射液 (扬子江药业集团有限公司) , 0.9%氯化钠注射液 (赤峰荣济堂药业有限公司)。
4. 实验步骤
( 1 ) 菌液制备方法同上。
(2) 将过夜培养的白色念珠菌液用生理盐水稀释至 l xl06CFU/ml, 小鼠腹腔注入量为 5x l05CFU /只;过夜培养的大肠埃希菌液稀释至 2xl08CFU/ml,小鼠腹腔注入量为 1 >< 107CFU /只, 混合感染造模。
( 3 ) 空白对照组腹腔注射生理盐水, 阳性对照组腹腔注射左氧氟沙星。
(4) 给药: 造模后立即按体重给药, 除空白对照组和感染阴性对照组外, 其他各组均尾 静脉注射不同剂量的各注射剂, 2次 /日, 连续给药 3天, 观察 14天。
(5) 观察动物死亡情况, 记录动物存活时间。
5.实验结果
PL-18 注射剂对白色念珠菌及大肠埃希菌多重混合感染小鼠存活时间影响的试验结果。 (见表 16)
表 16 PL-18注射剂对白色念珠菌及大肠埃希菌多重感染小鼠存活时间的影响 (n=20 ) 平均存活天数 动物数 剂量 感染后不同天数小鼠死亡数 (只)
组别 药物 (天)
(只) (rag/kg)
1 2 3 4 5
空白对照 20 生理盐水 ― 0 0 0 0 0 ― 阴性对照 20 ― ― 8 7 3 2 0 2.0 左氧氟沙星 20 氧氟沙星 30 8 6 2 0 0 3.9*
PL- 18 (高) 20 PL- 18 5 5 5 2 1 2 5.3**
PL- 18 (中) 20 PL-18 1 5 4 3 2 0 5 **
PL- 18 (低) 20 PL-18 0.2 4 4 5 2 2 4.4* 注: *与阴性对照组比较 *P<0.05.**与阴性对照组比较 **P<0.01.
多重混合感染试验结果显示,观察 14天, 阴性对照组 20只动物在造模后 4天内全部死 亡(20/20)。高、中、低剂量组中动物均有不同只数存活,其中高剂量组平均存活天数为 5.3d, 低剂量组平均存活天数为 4.4d, 而中剂量组平均存活天数为 5.7d, 均明显优于阳性对照氧氟 沙星组。 由表 16可知, PL-18中剂量组和高剂量组与阴性对照组比较小白鼠平均存活天数相比 差异均极显著 (p<0.01 ), 说明 PL-18高、 中剂量的抗多重混合感染效果较好; PL-18低剂量 组和左氧氟沙星对照组与阴性对照组小白鼠平均存活时间比较差异显著(P<0.05 ),说明 PL-18 低剂量组和左氧氟沙星对照组同样具有一定抗感染作用, 但 PL-18中剂量组抗混合感染效果 明显优于高剂量组, 综合考虑, lmg/kg剂量的 PL-18注射剂对控制小鼠多重混合感染具有较 好的疗效。 实施例 10: PL-18等系列抗菌肽 lmg/支水针注射剂 (2ml:lmg)制备工艺
处方:
PL-18等抗菌肽 lg
乙二胺四乙酸二钠 3.5g
注射用水 2000ml
制成 1000支
称取处方量总体积的 60%注射用水, 然后加入处方量 PL-18等抗菌肽, 搅拌使其全部溶 解。 加 0.1%的针用活性炭加热至 50°C, 搅拌吸附 30分钟, 滤过脱炭, 加用注射用水至总体 积。 除菌过滤, 中间体检验合格后灌装。 将灌装完成的半成品放入灭菌柜内。 设定灭菌温度 为 105°C, 时间为 30分钟开始灭菌。 灭菌后的产品灯检合格包装, 得成品。 实施例 11: PL-18等 lmg/支冻干粉针注射剂制备
处方:
PL-18等 lg
甘露醇 300g
注射用水 2000ml
制成 1000支
量取配方量 60%注射用水, 加配方量的甘露醇, 搅拌溶解, 然后加入处方量的 PL-18等 系列抗菌肽, 搅拌溶解。 加 0.05 %的针用活性碳搅匀, 搅拌吸附 30分钟, 脱碳过滤。 用注射 用水补足体积。 然后除菌过滤, 检查可见异物, 合格后进灌装工序。 灌装完成后, 进行冻干 工序 (速冻法) 。 冻干结束后, 在真空状态下启动加塞装置, 把塞压严, 然后出箱。 待制品 全部取出后化霜。 轧盖。 目检合格后包装。 实施例 12 PL-13等系列抗菌肽 3mg/片 片剂制备
处方 PL- 13等 3g
微晶纤维素 75g
低取代-羟丙基纤维素 75g
羧甲基淀粉钠 40g
聚乙烯吡咯垸酮 适量
乙醇 适量
硬脂酸镁 lg
制成 1000片
取 PL-13等系列抗菌肽 3g, 辅料微晶纤维素 75g、 低取代-羟丙基纤维素 75g, 羧甲基淀 粉钠 30g混合均匀。 等量递增法与 PL-13等抗菌肽混合至均匀。 以 5%聚乙烯吡咯垸酮 50% 乙醇溶液为黏合剂, 采用流化喷雾制粒技术制粒, 外加羧甲基淀粉钠 10g, 硬脂酸镁 lg,混合 均匀, 压片, 即得。 实施例 13 PL-18等系列抗菌肽 10ml/支喷剂制备工艺
处方
PL-18等 10g
磷酸氢二钠 276g
柠檬酸 129g
甘露醇 · 100g
注射用水 适量
制成 1000支
量取配方量 40%注射用水, 加配方量的 PL-18等系列抗菌肽, 搅拌溶解, 然后加入处方 量甘露醇、 磷酸氢二钠和柠檬酸, 继续搅拌至溶解。 用注射用水补足体积。 0.2um滤膜过滤, 中间品检验, 合格灌装。 全检后包装。 实施例 14 PL-18等系列抗菌肽 10mg/粒胶囊 (0.3g/粒)
处方
PL-18等系列抗菌肽 10g
淀粉 100g 微粉硅胶 90g
羧甲基纤维素钠 90g
滑石粉 7g
硬脂酸镁 3g
制成 1000粒
原辅料分别过 100目筛。取淀粉 10克制成 12%的淀粉糊, 另取处方中除滑石粉和硬脂酸 镁外的原辅料混合均匀, 加淀粉糊制粒, 过 40目筛网。 55-60°C干燥。干颗粒 40目筛网整粒, 加滑石粉和硬脂酸镁混合均匀, 装入胶囊, 得成品。 实施例 15 PL-34等 10mg/支口服液制剂 ( 10g/支 )
处方
PL-39 10g
蔗糖 2000g
羟苯乙酯 100g
注射用水 10000g
制成 1000支
量取处方量 50%的注射用水加蔗糖使其溶解, 另量取处方量 20%的注射用水将 PL-39等 抗菌肽溶解, 与蔗糖水溶液混合均匀。 量取处方量 10%的注射用水加热至 60°C, 加入羟苯乙 酯使溶解, 搅拌均匀。 与混合好的蔗糖水溶液中。 混合均匀。 采用 0.2um微孔滤膜过滤除菌, 检验合格后灌装, 得成品。 实施例 16 PL-13等抗菌肽 0.5mg/克软膏剂 (5g/支)
处方
PL-13等 O.lg
聚乙二醇 4000 480g
聚乙二醇 400 320g
氮酮 10g
吐温 80 15g
注射用水 175g 制成 lOOOg
将聚乙二醇 4000和聚乙二醇 400水浴加热到 60°C,搅拌均匀。氮酮和吐温 80混合均匀, 加入聚乙二醇混合溶液中, 搅拌均匀。 放置室温。 PL-13 等用注射用水溶解后, 与聚乙二醇
实施例 17 PL-18等 lmg/克乳膏 (5g/支)
处方
PL-18等 ig
硬脂酸甘油酯 35g
硬脂酸 120g
液状石蜡 60g
白凡士林 10g
羊毛脂 50g
三乙醇胺 4ml
羟苯乙酯 ig
蒸熘水 适量
制成 lOOOg
将处方量油相成分(即硬脂酸甘油酯, 硬脂酸, 液状石蜡, 凡士林, 羊毛脂)加热至 80°C 保温放置。 原料加入水相成分 (三乙醇胺、 羟苯乙酯溶于蒸馏水) 中, 搅拌均匀分后也加热 至 80°C。 将熔融的油相加入水相中, 搅拌, 制成乳剂。 放置室温后灌装。 得成品。 实施例 18 PL-18等 5mg/支凝胶剂 (5g/支)
处方
PL-18等 Ig
卡波姆 940 10g
丙二醇 200g
丙三醇 100g
三乙醇胺
注射用水 680g 制成 lOOOg
取处方量丙三醇、丙二醇和卡波姆 940,充分乳化使润湿并加注射用水 300g使其溶胀, 搅 拌使其混合均匀。 加入三乙醇胺使其成为凝胶状态。 另取处方量原料加剩余注射用水使其溶 解,加入凝胶基质中, 搅拌至均匀, 检验合格后灌装, 得成品。 实施例 19 PL-18等 5mg/支滴眼剂 (5ml/支)
处方
PL- 18等
乙二胺四乙酸二钠 0.2g
羟苯乙酯 0.15g
羟苯甲酯 O.lg
注射用水 994ml
制成 1000ml
将处方量 20%的注射用水加热至 60 °C, 加入处方量的羟苯乙酯和羟苯甲酯, 搅拌至溶解 后, 放至室温。 另取处方量原料和乙二胺四乙酸二钠加入处方量 60%的注射用水溶解, 搅拌 至均匀, 与羟苯乙酯和羟苯甲酯溶液混合, 加剩余注射用水补充至全量, 搅拌至均匀。 微孔 滤膜过滤除菌, 检验合格后灌装, 得成品。 实施例 20 PL-26等 50mg/支 喷雾剂 (20g/支)
处方
PL-26等 2.5g
氮酮 lg
吐温 80 1.5g
羟苯乙酯 lg
注射用水 994ml
制成 1000ml
取处方量 60%的注射用水溶解原料,搅拌至均匀。取处方量 10%的注射用水加热至 60°C, 加入羟苯乙酯溶解。 将原料水溶液和羟苯乙酯水溶液混合, 加入混合均匀的处方量氮酮和吐 温 80, 加水至 1000ml检验合格后灌装入喷雾瓶中, 得成品。 实施例 21 PL-13等 3mg/贴剂
处方
PL- 13等 3g
聚丙烯酸 30g
甘油 120g
甘羟铝 1.5g
乙二胺四乙酸二钠 0.15g
酒石酸 ig
注射用水 220g
制成 1000贴
取处方量的聚丙烯酸, 加入甘油、 甘羟铝和乙二胺四乙酸二钠充分分散均匀, 作为 A。 另取原料加注射用水和酒石酸搅拌溶解后, 缓慢加入 A中, 边加边搅拌, 使其交联。 涂布于 背衬层, 覆盖保护膜后, 室温固化 24小时。 冲切得成品。 实施例 22 PL-13等 0.5mg/支洗剂 (50ml/支)
处方
PL- 13等 O.Olg
薄荷脑 ig
苯甲酸钠 ig
注射用水 997ml
制成 1000ml
取 PL-13等原料用 60%处方量的水溶解后, 搅拌均匀。 另取苯甲酸钠和薄荷脑, 加水溶 解, 加入上述混合液, 加水至 1000ml, 搅拌至全部溶解, 检测合格后灌装, 得成品。

Claims

1、 一种抗菌肽, 其氨基酸的序列为- Ac-Phe-Lys-Lys-Leu-Lys-Lys-Leu-Phe-Ser-Lys-Leu-Trp-Asn-Trp-Lys-NH2 ( SEQ
ID No.l ) 。
2、 如权利要求 1所述的抗菌肽, 其特征是: 所述抗菌肽氨基酸序列中的 Leu 由 Ile, Val, 正亮氨酸, 正缬氨酸中任一氨基酸残基取代。
3、 如权利要求 1所述的抗菌肽, 其特征是: 所述抗菌肽氨基酸序列中的 Phe 由 Trp, Tyr, Leu, He, Val, 正亮氨酸, 正缬氨酸中任一氨基酸残基取代。
4、 如权利要求 1所述的抗菌肽, 其特征是: 所述抗菌肽氨基酸序列中的 Trp 由 Phe, Tyr, Leu, lie, Val, 正亮氨酸, 正缬氨酸中任一氨基酸残基取代。
5、 如权利要求 1-4任一项所述的抗菌肽, 其特征是: 所述的抗菌肽包括全 L-型和全 D-型对映异构体; 或者所述的抗菌肽任意一个或几个氨基酸用 L-型或 D-型氨基酸取代。
6、 如权利要求 5所述的抗菌肽, 其特征是: 所述抗菌肽序列中以不同方式取 代其中某些氨基酸或延长多肽序列及截短多肽序列的方式以所得的具有 85— 100%氨基酸相似的序列及其的相关化合物。
7、 一种抗菌肽, 其特征在于: 所述的抗菌肽氨基酸序列中包括权利要求 1-4 任一项所述的抗菌肽氨基酸序列。
8、 一种多肽固相合成权利要求 1-4任一项所述抗菌肽的方法, 包括步骤:
1 ) 由酰胺类树脂、 Fmoc保护氨基酸、 偶联试剂和有机碱为起始原料, 在保 护的有机溶剂中反应得到 Fmoc保护氨基酸-酰胺类树脂偶联物;
2) 采用固相法偶联逐一偶联依次连接具有保护基团的氨基酸, 合成得到侧 链全保护线性肽;
3 ) 多肽 N末端的最后一个氨基酸连接到树脂上之后, 脱去其 Fmoc保护, 进行适当的化学修饰;
4) 加入剪切试剂, 将多肽从树脂上剪切下来, 真空冷冻干燥得到多肽的粗
P
9、 如权利要求 8所述的合成抗菌肽的方法, 其特征是: 采用 C4, 或 C8, 或 C18反相色谱柱, 利用高效液相色谱方法进行 AB线性洗脱制备纯品肽, 洗脱速 度为 0.5~5ml/min; 其中, A流动相为含有 0.01-0.5 %TFA的水溶液, B流动相为 含有 0.01-0.5 %TFA的乙腈。
10、 如权利要求 9所述的合成抗菌肽的方法, 其特征是:
制备得到的纯品肽采用分析型反相高效液相色谱 RP-HPLC按照下述方法进 行分析: 采用 C4, 或 C8, 或 C18柱, 进行 AB线性洗脱制备纯品肽, 洗脱速度为 0.1~5ml/min; 其中, A流动相为含有 0.01-0.5 %TFA的水溶液, B流动相为含有 0.01-0.5 %TFA的乙腈。
11、 权利要求 5 所述的抗菌肽应用于制备控制微生物感染的治疗药物组合 物。
12、 如权利要求 11所述的用于控制微生物感染的抗菌剂。
13、 如权利要求 12所述的抗菌剂, 其特征是: 所述抗菌剂中抗菌肽的剂量 范围为: 注射剂 0.1-50mg/kg; 口服剂 0.1-50mg/kg; 外用剂 1/10000-10%/支; 滴 眼剂 1/10000- 10%/支; 洗剂 1/100000-1%。/支。
PCT/CN2012/000079 2011-04-18 2012-01-17 一种抗菌肽及其制备方法和应用 WO2012142855A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES12774269.0T ES2661860T3 (es) 2011-04-18 2012-01-17 Péptido antibiótico y método de su preparación, y aplicación del mismo
US14/112,064 US9273095B2 (en) 2011-04-18 2012-01-17 Antibiotic peptide and preparation method therefor and application therefor
EP12774269.0A EP2735570B1 (en) 2011-04-18 2012-01-17 Antibiotic peptide and preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110095737.2 2011-04-18
CN2011100957372A CN102219831B (zh) 2011-04-18 2011-04-18 一种抗菌肽及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2012142855A1 true WO2012142855A1 (zh) 2012-10-26

Family

ID=44776556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000079 WO2012142855A1 (zh) 2011-04-18 2012-01-17 一种抗菌肽及其制备方法和应用

Country Status (5)

Country Link
US (1) US9273095B2 (zh)
EP (1) EP2735570B1 (zh)
CN (1) CN102219831B (zh)
ES (1) ES2661860T3 (zh)
WO (1) WO2012142855A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102219831B (zh) * 2011-04-18 2013-03-20 江苏普莱医药生物技术有限公司 一种抗菌肽及其制备方法和应用
CN103788184A (zh) * 2013-12-13 2014-05-14 东北农业大学 含有两个亮氨酸重复单元的抗菌肽及制备方法和应用
CN105017384B (zh) * 2015-07-13 2018-06-19 长春普莱医药生物技术有限公司 一种抗菌肽及其应用
CN110982757B (zh) * 2019-12-30 2021-04-06 浙江工业大学 阴沟肠杆菌zjph1903及应用
CN113577014B (zh) * 2020-12-30 2023-03-24 广州图微科创生物科技有限公司 医疗器械、水凝胶及其制备方法与应用
WO2022155783A1 (zh) * 2021-01-19 2022-07-28 江苏普莱医药生物技术有限公司 一种抗菌肽液体组合物及其制剂
CN112755175B (zh) * 2021-01-19 2024-04-09 江苏普莱医药生物技术有限公司 一种抗菌肽液体组合物及其制剂
CN113081953B (zh) * 2021-04-29 2023-10-31 江苏普莱医药生物技术有限公司 一种局部用抗菌肽凝胶剂及其制备方法
CN113209273B (zh) * 2021-04-30 2024-06-07 江苏普莱医药生物技术有限公司 一种抗菌肽涂剂及其制备方法
CN113081977B (zh) * 2021-04-30 2022-07-29 江苏普莱医药生物技术有限公司 一种抗感染的抗菌肽冻干制剂及其制备方法
CN113640416A (zh) * 2021-08-12 2021-11-12 海南海神同洲制药有限公司 盐酸左氧氟沙星片的含量测定方法
CN115724914B (zh) * 2022-07-21 2024-04-26 中国农业大学 抗菌肽hlfp-5及其应用
CN115669843A (zh) * 2022-10-26 2023-02-03 中国农业大学 一种采用高压微射流结合混合肽有效杀灭芽孢的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090022608A (ko) * 2007-08-31 2009-03-04 조선대학교산학협력단 헬리코박터 파일로리균의 리보좀 단백질 l1유래의 유사체펩타이드로부터 풀림구조를 절단한 양이온 증가 항생펩타이드 및 항균 및 항진균용 조성물
CN102219831A (zh) * 2011-04-18 2011-10-19 江阴普莱医药生物技术有限公司 一种抗菌肽及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820619B1 (en) * 1998-02-18 2010-10-26 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Antimicrobial peptides and derived metapeptides
JP5202649B2 (ja) * 2008-11-25 2013-06-05 インダストリー−アカデミック コーオペレイション ファウンデーション, チョソン ユニヴァーシティー ヘリコバクター・ピロリ菌のリボソームタンパク質l1由来の新しい抗生ペプチド及びその使用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090022608A (ko) * 2007-08-31 2009-03-04 조선대학교산학협력단 헬리코박터 파일로리균의 리보좀 단백질 l1유래의 유사체펩타이드로부터 풀림구조를 절단한 양이온 증가 항생펩타이드 및 항균 및 항진균용 조성물
CN102219831A (zh) * 2011-04-18 2011-10-19 江阴普莱医药生物技术有限公司 一种抗菌肽及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PARK, S.C. ET AL.: "Amphipathic a-helical peptide, HP (2-20), and its analogues derived from Helicobacter pylori: Pore formation mechanism in various lipid compositions", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1778, no. 1, 2 October 2007 (2007-10-02), pages 229 - 241, XP022425369 *
PARK, Y. ET AL.: "Structure-Activity Relationship of HP (2-20) Analog Peptide: Enhanced Antimicrobial Activity by N-terminal Random Coil Region Deletion", PEPTIDE SCIENCE, vol. 88, no. 2, 10 January 2007 (2007-01-10), pages 199 - 207, XP055136701 *

Also Published As

Publication number Publication date
EP2735570B1 (en) 2018-01-03
CN102219831B (zh) 2013-03-20
US9273095B2 (en) 2016-03-01
CN102219831A (zh) 2011-10-19
US20140329739A1 (en) 2014-11-06
EP2735570A4 (en) 2014-11-12
ES2661860T3 (es) 2018-04-04
EP2735570A1 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2012142855A1 (zh) 一种抗菌肽及其制备方法和应用
JP5322108B2 (ja) 抗菌ペプチド
JP7267251B2 (ja) 抗菌組成物及び医薬組成物
CN104583229B (zh) 肽及其应用
US9352015B2 (en) Antimicrobial peptides
KR102224929B1 (ko) 해삼에서 분리한 항균 펩타이드로부터 유래한 신규 항균 펩타이드 및 이의 용도
JP7386905B2 (ja) Romo1由来抗菌ペプチドおよびその変異体
TW200936153A (en) Short fatty acid tail polymyxin derivatives and uses thereof
KR102415725B1 (ko) 신규한 항균 펩타이드 h123 및 이의 용도
KR101444257B1 (ko) 왕지네로부터 분리한 신규 스콜로펜드라신ⅱ 펩타이드 및 그의 조성물
KR20140142700A (ko) 항균성 펩티드
KR102415734B1 (ko) 신규한 항균 펩타이드 및 이의 용도
WO2018175410A1 (en) Antimicrobial peptides and methods of treating gram-negative pathogens
WO2014107042A1 (ko) 헬리코박터 파일로리균의 리보좀 단백질 l1으로부터 유래된 신규한 항생 펩타이드 및 이의 용도
JP5202649B2 (ja) ヘリコバクター・ピロリ菌のリボソームタンパク質l1由来の新しい抗生ペプチド及びその使用
KR20160013328A (ko) 왕지네로부터 분리한 항균 펩타이드 스콜로펜드라신-6 및 그의 조성물
Conlon The potential of frog skin antimicrobial peptides for development into therapeutically valuable anti-infective agents
CN112110993B (zh) 化学合成的具有抗细菌、真菌作用的二聚体多肽、制备方法及其应用
CN113045627B (zh) 一种抗菌多肽sa-2及其制备方法和应用
JP2011521984A (ja) 新規抗菌性ペプチド
KR101851134B1 (ko) 바퀴벌레에서 유래한 항균 펩타이드 페리플라네타신-6 및 그의 조성물
KR101624632B1 (ko) 왕지네로부터 분리한 신규 스콜로펜드라신-5 펩타이드 및 그의 조성물
US20200377561A1 (en) Antimicrobial peptides and methods of treating gram-negative pathogen infections: polar and non-polar face analogs
KR102451854B1 (ko) 신규한 항균 펩타이드 h103 및 이의 용도
CN113583090B (zh) 具有抗菌活性的阿诺普林改造肽及其合成方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774269

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012774269

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14112064

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE