WO2012141317A1 - Iii族窒化物結晶の製造方法およびiii族窒化物結晶 - Google Patents

Iii族窒化物結晶の製造方法およびiii族窒化物結晶 Download PDF

Info

Publication number
WO2012141317A1
WO2012141317A1 PCT/JP2012/060187 JP2012060187W WO2012141317A1 WO 2012141317 A1 WO2012141317 A1 WO 2012141317A1 JP 2012060187 W JP2012060187 W JP 2012060187W WO 2012141317 A1 WO2012141317 A1 WO 2012141317A1
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
iii nitride
crystal
nitride crystal
plane
Prior art date
Application number
PCT/JP2012/060187
Other languages
English (en)
French (fr)
Inventor
創 松本
訓任 洲崎
健史 藤戸
哲 長尾
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020137026845A priority Critical patent/KR101882541B1/ko
Priority to EP12771993.8A priority patent/EP2698456B1/en
Priority to CN201280018140.0A priority patent/CN103502514A/zh
Publication of WO2012141317A1 publication Critical patent/WO2012141317A1/ja
Priority to US14/054,036 priority patent/US9502241B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to a group III nitride crystal excellent in workability and crystal quality and a method for producing a group III nitride crystal having such characteristics.
  • Group III nitride crystals are variously used as substrates for light-emitting elements such as light-emitting diodes (LEDs) and semiconductor lasers (LDs).
  • LEDs light-emitting diodes
  • LDs semiconductor lasers
  • GaN crystals are useful as substrates for blue light emitting devices such as blue light emitting diodes and blue semiconductor lasers, and active research has been conducted.
  • a group III nitride crystal it is necessary to process the grown group III nitride crystal into the shape of the substrate. For example, when manufacturing a disk-shaped substrate, the outer periphery of the grown group III nitride crystal is polished with a crystal grindstone or the like to have a circular cross section. In addition, slicing is frequently performed to obtain a desired size.
  • the group III nitride crystal it has been known that residual stress is generated inside the crystal as the crystal grows, and as a result, the crystal is warped.
  • a group III nitride crystal grown on a heterogeneous substrate is separated from the heterogeneous substrate, warping may be noticeable. Therefore, it has been proposed to perform heat treatment in order to reduce such warpage (see Patent Document 1).
  • warpage is reduced by reducing the difference in dislocation density between the substrate side surface of the group III nitride crystal and its opposite surface by heat treatment.
  • the GaN layer is heat-treated at 1200 ° C. for 24 hours, heat-treated at 1400 ° C. for 10 minutes, or heat-treated at 1600 ° C. for 2 hours.
  • Patent Document 1 describes means for reducing warpage, nothing is described about the basal plane dislocation to which the present invention is focused, and the inventors described in Patent Document 1 As a result of examining the means, it has become clear that none of them has sufficiently solved the problems of damage and cracking during peripheral processing and slicing. It was also found that there is still a need for improvement in terms of crystal quality. In view of such problems of the prior art, the present inventors have intensively studied to provide a group III nitride crystal having excellent workability and high quality and a method for producing the same.
  • the present inventors have found that controlling the basal plane dislocation of the crystal to a preferable state is extremely important for solving the problem.
  • the group III nitride crystal is heat-treated under conditions different from the conventional one, it becomes possible to control the dislocation of the group III nitride crystal to a preferable state, thereby weakening the periphery of the crystal. This has led to an epoch-making result that the problems caused by the residual stress distributed over the entire crystal substrate can be solved at once.
  • a group III nitride crystal in which the dislocation distribution state is different from the conventional one and the crystal quality is extremely excellent can be provided.
  • the present invention has been made based on these findings, and the contents thereof are as shown below.
  • a method for producing a group III nitride crystal comprising the following steps (1) and (2): (1) A film forming step of forming a film made of an oxide, a hydroxide and / or an oxyhydroxide containing a group III element by heat-treating the group III nitride single crystal at 1000 ° C. or higher. (2) A film removing step for removing the film. [2] The method for producing a group III nitride crystal according to [1], wherein the film is formed directly on the single crystal. [3] The method for producing a group III nitride crystal according to [1] or [2], wherein the heat treatment is performed in the presence of an oxygen source.
  • a group III nitride crystal comprising a dislocation aggregate in which basal plane dislocations are arranged at intervals of 50 to 500 nm on the M plane, and the maximum length of the dislocation aggregate is 5 ⁇ m or more.
  • the dislocation accumulation degree (A / B) represented by the ratio of the number density of dislocation aggregates (A) and the number density of isolated dislocations (B) in the M plane is 1% or more.
  • ⁇ d / d (ave) [d (max) ⁇ d (min)] / d (ave)
  • d (max), d (min) and d (ave) are the maximum value, the minimum value when the lattice spacing of crystal planes perpendicular to the epitaxial growth direction is measured along the growth direction, And mean value.
  • the group III nitride crystal of the present invention is excellent in workability and high quality.
  • the group III nitride crystal of the present invention alleviates the problem of the fragility of the outer periphery of the crystal and the residual stress distributed over the entire crystal substrate, as seen in conventional group III nitride crystals. According to the production method of the present invention, a group III nitride crystal having such characteristics can be produced easily.
  • a GaN crystal may be described as a representative example of a group III nitride crystal, but the present invention is not limited to the GaN crystal and the manufacturing method thereof.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the “C plane” is a plane equivalent to the ⁇ 0001 ⁇ plane in the hexagonal crystal structure (wurtzite type crystal structure).
  • the C plane is a group III plane, and in gallium nitride, it corresponds to the Ga plane.
  • the “M plane” is a plane comprehensively represented as a ⁇ 1-100 ⁇ plane, specifically, a (1-100) plane, a (01-10) plane, ( ⁇ 1010) plane, ( ⁇ 1100) plane, (0-110) plane, and (10-10) plane.
  • the “A plane” is a plane comprehensively represented as a ⁇ 2-1-10 ⁇ plane, specifically, a (2-1-10) plane, (-12-10) ) Plane, ( ⁇ 1-120) plane, ( ⁇ 2110) plane, (1-210) plane, and (11-20) plane.
  • the method for producing a group III nitride crystal of the present invention includes the following steps (1) and (2).
  • the manufacturing method of the present invention includes the step of performing the film removal step of (2) after performing the step of film formation of (1), and includes the steps of (1) and (2). The including step may be repeated. Further, steps other than (1) and (2) may be included before the step (1), between the steps (1) and (2), and after the step (2).
  • a film removing step for removing the film is
  • the group III nitride single crystal is heat-treated under such a condition that a film made of an oxide, hydroxide and / or oxyhydroxide containing a group III element is formed. I do.
  • the group III nitride single crystal used in the film forming step is a single crystal made of the same type of group III nitride as the group III nitride crystal to be produced in the present invention. For example, when a GaN crystal is to be manufactured, a GaN single crystal is used.
  • the group III nitride single crystal used in the film forming step single crystals grown by various growth methods can be used.
  • any known crystal growth method may be applied, and examples thereof include HVPE method, MOCVD method, flux method, and ammonothermal method.
  • a group III nitride single crystal grown by the HVPE method can be preferably used with a group III nitride single crystal grown on a different substrate such as sapphire as a base substrate.
  • the details of the HVPE method employed here are not particularly limited, and for example, conditions described in Examples described later can be referred to.
  • the temperature of the heat treatment is 1000 ° C. or higher.
  • the heat treatment temperature should be determined in relation to the heat treatment time.
  • the heat treatment temperature is preferably 1100 ° C. or higher, more preferably 1200 ° C. or higher, and further preferably 1300 ° C. or higher.
  • the upper limit of the heat treatment temperature is preferably 2500 ° C. or less, more preferably 2220 ° C. or less, further preferably 1600 ° C. or less, and further preferably 1400 ° C. or less.
  • the heat treatment time is preferably shortened when the heat treatment temperature is high, and is long when the heat treatment temperature is low.
  • the heat treatment time is preferably 15 minutes or longer, more preferably 30 minutes or longer, and even more preferably 1 hour or longer.
  • the upper limit of the heat treatment time is preferably 200 hours or less, more preferably 100 hours or less, and even more preferably 24 hours or less.
  • the heat treatment is preferably 0.25 to 24 hours, more preferably 1.0 to 10 hours.
  • the heat treatment is preferably performed for 1.0 to 200 hours, more preferably for 24 to 100 hours. From the viewpoint of sufficiently promoting film formation, when a heat treatment temperature in the range of 1150 to 1250 ° C. is adopted, the heat treatment is preferably 100 to 1000 hours, more preferably 200 to 500 hours.
  • the GaN layer is heat-treated at 1200 ° C. for 24 hours.
  • the group III nitride single crystal contains a group III element, an oxide, a hydroxide, and A film made of oxyhydroxide is not formed.
  • a GaN substrate on which SiO 2 is formed by CVD is heat-treated at 1600 ° C. for 2 hours in an atmospheric environment. When the temperature was raised to 1400 ° C.
  • Cited Document 1 includes the film forming process of the present invention. Does not suggest any.
  • the temperature lowering temperature of the group III nitride single crystal after the heat treatment is usually set to 100 ° C./hour or more, preferably 1000 ° C./hour or more, and preferably 3000 ° C./hour or more. More preferred.
  • ice water can be used for rapid cooling at a rate of 1 ⁇ 10 6 ° C./hour or more. The rate of temperature increase or the rate of temperature decrease may be kept constant or may be changed with time.
  • the heat treatment in the present invention may be performed under high pressure.
  • the pressure when carried out under high pressure is preferably 1 MPa or more, more preferably 10 MPa or more, and further preferably 5 GPa or more.
  • the pressure may be kept constant during the heat treatment or may be varied. Preferred is when it is kept constant.
  • the pressurization may be performed on the entire crystal or only on a part of the crystal. Further, the degree of pressurization may be changed depending on the crystal portion. For example, the pressurizing condition may be changed between the central portion and the outer peripheral portion. Since the degree of penetration of light elements by heat treatment of the part can be adjusted by partially changing the pressing condition, the pressing condition can be determined for each region according to the dislocation density of the crystal, for example. .
  • pressure may be applied after the heat treatment.
  • the film removal process described later may be performed after pressurization after the heat treatment, or may be performed after the film removal process has been performed, or the crystal after the heat treatment and the crystal after the film removal may be stacked and pressurized. Also good.
  • the kind of the atmospheric gas during the heat treatment is particularly Not limited.
  • the atmospheric gas include ammonia (NH 3 ), nitrogen (N 2 ), and a mixed gas thereof.
  • the ammonia (NH 3 ) concentration or nitrogen (N 2 ) concentration in the atmosphere is not particularly limited, but ammonia (NH 3 ) is usually 0.5% or more, preferably 1% or more, more preferably 5% or more, Usually, it is 50% or less, preferably 25% or less, more preferably 10% or less.
  • the N 2 concentration is usually 50% or more, preferably 75% or more, more preferably 90% or more, and usually 99.5% or less, preferably 99% or less, more preferably 95% or less.
  • the heat treatment in the present invention may be performed in a closed system or a distribution system, but is preferably performed in a distribution system.
  • the flow rate is usually 50 ml / min or more, preferably 150 ml / min or more, more preferably 180 ml / min or more, and usually 500 ml / min or less. It is preferably 300 ml / min or less, more preferably 250 ml / min or less.
  • the heat treatment in the present invention is also preferably performed in the presence of an oxygen source.
  • the oxygen source here means a material that supplies oxygen atoms used for film formation during heat treatment. For example, when a film containing a group III oxide, group III hydroxide, or oxyhydroxide is formed, oxygen atoms constituting the group III oxide, group III hydroxide, or oxyhydroxide are changed. Refers to the material to be supplied.
  • the oxygen source may be supplied as a gas containing oxygen atoms, or may be supplied by generating a compound containing oxygen atoms by reaction. Examples of the gas containing oxygen atoms include oxygen molecules, water molecules, carbon dioxide molecules, and carbon monoxide molecules.
  • the concentration of the gas containing oxygen atoms or the compound containing oxygen atoms in the atmosphere is not particularly limited, but in the case of water molecules, it is usually 0.1% or more, preferably 0.5% or more, more preferably 1.0% or more. It is usually 30% or less, preferably 20% or less, more preferably 10% or less.
  • generates a water molecular gas can be mentioned, for example.
  • Other examples of the material constituting the inner wall of the reaction vessel include silica, zirconia, titania, and a sintered body containing at least one of these.
  • the surface of the substrate holder or the like installed in the reaction vessel is made of alumina or an aspect in which an alumina rod or alumina powder is installed in the reaction vessel is also adopted.
  • the shape of the reaction vessel is not particularly limited, and examples thereof include a cylindrical vessel, and examples thereof include a cylindrical alumina tube.
  • the group III nitride single crystal to be heat-treated can be placed vertically or horizontally while stacking or arranging a plurality of crystals.
  • the surface of the group III nitride single crystal so as not to be in surface contact with the reaction vessel or the like.
  • a cylindrical container By using a cylindrical container, it is easy to prevent the surface contact between the group III nitride single crystal and the reaction container, and it is possible to easily distribute the atmospheric gas over the entire surface.
  • a film made of an oxide, a hydroxide and / or an oxyhydroxide containing a group III element was formed on a group III nitride single crystal by the film forming process of the present invention. It can be easily confirmed by analyzing the cleaning solution after washing with nitric acid.
  • the film made of an oxide, hydroxide and / or oxyhydroxide containing a group III element include a group III oxide, a group III hydroxide or an oxyhydroxide. It may be a mixture of Specifically, when the group III element is Ga, gallium oxide and gallium oxyhydroxide can be exemplified.
  • a film in which gallium metal, gallium oxide and gallium oxyhydroxide are usually mixed is formed, and the outermost surface becomes black, so that the film formation can be visually confirmed.
  • “Forming a film made of an oxide, hydroxide and / or oxyhydroxide containing a group III element” means “an oxide, hydroxide and / or oxywater containing a group III element” It is intended to form a film made of an oxide as a main component, and does not eliminate a film containing impurities mixed in the manufacturing process or by-produced gallium metal. Absent.
  • the amount of the oxide, hydroxide and / or oxyhydroxide containing the above-mentioned group III element constituting the coating can be determined from the weight reduction ratio before and after acid cleaning, and from the amount of coating formed Can take into account the movement of dislocations inside the crystal.
  • the weight reduction ratio when using a substrate having a diameter of 63 mm ⁇ is preferably 3% to 15%. Overall, the weight reduction ratio is closely related to the specific surface area, but there is an ideal range regardless of the size and shape, and the lower limit is preferably 1% or more from the viewpoint of sufficiently forming a film, and 2% or more is further Good, 2.5% or more is particularly good.
  • the upper limit is limited because there are fewer crystals to produce, and is preferably 60% or less, more preferably 35% or less, and particularly preferably 25% or less.
  • a film comprising an oxide, hydroxide and / or oxyhydroxide containing a group III element may be formed directly on the group III nitride single crystal, or an intermediate layer on the group III nitride single crystal. However, it may be formed directly on the group III nitride single crystal because the effect of the present invention is more remarkable.
  • the film formed in the film formation process is removed.
  • the coating removal method include a method of immersing crystals in an acid solution and a mechanical polishing method.
  • a method of immersing crystals in an acid solution or a mixed acid solution is preferable because of its excellent efficiency and simplicity.
  • Nitric acid is suitable as the acid species used for immersing the crystal, and sulfuric acid and hydrochloric acid are also exemplified.
  • the concentration is preferably 10% or more, and more preferably 30% or more. If a high-concentration acid solution or mixed acid solution is used, the film removal tends to be efficient.
  • the film removal step using an acid solution or a mixed acid solution is preferably performed while heating. Specifically, it is preferably performed at 60 ° C. or higher, and more preferably at 80 ° C. or higher.
  • the removal of the film in the film removal step may not be to completely remove the film made of an oxide, hydroxide and / or oxyhydroxide containing a group III element formed in the film formation step.
  • an oxide, hydroxide and / or oxyhydroxide containing a group III element may remain on the crystal surface after the film removal step is performed, or the film containing these is completely removed. Also good.
  • the film made of an oxide, hydroxide and / or oxyhydroxide containing a group III element is removed and the oxide, hydroxide and / or oxyx containing a group III element. It may be one that removes components other than hydroxides, and is preferably one that removes at least group III metal, and particularly one that removes gallium metal.
  • Group III metal can be removed by immersion in the above acid solution or mixed acid solution.
  • the film removal step in the present invention may be performed immediately after performing the film formation step, may be performed after a certain time, or may be performed after performing other steps. Examples of other processes include roughing with a polishing machine, slicing process described later, and peripheral processing.
  • the group III nitride crystal of the present invention is characterized in that dislocation aggregates in which basal plane dislocations are arranged at intervals of 50 nm to 500 nm are included in the M plane, and the maximum length of the dislocation aggregates is 5 ⁇ m or more.
  • the basal plane dislocation as referred to in the present invention is different from threading dislocation which is widely known in GaN crystals and the like.
  • the threading dislocation is a considerable number of dislocations of about 10 9 / cm 2 generated in the GaN crystal because the lattice constant is greatly different when a GaN crystal is vapor-phase grown on a different substrate such as a sapphire substrate.
  • the basal plane dislocation referred to in the present invention is a dislocation introduced when a slip occurs on the bottom surface due to stress induction, and the propagation direction is parallel to the basal plane (0001) plane of GaN.
  • the inventors of the present invention have grasped a form that is transmitted while drawing an arc on the basal plane by SEM-CL observation and transmission electron microscope observation.
  • the dislocation aggregate referred to in the present invention is a structure in which basal plane dislocations are arranged at intervals of 50 nm to 500 nm.
  • dislocation aggregates in which basal plane dislocations are arranged in parallel at such narrow intervals have not been observed over a range of 5 ⁇ m or more.
  • the dislocation aggregates observed in the group III nitride crystal of the present invention preferably have 10 or more basal plane dislocations arranged in parallel, more preferably 100 or more in parallel, and 1000 or more in parallel. It is more preferable that they are lined up.
  • the maximum length of the dislocation aggregate is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 50 ⁇ m or more.
  • the maximum length is preferably 400 ⁇ m or less, more preferably 200 ⁇ m or less, and further preferably 100 ⁇ m or less.
  • the number density of dislocation aggregates in the group III nitride crystal of the present invention is preferably 5 ⁇ 10 3 pieces / cm 2 or more, more preferably 8 ⁇ 10 3 pieces / cm 2 or more, and 1 ⁇ More preferably, it is 10 4 pieces / cm 2 or more.
  • the plane for measuring the number density of dislocation aggregates in the present invention is the M plane.
  • a group III nitride single crystal is heat-treated at 1000 ° C. or higher to form a film made of an oxide, hydroxide and / or oxyhydroxide containing a group III element.
  • dislocations isolated in the center isolated dislocations: isolated dislocations not forming dislocation aggregates
  • many dislocation aggregates satisfying the above conditions are observed at the center of the crystal.
  • the number of dislocation aggregates in the center can be increased 2 to 10 times by heat-treating a group III nitride crystal such as a GaN crystal according to the production method of the present invention.
  • the dislocation accumulation degree (A / B) represented by the ratio of the number density of dislocation aggregates (A) and the number density of isolated dislocations (B) observed in the M plane is preferably 1% or more. Yes, more preferably 2% or more, still more preferably 3% or more.
  • the residual stress existing over the entire crystal is reduced, and it is difficult for relatively large cracks to be generated due to damage such as small cracks generated in the outer peripheral portion having low brittleness.
  • Such aggregation of basal plane dislocations is considered to be the result of the basal plane dislocations exhibiting the most stable arrangement in the form of assisting the driving force that reduces the residual stress inside the crystal. It should be noted that the accumulation of isolated dislocations in the same plane means that the isolated dislocations are collected in the same plane as in the result of observation by a cathodoluminescence scanning electron microscope in Example 11 shown in FIG.
  • a fragile region in the outer peripheral portion of the crystal can be easily removed in addition to the above effects. Without being bound by any theory, this is because the oxygen, nitrogen, carbon, hydrogen or molecules of these are introduced into gaps where the dislocation cores have broken atomic bonds, and thereby the wurtzite crystal structure around the dislocations. This is thought to be due to the loss of integrity. As a result, the state becomes extremely brittle, and mechanically, if an impact much lower than that of the outer peripheral machining is given, only the relevant part is crushed. For this reason, the propagation of cracks toward the central portion starting from damage at the outer peripheral portion is also greatly suppressed.
  • the manufacturing method of the present invention is excellent in that the two problems of the residual stress in the central portion and the weakness in the outer peripheral portion can be solved at once.
  • the group III nitride crystal of the present invention provided thereby has the characteristics that the brittleness of the outer peripheral portion is improved, the residual stress is small, cracks are difficult to occur, and the crystal quality is excellent.
  • the Group III nitride crystal of the present invention has a low value of machining damage resistance. Further, the group III nitride crystal of the present invention has a long dislocation propagation maximum distance.
  • the dislocation propagation maximum distance here refers to the longest dislocation observed around the Vickers indentation introduced by the Vickers test.
  • the group III nitride crystal according to another aspect of the present invention is characterized in that ⁇ d / d (ave) is 4 ⁇ 10 ⁇ 5 or less.
  • the present inventors have found that the residual stress can be reduced by setting the ⁇ d / d (ave) of the group III nitride crystal to 4 ⁇ 10 ⁇ 5 or less, thereby improving the workability of the group III nitride crystal. Succeeded to improve.
  • the change ⁇ d / d (ave) of the lattice constant here is a scale indicating the magnitude of the change when the lattice spacing of crystal planes orthogonal to the epitaxial growth direction is measured along the growth direction.
  • ⁇ d / d (ave) [d (max) ⁇ d (min)] / d (ave) Is a parameter derived by.
  • d (max) represents the maximum value of the lattice plane interval in the measurement range
  • d (min) represents the minimum value of the lattice plane interval in the measurement range
  • d (ave) represents the average value of the lattice plane interval in the measurement range. Residual stress can be reduced by reducing ⁇ d / d (ave).
  • ⁇ d / d (ave) is usually 4 ⁇ 10 ⁇ 5 or less, preferably 3 ⁇ 10 ⁇ 5 or less, and preferably 2 ⁇ 10 ⁇ 5 or less. More preferred.
  • ⁇ d / d (ave) is usually 4 ⁇ 10 ⁇ 5 or less, preferably 3 ⁇ 10 ⁇ 5 or less, and preferably 2 ⁇ 10 ⁇ 5 or less. More preferred.
  • the measurement ranges of d (max), d (min), and d (ave) may be arbitrarily determined depending on the size of the group III nitride crystal to be measured.
  • the lattice spacing was measured with a measurement distance of 3.5 mm and a measurement interval of 100 ⁇ m.
  • the above ⁇ d / d (ave) may convert the measured crystal plane into a change in a-axis length. For example, when the change of lattice constant in the growth direction of the lattice spacing of ⁇ 10-10 ⁇ plane, ⁇ 30-30 ⁇ plane, ⁇ 2-1-10 ⁇ plane, ⁇ 4-2-20 ⁇ plane is obtained Is multiplied by 2 / ⁇ 3, 2 ⁇ 3, 1 and 2, respectively, to obtain the a-axis length.
  • the basal plane dislocation is controlled to the optimum position by heat-treating the group III nitride single crystal at 1000 ° C. or higher according to the production method of the present invention. Good.
  • the strain distribution in the direction orthogonal to the twisted surface (C-plane) of the basal plane dislocation is uniform, the collective behavior between the dislocations easily occurs by heat treatment. When the collective behavior progresses to a vertically arranged arrangement, the strain distribution of each basal plane dislocation is canceled out, and the internal strain in the system is reduced (dislocation polygonization).
  • the aggregation behavior of basal plane dislocations depends on temperature. For example, it may be heat treated at temperatures above 1000 ° C. to [Delta] d / d a (ave) to 4 ⁇ 10 -5 or less, to [Delta] d / d a (ave) to 3 ⁇ 10 -5 or less 1100 ° C. Heat treatment may be performed at the above temperature, and heat treatment may be performed at a temperature of 1200 ° C. or higher in order to make ⁇ d / d (ave) 2 ⁇ 10 ⁇ 5 or less.
  • the group III nitride crystal of the present invention comprises a nitride of a group III element.
  • gallium nitride, aluminum nitride, indium nitride, or a single crystal in which these are mixed can be given.
  • a GaN crystal or AlGaN crystal obtained by heat-treating a C-plane grown GaN single crystal according to the manufacturing method of the present invention to form a coating film and removing the coating film can be given as a preferred example.
  • a large group III nitride crystal can be easily produced, so that the group III nitride crystal of the present invention can be made large.
  • a large group III nitride crystal of 3 inches or more can be used.
  • the group III nitride crystal of the present invention is usefully used as a substrate by appropriately processing as necessary.
  • a basal plane substrate, a nonpolar substrate, and a semipolar substrate can be provided at low cost.
  • a template substrate having a C surface obtained by growing GaN by MOCVD on a sapphire substrate having a diameter of 76 mm ⁇ as a main surface is prepared. It was placed on the coated carbon substrate holder 108 and placed in the reactor 100 of the HVPE apparatus (see FIG. 1). After the reactor 100 was heated to 1020 ° C., HCl gas was supplied through the introduction pipe 103, and GaCl gas G 3 generated by reacting with Ga in the reservoir 106 was supplied into the reactor through the introduction pipe 104. In such a GaN layer growth step on the base substrate 110, the reactor temperature of 1020 ° C.
  • the growth pressure is 1.01 ⁇ 10 5 Pa
  • the partial pressure of the GaCl gas G3 is 6.52. ⁇ and 10 2 Pa
  • the partial pressure of NH 3 gas G4 and 7.54 ⁇ 10 3 Pa and the partial pressure of hydrogen chloride (HCl) and 3.55 ⁇ 10 1 Pa.
  • the temperature in the reactor was lowered to room temperature to obtain a C-plane grown GaN crystal that was a group III nitride crystal.
  • the obtained GaN crystal had a growth surface with a mirror surface, the thickness measured with a stylus thickness meter was 3.5 mm, and the weight measured with a precision weigher was 63.0311 g. .
  • the obtained GaN crystal was subjected to the following heat treatment (high temperature corrosion annealing) without performing pretreatment such as cleaning, etching, and cap.
  • the heat treatment was performed by installing the GaN crystal 201 in an alumina tube (Al 2 O 3 99.7%) 200 and introducing a mixed gas of ammonia and nitrogen from the gas introduction tube 203 at a flow rate of 200 ml / min.
  • Ammonia / nitrogen mixed gas (NH 3 8.5% + N 2 91.5%) is 45 days or more until a uniform mixed gas is obtained after mixing ammonia gas and nitrogen gas in a 4.9 MPa 47-liter cylinder. Used after standing.
  • the heater 202 was used to raise the temperature from room temperature to 600 ° C. at 300 ° C./hour, and from 600 ° C. to 1300 ° C. was raised at 250 ° C./hour.
  • the obtained crystals are immersed in concentrated nitric acid (containing 69% of HNO 3 ) at 120 ° C. to completely remove gallium metal adhering to the surface, and cream-like gallium oxyhydroxide and white gallium oxide remain on the surface.
  • a crystal sample was obtained (Example 1). Since the weight after the concentrated nitric acid treatment was 61.1681 g, the weight reduction ratio was 2.96%.
  • ⁇ Outer peripheral machining> As a grinding wheel for crystal grinding, a grinding stone having an average grain diameter of 25 ⁇ m and vitrified as a bonding agent was used, and the grinding wheel processing surface was arranged to be perpendicular to the (0001) plane of the crystal.
  • the grindstone rotation speed was 2500 m / min, and the crystal rotation speed was 5 mm / sec.
  • the grindstone processing surface was controlled so as to approach the crystal center of 0.02 to 0.04 mm per crystal rotation.
  • FIG. 3A is a front view
  • FIG. 3B is a side view
  • the crystal cutting wire W an apparatus was prepared in which 70 wires with electrodeposited diamond abrasive grains having an average particle diameter of 12 to 25 ⁇ m were arranged in parallel, and 6 of them contributed to the cutting of the crystal sample.
  • the wires W arranged in parallel travel when the roller R1 and the roller R2 rotate in the same direction, and the two rollers R1 and R2 are as shown in FIG. 4B.
  • An M-plane slice plate piece was cut out from each of the obtained crystal samples and subjected to chemical polishing on one M-plane until a surface state suitable for fluorescence microscope observation and SEM-CL observation was obtained.
  • An M-plane single-side polished sample having a uniform thickness was obtained. Separately, the C-surface front and back surfaces are ground and polished by 500 ⁇ m or more to remove the gallium hydroxide layers and gallium oxide layers on the front and back surfaces of the C-surface, and then chemical polishing is performed until a surface state suitable for SEM-CL observation is obtained. As a result, a C-surface double-side polished sample having a uniform thickness of 1.3 mm ⁇ 0.05 mm was also obtained.
  • the dislocation aggregate in which the basal plane dislocations were accumulated had a size of 10 ⁇ m to 50 ⁇ m. It was observed.
  • the number of dislocation aggregates present in an area of approximately 0.0054 cm 2 was counted using the same fluorescence microscope at each of the 25 mm, 20 mm, and 15 mm sites from the outer edge of the M-surface single-side polished sample. The number density of dislocation aggregates was calculated by dividing the number by the measurement area.
  • One of the dislocation aggregates in the heat-treated sample of Example 11 was observed in more detail using scanning electron microscope cathodoluminescence.
  • the spatial resolution of the scanning electron microscope cathode luminescence used was 3 nm, and the acceleration voltage of the electron beam was set to 3 kV.
  • the incident electron beam was parallel to the m-axis direction.
  • a structure in which basal plane dislocations were arranged at intervals of 50 to 500 nm in the c-axis direction was observed over a range of 5 ⁇ m or more in the c-axis direction and the a-axis direction, respectively.
  • the measurement of the lattice spacing of these samples was performed using a high resolution X-ray diffractometer.
  • the X-ray beam uses CuK ⁇ 1 line by an X-ray tube, and is narrowed down by a monochromator and a pinhole type slit.
  • the full width at half maximum (FWHM) of Gaussian beam approximation on the sample surface is 100 ⁇ m in the horizontal direction and 200 ⁇ m in the vertical direction. It was made to become.
  • the sample was fixed to the sample stage so that the c-axis direction was parallel to the horizontal direction.
  • a 2 ⁇ - ⁇ scan of the (30-30) plane which is a crystal plane perpendicular to the growth direction on the line is continuously performed over a length of 3.5 mm at intervals of 100 ⁇ m. The change of the lattice spacing was examined.
  • FIG. 6 shows the result of measuring the change in the lattice spacing of the (30-30) plane at the center of each sample substrate of Example 11 and Comparative Example 11.
  • the maximum value d (max), minimum value d (min), average value d (ave), and [d (max) -d (min)] / d (ave) of the lattice spacing are shown in Table 3 below. It was as shown.
  • FIG. 7 shows the result of converting FIG. 6 to a-axis length change data by multiplying the (30-30) plane interval by 2 ⁇ 3 and converting it to a-axis length change data.
  • the present invention relates to a single crystal gallium nitride (GaN) substrate that can be used as a substrate of a blue light emitting element such as a blue light emitting diode (LED) or a blue semiconductor laser (LD) made of a group III nitride semiconductor, and a single crystal gallium nitride substrate (
  • the present invention relates to a growth method of GaN) and a manufacturing method of a single crystal gallium nitride substrate (GaN).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

加工性に優れていて品質が高いIII族窒化物結晶を提供すること。 III族窒化物単結晶を1000℃以上で熱処理することによりIII族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜を形成し、その被膜を除去することによりIII族窒化物結晶を製造する。

Description

III族窒化物結晶の製造方法およびIII族窒化物結晶
 本発明は、加工性と結晶品質に優れたIII族窒化物結晶とそのような特性を備えたIII族窒化物結晶の製造方法に関する。
 III族窒化物結晶は、発光ダイオード(LED)や半導体レーザ(LD)といった発光素子の基板等として種々利用されている。なかでも、GaN結晶は、青色発光ダイオードや青色半導体レーザなど青色発光素子の基板として有用であり、活発な研究がなされている。
 III族窒化物結晶を基板として用いる際には、結晶成長させたIII族窒化物結晶を基板の形状に加工する必要がある。例えば、円盤状の基板を作製する際には、成長させたIII族窒化物結晶の外周を結晶用砥石などで研磨して断面を円形にしている。また、所望のサイズにするために、スライス加工も頻繁に行われている。
 一方で、従来からIII族窒化物結晶においては、結晶成長に伴って結晶内部に残留応力が発生し、その結果として、結晶のそりを引き起こすことが知られている。特に、異種基板上に成長させたIII族窒化物結晶を異種基板から分離すると、そりが顕著に認められることがある。そこで、このようなそりを低減するために、熱処理を行うことが提案されている(特許文献1参照)。ここでは、III族窒化物結晶の基板側面とその反対面との間の転位密度の差を熱処理によって小さくすることによって、そりを低減することが記載されている。具体的には、GaN層を1200℃で24時間熱処理することや、1400℃で10分間熱処理することや、1600℃で2時間熱処理することが記載されている。
特開2003-277195号公報
 例えばc軸方向に成長させたGaN結晶などを外周加工したりスライス加工したりすると、結晶の外縁や側壁が脆いために外周部が欠けたり、小さなクラックを生じたりしやすいという問題がある。また、そのような外周部の損傷が発端となって、外周部から内側へ向かう比較的大きなクラックが入りやすいという問題があることが明らかになってきた。そこで、このような問題に対処するために、例えば結晶にワックスを塗布したり、砥石の粒径を調整したり、あるいは加工速度を調整したりするなどの工夫がなされている。しかしながら、いずれも外周加工やスライス加工時の損傷やクラック発生の問題を十分に解決するには至っていない。
 さらに、本発明者らの検討において、加工時に外周部から内側へ向かうクラックが入りやすいのは、結晶全体に残留応力が存在していることも一因となっていると考えられた。特許文献1にはそりを低減するための手段は記載されているものの、本発明が着目している基底面転位については何も記載されておらず、本発明者らが特許文献1に記載の手段を検討したところ、いずれも外周加工やスライス加工時の損傷やクラック発生の問題を十分に解決するには至っていないことが明らかになった。
 また、結晶品質という点でもなお改良の必要性があることが判明した。このような従来技術の問題点に鑑みて、本発明者らは、加工性に優れていて品質が高いIII族窒化物結晶とその製造方法を提供することを課題として鋭意検討を重ねた。
 その結果、本発明者らは結晶の基底面転位を好ましい状態へ制御することが課題を解決するために極めて重要であることを見出した。そしてさらに検討を進めた結果、従来とは異なる条件でIII族窒化物結晶を熱処理すれば、III族窒化物結晶の転位を好ましい状態へ制御することが可能になり、それによって結晶外周部の脆弱性と結晶基板全体に分布する残留応力に起因する問題を一挙に解決することができるという画期的な成果を上げるに至った。また、それによって転位の分布状態が従来とは異なり、結晶品質が極めて優れているIII族窒化物結晶を提供しうることも見出すに至った。本発明は、これらの知見に基づいてなされたものであり、その内容は以下に示すとおりである。
[1] 下記の(1)および(2)の工程を含むことを特徴とするIII族窒化物結晶の製造方法。
(1)III族窒化物単結晶を1000℃以上で熱処理することによりIII族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜を形成する被膜形成工程。
(2)該被膜を除去する被膜除去工程。
[2] 前記被膜が前記単結晶上に直接形成されることを特徴とする[1]に記載のIII族窒化物結晶の製造方法。
[3] 酸素源の存在下で熱処理を行うことを特徴とする[1]または[2]に記載のIII族窒化物結晶の製造方法。
[4] アルミナ、ジルコニア、チタニア、またはこれらの少なくとも一種を含む焼結体の存在下で熱処理を行うことを特徴とする[1]~[3]のいずれかに記載のIII族窒化物結晶の製造方法。
[5] アルミナまたはアルミナを含む焼結体の存在下で熱処理を行うことを特徴とする[1]~[4]のいずれかに記載のIII族窒化物結晶の製造方法。
[6] さらに加圧工程を有することを特徴とする[1]~[5]のいずれかに記載のIII族窒化物結晶の製造方法。
[7] M面に基底面転位が50~500nmの間隔で並ぶ転位集合体を含み、該転位集合体の最大長が5μm以上であることを特徴とするIII族窒化物結晶。
[8] 前記転位集合体がM面に8×103個/cm2以上存在することを特徴とする[7]に記載のIII族窒化物結晶。
[9] M面における転位集合体の個数密度(A)と孤立転位の個数密度(B)の比で表される転位集積度(A/B)が1%以上であることを特徴とする[7]または[8]に記載のIII族窒化物結晶。
[10] 結晶を成長させる際の成長方法がC面成長であることを特徴する[7]乃至[9]のいずれかに記載のIII族窒化物結晶。
[11] 下記のΔd/d(ave)が4×10-5以下であることを特徴とするIII族窒化物結晶。   
 Δd/d(ave)=[d(max)-d(min)]/d(ave)
[上式において、d(max)、d(min)およびd(ave)は、エピタキシャル成長方向に直交する結晶面の格子面間隔を成長方向に沿って測定したときの、その最大値、最小値、および平均値を表す。]
 本発明のIII族窒化物結晶は、加工性に優れていて、品質が高いという優れた特徴を有する。また、本発明のIII族窒化物結晶は、従来のIII族窒化物結晶に見られる結晶外周部の脆弱性と結晶基板全体に分布する残留応力の問題を軽減している。本発明の製造方法によれば、このような特徴を有するIII族窒化物結晶を簡便に製造することができる。
結晶製造装置の一例を示す断面図である。 熱処理装置の一例を示す断面図である。 台座上に固定した結晶サンプルをワイヤーで切断する態様を説明する側面図(a)と上面図(b)である。 ワイヤーを揺動させながら結晶サンプルを切断する態様を説明する側面図である。 基底面転位の分布を示すカソードルミネッセンス走査型電子顕微鏡像である。 (30-30)面における格子面間隔測定の結果を示すグラフである。 図6をa軸長の変化曲線に変換したグラフである。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。例えば、III族窒化物結晶の代表例としてGaN結晶を例に挙げて説明がなされることがあるが、本発明はGaN結晶およびその製造方法に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 なお、本明細書において「C面」とは、六方晶構造(ウルツ鋼型結晶構造)における{0001}面と等価な面である。III族窒化物結晶では、C面はIII族面であり、窒化ガリウムではGa面に相当する。また、本明細書において「M面」とは、{1-100}面として包括的に表される面であり、具体的には(1-100)面、(01-10)面、(-1010)面、(-1100)面、(0-110)面、および(10-10)面を意味する。さらに、本明細書において「A面」とは、{2-1-10}面として包括的に表される面であり、具体的には(2-1-10)面、(-12-10)面、(-1-120)面、(-2110)面、(1-210)面、および(11-20)面を意味する。
[III族窒化物結晶の製造方法]
(基本構成)
 本発明のIII族窒化物結晶の製造方法は、下記の(1)および(2)の工程を含むことを特徴とする。本発明の製造方法では、(1)の被膜形成の工程を実施してから(2)の被膜除去工程を実施するステップを少なくとも1回含むものであり、(1)および(2)の工程を含むステップは繰り返して行ってもよい。また、(1)の工程の前、(1)と(2)の工程の間、(2)の工程の後に、(1)や(2)以外の工程を含むものであってもよい。
(1)III族窒化物単結晶を1000℃以上で熱処理することによりIII族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜を形成する被膜形成工程。
(2)該被膜を除去する被膜除去工程。
(被膜形成工程)
 本発明の製造方法における被膜形成工程では、III族窒化物単結晶に、III族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜が形成されるような条件で熱処理を行う。
 被膜形成工程で用いるIII族窒化物単結晶は、本発明で製造しようとしているIII族窒化物結晶と同じ種類のIII族窒化物からなる単結晶とする。たとえば、GaN結晶を製造しようとしている場合はGaN単結晶を用いる。被膜形成工程で用いるIII族窒化物単結晶としては、種々の成長法により成長させた単結晶を用いることができる。結晶成長法としては公知のいずれの結晶成長方法を適用してもよく、例えば、HVPE法、MOCVD法、フラックス法、アモノサーマル法などが挙げられる。具体的には、サファイアなどの異種基板上に成長させたIII族窒化物単結晶を下地基板として、HVPE法で成長させたIII族窒化物単結晶を好ましく用いることができる。ここで採用するHVPE法の詳細は特に制限されず、例えば、後述する実施例に記載される条件を参考にすることができる。
 熱処理の温度は1000℃以上とする。熱処理温度は熱処理時間との関係で決定されるべきものであるが、概して熱処理温度は1100℃以上であることが好ましく、1200℃以上であることがより好ましく、1300℃以上であることがさらに好ましい。また、熱処理温度の上限値については、2500℃以下であることが好ましく、2220℃以下であることがより好ましく、1600℃以下であることがさらに好ましく、1400℃以下であることがまたさらに好ましい。
 熱処理時間は、熱処理温度が高い場合は短くし、熱処理温度が低い場合は長くすることが好ましい。概して熱処理時間は15分以上にすることが好ましく、30分以上にすることがより好ましく、1時間以上にすることがさらに好ましい。熱処理時間の上限値は200時間以下にすることが好ましく、100時間以下にすることがより好ましく、24時間以下にすることがさらに好ましい。
 例えば、1275~1375℃の範囲内の熱処理温度を採用する場合は、0.25~24時間熱処理することが好ましく、1.0~10時間熱処理することがより好ましい。また、1150~1250℃の範囲内の熱処理温度を採用する場合は、1.0~200時間熱処理することが好ましく、24~100時間熱処理することがより好ましい。十分に被膜形成を促進させるとの観点から、1150~1250℃の範囲内の熱処理温度を採用する場合は、100~1000時間熱処理することが好ましく、200~500時間熱処理することがより好ましい。
 上記の引用文献1においてもIII族窒化物単結晶に対して熱処理を行っているが、いずれも本発明の被膜形成工程に該当するものではない。引用文献1の実施例では、GaN層を1200℃で24時間熱処理しているが、当該条件で熱処理を行ってもIII族窒化物単結晶にIII族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜は形成されない。また、引用文献1の別の実施例では、SiO2をCVD形成させたGaN基板に対して、大気環境下において1600℃で2時間熱処理したりしているが、本発明者らの検討において、1400℃以上に昇温したところGaN単結晶がすべて酸化ガリウムに変化してしまい再現することができなかった。III族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜を形成することは引用文献1の目的に反することであるため、引用文献1には本発明の被膜形成工程をまったく示唆していない。
 本発明において、熱処理後のIII族窒化物単結晶を降温する速度は、通常は100℃/時間以上に設定し、1000℃/時間以上にすることが好ましく、3000℃/時間以上にすることがより好ましい。また、例えば氷水などを用いて1×10℃/時間以上の速度で急冷することもできる。
 昇温速度や降温速度は、常に一定にしておいてもよいし、時間により変化させてもよい。
 本発明における熱処理は、高圧下で行ってもよい。高圧下で行う場合の圧力は1MPa以上であることが好ましく、10MPa以上であることがより好ましく、5GPa以上であることがさらに好ましい。圧力は、熱処理中は一定に維持してもよいし、変動させてもよい。好ましいのは一定に維持する場合である。加圧は結晶全体に行ってもよいし、結晶の一部にだけ行ってもよい。また、結晶の部分によって加圧の程度を変えてもよい。例えば、中央部と外周部で加圧条件を変えてもよい。部分的に加圧条件を変えることによって、その部分の熱処理による軽元素の侵入の程度を調整することができるため、例えば結晶の転位密度に応じて領域ごとに加圧条件を決定することができる。なお、本発明では熱処理後に加圧しても構わない。例えば、熱処理後に加圧してから後述する被膜除去工程を行ってもよいし、被膜除去工程まで行った後に加圧してもよいし、熱処理後の結晶と被膜除去後の結晶を重ねて加圧してもよい。
 本発明における熱処理は、III族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜が形成されるような条件であれば、熱処理を行う際の雰囲気ガスの種類は特に制限されない。具体的な雰囲気ガスとしては、アンモニア(NH)、窒素(N)、又はこれらの混合ガスが挙げられる。雰囲気中のアンモニア(NH)濃度又は窒素(N)濃度は特に制限されないが、アンモニア(NH)は通常0.5%以上、好ましくは1%以上、より好ましくは5%以上であり、通常50%以下、好ましくは25%以下、より好ましくは10%以下である。また、N濃度は通常50%以上、好ましくは75%以上、より好ましくは90%以上であり、通常99.5%以下、好ましくは99%以下、より好ましくは95%以下である。
 また、本発明における熱処理は、密閉系で行われても或いは流通系で行われてもよいが、流通系で行われることが好ましい。アンモニア(NH)と窒素(N)の混合ガスを用いる場合、その流量は、通常50ml/min以上、好ましくは150ml/min以上、より好ましくは180ml/min以上であり、通常500ml/min以下、好ましくは300ml/min以下、より好ましくは250ml/min以下である。
 さらに、本発明における熱処理は、酸素源の存在下で行うことも好ましい。ここでいう酸素源とは、熱処理時の被膜形成に用いられる酸素原子を供給する材料を意味する。例えば、III族酸化物やIII族水酸化物ないしオキシ水酸化物を含む被膜が形成する場合であれば、当該III族酸化物やIII族水酸化物ないしオキシ水酸化物を構成する酸素原子を供給する材料を指す。酸素源は、酸素原子を含むガスとして供給してもよいし、反応によって酸素原子を含む化合物を生成することにより供給してもよい。酸素原子を含むガスとしては酸素分子、水分子、二酸化炭素分子、一酸化炭素分子などを挙げることができる。雰囲気中の酸素原子を含むガスや酸素原子を含む化合物の濃度は特に制限されないが、水分子の場合、通常0.1%以上、好ましくは0.5%以上、より好ましくは1.0%以上であり、通常30%以下、好ましくは20%以下、より好ましくは10%以下である。また、反応によって酸素原子を含む化合物を生成する態様として、例えば、反応容器内壁を構成するアルミナが雰囲気ガス中のアンモニアと反応して水分子ガスを生成する例を挙げることができる。反応容器内壁を構成する材料としては、他にシリカ、ジルコニア、チタニア、及びこれらの少なくとも一種を含む焼結体などを挙げることができる。また、反応容器内壁をアルミナ等で構成する他に、反応容器内に設置される基板ホルダー等の表面をアルミナ等で構成する態様や、アルミナ棒やアルミナ粉を反応容器内に設置する態様も採用することができる。
 反応容器の形状は特に制限されず、例えば筒状の容器を挙げることができ、例えば筒状のアルミナ管を挙げることができる。筒状の反応容器を用いる場合は、熱処理するIII族窒化物単結晶は複数の結晶を重ねたり、並べたりしながら縦置き、横置きすることができる。また、III族窒化物単結晶の側面や底面等を含めた表面全体に雰囲気ガスを行き渡らせるために、III族窒化物単結晶の表面は反応容器等と面接触しないように配置することが好ましい。筒状の容器を用いることによって、III族窒化物単結晶と反応容器との面接触を防ぎやすくなり、表面全体に雰囲気ガスを行き渡らせやすくすることができる。
 本発明の被膜形成工程によって、III族窒化物単結晶に、III族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜が形成されたことは、XRD分析を行ったり、硝酸で洗浄した後の洗浄液を分析したりすることにより容易に確認することができる。III族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜としては、例えば、III族酸化物、III族水酸化物ないしオキシ水酸化物などを挙げることができ、これらの混合物であってもよい。具体的にはIII族元素がGaである場合は、酸化ガリウム、オキシ水酸化ガリウムを挙げることができる。本発明の被膜形成工程を実施した後は、通常はガリウムメタル、酸化ガリウム、オキシ水酸化ガリウムが混在した被膜が形成され、最表面が黒色となるため被膜形成を目視で確認することができる。なお、「III族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜を形成する」とは、「III族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜」を主成分として形成することを目的とするものであって、製造過程において混入してしまった不純物や副生成してしまったガリウムメタル等が含まれる被膜を排除するものではない。
 被膜を構成する上記のIII族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物の量は、酸洗浄前後での重量減少割り合いから求めることができ、形成された被膜量からは結晶内部の転位の移動を鑑みることが可能である。直径63mmφの基板を用いた場合の重量減少割り合いは3%~15%であることが望ましい。総じて重量減少割り合いは比表面積に密接に関係するが、サイズや形状にかかわらず理想の範囲が存在し、その下限は十分に被膜を形成する観点から1%以上が良く、2%以上がさらに良く、2.5%以上が特に良い。上限は製造する結晶が少なくなるので条件もあり、60%以下が良く、35%以下がなお良く、25%以下が特に良い。
 III族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜は、III族窒化物単結晶上に直接形成してもよいし、III族窒化物単結晶上に中間層として他の層を形成したうえでさらにその層の上に形成してもよいが、本発明の効果がより顕著であるので、III族窒化物単結晶上に直接形成することが好ましい。
(被膜除去工程)
 本発明の被膜除去工程では、被膜形成工程において形成した被膜を除去する。
 被膜除去方法としては、結晶を酸溶液中に浸漬する方法や機械研磨法を挙げることができる。好ましいのは、効率性と簡便性に優れている点から、結晶を酸溶液ないし混酸溶液中に浸漬する方法である。結晶を浸漬する際に用いる酸種は、硝酸が適当で、他に硫酸、塩酸が挙げられる。濃度が10%以上であるものが好ましく、30%以上であるものがより好ましい。高濃度の酸溶液ないし混酸溶液を用いれば、被膜除去が効率的になるという傾向がある。酸溶液ないし混酸溶液への浸漬時には、酸溶液ないし混酸溶液を攪拌したり、超音波振動を与えて攪拌したりするなどの付加的な制御を適宜選択して行うことが可能である。酸溶液ないし混酸溶液を用いた被膜除去工程は、加熱しながら行うことが好ましい。具体的には、60℃以上で行うことが好ましく、80℃以上で行うことがより好ましい。
 被膜除去工程における被膜の除去は、被膜形成工程において形成したIII族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜を完全に除去するものでなくてもよい。例えば、被膜除去工程実施後の結晶表面にはIII族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物が残っていてもよいし、これらを含む被膜が完全に除去されていてもよい。また、被膜除去工程では、III族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜を除去するとともに、III族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物以外の成分を除去するものであってもよく、少なくともIII族メタルを除去するものであることが好ましく、特にガリウムメタルを除去するものであることが好ましい。III族メタルは、上記の酸溶液ないし混酸溶液中への浸漬により除去することができる。
 本発明における被膜除去工程は、被膜形成工程を実施した後に直ちに行ってもよいし、時間をおいた後に行ってもよいし、他の工程を実施した後に行ってもよい。他の工程としては、例えば研磨盤による粗加工、後述するスライス工程、外周加工などを挙げることができる。
[III族窒化物結晶]
(特徴)
 本発明のIII族窒化物結晶は、基底面転位が50nm~500nmの間隔で並んだ転位集合体をM面に含み、該転位集合体の最大長が5μm以上であることを特徴とする。
 本発明でいう基底面転位は、GaN結晶等で広く知られている貫通転位(threading dislocation)とは異なるものである。貫通転位は、サファイア基板などの異種基板上にGaN結晶を気相成長した際に、格子定数が大きく異なるために発生するGaN結晶中の109個/cm2程度の相当数の転位である。これに対して本発明でいう基底面転位は、応力誘起で底面上すべりが生じた際に導入する転位であり、その伝幡方向がGaNの基底面(0001)面と平行である特徴を持つ(Koji Maeda, Kunio Suzuki, Masaki Ichihara, Satoshi Nishiguchi, Kana Ono, Yutaka Mera and Shin Takeuchi, Physica B; Condensed Matter, Volumes 273-274, 1999, Pages 134-139参照)。本発明者らは、SEM-CL観察と透過型電子顕微鏡観察によって基底面上で弧を描きながら伝幡している形態を捉えている。
 本発明でいう転位集合体は、基底面転位が50nm~500nmの間隔で並んだ構造体である。従来のIII族窒化物結晶では、このような狭い間隔で基底面転位が並列に並んだ転位集合体が5μm以上の範囲にわたって観察されることはなかった。本発明のIII族窒化物結晶において観察される転位集合体は、基底面転位が10個以上並列に並んでいることが好ましく、100個以上並列に並んでいることがより好ましく、1000個以上並列に並んでいることがさらに好ましい。転位集合体のサイズは、最大長が5μm以上であることが好ましく、10μm以上であることがより好ましく、50μm以上であることがさらに好ましい。また、最大長は400μm以下であることが好ましく、200μm以下であることがより好ましく、100μm以下であることがさらに好ましい。
 本発明のIII族窒化物結晶における転位集合体の個数密度は、5×103個/cm2以上であることが好ましく、8×103個/cm2以上であることがより好ましく、1×104個/cm2以上であることがさらに好ましい。本発明における転位集合体の個数密度を測定する面は、M面である。
(転位の制御)
 本発明者らが従来のIII族窒化物結晶を詳細に顕微鏡観察したところ、結晶の外周部に1×108cm-2もの高い転位密度を有する領域があることが確認された。同種の転位は結晶中心まで106cm-2~107cm-2もの低い密度であるものの広く分布していることも確認された。本発明者らは、このように基底面転位が外周部に局所集中していることが外周部の脆弱化に繋がっているとともに、外周部の局所集中に対して中心部では均一に分散している状態が、結晶全体に分布する残留応力の一因になっていることを見出した。そして、基底面転位を制御することによりIII族窒化物結晶の加工性を向上させることに成功したものである。
 具体的には、本発明の製造方法にしたがってIII族窒化物単結晶を1000℃以上で熱処理してIII族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜を形成することにより、中心部において孤立分散している転位(孤立転位:転位集合体を形成していない孤立した転位)を同一面内に集積することに成功した。これによって、結晶の中心部には、上記の条件を満たす転位集合体が多数観察されるようになる。例えば、GaN結晶などのIII族窒化物結晶を本発明の製造方法にしたがって熱処理することによって、中心部における転位集合体の数を2~10倍に増やすことが可能である。このようにして結晶の中心部において転位集合体へ転位を集積することにより、それ以外の領域では孤立転位の数が減ることになる。具体的には、M面において観察される転位集合体の個数密度(A)と孤立転位の個数密度(B)の比で表される転位集積度(A/B)が好ましくは1%以上であり、より好ましくは2%以上であり、さらに好ましくは3%以上である。その結果、結晶全体にわたって存在していた残留応力が小さくなり、脆性が低い外周部で生じた小さなクラックなどの損傷が発端となって発生する比較的大きなクラックが生じにくくなる。このような基底面転位の集合は、結晶内部の残留応力を下げる駆動力がアシストするかたちで基底面転位が最安定配置を呈した結果であると考えられる。なお、孤立転位を同一面内に集積するとは、図5に示す実施例11のカソードルミネッセンス走査型電子顕微鏡観察結果のように、孤立転位を同一面内に集めることを意味する。
 本発明の製造方法にしたがって熱処理して被膜を形成し、形成した被膜を除去すれば、上記の効果に加えて、結晶の外周部の脆弱な領域を容易に除去することができるようになる。いかなる理論にも拘泥するものではないが、これは、酸素、窒素、炭素、水素またはそれらからなる分子が転位芯の原子結合が切れた隙間に導入され、それによって転位周辺のウルツ鉱型結晶構造の完全性が損なわれることによるものであると考えられる。その結果、極めて脆い状態になり、力学的には外周加工よりも遙かに低い衝撃を与えれば当該箇所のみが粉砕するレベルになる。このため、外周部の損傷が発端となって中心部に向かうクラックが伝播することも大幅に抑制されるようになる。また、極めて脆い部分を除去してしまえば、外周部の脆弱さは大幅に改善される。このように、中心部の残留応力と外周部の脆弱性の二つの問題を一挙に解決することができる点で、本発明の製造方法は優れている。また、それにより提供される本発明のIII族窒化物結晶は、外周部の脆性が改良されていて、残留応力が小さく、クラックが入りにくくて、結晶品質が優れているという特徴を有する。
(結晶の特性)
 本発明のIII族窒化物結晶は、機械加工損傷抵抗の値が低い。また、本発明のIII族窒化物結晶は、転位伝播最大距離が長い。ここでいう転位伝播最大距離は、ビッカース試験によって導入されたビッカース圧痕周辺で観察される転位のうち最長のものをいう。
 本発明の別の態様に係るIII族窒化物結晶は、Δd/d(ave)が4×10-5以下であることを特徴とする。本発明者らは、III族窒化物結晶のΔd/d(ave)を4×10-5以下にすることで、その残留応力を低減できることを見いだし、それによってIII族窒化物結晶の加工性を向上させることに成功した。
 ここでいう格子定数の変化Δd/d(ave)は、エピタキシャル成長方向に直交する結晶面の格子面間隔を成長方向へ沿って測定したときの変化の大きさを示す尺度であり、
   Δd/d(ave)=[d(max)-d(min)]/d(ave)
によって導かれたパラメーターである。ここで、d(max)は測定範囲における格子面間隔の最大値、d(min)は測定範囲における格子面間隔の最小値、d(ave)は測定範囲における格子面間隔の平均値を表す。Δd/d(ave)を小さくすることで残留応力を低減させることが出来る。
 本発明のIII族窒化物結晶はΔd/d(ave)が、通常、4×10-5以下であり、3×10-5以下であることが好ましく、2×10-5以下であることがより好ましい。Δd/d(ave)を4×10-5以下にすることで、III族窒化物結晶における残留応力を低減することができ、加工時におけるクラックの発生を抑制することができる。
 また、上記d(max)、d(min)およびd(ave)の測定範囲は、測定対象であるIII族窒化物結晶の大きさによって任意に決めればよい。なお、本発明では測定距離としては3.5mm、測定間隔としては100μmとして上記格子面間隔を測定した。
 また、III族窒化物結晶を用いた場合には、上記Δd/d(ave)は、測定した結晶面をa軸長の変化に変換してもよい。例えば、{10-10}面、{30-30}面、{2-1-10}面、{4-2-20}面の格子面間隔の成長方向への格子定数の変化を求めた場合には、それぞれ2/√3、2√3、1、2を乗ずればa軸長が求まる。
(結晶性の制御)
 Δd/d(ave)を4×10-5以下にするには、本発明の製造方法にしたがってIII族窒化物単結晶を1000℃以上で熱処理して基底面転位を最適な位置に制御すればよい。ここで基底面転位の辷り面(C面)に直交する方向の歪み分布は一様であるので、熱処理によって容易に転位間の集合挙動が生じる。縦に並ぶ配列まで集合挙動が進むと、個々の基底面転位が持つ歪み分布は相殺され、系内の内部歪みの低減は進む(転位のポリゴン化)。基底面転位の集合挙動は温度に依存する。例えば、Δd/d(ave)を4×10-5以下にするには1000℃以上の温度で熱処理すればよいし、Δd/d(ave)を3×10-5以下にするには1100℃以上の温度で熱処理すればよいし、Δd/d(ave)を2×10-5以下にするには1200℃以上の温度で熱処理すればよい。
(結晶の種類)
 本発明のIII族窒化物結晶は、III族元素の窒化物からなる。具体的には、窒化ガリウム、窒化アルミニウム、窒化インジウム、またはこれらが混ざった単結晶を挙げることができる。例えば、C面成長させたGaN単結晶を本発明の製造方法にしたがって熱処理して被膜を形成し、その被膜を除去したGaN結晶やAlGaN結晶を好ましい例として挙げることができる。
 また、本発明の製造方法によれば、大型なIII族窒化物結晶を容易に製造することができるため、本発明のIII族窒化物結晶は大サイズとすることができる。例えば3インチ以上の大型III族窒化物結晶とすることが可能である。また、本発明のIII族窒化物結晶は必要に応じて適宜加工することにより基板として有用に用いられる。本発明によれば、例えば基底面基板、非極性基板、半極性基板を安価に提供することができる。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(1)熱処理と加工歩留まりの評価
 直径76mmΦのサファイア基板上にMOCVDでGaNを成長したC面を主面とするテンプレート基板を準備し、これを下地基板110として、直径85mm、厚さ20mmのSiCコーティングしたカーボン製の基板ホルダー108上に置いてHVPE装置のリアクター100内に配置した(図1参照)。リアクター100内を1020℃まで加熱後、導入管103を通してHClガスを供給し、リザーバー106中のGaと反応して発生したGaClガスG3を導入管104を通してリアクター内へ供給した。このような下地基板110の上でのGaN層成長工程において、リアクター温度1020℃を29時間保持し、また、成長圧力を1.01×105Paとし、GaClガスG3の分圧を6.52×102Paとし、NH3ガスG4の分圧を7.54×103Paとし、塩化水素(HCl)の分圧を3.55×101Paとした。GaN層成長工程終了後、リアクター内を室温まで降温し、III族窒化物結晶であるC面成長GaN結晶を得た。得られたGaN結晶は、成長面表面状態は鏡面であり、触針式の膜厚計で測定した厚さは3.5mmであり、また精密秤量計で測定した重量は63.0311gであった。得られたGaN結晶は洗浄、エッチング、キャップ等の前処理を行わずに、次の熱処理(高温腐食アニール)を行った。
 熱処理は、アルミナ管(Al23 99.7%)200内にGaN結晶201を設置して、アンモニア・窒素混合ガスを200ml/minの流量でガス導入管203から導入しながら実施した。アンモニア・窒素混合ガス(NH38.5%+N291.5%)は、4.9MPaの47リットルボンベ中でアンモニアガスと窒素ガスを配合した後、均一な混合ガスになるまで45日以上放置してから用いた。昇温時には、ヒーター202を用いて室温から600℃を300℃/時間で昇温させ、600℃から1300℃が250℃/時間で昇温させた。その後、1300℃で6時間にわたって熱処理を行った。その後、1300℃から600℃まで100℃/時間で冷却した。熱処理後の結晶表面は黒色を呈しており、XRDによる同定を行った結果、水酸化ガリウム、酸化ガリウム、ガリウムメタルが混在していることが判明した。このことから、アンモニアと炉心管部材のアルミナが反応して生じた水分子により、GaN結晶の加水分解反応が生じていることが確認された。
 得られた結晶を120℃の濃硝酸(HNO369%含有)に浸漬し、表面に付着したガリウムメタルを完全除去し、クリーム色を呈するオキシ水酸化ガリウムと白色の酸化ガリウムが表面に残存する結晶サンプルを得た(実施例1)。濃硝酸処理後の重量は61.1681gであったので、重量減少割り合いは2.96%であった。熱処理雰囲気中の水分子のみが被膜形成に貢献したと仮定した場合、熱処理前後の結晶の重量と熱処理雰囲気条件を用い、被膜の形成によって消費した酸素量に気体の1mol体積を積した値を、炉内を通過した総ガス量で割ることによって、雰囲気中の水分子濃度を試算することができる。求まった水分子濃度は1.38%であった。このように、熱処理後の結晶表面にはIII属元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜が形成されており、その内部にはGaN結晶が存在することが確認された。
 上記の熱処理を行なわずに製造した結晶サンプル(比較例1)と1200℃で96時間行って製造した結晶サンプル(比較例2)も用意した。比較例1および比較例2の結晶サンプルには、III族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜の形成は認められなかった。
 得られた結晶サンプルの加工性を評価するために、結晶をウエハー形状の円形に加工する外周加工とウエハー厚みに調整するスライス加工を下記の手順にしたがって実施した。
<外周加工>
 結晶研削用砥石として、ダイヤモンド砥粒の平均粒径が25μm、ボンド剤がビトリファイドの砥石を用い、砥石加工面を結晶の(0001)面と垂直になるように配置した。砥石回転速度は2500m/minとし、結晶回転速度は5mm/secとした。また、砥石加工面が結晶1回転あたり0.02~0.04mm結晶中心に近づくよう制御した。
<スライス加工>
 直径50mm、厚み3.5mmの円盤状の(0001)面を主面とする結晶サンプル1を用意し、図3に示すように台座2上にエポキシ系接着剤を用いて固定した。ここで、図3(a)は正面図であり、図3(b)は側面図である。結晶切断用ワイヤーWとして、平均粒径12~25μmのダイヤモンド砥粒を表面に電着したワイヤーを70本並列に配置した装置を用意し、そのうちの6本を結晶サンプルの切削に寄与させた。並列に配置した各ワイヤーWは、図4(a)に示すようにローラーR1とローラーR2が同じ向きに回転することにより走行し、2つのローラーR1,R2は図4(b)に示すように互い違いに上下へ移動することにより揺動するように制御した。動作中は、ローラーR1とローラーR2の間に形成されるワイヤー直線状部の中点が揺動しないように設定した。揺動の最大振れ角度φは10°、ワイヤーの最大走行速度は330m/min、ワイヤーの揺動周期は800回/minに制御した。
 加工後に得られた各結晶に対して加工評価を行った。外周加工を行った10結晶については、クラックや割れが生じなかった場合を「可」と判定し、クラックや割れが生じた場合を「不可」と判定した。また、スライス加工の評価は外周加工で「可」と判定された結晶に対して行い、ここでもクラックや割れが生じなかった場合を「可」と判定し、クラックや割れが生じた場合を「不可」と判定した。「可」と判定された個数の割合(単位%)を加工歩留まりとし、結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、GaN結晶に対して熱処理を実施することにより、加工性が向上し、歩留まりが飛躍的に高まることが確認された。
 また、実施例1で製造したGaN結晶について機械加工損傷抵抗を測定したところ、8.9J/m2であった。また、実施例1で製造したGaN結晶の基板中心近傍における転位伝播最大距離を測定したところ25.9μmであった。
(2)熱処理と転位集合体の個数密度測定
 (1)と同じ方法により、厚さ3.5mmのC面成長GaN結晶を得た。この結晶を1/4サイズになるようM面とA面で劈界した後、(1)と同じ方法により1300℃で6時間の熱処理を行って黒色表面の結晶を得た。これを120℃の硝酸(99.9%)に浸漬することにより、Gaメタルを完全除去し、クリーム色を呈する水酸化ガリウムと白色の酸化ガリウムが結晶表面に残存する結晶サンプルを得た。
 上記の熱処理を施した結晶サンプル(実施例11)の他に、熱処理を施さなかった比較用結晶サンプル(比較例11)も得た。
 得られた各結晶サンプルからM面スライス板片を切り出し、蛍光顕微鏡観察およびSEM-CL観察に適した表面状態になるまで一方のM面に化学研磨を施して、3.0mm±0.05mmの一様な厚みを有するM面片面研磨サンプルを得た。また、これとは別に、C面表裏の水酸化ガリウム層、酸化ガリウム層を除去するためにC面表裏を500μm以上研削研磨した後、SEM-CL観察に適した表面状態になるまで化学研磨を施して、1.3mm±0.05mmの一様な厚みを有するC面両面研磨サンプルも得た。
 M面片面研磨サンプルの研磨表面を蛍光顕微鏡(倍率5倍)を用いて観察したところ、熱処理を行った実施例11のサンプルには、基底面転位が集積した転位集合体が10μm~50μmの大きさで観察された。M面片面研磨サンプルの外縁から25mm、20mm、15mmの各部位において、同じ蛍光顕微鏡を用いて約0.0054cm2の面積中に存在する転位集合体の個数を数えた。その個数を測定面積で除することにより、転位集合体の個数密度を算出した。カソードルミネッセンス走査型電子顕微鏡を用いて、0.0017cm2の面積中に存在する孤立転位(転位集合体を形成していない孤立した転位)の個数を数えて、孤立転位の個数密度を算出した。結果を以下の表2に示す。また、カソードルミネッセンス走査型電子顕微鏡の観察結果を図5に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、熱処理を行うことにより転位集合体の個数密度が増加するとともに孤立転位の個数密度が減少し、転位が転位集合体へ集積されることが確認された。
 熱処理を行った実施例11のサンプルにおける転位集合体の一つを、走査型電子顕微鏡カソードルミネッセンスを用いてさらに詳細に観察した。使用した走査型電子顕微鏡カソードルミネッセンスの空間分解能は3nmであり、電子線の加速電圧は3kVに設定した。入射電子線はm軸方向と平行とした。観察した結果、基底面転位がc軸方向に50~500nm間隔で並ぶ構造がc軸方向およびa軸方向にそれぞれ5μm以上の範囲にわたって観察された。
 一方、熱処理を行わなかった比較例11のサンプルにおける転位集合体についても同様に走査型電子顕微鏡カソードルミネッセンスを用いて観察した。その結果、50~500nm間隔で並ぶ構造からなることは確認されたが、その範囲はc軸方向およびa軸方向とも5μm未満であった。
 参考までに比較例11と同等の熱処理を行っていない結晶サンプルについてM面断面の研磨を施した状態で実施例12と同様の環境下で熱処理を900℃で6時間行っても(比較例12)、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜は形成されず、M面断面の蛍光顕微鏡で基底面転位の移動に伴う集合体の形成も皆無であった。
 さらに、同様の環境下で熱処理を1200℃で24時間行っても(比較例13)、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜は形成されず、M面断面の蛍光顕微鏡観察で基底面転位の移動に伴う集合体の形成も皆無であった。
(3)格子面間隔測定
 結晶全体の歪みの分布を定量的に調べるために、(2)の熱処理を行った実施例11のサンプル、及び熱処理を行わなかった比較例11のサンプルに対して以下のようにX線回折により格子面間隔測定を行った。
 これらサンプルの格子面間隔の測定は高分解能X線回折装置を用いて行った。
 X線ビームはX線管球によるCuKα1線を用い、モノクロメータとピンホール型スリットにより絞り、サンプル表面でガウシアンビーム近似の半値全幅(full width at half maximum:FWHM)で水平方向100μm、鉛直方向200μmとなるようにした。サンプルはc軸方向が水平方向に平行になるようにサンプルステージに固定した。結晶成長方向(c軸方向)に沿って、当該ライン上で成長方向に直交する結晶面である(30-30)面の2θ-ωスキャンを100μm間隔で3.5mmの長さにわたって連続的に行い、格子面間隔の変化を調べた。2θ-ωスキャンの際、受光側にはアナライザー結晶と比例検出器を用いた。X線装置筐体内の温度は24.5±1℃以内に制御し、温度変動の測定への影響の抑制に努めた。
 実施例11と比較例11の各サンプル基板の中心部において(30-30)面の格子面間隔の変化を測定した結果を図6に示す。格子面間隔の最大値d(max)、最小値d(min)、平均値d(ave)、及び[d(max)-d(min)]/d(ave)の値は以下の表3に示すとおりであった。(30-30)面の間隔に2√3を積してa軸長の変化に変換することにより、図6をa軸長の変化のデーターに変換した結果を図7に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、本発明にしたがって熱処理を行うことにより格子面間隔の変化が抑制されることが確認された。
 本発明は、III族窒化物系半導体からなる青色発光ダイオード(LED)や青色半導体レーザ(LD)など青色発光素子の基板として利用できる単結晶窒化ガリウム(GaN)基板、および単結晶窒化ガリウム基板(GaN)の成長方法、単結晶窒化ガリウム基板(GaN)の製造方法に関する。
1 結晶サンプル
2 台座
W ワイヤー
φ 揺動の最大振れ角度
R1,R2 ローラー
100 リアクター
101~105 ガス導入管
106 Ga用リザーバー
107 ヒーター
108 基板ホルダー
109 排気管
110 下地基板
200 アルミナ管
201 結晶
202 ヒーター
203 ガス導入管
204 ガス排出管

Claims (11)

  1.  下記の(1)および(2)の工程を含むことを特徴とするIII族窒化物結晶の製造方法。
    (1)III族窒化物単結晶を1000℃以上で熱処理することによりIII族元素を含む、酸化物、水酸化物及び/又はオキシ水酸化物からなる被膜を形成する被膜形成工程。
    (2)該被膜を除去する被膜除去工程。
  2.  前記被膜が前記単結晶上に直接形成されることを特徴とする請求項1に記載のIII族窒化物結晶の製造方法。
  3.  酸素源の存在下で熱処理を行うことを特徴とする請求項1または2に記載のIII族窒化物結晶の製造方法。
  4.  アルミナ、ジルコニア、チタニア、またはこれらの少なくとも一種を含む焼結体の存在下で熱処理を行うことを特徴とする請求項1~3のいずれか一項に記載のIII族窒化物結晶の製造方法。
  5.  アルミナまたはアルミナを含む焼結体の存在下で熱処理を行うことを特徴とする請求項1~4のいずれか一項に記載のIII族窒化物結晶の製造方法。
  6.  さらに加圧工程を有することを特徴とする請求項1~5のいずれか一項に記載のIII族窒化物結晶の製造方法。
  7.  M面に基底面転位が50~500nmの間隔で並ぶ転位集合体を含み、該転位集合体の最大長が5μm以上であることを特徴とするIII族窒化物結晶。
  8.  前記転位集合体がM面に8×103個/cm2以上存在することを特徴とする請求項7に記載のIII族窒化物結晶。
  9.  M面における転位集合体の個数密度(A)と孤立転位の個数密度(B)の比で表される転位集積度(A/B)が1%以上であることを特徴とする請求項7または8に記載のIII族窒化物結晶。
  10.  結晶を成長させる際の成長方法がC面成長であることを特徴する請求項7乃至9のいずれか一項に記載のIII族窒化物結晶。
  11.  下記のΔd/d(ave)が4×10-5以下であることを特徴とするIII族窒化物結晶。
    Δd/d(ave)=[d(max)-d(min)]/d(ave)
    [上式において、d(max)、d(min)およびd(ave)は、エピタキシャル成長方向に直交する結晶面の格子面間隔を成長方向に沿って測定したときの、その最大値、最小値、および平均値を表す。]
PCT/JP2012/060187 2011-04-15 2012-04-13 Iii族窒化物結晶の製造方法およびiii族窒化物結晶 WO2012141317A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137026845A KR101882541B1 (ko) 2011-04-15 2012-04-13 Iii 족 질화물 결정의 제조 방법 및 iii 족 질화물 결정
EP12771993.8A EP2698456B1 (en) 2011-04-15 2012-04-13 Gallium nitride crystal
CN201280018140.0A CN103502514A (zh) 2011-04-15 2012-04-13 Iii族氮化物结晶的制造方法和iii族氮化物结晶
US14/054,036 US9502241B2 (en) 2011-04-15 2013-10-15 Group III nitride crystal production method and group III nitride crystal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011091586 2011-04-15
JP2011-091586 2011-04-15
JP2011151709A JP2012231103A (ja) 2011-04-15 2011-07-08 Iii族窒化物結晶の製造方法およびiii族窒化物結晶
JP2011-151709 2011-07-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/054,036 Continuation US9502241B2 (en) 2011-04-15 2013-10-15 Group III nitride crystal production method and group III nitride crystal

Publications (1)

Publication Number Publication Date
WO2012141317A1 true WO2012141317A1 (ja) 2012-10-18

Family

ID=47009475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060187 WO2012141317A1 (ja) 2011-04-15 2012-04-13 Iii族窒化物結晶の製造方法およびiii族窒化物結晶

Country Status (6)

Country Link
US (1) US9502241B2 (ja)
EP (1) EP2698456B1 (ja)
JP (1) JP2012231103A (ja)
KR (1) KR101882541B1 (ja)
CN (1) CN103502514A (ja)
WO (1) WO2012141317A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019033974A1 (zh) * 2017-08-14 2019-02-21 南京大学 一种多功能氢化物气相外延生长系统及应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679320B (zh) 2013-08-08 2019-12-11 日商三菱化學股份有限公司 自立GaN基板、GaN結晶、GaN單結晶之製造方法及半導體裝置之製造方法
CN105917035B (zh) 2014-01-17 2019-06-18 三菱化学株式会社 GaN基板、GaN基板的制造方法、GaN结晶的制造方法和半导体器件的制造方法
WO2015118920A1 (ja) * 2014-02-07 2015-08-13 日本碍子株式会社 複合基板、発光素子及びそれらの製造方法
JP6839694B2 (ja) * 2018-12-17 2021-03-10 株式会社デンソー 酸化ガリウム膜の成膜方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192300A (ja) * 2000-01-04 2001-07-17 Sharp Corp 窒化物系化合物半導体基板およびその製造方法
JP2003277195A (ja) 2002-03-26 2003-10-02 Nec Corp Iii−v族窒化物系半導体基板およびその製造方法
JP2008303138A (ja) * 2008-06-12 2008-12-18 Sumitomo Electric Ind Ltd GaN単結晶基板、窒化物系半導体エピタキシャル基板、及び、窒化物系半導体素子
WO2009047894A1 (ja) * 2007-10-09 2009-04-16 Panasonic Corporation Iii族窒化物結晶基板の製造方法、iii族窒化物結晶基板、iii族窒化物結晶基板を用いた半導体装置
JP2011006304A (ja) * 2009-06-29 2011-01-13 Hitachi Cable Ltd 窒化物半導体基板およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180270B1 (en) * 1998-04-24 2001-01-30 The United States Of America As Represented By The Secretary Of The Army Low defect density gallium nitride epilayer and method of preparing the same
JP2003327497A (ja) 2002-05-13 2003-11-19 Sumitomo Electric Ind Ltd GaN単結晶基板、窒化物系半導体エピタキシャル基板、窒化物系半導体素子及びその製造方法
JP4943132B2 (ja) * 2005-12-28 2012-05-30 日本碍子株式会社 AlN系III族窒化物エピタキシャル膜の転位低減方法
JP4816277B2 (ja) * 2006-06-14 2011-11-16 日立電線株式会社 窒化物半導体自立基板及び窒化物半導体発光素子
JP4810517B2 (ja) * 2007-09-10 2011-11-09 日本電気株式会社 Iii−v族窒化物系半導体基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192300A (ja) * 2000-01-04 2001-07-17 Sharp Corp 窒化物系化合物半導体基板およびその製造方法
JP2003277195A (ja) 2002-03-26 2003-10-02 Nec Corp Iii−v族窒化物系半導体基板およびその製造方法
WO2009047894A1 (ja) * 2007-10-09 2009-04-16 Panasonic Corporation Iii族窒化物結晶基板の製造方法、iii族窒化物結晶基板、iii族窒化物結晶基板を用いた半導体装置
JP2008303138A (ja) * 2008-06-12 2008-12-18 Sumitomo Electric Ind Ltd GaN単結晶基板、窒化物系半導体エピタキシャル基板、及び、窒化物系半導体素子
JP2011006304A (ja) * 2009-06-29 2011-01-13 Hitachi Cable Ltd 窒化物半導体基板およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOJI MAEDA; KUNIO SUZUKI; MASAKI ICHIHARA; SATOSHI NISHIGUCHI; KANA ONO; YUTAKA MERA; SHIN TAKEUCHI, PHYSICA B; CONDENSED MATTER, vol. 273-274, 1999, pages 134 - 139
See also references of EP2698456A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019033974A1 (zh) * 2017-08-14 2019-02-21 南京大学 一种多功能氢化物气相外延生长系统及应用

Also Published As

Publication number Publication date
JP2012231103A (ja) 2012-11-22
KR101882541B1 (ko) 2018-07-26
KR20140017598A (ko) 2014-02-11
US9502241B2 (en) 2016-11-22
EP2698456A1 (en) 2014-02-19
EP2698456A4 (en) 2014-11-05
EP2698456B1 (en) 2018-07-25
CN103502514A (zh) 2014-01-08
US20140035103A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
KR101749781B1 (ko) 단결정 기판, 이를 이용하여 얻어지는 ⅲ족 질화물 결정 및 ⅲ족 질화물 결정의 제조방법
JP5068423B2 (ja) 炭化珪素単結晶インゴット、炭化珪素単結晶ウェハ及びその製造方法
CN1378237A (zh) Ⅲ族氮化物制造的半导体衬底及其制造工艺
WO2012141317A1 (ja) Iii族窒化物結晶の製造方法およびiii族窒化物結晶
US10570530B2 (en) Periodic table group 13 metal nitride crystals and method for manufacturing periodic table group 13 metal nitride crystals
JP2012121788A (ja) GaN系膜の製造方法
WO2020217564A1 (ja) 半導体膜
Zhang et al. Growth of high quality GaN on a novel designed bonding-thinned template by HVPE
JP2013203653A (ja) Iii族窒化物結晶の製造方法、iii族窒化物結晶およびiii族窒化物結晶基板
JP7410009B2 (ja) 半導体膜
JP5812151B2 (ja) 窒化物基板の製造方法
JP6103089B2 (ja) Iii族窒化物結晶の製造方法およびiii族窒化物結晶
JP2013209274A (ja) 周期表第13族金属窒化物結晶
JP2008230868A (ja) 窒化ガリウム結晶の成長方法および窒化ガリウム結晶基板
JP6094243B2 (ja) 複合基板およびそれを用いた半導体ウエハの製造方法
Woo et al. Novel in situ self-separation of a 2 in. free-standing m-plane GaN wafer from an m-plane sapphire substrate by HCl chemical reaction etching in hydride vapor-phase epitaxy
Sharofidinov et al. On a reduction in cracking upon the growth of AlN on Si substrates by hydride vapor-phase epitaxy
JP2013227208A (ja) Iii族窒化物結晶およびiii族窒化物結晶基板
JP4957751B2 (ja) GaN単結晶体およびその製造方法、ならびに半導体デバイスおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137026845

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012771993

Country of ref document: EP