WO2012141191A1 - 蓄電デバイス - Google Patents

蓄電デバイス Download PDF

Info

Publication number
WO2012141191A1
WO2012141191A1 PCT/JP2012/059859 JP2012059859W WO2012141191A1 WO 2012141191 A1 WO2012141191 A1 WO 2012141191A1 JP 2012059859 W JP2012059859 W JP 2012059859W WO 2012141191 A1 WO2012141191 A1 WO 2012141191A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
storage device
storage cell
electricity storage
removal member
Prior art date
Application number
PCT/JP2012/059859
Other languages
English (en)
French (fr)
Inventor
田辺 隆喜
智隆 篠田
洋成 持田
幸広 川田
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR20137023597A priority Critical patent/KR20140057195A/ko
Priority to JP2013509935A priority patent/JPWO2012141191A1/ja
Publication of WO2012141191A1 publication Critical patent/WO2012141191A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0003Protection against electric or thermal overload; cooling arrangements; means for avoiding the formation of cathode films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power storage device.
  • An electrical storage cell that is a component of an electrical storage device is obtained by, for example, sealing an electrode body together with an electrolytic solution, which is formed by laminating a predetermined number of sheet-like positive and negative electrodes with a separator interposed therebetween.
  • Such a sealed storage cell is accommodated in a housing formed of a member such as an aluminum material in a box shape (see Japanese Patent Application Laid-Open No. 2006-228610).
  • the power storage cell generates heat due to charge / discharge, but the charge / discharge characteristics change due to such a temperature change. For example, when the temperature changes by 1 ° C., the output voltage of the storage cell usually changes by about 1 mV. For this reason, the technique which suppresses the temperature change of the electrical storage cell accompanying charging / discharging is indispensable.
  • Japanese Patent Application Laid-Open No. 2009-272048 discloses a technology for dissipating generated heat by fixing a storage cell using a laminate film as a battery container to a metal heat dissipating member.
  • Japanese Unexamined Patent Application Publication No. 2010-86734 discloses a technique for suppressing a temperature rise by including an organic latent heat storage material inside a storage cell.
  • the organic latent heat storage material is insulated by members constituting the power storage cell, such as a positive electrode, a negative electrode, and a separator. It may be difficult to release the generated heat to the outside. As a result, when charging / discharging is repeated, it may be difficult to suppress the temperature rise of the storage cell.
  • One of the objects according to some embodiments of the present invention is to provide a power storage device having high reliability by efficiently removing heat from the power storage cell.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • a storage cell having a positive electrode, a negative electrode, and an outer package containing an electrolyte; and A housing in which the storage cell is accommodated; A heat removal member; A heat dissipating member; Including The said heat removal member contains the compound which absorbs the heat which generate
  • the heat removal member may be accommodated in the housing.
  • the heat radiating member may be accommodated in the housing.
  • the heat dissipation member may be in contact with the heat removal member.
  • the heat removal member may be in contact with the outer surface of the exterior body.
  • the heat radiating member may be bonded to the outer surface of the exterior body.
  • the compound that absorbs heat generated from the electricity storage cell by the phase change may be an organic compound.
  • the organic compound that absorbs heat generated from the storage cell by the phase change may be paraffin.
  • a filler may be dispersed in the heat removal member.
  • the heat removal member may contain a thermoplastic resin.
  • the power storage cell may be a lithium ion capacitor.
  • the storage cell is A positive electrode terminal electrically connected to the positive electrode and extending from the exterior body; A negative electrode terminal electrically connected to the negative electrode and extending from the exterior body; Have Inside the housing is It is divided into an exterior body accommodation area in which the exterior body is accommodated, and a terminal accommodation area in which at least one of the positive electrode terminal and the negative electrode terminal is accommodated, The said heat removal member can be arrange
  • Application Example 14 In any one of Application Examples 1 to 13, A plurality of the storage cells are provided, The plurality of power storage cells are connected in series, The heat radiating member may be provided between the adjacent storage cells.
  • the electricity storage device of the present invention even when the electricity storage cell rapidly generates heat, heat can be absorbed rapidly by utilizing the latent heat of the phase-changing compound. Moreover, the heat removal member can maintain a constant temperature until the phase change of the compound is completed, and can suppress the temperature change of the storage cell.
  • the heat absorbed by the phase-changing compound contained in the heat removal member can be radiated to the outside by the heat dissipation member.
  • the heat is removed from the phase-change compound contained in the heat removal member, and the phase is changed again to the phase before the endotherm
  • the heat generated by the new storage cell can be absorbed.
  • the compound contained in the heat removal member changes from a state with low fluidity (for example, solid) to a state with high fluidity (for example, liquid) due to a phase change accompanying heat absorption
  • heat is released by the heat dissipation member. It can return to the state of low fluidity again.
  • the compound of the heat removal member can absorb the heat of the electricity storage cell.
  • the electricity storage device according to the present invention can efficiently remove heat from the electricity storage cell and can have high reliability.
  • FIG. 1 is a perspective view schematically showing the electricity storage device according to the present embodiment.
  • FIG. 2 is a diagram schematically illustrating the electricity storage device according to the present embodiment.
  • FIG. 3 is a cross-sectional view schematically showing the electricity storage device according to this embodiment.
  • FIG. 4 is a cross-sectional view schematically showing the electricity storage device according to this embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a power storage cell of the power storage device according to this embodiment.
  • FIG. 6 is a cross-sectional view schematically showing an electricity storage device according to a first modification of the present embodiment.
  • FIG. 7 is a cross-sectional view schematically showing an electricity storage device according to a first modification of the present embodiment.
  • FIG. 1 is a perspective view schematically showing the electricity storage device according to the present embodiment.
  • FIG. 2 is a diagram schematically illustrating the electricity storage device according to the present embodiment.
  • FIG. 3 is a cross-sectional view schematically showing the electricity storage device according
  • FIG. 8 is a cross-sectional view schematically showing an electricity storage device according to a second modification of the present embodiment.
  • FIG. 9 is a cross-sectional view schematically showing an electricity storage device according to a second modification of the present embodiment.
  • FIG. 10 is a diagram schematically illustrating an electricity storage device according to a third modification of the present embodiment.
  • FIG. 11 is a cross-sectional view schematically showing an electricity storage device according to a third modification of the present embodiment.
  • FIG. 12 is a diagram schematically showing an electricity storage device according to a fourth modification of the present embodiment.
  • FIG. 13 is a diagram schematically illustrating an electricity storage device according to a fourth modification of the present embodiment.
  • FIG. 1 is a perspective view schematically showing an electricity storage device 100 according to this embodiment.
  • FIG. 2 is a diagram schematically illustrating the electricity storage device 100 according to the present embodiment, as viewed from the X-axis direction of FIG. 3 is a cross-sectional view schematically showing the electricity storage device 100 according to the present embodiment, and is a cross-sectional view taken along the line III-III of FIG. 1 (a cross-sectional view in the XY plane).
  • 4 is a cross-sectional view schematically showing the electricity storage device 100 according to this embodiment, and is a cross-sectional view taken along the line IV-IV of FIG. 1 (cross-sectional view taken along the XZ plane).
  • the electricity storage device 100 includes an electricity storage cell 10, a housing 20, a heat removal member 30, and a heat dissipation member 40, as shown in FIGS.
  • FIG. 1 shows the housing 20 in a simplified and transparent manner
  • FIG. 2 shows a part of the housing 20 in a transparent manner.
  • the positive electrode, the negative electrode, and the like housed in the outer package 12 are omitted.
  • Examples of the form of the storage cell 10 include a lithium ion capacitor, a secondary battery, and an electric double layer capacitor.
  • the storage cell 10 can have an outer package 12, a positive electrode terminal 16, and a negative electrode terminal 18.
  • the outer package 12 contains a positive electrode, a negative electrode, and an electrolytic solution.
  • the shape of the outer package 12 is not particularly limited as long as it can accommodate the positive electrode, the negative electrode, and the electrolyte, and may be, for example, a laminate type in which two films are laminated, a box type, or a cylindrical type.
  • the exterior body 12 is illustrated as a laminate type (laminate film).
  • the exterior body 12 made of a laminate film includes a first flat surface 13, a second flat surface 14 that faces away from the first flat surface 13 and has a smaller area than the first flat surface 13. , Can have.
  • the exterior body 12 has a convex part, for example, and it can be said that the 2nd flat surface 14 is a surface which forms a convex part.
  • the distance between the first flat surface 13 and the second flat surface 14 is, for example, about 5 mm.
  • the laminate film is composed of, for example, a metal layer and a first resin layer and a second resin layer that sandwich the metal layer.
  • the material of the metal layer include aluminum.
  • the material of the first resin layer include polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), and polyamide resin.
  • the material of the second resin layer include olefin resins such as ethylene vinyl acetate copolymer resin (EVA), polyethylene, and polypropylene.
  • the positive electrode terminal 16 and the negative electrode terminal 18 are provided so as to extend (project) from the exterior body 12 as shown in FIG. More specifically, the positive electrode terminal 16 and the negative electrode terminal 18 extend from the inside to the outside of the exterior body 12 in a state where the hermeticity of the exterior body 12 is maintained. In the illustrated example, the positive electrode terminal 16 and the negative electrode terminal 18 extend from the exterior body 12 in directions opposite to each other. More specifically, the positive electrode terminal 16 extends from the outer package 12 in the ⁇ Y direction, and the negative electrode terminal 18 extends from the outer package 12 in the + Y direction. Although not shown, both the positive terminal 16 and the negative terminal 18 may extend in the same direction (for example, the ⁇ Y direction).
  • the positive terminal 16 is electrically connected to the positive electrode in the outer package 12, and the negative terminal 18 is electrically connected to the negative electrode in the outer package 12.
  • Examples of the material of the positive electrode terminal 16 include aluminum.
  • Examples of the material of the negative electrode terminal 18 include copper and nickel. The internal structure of the exterior body 12 will be described later.
  • the housing 20 can accommodate the storage cell 10. Although the shape of the housing
  • casing 20 will not be specifically limited if the electrical storage cell 10 can be accommodated, For example, it has a box shape.
  • the housing 20 includes a base portion 25 and a lid portion 26.
  • the storage cell 10 is disposed in the base portion 25, and the opening of the base portion 25 is closed with the lid portion 26. Contained.
  • a screw portion 27 may be attached to the lid portion 26, and the lid portion 26 may be opened and closed by tightening or loosening the screw portion 27.
  • Examples of the material of the housing 20 include aluminum, iron, stainless steel, magnesium, and copper.
  • the inside of the housing 20 is divided into, for example, an exterior body housing area 21 and a terminal housing area 22 by partition plates 23 and 24.
  • two terminal accommodating areas 22 are provided, and the exterior body accommodating area 21 is disposed between the two terminal accommodating areas 22.
  • the partition plate 23 partitions the outer package housing area 21 and one terminal housing area 22a.
  • the partition plate 24 partitions the outer package housing area 21 and the other terminal housing area 22b. It is desirable that the partition plates 23 and 24 have insulating properties. Thereby, even if the terminals 16 and 18 and the partition plates 23 and 24 contact, generation
  • the exterior body 12 is accommodated in the exterior body accommodation area 21.
  • the positive terminal 16 is accommodated in the terminal accommodating region 22a.
  • an opening (slit) is formed in the partition plate 23, and the positive electrode terminal 16 may extend from the exterior body 12 and pass through the opening to be accommodated in the terminal accommodating region 22a.
  • the negative electrode terminal 18 is accommodated in the terminal accommodating region 22b.
  • the partition plate 24 has an opening (slit portion), and the negative electrode terminal 18 may extend from the exterior body 12, pass through the opening, and be accommodated in the terminal accommodating region 22 b.
  • the positive electrode terminal 16 and the negative electrode terminal 18 both extend in the same direction it is only necessary to provide one terminal accommodating region 22.
  • the positive electrode terminal 16 and the negative electrode terminal 18 may be accommodated in one terminal accommodating region 22.
  • the heat removal member 30 is accommodated in the housing 20 and is in contact with the outer surface of the exterior body 12 (for example, the flat surfaces 13 and 14).
  • the storage cell 10 may be fixed in the housing 20 by the heat removal member 30.
  • the heat removal member 30 is filled in the exterior body housing region 21 and covers the exterior body 12. The heat removal member 30 may completely cover the exterior body 12.
  • the heat removal member 30 is not provided in the terminal accommodating region 22. Therefore, the positive terminal 16 and the negative terminal 18 are exposed in the terminal accommodating region 22. Thereby, the positive terminal 16 and the negative terminal 18 and the external terminal (not shown) can be easily connected.
  • the heat removal member 30 contains a compound that absorbs heat generated from the electricity storage cell 10 by phase change.
  • the heat removal member 30 contains a phase-changing compound, even when the electricity storage cell 10 rapidly generates heat, the heat removal member 30 can absorb heat rapidly by using, for example, latent heat of the compound. That is, the heat removal member 30 can be at a constant temperature, for example, at the melting point until the phase change of the compound is completed, and the temperature change of the storage cell 10 can be suppressed.
  • the compound contained in the heat removal member 30 is preferably an organic compound, and more preferably an organic compound that undergoes a phase change from a solid to a liquid due to a calorific value or temperature change of the storage cell 10.
  • An organic compound that undergoes a phase change from a solid to a liquid can function as a latent heat removal material that uses the latent heat of the phase transformation when it melts or solidifies. For this reason, it is possible to store a much larger amount of heat per unit volume compared to sensible heat removal materials that use high specific heat materials such as metals such as lead, alloys, inorganic oxides, etc., effectively increasing the temperature of the storage cell Can be suppressed.
  • an organic compound that can act as a latent heat removal material with phase change does not deprive heat up to the phase transformation point (melting point).
  • the melting point can be set in small increments by changing the number of carbon atoms of the organic compound that acts as a latent heat removal material or by mixing a plurality of organic compounds, the organic compound contained in the heat removal member 30 is appropriately selected. Thereby, it can control easily so that the temperature optimal for charging / discharging of the electrical storage cell 10 may be maintained.
  • Examples of the organic compound contained in the heat removal member 30 include aliphatic saturated hydrocarbons such as paraffin, aliphatic carboxylic acids such as stearic acid and palmitic acid, alcohols such as ethylene glycol, and liquid crystal compounds.
  • aliphatic saturated hydrocarbons such as paraffin
  • aliphatic carboxylic acids such as stearic acid and palmitic acid
  • alcohols such as ethylene glycol
  • liquid crystal compounds a hydrocarbon compound having 12 to 50 carbon atoms is preferable.
  • paraffin includes n-tetradecane, n-pentadecane, n-hexadecane, n-heptadecane, n-octadecane, n-nonadecane, n-icosane, n-docosane, n-tetracosane, n-hexacosane, Examples thereof include linear hydrocarbon compounds such as n-octacosane and n-triacontane, and branched hydrocarbon compounds.
  • the material for the heat removal member 30 can be appropriately selected according to the amount of heat generated by the storage cell 10. For this reason, said compound may be used independently and you may mix and use the material which has different melting
  • the melting point of the compound contained in the heat removal member 30 varies depending on the selected material, but is preferably 30 ° C. or higher and 80 ° C. or lower, for example. By using such a heat removal member 30, for example, the temperature of the storage cell 10 can be maintained in the above range.
  • filler is dispersed in the heat removal member 30.
  • the filler material include aluminum hydroxide, magnesium hydroxide, calcium carbonate, and glass wool.
  • the filler material is, for example, metal particles such as graphite, copper, aluminum, silver, iron, alumina, magnesia, beryllia, silica, mullite (Al 6 O 13 Si 2 ), or Examples thereof include metal nitrides such as fiber, boron nitride, silicon nitride, titanium nitride, and aluminum nitride.
  • the filler dispersed in the heat removal member 30 may have conductivity, but considering the short circuit between the terminals 16 and 18, the heat removal member 30 as a whole has insulation. It is desirable. Therefore, the filler material is particularly preferably alumina, magnesia, beryllia, silica, boron nitride, silicon nitride, mullite, titanium nitride, or aluminum nitride. These may be used alone or in combination of two or more. Moreover, it is preferable to make these fillers into shapes, such as a fiber shape and a needle shape, in order to improve thermal conductivity.
  • the heat removal member 30 preferably contains a thermoplastic resin. As described above, the compound contained in the heat removal member 30 absorbs the heat generated in the electricity storage cell 10 by changing the phase, but the phase-changed compound has higher fluidity. Then, by containing a thermoplastic resin, the heat removal member 30 can be made into a gel state, and it can suppress that fluidity
  • thermoplastic resin contained in the heat removal member 30 is not particularly limited.
  • a polyolefin-based resin and an ethylene / propylene / non-conjugated diene copolymer (EPDM) or an ethylene / propylene copolymer (EPM) are used.
  • Blended olefin elastomers such as conjugated diene compounds or hydrogenated diene copolymers that are hydrogenated block copolymers of aromatic alkenyl compounds and conjugated diene compounds; acrylic rubber ( ACM), EPDM, EPM, butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), isoprene rubber (IR), acrylonitrile rubber (NBR), nitrile / isoprene rubber (NIR), natural rubber (NR), etc. Rubbers such as polyethylene and polypropylene Fin, and the like. These may be used alone or in combination of two or more. Among these, from the viewpoint of ease of arrangement of the heat removal member 30 in the exterior body housing region 21 and the mitigation of shock transmitted to the storage cell 10, a thermoplastic elastomer, particularly a hydrogenated diene copolymer is preferable. .
  • the hydrogenated diene copolymer a known polymer can be used, but a polymer having good compatibility with the phase-changing compound can be preferably used.
  • a hydrogenated diene copolymer a hydrogenated product of a block copolymer comprising a conjugated diene compound or an aromatic alkenyl compound and a conjugated diene compound is preferable.
  • conjugated diene compounds include 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, and aromatic alkenyl compounds include styrene, ⁇ -methylstyrene, p. -Methylstyrene, tert-butylstyrene, divinylbenzene and the like.
  • the heat dissipation member 40 is accommodated in the housing 20 and is in contact with the heat removal member 30.
  • the heat radiating member 40 may be fixed in the housing 20 by the heat removal member 30.
  • the heat radiating member 40 has a plate shape and is disposed in the exterior body housing region 21, but may extend to the terminal housing region 22.
  • the heat radiating member 40 is separated from the storage cell 10 via the heat removal member 30, for example.
  • the heat radiating member 40 has, for example, a plate shape whose thickness direction is the X-axis direction, and the thickness is not less than 0.2 mm and not more than 20 mm.
  • the length of the heat dissipation member 40 in the Y axis direction is, for example, 100 mm or more and 200 mm or less, and the length of the heat dissipation member 40 in the Z axis direction is, for example, 100 mm or more and 200 mm or less.
  • the heat radiating member 40 a material having high thermal conductivity can be used. Specifically, examples of the material of the heat radiating member 40 include aluminum and copper.
  • the heat radiating member 40 can radiate the heat absorbed by the compound of the heat removal member 30 to the outside. In the illustrated example, the heat radiating member 40 is in contact with the inner surface 29 of the housing 20, and the heat absorbed by the heat removal member 30 is transmitted to the housing 20 by the heat radiating member 40 and then radiated to the outside. it can.
  • the heat removal member 10 is heated after the heat generation of the storage cell 10 is finished (for example, after the charge / discharge is finished).
  • the compound that absorbs heat by the phase change contained in 30 is a phase that releases heat from a phase that absorbs heat (for example, a fluid state like a liquid) (such as a solid). To a state of low fluidity).
  • the electrical storage cell 10 generates heat again, the compound that absorbs heat by the phase change contained in the heat removal member 30 can absorb the heat of the electrical storage cell 10 by the phase change.
  • the heat radiating member 40 is arrange
  • one heat radiating member 40 is provided, but the number thereof is not particularly limited.
  • two heat radiating members 40 may be provided, and the storage cell 10 may be disposed between the two heat radiating members 40.
  • FIG. 5 is a cross-sectional view illustrating the power storage cell 10 of the power storage device 100 according to the present embodiment illustrated in FIG. 3, and is a cross-sectional view schematically illustrating the internal structure (of the exterior body 12) of the power storage cell 10.
  • the electrical storage cell 10 is a lithium ion capacitor
  • FIG. 5 illustrates a state where the storage cell 10 illustrated in FIG. 3 is turned upside down.
  • the electrical storage cell 10 has the electrode laminated body 5 and the electrolyte solution (not shown) accommodated in the exterior body 12, as shown in FIG.
  • the electrode laminate 5 and the electrolytic solution are accommodated in an exterior body 12 composed of a first laminate film 12a and a second laminate film 12b.
  • the electrode laminate 5 is immersed in the electrolytic solution.
  • the electrode laminate 5 can include a positive electrode 1, a negative electrode 2, a lithium electrode 3, and a separator 4.
  • the positive electrode 1, the negative electrode 2, the lithium electrode 3, and the separator 4 have a sheet shape.
  • the electrode laminate 5 is laminated in the order of the lithium electrode 3, the negative electrode 2, the positive electrode 1, the negative electrode 2, the positive electrode 1, the negative electrode 2, and the lithium electrode 3 from the inner bottom surface of the first laminate film 12a.
  • the separator 4 is interposed between the poles and between the poles and the laminate film. In the electrode laminate 5, the positive electrode 1 and the negative electrode 2 are connected in parallel.
  • the numbers of the positive electrode 1 and the negative electrode 2 are not particularly limited.
  • the number of lithium electrodes 3 and the installation location are not particularly limited.
  • the form of the electrode laminated body 5 is not limited to the example of illustration, For example, the winding structure formed by laminating
  • the positive electrode 1 has a positive electrode current collector 1a and a positive electrode active material layer 1b.
  • a porous metal foil can be used as the positive electrode current collector 1a.
  • Examples of the material of the positive electrode current collector 1a include aluminum and stainless steel.
  • the thickness of the positive electrode current collector 1a is, for example, 15 ⁇ m or more and 50 ⁇ m or less.
  • the positive electrode current collector 1 a is connected to the positive electrode terminal 16 through the positive electrode lead 6.
  • the positive electrode active material layer 1b is formed on the positive electrode current collector 1a.
  • the positive electrode active material layer 1b is formed on both surfaces of the positive electrode current collector 1a, but may be formed only on one surface.
  • the thickness of the positive electrode active material layer 1b is, for example, not less than 60 ⁇ m and not more than 90 ⁇ m.
  • the positive electrode active material layer 1b contains a positive electrode active material.
  • the positive electrode active material hexafluorophosphate (PF 6 -) or tetrafluoroborate (BF 4 -) anions, such as a reversibly carrying substance capable. More specifically, examples of the positive electrode active material include activated carbon and a polyacene-based material (PAS) that is a heat-treated product of an aromatic condensation polymer.
  • PAS polyacene-based material
  • the positive electrode active material layer 1b As a method for forming the positive electrode active material layer 1b, first, a positive electrode active material powder and a binder are dispersed in an aqueous medium or an organic solvent to prepare a slurry. You may mix electroconductive powder as needed. Next, the adjusted slurry is applied to the surface of the positive electrode current collector 1a and dried. Thus, the positive electrode active material layer 1b can be obtained.
  • the negative electrode 2 has a negative electrode current collector 2a and a negative electrode active material layer 2b.
  • a porous metal foil can be used as the negative electrode current collector 2a.
  • the material of the negative electrode current collector 2a include copper, stainless steel, and nickel.
  • the thickness of the negative electrode current collector 2a is, for example, 10 ⁇ m or more and 50 ⁇ m or less.
  • the negative electrode current collector 2 a is connected to the negative electrode terminal 18 through the negative electrode lead 7.
  • the negative electrode active material layer 2b is formed on the negative electrode current collector 2a.
  • the negative electrode active material layer 2b is formed on both surfaces of the negative electrode current collector 2a, but may be formed only on one surface.
  • the thickness of the negative electrode active material layer 2b is, for example, 20 ⁇ m or more and 50 ⁇ m or less.
  • the negative electrode active material layer 2b contains a negative electrode active material.
  • the negative electrode active material is a material that can reversibly store lithium ions. More specifically, examples of the negative electrode active material include graphite (graphite), non-graphitizable carbon (hard carbon), and pulverized products thereof.
  • the negative electrode active material layer 2b As a method for forming the negative electrode active material layer 2b, first, a negative electrode active material powder and a binder are dispersed in an aqueous medium or an organic solvent to prepare a slurry. You may mix electroconductive powder as needed. Next, the adjusted slurry is applied to the surface of the negative electrode current collector 2a and dried. In this way, the negative electrode active material layer 2b can be obtained.
  • the lithium electrode 3 has a lithium electrode current collector 3a and a lithium foil 3b.
  • a porous metal foil can be used as the lithium electrode current collector 3a.
  • the material of the lithium electrode current collector 3a include copper and stainless steel.
  • the thickness of the lithium electrode current collector 3a is, for example, not less than 10 ⁇ m and not more than 200 ⁇ m.
  • the lithium foil 3b is, for example, pressure bonded to one surface of the lithium electrode current collector 3a.
  • the material of the lithium foil 3b is lithium.
  • the lithium foil 3b can function as a lithium ion supply source. That is, when the lithium electrode current collector 3a and the negative electrode current collector 2a are connected via the negative electrode lead 7 and short-circuited, the lithium foil 3b can be dissolved in the electrolytic solution and become lithium ions. Then, the lithium ions are electrochemically doped into the negative electrode active material layer 2b (also referred to as “pre-dope”) via the electrolytic solution. As a result, the potential of the negative electrode 2 can be lowered.
  • the thickness of the lithium foil 3b is, for example, 50 ⁇ m or more and 300 ⁇ m or less.
  • the lithium foil 3b is completely dissolved in the electrolytic solution by pre-doping, for example, but in the illustrated example, the electrolytic solution is omitted for convenience and the lithium foil 3b before being dissolved in the electrolytic solution is illustrated. .
  • an aprotic organic solvent electrolytic solution containing lithium salt as an electrolyte is used.
  • the aprotic organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane and the like. These solvents may be used alone or in combination of two or more.
  • the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li (C 2 F 5 SO 2 ) 2 N, and the like.
  • the separator 4 can be made of a porous material that is durable against the positive electrode active material, the negative electrode active material, and the electrolyte.
  • a nonwoven fabric made of cellulose, rayon, polyethylene, polypropylene, aramid resin, amideimide, polyphenylene sulfide, polyimide, or the like, a porous film, or the like can be used.
  • the thickness of the separator 4 is 20 ⁇ m or more and 50 ⁇ m or less, for example.
  • the separator can isolate between the positive electrode 1 and the negative electrode 2 or between the negative electrode 2 and the lithium electrode 3. Further, the separator 4 can infiltrate the electrolyte.
  • the power storage device 100 has, for example, the following characteristics.
  • the heat removal member 30 contains a compound that absorbs heat generated from the electricity storage cell 10 by phase change.
  • the heat can be rapidly absorbed using, for example, the latent heat of the compound. That is, the heat removal member 30 can be at a constant temperature, for example, at the melting point until the phase change of the phase changing compound is completed, and the temperature change of the storage cell 10 can be suppressed.
  • the temperature of the storage cell 10 can be maintained within a certain range by the heat removal member 30.
  • the electricity storage device 100 has a heat radiating member 40 in contact with the heat removal member 30. Therefore, the heat absorbed by the heat removal member 30 can be radiated to the outside.
  • the compound which absorbs the heat by the phase change contained in the heat removal member 30 is a phase (for example, the state which absorbed heat) (for example, It is possible to return from a high fluidity state like a liquid) to a phase in which heat is released (for example, a low fluidity state like a solid).
  • the compound that absorbs heat by the phase change contained in the heat removal member 30 can absorb the heat of the power storage cell 10 by the phase change. Further, when there is heat that cannot be absorbed by the heat removal member 30, the heat dissipation member 40 can dissipate the heat to the outside, and the temperature rise of the storage cell 10 can be suppressed. Moreover, since the heat absorbed by the heat removal member 30 can be radiated to the outside by the heat radiation member 40, the temperature of the heat removal member 30 can be more effectively controlled.
  • the electricity storage device 100 can efficiently remove the heat from the electricity storage cell 10 and can have high reliability.
  • the heat dissipation member 40 is separated from the electricity storage cell 10, and the exterior body 12 can be covered with the heat removal member 30. Therefore, for example, compared with the case where the heat radiating member and the exterior body are in contact, the contact area between the exterior body 12 and the heat removal member 30 can be increased. Thereby, in the electrical storage device 100, the heat generated in the electrical storage cell 10 can be efficiently transmitted to the heat removal member 30. Furthermore, the heat removal member 30 can improve the water resistance and dust-proofing of the storage cell 10.
  • the phase-changing compound can be an organic compound (for example, paraffin). Therefore, the melting point of the organic compound can be precisely changed by changing the carbon number. That is, the melting point of the organic compound can be precisely changed according to the calorific value of the storage cell 10, and charging / discharging of the storage cell 10 can be operated at the optimum temperature.
  • the temperature that can be maintained is limited to the melting point of the material of the inorganic compound.
  • the operating temperature of the storage cell cannot be precisely controlled, and it may be difficult to operate the storage cell at the optimum temperature.
  • the use of an inorganic compound may increase the weight of the electricity storage device and reduce the electricity storage capacity per unit weight.
  • filler can be dispersed in the heat removal member 30.
  • the flame retardance and thermal conductivity of the heat removal member 30 can be improved.
  • the heat removal member 30 can efficiently dissipate the absorbed heat to the outside.
  • the heat dissipation of the electricity storage device 100 can be improved by adjusting the amount of the filler.
  • the heat removal member 30 can contain a thermoplastic resin. Therefore, even if the fluidity
  • the heat removal member 30 contains a thermoplastic resin, a shock transmitted to the electricity storage cell 10 when an external force is applied to the housing 20 can be reduced. As a result, the shock resistance of the electricity storage device 100 can be improved. That is, the heat removal member 30 can also function as a cushioning material.
  • the electricity storage cell 10 can be a lithium ion capacitor.
  • a lithium ion capacitor may generate heat rapidly because a large current flows in a short time with rapid charging and discharging.
  • the power storage device 100 can absorb heat rapidly by the heat removal member 30 as described above. Therefore, the heat from the storage cell 10 can be efficiently removed.
  • the inside of the housing 20 is partitioned into an exterior body housing area 21 in which the exterior body 12 is housed, and a terminal housing area 22 in which at least one of the positive electrode terminal 16 and the negative electrode terminal 18 is housed.
  • the heat removal member 30 can be disposed in the exterior body housing region 21. Therefore, the positive electrode terminal 16 and the negative electrode terminal 18 are not covered with the heat removal member 30 and are exposed in the terminal accommodating region 22. Therefore, the positive terminal 16 and the negative terminal 18 and an external terminal (not shown) can be easily connected, and the convenience of the electricity storage device 100 can be improved.
  • FIG. 6 is a cross-sectional view schematically showing an electricity storage device 200 according to the first modification of the present embodiment, and corresponds to FIG.
  • FIG. 7 is a cross-sectional view schematically showing an electricity storage device 200 according to the first modification of the present embodiment, and corresponds to FIG.
  • the positive electrode, the negative electrode, and the like housed in the exterior body 12 are omitted.
  • the heat dissipating member 40 was separated from the electricity storage cell 10 as shown in FIGS.
  • the heat radiating member 40 is in contact with the exterior body 12 of the electricity storage cell 10 as shown in FIGS. 6 and 7.
  • the heat dissipation member 40 is in contact with the first flat surface 13, but may be in contact with the second flat surface 14.
  • Two heat radiating members 40 may be provided and may be in contact with both surfaces of the first flat surface 13 and the second flat surface 14.
  • the heat radiating member 40 is joined to the exterior body 12 of the storage cell 10.
  • the joining of the heat dissipation member 40 and the storage cell 10 is performed using, for example, an adhesive.
  • an adhesive for example, an acrylic heat conductive sheet or a graphite sheet with an acrylic adhesive having high tackiness and heat transfer coefficient and low thermal resistance can be used.
  • the heat dissipation member 40 may be joined to the inner surface 29 of the housing 20.
  • the joining of the heat radiating member 40 and the housing 20 may be performed using, for example, an adhesive as described above.
  • the electricity storage cell 10 can be held in the housing 20 more stably by the heat radiating member 40. Therefore, the electricity storage device 200 can have higher earthquake resistance than the example of the electricity storage device 100, for example.
  • FIG. 8 is a cross-sectional view schematically showing an electricity storage device 300 according to the second modification of the present embodiment, and corresponds to FIG.
  • FIG. 9 is a cross-sectional view schematically showing an electricity storage device 300 according to the second modification of the present embodiment, and corresponds to FIG.
  • the positive electrode, the negative electrode, and the like housed in the exterior body 12 are omitted.
  • the example of the electricity storage device 100 has one electricity storage cell 10 as shown in FIGS.
  • the electricity storage device 200 includes a plurality of electricity storage cells 10 as shown in FIGS. 8 and 9.
  • four power storage devices 10 are provided, but the number is not particularly limited, and can be changed as appropriate according to the application of the power storage device 300.
  • the plurality of power storage devices 10 may be fixed by the heat removal member 30.
  • the heat removal member 30 can absorb heat generated from the plurality of power storage devices 10.
  • the plurality of power storage cells 10 are arranged along the X-axis direction.
  • the adjacent electricity storage cells 10 are arranged so that the first flat surface 13 and the second flat surface 14 face each other with the heat removal member 30 interposed therebetween, for example.
  • the adjacent storage cells 10 may be arranged such that the first flat surfaces 13 or the second flat surfaces 14 face each other via the heat removal member 30.
  • the positive electrode terminal 16 and the negative electrode terminal 18 of the adjacent power storage cells 10 are connected via a wiring 17, and the plurality of power storage cells 10 are connected in series.
  • the plurality of power storage cells 10 may be connected in parallel depending on the application of the power storage device 300.
  • the heat dissipation member 40 is provided between the adjacent storage cells 10.
  • four heat radiating members 40 are provided, and the storage cells 10 and the heat radiating members 40 are alternately arranged along the X-axis direction.
  • the electricity storage device 300 for example, higher energy can be achieved as compared to the electricity storage device 100.
  • the resin body 30 can have high thermal conductivity. Uniformity can be achieved. That is, the plurality of power storage cells 10 can be thermally connected. Thereby, the difference in the deterioration rate and charging / discharging characteristic of the some electrical storage cell 10 can be made small, and the electrical storage device 300 can have high reliability.
  • one of the storage cells 10 (for example, the storage cell 10 disposed in the central portion of the plurality of storage cells 10) can be prevented from excessively rising in temperature. Even if the electrolytic solution is ejected due to the operation, the ejection amount can be reduced and the temperature of the electrolytic solution can be lowered. Therefore, for example, a member for absorbing the electrolytic solution is not necessary, and the size can be reduced accordingly.
  • the plurality of electricity storage cells 10 are physically isolated by the heat removal member 30. Therefore, even if the temperature of one power storage cell 10 rises due to overcharging and a safety valve (not shown) is activated and the electrolyte in the power storage cell 10 is ejected, the power storage cell 10 from which the electrolyte is ejected The influence on other power storage cells 10 can be reduced.
  • the storage cell from which the electrolytic solution is ejected becomes very high temperature (about 150 ° C.). For example, in a form in which the storage cells are in close contact with each other, the temperature of the storage cell that has become high temperature and the temperature of the adjacent storage cell by the electrolytic solution May increase and the storage cells may be destroyed in a chain. In the electricity storage device 300, such a problem can be avoided.
  • FIG. 10 is a diagram schematically showing an electricity storage device 400 according to a third modification of the present embodiment, and corresponds to FIG.
  • FIG. 11 is a cross-sectional view schematically showing an electricity storage device 400 according to the third modification of the present embodiment, and corresponds to FIG. 4 and FIG.
  • FIG. 10 a part of the housing 20 is seen through.
  • FIG. 11 omits the positive electrode, the negative electrode, and the like housed in the outer package 12.
  • the power storage device 400 can include a heat sink 50 as shown in FIGS. 10 and 11.
  • the heat sink 50 is joined to the heat radiating member 40. As shown in FIG. 11, when a plurality of heat dissipation members 40 are provided, the heat sink 50 may be joined to the plurality of heat dissipation members 40. More specifically, the plurality of heat dissipating members 40 extend along the Z-axis direction and are joined to the heat sink 50 at the end 42 of the heat dissipating member 40.
  • the end 42 is an end of the heat radiating member 40 in the Z-axis direction.
  • the end portion 42 can have a greater thickness than, for example, a portion other than the end portion 42 of the heat dissipation member 40. That is, the end portion 42 has a large length in the X-axis direction. Thereby, a joining area with the heat sink 50 can be enlarged. It can be said that the end portion 42 is a portion joined to the heat sink 50 of the heat radiating member 40.
  • the heat sink 50 is joined to all the heat radiating members 40.
  • the heat absorbed by the heat removal member 30 is transmitted through the heat radiating member 40 in the Z-axis direction, is transferred from the end portion 42 to the heat sink 50, and can be radiated from the heat sink 50.
  • Examples of the material of the heat sink 50 include aluminum and copper.
  • the joining of the heat sink 50 and the heat dissipation member 40 is not particularly limited.
  • a plurality of holes are provided in the end portions 42 of the heat sink 50 and the heat dissipation member 40 in advance, and the holes and end portions 42 of the heat sink 50 are provided.
  • a knock pin (not shown) having an outer diameter larger than the hole diameter (diameter) can be press-fitted. Since the knock pin is inserted into the hole while being plastically deformed, there is no gap between the knock pin and the hole, and the thermal resistance between the heat sink 50 and the heat radiating member 40 can be reduced.
  • the heat of the heat removal member 30 transmitted to the heat radiating member 40 can be efficiently radiated from the heat sink 50. Further, even if a material exhibiting high heat transfer characteristics such as silicon grease or silver paste is applied between the heat sink 50 and the end portion 42, the gap between the heat radiating member 40 and the heat sink 50 is filled. Good. Thereby, the thermal resistance between the heat radiating member 40 and the heat sink 50 can be reduced.
  • a material exhibiting high heat transfer characteristics such as silicon grease or silver paste
  • the heat sink 50 has, for example, a convex portion 52 formed by forming a plurality of concave portions on one surface of a rectangular parallelepiped.
  • the convex portion 52 is formed on the surface of the heat sink 50 opposite to the surface bonded to the heat dissipation member 40.
  • the number of the convex parts 52 is not specifically limited.
  • the convex portion 52 can increase the surface area of the heat sink 50 and improve heat dissipation.
  • the heat absorbed by the heat removal member 30 can be radiated to the outside more efficiently by the heat sink 50. Furthermore, since the plurality of heat radiating members 40 can be connected to the heat sink 50, the plurality of heat radiating members 40 can be thermally coupled. Thereby, the temperature difference of the some electrical storage cell 10 can be made still smaller. As a result, the deterioration rate of the storage cell 10 and the difference in charge / discharge characteristics can be reduced.
  • a plurality of heat sinks 50 may be provided.
  • the two heat sinks 50 may be disposed so as to sandwich the heat dissipation member 40. Even in such a form, it is desirable that each of the two heat sinks 50 be joined to the plurality of heat radiating members 40 in consideration of the uniform temperature of the plurality of power storage cells 10.
  • FIG. 12 is a diagram schematically showing an electricity storage device 500 according to a fourth modification of the present embodiment, and corresponds to FIG. 2 and FIG.
  • FIG. 13 is a diagram schematically showing an electricity storage device 500 according to the fourth modification of the present embodiment, and is a diagram seen from the Y-axis direction of FIG. For convenience, in FIG. 12, a part of the housing 20 is seen through.
  • the electricity storage device 500 includes a cooling unit 60 as shown in FIGS. 12 and 13.
  • the form of the cooling unit 60 is not particularly limited as long as the heat sink 50 can be cooled.
  • a cooling fan can be used.
  • the arrangement of the cooling unit 60 is connected to the heat sink 50 so that, for example, air can be blown directly to the convex portion 52 of the heat sink 50. Thereby, the heat sink 50 can radiate heat more efficiently.
  • a plurality of cooling units 60 may be provided.
  • the heat absorbed by the heat removal member 30 can be dissipated more efficiently to the outside by the cooling unit 60.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the present invention can be appropriately combined with the above-described embodiments and modifications.
  • the present invention includes, for example, a configuration substantially the same as the configuration described in the embodiment (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect).
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
  • SYMBOLS 1 Positive electrode, 1a ... Positive electrode collector, 1b ... Positive electrode active material layer, 2 ... Negative electrode, 2a ... Negative electrode collector, 2b ... Negative electrode active material layer, 3 ... Lithium electrode, 3a ... Lithium electrode current collector, 3b ... lithium foil, 4 ... separator, 5 ... electrode laminate, 6 ... positive electrode lead, 7 ... negative electrode lead, 10 ... storage cell, 12 ... outer package, 12a ... 1 laminate film, 12b ... 2nd laminate film, 13 ... 1st DESCRIPTION OF SYMBOLS 1 Flat surface, 14 ... 2nd flat surface, 16 ... Positive electrode terminal, 17 ... Wiring, 18 ...
  • Negative electrode terminal 20 ... Housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 本発明に係る蓄電デバイス100は、正極、負極、および電解液が収容された外装体12を有する蓄電セル10と、蓄電セル10が収容された筐体20と、除熱部材30と、放熱部材40と、を含み、除熱部材30は、相変化することにより蓄電セル10から発生する熱を吸収する化合物を含有する。

Description

蓄電デバイス
 本発明は、蓄電デバイスに関する。
 蓄電デバイスの構成要素である蓄電セルは、例えば、シート状の正極および負極をセパレータを介して対向配置させながら所定数積層してなる電極体を、電解液とともに外装体内に密封したものである。このような密閉型蓄電セルは、例えば、アルミ材などの部材を箱状に形成してなる筐体に、収容されている(特開2006-228610号公報参照)。
 蓄電セルは、充放電により発熱するが、このような温度変化により充放電特性が変化する。例えば、温度が1℃変化すると蓄電セルの出力電圧は、通常1mV程度変化する。このため、充放電に伴う蓄電セルの温度変化を抑制する技術が不可欠である。
 例えば、特開2009-272048号公報には、ラミネートフィルムを電池容器とした蓄電セルを、金属製の放熱部材に固定して、発生する熱を放熱する技術が開示されている。特開2010-86734号公報には、蓄電セル内部に有機系潜熱蓄熱材を内包させることで、温度上昇を抑制する技術が開示されている。
 しかしながら、蓄電セルの蓄電容量が大きくなるに従って、充放電の際の発熱量や発熱速度も増大している。そのため、上記のような温度制御では、温度上昇を十分に抑制することが困難となる場合がある。
 例えば、特許文献2のように放熱部材を利用する方法では、蓄電セルの発熱速度が放熱部材の伝熱量を超える場合、蓄電セルの温度上昇を十分に抑制することができない場合がある。
 また、特許文献3のように有機系潜熱蓄熱材を蓄電セルに密封する方法では、有機系潜熱蓄熱材が正極、負極、およびセパレータなどの蓄電セルを構成する部材により断熱されてしまうため、吸収した熱を外部へ放出することが困難となる場合がある。その結果、充放電を繰り返し行った場合に、蓄電セルの温度上昇の抑制が困難となる場合がある。
 特に、リチウムイオンキャパシタや電気二重層キャパシタのように蓄電容量が大きく、急速な充放電に伴い短時間に大電流が流れる蓄電セルでは、発熱速度および発熱量が大きくなる。そのため、上記のような従来の放熱方法では十分な温度制御ができず、蓄電セルの高温劣化を十分に抑制することができない場合がある。
 本発明のいくつかの態様に係る目的の1つは、蓄電セルからの熱を効率よく除去し、高い信頼性を有する蓄電デバイスを提供することにある。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
 [適用例1]
 正極、負極、および電解液が収容された外装体を有する蓄電セルと、
 前記蓄電セルが収容された筐体と、
 除熱部材と、
 放熱部材と、
を含み、
 前記除熱部材は、相変化することにより前記蓄電セルから発生する熱を吸収する化合物を含有する。
 [適用例2]
 適用例1において、
 前記除熱部材が前記筐体内に収容されていることができる。
 [適用例3]
 適用例1または2において、
 前記放熱部材が前記筐体内に収容されていることができる。
 [適用例4]
 適用例1ないし3のいずれか1例において、
 前記放熱部材は、前記除熱部材と接していることができる。
 [適用例5]
 適用例1ないし4のいずれか1例において、
 前記除熱部材は、前記外装体の外表面と接していることができる。
 [適用例6]
 適用例1ないし5のいずれか1例において、
 前記放熱部材は、前記蓄電セルと離間しており、
 前記外装体の外表面は、前記除熱部材によって覆われていることができる。
 [適用例7]
 適用例1ないし5のいずれか1例において、
 前記放熱部材は、前記外装体の外表面に接合されていることができる。
 [適用例8]
 適用例1ないし7のいずれか1例において、
 前記相変化することにより前記蓄電セルから発生する熱を吸収する化合物は、有機化合物であることができる。
 [適用例9]
 適用例8において、
 前記相変化することにより前記蓄電セルから発生する熱を吸収する前記有機化合物は、パラフィンであることができる。
 [適用例10]
 適用例1ないし9のいずれか1例において、
 前記除熱部材には、フィラーが分散されていることができる。
 [適用例11]
 適用例1ないし10のいずれか1例において、
 前記除熱部材は、熱可塑性樹脂を含有することができる。
 [適用例12]
 適用例1ないし11のいずれか1例において、
 前記蓄電セルは、リチウムイオンキャパシタであることができる。
 [適用例13]
 適用例1ないし12のいずれか1例において、
 前記蓄電セルは、
 前記正極と電気的に接続され、前記外装体から延出された正極端子と、
 前記負極と電気的に接続され、前記外装体から延出された負極端子と、
を有し、
 前記筐体内は、
 前記外装体が収容された外装体収容領域と、前記正極端子および前記負極端子の少なくとも一方が収容された端子収容領域と、に区画され、
 前記除熱部材は、前記外装体収容領域に配置されていることができる。
 [適用例14]
 適用例1ないし13のいずれか1例において、
 前記蓄電セルは、複数設けられ、
 複数の前記蓄電セルは、直列に接続されており、
 前記放熱部材は、隣り合う前記蓄電セルの間に設けられていることができる。
 本発明に係る蓄電デバイスによれば、蓄電セルが急速に発熱した場合でも、相変化する化合物の潜熱を利用して、急速に熱を吸収することができる。また、除熱部材は、化合物の相変化が完了するまで、一定温度を維持することができ、蓄電セルの温度変化を抑制することができる。
 さらに、放熱部材により、除熱部材に含有された相変化する化合物によって吸収された熱を、外部に放熱することができる。これにより、蓄電セルの発熱が終わった後に(例えば充放電が終わった後に)、除熱部材に含有された相変化した化合物から熱を除去して、吸熱前の相へ再度相変化させて、新たな蓄電セルの発熱を吸熱させることができる。例えば、除熱部材に含有された化合物が吸熱に伴う相変化により流動性の小さい状態(例えば固体)から流動性の高い状態(例えば液体)に変化する場合、放熱部材により熱を放出させることで再び流動性の小さい状態に戻ることができる。そして、再度、蓄電セルが発熱した際に、除熱部材の化合物は、蓄電セルの熱を吸収することができる。
 以上のように、本発明に係る蓄電デバイスは、蓄電セルからの熱を効率よく除去することができ、高い信頼性を有することができる。
図1は、本実施形態に係る蓄電デバイスを模式的に示す斜視図である。 図2は、本実施形態に係る蓄電デバイスを模式的に示す図である。 図3は、本実施形態に係る蓄電デバイスを模式的に示す断面図である。 図4は、本実施形態に係る蓄電デバイスを模式的に示す断面図である。 図5は、本実施形態に係る蓄電デバイスの蓄電セルを模式的に示す断面図である。 図6は、本実施形態の第1変形例に係る蓄電デバイスを模式的に示す断面図である。 図7は、本実施形態の第1変形例に係る蓄電デバイスを模式的に示す断面図である。 図8は、本実施形態の第2変形例に係る蓄電デバイスを模式的に示す断面図である。 図9は、本実施形態の第2変形例に係る蓄電デバイスを模式的に示す断面図である。 図10は、本実施形態の第3変形例に係る蓄電デバイスを模式的に示す図である。 図11は、本実施形態の第3変形例に係る蓄電デバイスを模式的に示す断面図である。 図12は、本実施形態の第4変形例に係る蓄電デバイスを模式的に示す図である。 図13は、本実施形態の第4変形例に係る蓄電デバイスを模式的に示す図である。
 以下、本発明の好適な実施形態について、図面を参照しながら説明する。
 1. 蓄電デバイス
 まず、本実施形態に係る蓄電デバイスについて、図面を参照しなら説明する。図1は、本実施形態に係る蓄電デバイス100を模式的に示す斜視図である。図2は、本実施形態に係る蓄電デバイス100を模式的に示す図であって、図1のX軸方向から見た図である。図3は、本実施形態に係る蓄電デバイス100を模式的に示す断面図であって、図1のIII-III線断面図(XY平面の断面図)である。図4は、本実施形態に係る蓄電デバイス100を模式的に示す断面図であって、図1のIV-IV線断面図(XZ平面の断面図)である。
 蓄電デバイス100は、図1~図4に示すように、蓄電セル10と、筐体20と、除熱部材30と、放熱部材40と、を含む。
 なお、便宜上、図1では、筐体20を簡略化かつ透視して図示し、図2では、筐体20の一部を透視して図示している。また、便宜上、図3および図4では、外装体12内に収容される正極や負極等を省略して図示している。
 蓄電セル10の形態としては、リチウムイオンキャパシタ、二次電池、電気二重層キャパシタなどを例示することができる。蓄電セル10は、外装体12と、正極端子16と、負極端子18と、を有することができる。
 外装体12は、正極、負極、および電解液を収容している。外装体12の形状は、正極、負極、および電解液を収容することができれば特に限定されず、例えば、2枚のフィルムを張り合わせたラミネート型でもよし、箱型でもよいし、円筒型でもよい。図示の例では、外装体12をラミネート型(ラミネートフィルム)として図示している。
 ラミネートフィルムからなる外装体12は、図3および図4に示すように、第1扁平面13と、第1扁平面13と反対を向き第1扁平面13より面積の小さい第2扁平面14と、を有することができる。外装体12は、例えば、凸の部分を有し、第2扁平面14は、凸の部分を形成する面であるともいえる。第1扁平面13と第2扁平面14との間の距離(蓄電セル10の厚み)は、例えば、5mm程度である。
 ラミネートフィルムは、例えば、金属層と、該金属層を挟む第1樹脂層および第2樹脂層と、によって構成されている。金属層の材質としては、例えば、アルミニウムが挙げられる。第1樹脂層の材質としては、例えば、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、ポリアミド系樹脂が挙げられる。第2樹脂層の材質としては、例えば、エチレンビニルアセテート共重合体樹脂(EVA)、ポリエチレン、ポリプロピレン等のオレフィン系樹脂が挙げられる。このようなフィルム状の外装体12を用いることにより、例えば、金属等からなる硬質の外装体(金属缶等)を用いる場合に比べて、蓄電セル10の小型化や軽量化を図ることができる。
 正極端子16および負極端子18は、図3に示すように、外装体12から延出して(突出して)設けられている。より具体的には、正極端子16および負極端子18は、外装体12の密閉性を保持した状態で、外装体12の内側から外側まで延出している。図示の例では、正極端子16および負極端子18は、外装体12から互いに反対方向に延出している。より具体的には、正極端子16は、外装体12から-Y方向に向けて延出し、負極端子18は、外装体12から+Y方向に向けて延出している。なお、図示はしないが、正極端子16および負極端子18は、ともに同じ方向(例えば-Y方向)に向けて延出していてもよい。
 正極端子16は、外装体12内の正極と電気的に接続されており、負極端子18は、外装体12内の負極と電気的に接続されている。正極端子16の材質としては、例えば、アルミニウムが挙げられる。負極端子18の材質としては、例えば、銅、ニッケルが挙げられる。なお、外装体12の内部構造については、後述する。
 筐体20は、蓄電セル10を収容することができる。筐体20の形状は、蓄電セル10を収容できれば特に限定されないが、例えば、箱型の形状を有する。図2に示す例では、筐体20は、基部25および蓋部26を有し、基部25内に蓄電セル10を配置し、基部25の開口を蓋部26で塞ぐことにより、蓄電セル10を収容している。蓋部26には、ネジ部27が装着されていてもよく、ネジ部27を締緩することにより、蓋部26が開閉されてもよい。筐体20の材質としては、例えば、アルミニウム、鉄、ステンレス、マグネシウム、銅が挙げられる。
 筐体20内は、図1~図3に示すように、例えば、仕切板23,24によって、外装体収容領域21と端子収容領域22とに区画されている。図示の例では、端子収容領域22は、2つ設けられ、外装体収容領域21は、2つの端子収容領域22の間に配置されている。仕切板23は、外装体収容領域21と、一方の端子収容領域22aと、を区画している。仕切板24は、外装体収容領域21と、他方の端子収容領域22bと、を区画している。仕切板23,24は、絶縁性を有することが望ましい。これにより、仮に端子16,18と仕切板23,24とが接触したとしても、リーク電流の発生を抑制することができる。
 外装体収容領域21には、外装体12が収容されている。端子収容領域22aには、正極端子16が収容されている。例えば、仕切板23には、開口部(スリット部)が形成されており、正極端子16は、外装体12から延出し該開口部を通って、端子収容領域22aに収容されていてもよい。端子収容領域22bには、負極端子18が収容されている。例えば、仕切板24には、開口部(スリット部)が形成されており、負極端子18は、外装体12から延出し該開口部を通って、端子収容領域22bに収容されていてもよい。
 なお、図示はしないが、正極端子16および負極端子18が、ともに同じ方向に向けて延出している形態では、端子収容領域22は1つ設けられていればよい。この場合、1つの端子収容領域22に、正極端子16および負極端子18が収容されていてもよい。
 除熱部材30は、筐体20内に収容され、外装体12の外表面(例えば扁平面13,14)と接している。除熱部材30によって、蓄電セル10は、筐体20内に固定されていてもよい。図示の例では、除熱部材30は、外装体収容領域21内に充填されており、外装体12を覆っている。除熱部材30は、外装体12を完全に覆っていてもよい。
 図示の例では、除熱部材30は、端子収容領域22には設けられていない。したがって、正極端子16および負極端子18は、端子収容領域22内に露出している。これにより、正極端子16および負極端子18と、外部端子(図示せず)と、の接続を容易に行うことができる。
 除熱部材30は、相変化することにより蓄電セル10から発生する熱を吸収する化合物を含有している。除熱部材30は、相変化する化合物を含有することにより、蓄電セル10が急速に発熱した場合でも、例えば化合物の潜熱を利用して、急速に熱を吸収することができる。すなわち、除熱部材30は、化合物の相変化が完了するまで、例えば融点で一定温度となっていることができ、蓄電セル10の温度変上昇を抑制することができる。
 除熱部材30に含有される化合物としては、有機化合物が好ましく、さらに蓄電セル10の発熱量や温度変化により固体から液体に相変化する有機化合物であることがより好ましい。
 固体から液体に相変化する有機化合物は、融解したり凝固する際の相変態の潜熱を利用する潜熱除熱材として機能することができる。このため、鉛などの金属や合金、無機酸化物などの高比熱材料を用いる顕熱除熱材と比べて単位容積あたりはるかに大きな熱量を蓄えることができ、蓄電セルの温度上昇を効果的に抑制することができる。また、相変化を伴い潜熱除熱材として作用することのできる有機化合物は相変態点(融点)までは熱を奪わない。このため、常に温度を奪い続ける顕熱除熱材と比べて、蓄電セル10より必要以上の熱を奪うことがなく、蓄電セル10の動作温度を必要以上に低下させることがないため、安定した充放電特性を発現させることができる。潜熱除熱材として作用する有機化合物の炭素数を変化させたり、複数の有機化合物を混合することにより小刻みな融点設定が可能であるため、除熱部材30に含有される有機化合物を適時選択することで蓄電セル10の充放電に最適な温度を維持するように容易に制御することができる。
 除熱部材30に含有される有機化合物としては、例えば、パラフィン等の脂肪族飽和炭化水素やステアリン酸、パルミチン酸等の脂肪族カルボン酸、エチレングリコール等のアルコール類、液晶性化合物が挙げられる。パラフィンとしては、炭素数12以上50以下の炭化水素化合物が好ましい。より具体的には、パラフィンとしては、n-テトラデカン、n-ペンタデカン、n-ヘキサデカン、n-ヘプタデカン、n-オクタデカン、n-ノナデカン、n-イコサン、n-ドコサン、n-テトラコサン、n-ヘキサコサン、n-オクタコサン、n-トリアコンタン等の直鎖状の炭化水素化合物や分岐状の炭化水素化合物が挙げられる。
 除熱部材30は、蓄電セル10の発熱量に応じて適宜材料を選択することができる。このため、上記の化合物を単独で用いてもよく、異なる融点を有する材料を混合して用いてもよい。除熱部材30に含有される化合物の融点は、選択される材料によって異なるが、例えば、30℃以上80℃以下であることが好ましい。このような除熱部材30を使用することにより、例えば蓄電セル10の温度を上記範囲に保つことができる。
 除熱部材30には、フィラーが分散されていることが好ましい。フィラーを分散することにより、除熱部材30の難燃性および熱伝導性を向上させることができる。難燃性を向上させるためには、フィラーの材質としては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、グラスウール等が挙げられる。熱伝導性を向上させるためには、フィラーの材質としては、例えば、黒鉛、銅、アルミニウム、銀、鉄、アルミナ、マグネシア、ベリリア、シリカ、ムライト(Al13Si)などの金属粒子あるいは繊維、窒化ホウ素、窒化ケイ素、窒化チタン、窒化アルミニウムなどの金属窒化物が挙げられる。
 なお、除熱部材30に分散されたフィラーは、導電性を有していてもよいが、端子16,18間の短絡などを考慮すると、除熱部材30全体としては、絶縁性を有していることが望ましい。このため、フィラーの材質としては、アルミナ、マグネシア、ベリリア、シリカ、窒化ホウ素、窒化ケイ素、ムライト、窒化チタン、窒化アルミニウムが特に好ましい。これらは、単独で用いてもよいし、2種以上を混合して用いてもよい。また、これらのフィラーは、熱伝導性を向上させるために繊維状、針状等の形状とすることが好ましい。
 除熱部材30は、熱可塑性樹脂を含有することが好ましい。上述したように除熱部材30に含有される化合物は、蓄電セル10で発生した熱を相変化することにより吸収するが、相変化した化合物は流動性が大きくなる。そこで、熱可塑性樹脂を含有させることにより、除熱部材30をゲル状態とし、除熱部材30全体として流動性が大きくなることを抑制することができる。これにより、相変化した化合物の流動性が大きくなっても、除熱部材30は、筐体20内に蓄電セル10を安定して固定することができる。
 除熱部材30に含有される熱可塑性樹脂としては、特に限定されるものではなく、例えば、ポリオレフィン系樹脂にエチレン・プロピレン・非共役ジエン共重合体(EPDM)またはエチレン・プロピレン共重合体(EPM)をブレンドしたオレフィン系エラストマー;共役ジエン系化合物、または芳香族アルケニル化合物と共役ジエン系化合物、のブロック共重合体の水添物である水添ジエン系共重合体といった熱可塑性エラストマー;アクリルゴム(ACM)、EPDM、EPM、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、イソプレンゴム(IR)、アクリロニトリルゴム(NBR)、ニトリル・イソプレンゴム(NIR)、天然ゴム(NR)等のゴム;ポリエチレン、ポリプロピレン等のポリオレフィンが挙げられる。これらは、単独で用いてもよいし、2種以上を混合して用いてもよい。このうち、除熱部材30の外装体収容領域21への配置のしやすさや、蓄電セル10に伝達されるショックの緩和という観点からは、熱可塑性エラストマー、特に水添ジエン系共重合体が好ましい。
 水添ジエン系共重合体は、公知の重合体を用いることができるが、相変化する化合物と相溶性の良好な重合体を好ましく用いることができる。このような水添ジエン系共重合体としては、共役ジエン系化合物、または芳香族アルケニル化合物と共役ジエン系化合物とからなるブロック共重合体の水添物が好ましい。
 具体的には、共役ジエン化合物としては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、1,3-ヘキサジエン等が挙げられ、芳香族アルケニル化合物としては、スチレン、α―メチルスチレン、p-メチルスチレン、tert-ブチルスチレン、ジビニルベンゼン等が挙げられる。
 これらの水添ジエン系共重合体は、例えば、特開平03―74409号、特開平03―128957号、特許第3467871号、特許第3301280号、特許第3850456号に記載の方法により得ることができる。
 放熱部材40は、筐体20内に収容され、除熱部材30に接している。放熱部材40は、除熱部材30によって、筐体20内に固定されていてもよい。図示の例では、放熱部材40は、板状であり、外装体収容領域21に配置されているが、端子収容領域22まで延在していてもよい。放熱部材40は、例えば、除熱部材30を介して蓄電セル10と離間している。放熱部材40は、例えば、X軸方向を厚み方向とする板状の形状を有し、その厚みは、0.2mm以上20mm以下である。放熱部材40のY軸方向の長さは、例えば、100mm以上200mm以下であり、放熱部材40のZ軸方向の長さは、例えば、100mm以上200mm以下である。
 放熱部材40としては、熱伝導率の高い材料を用いることができる。具体的に放熱部材40の材質としては、アルミニウム、銅が挙げられる。放熱部材40は、除熱部材30の化合物によって吸収された熱を、外部に放熱することができる。図示の例では、放熱部材40は、筐体20の内面29と接しており、除熱部材30によって吸収された熱は、放熱部材40によって筐体20に伝わり、その後外部に放熱されることができる。
 このように、除熱部材30によって吸収された熱を、放熱部材40を介して外部に放熱することにより、蓄電セル10の発熱が終わった後に(例えば充放電が終わった後に)、除熱部材30に含有された相変化により熱を吸収した化合物は、熱を吸収した状態の相(例えば、液体のように流動性の高い状態)から、熱を放出した状態の相(例えば、固体のように流動性の小さい状態)に戻ることができる。そして、再度、蓄電セル10の発熱した際に、除熱部材30に含有された相変化することにより熱を吸収する化合物は、相変化により蓄電セル10の熱を吸収することができる。
 なお、図示の例では、放熱部材40は、蓄電セル10の第2扁平面14側に配置されているが、第1扁平面13側に配置されていてもよい。また、図示の例では、放熱部材40は1つ設けられているが、その数は特に限定されない。例えば、放熱部材40は2つ設けられ、2つの放熱部材40の間に、蓄電セル10が配置していてもよい。
 次に、蓄電セル10の内部構造について説明する。図5は、図3に示した本実施形態に係る蓄電デバイス100の蓄電セル10を示す断面図あって、蓄電セル10の(外装体12の)内部構造を模式的に示す断面図である。以下では、一例として、蓄電セル10がリチウムイオンキャパシタである場合について説明する。なお、便宜上、図5は、図3に示す蓄電セル10を上下逆さまにした状態を、図示している。
 蓄電セル10は、図5に示すように、外装体12に収容された電極積層体5および電解液(図示せず)を有する。図示の例では、電極積層体5および電解液は、第1ラミネートフィルム12aと第2ラミネートフィルム12bとからなる外装体12内に収容されている。
 電極積層体5は、電解液に浸漬されている。電極積層体5は、正極1と、負極2と、リチウム極3と、セパレータ4と、を有することができる。正極1、負極2、リチウム極3、およびセパレータ4は、シート状の形状を有する。図示の例では、電極積層体5は、第1ラミネートフィルム12aの内側の底面から、リチウム極3、負極2、正極1、負極2、正極1、負極2、リチウム極3の順で積層され、極と極との間、および極とラミネートフィルムとの間にセパレータ4を介することによって構成されている。電極積層体5において、正極1および負極2は、それぞれ並列に接続されている。
 なお、正極1および負極2の数は、特に限定されない。同様に、リチウム極3の数および設置場所も特に限定されない。また、電極積層体5の形態は、図示の例に限定されず、例えば、正極、負極、リチウム極、およびセパレータを重ねて積層シートを形成し、該積層シートを捲回させてなる捲回構造体でもよい。
 正極1は、正極集電体1aと、正極活物質層1bと、を有する。正極集電体1aとしては、多孔性の金属箔を用いることができる。正極集電体1aの材質としては、例えば、アルミニウム、ステンレスが挙げられる。正極集電体1aの厚みは、例えば、15μm以上50μm以下である。正極集電体1aは、正極リード6を介して、正極端子16に接続されている。
 正極活物質層1bは、正極集電体1aに形成されている。図示の例では、正極活物質層1bは、正極集電体1aの両面に形成されているが、片面にのみ形成されていてもよい。正極活物質層1bの厚みは、例えば、60μm以上90μm以下である。
 正極活物質層1bは、正極活物質を含有している。正極活物質は、ヘキサフルオロホスフェート(PF )や、テトラフルオロボレート(BF )のようなアニオンを可逆的に担持できる物質である。より具体的には、正極活物質としては、活性炭、芳香族系縮合ポリマーの熱処理物であるポリアセン系物質(PAS)が挙げられる。
 正極活物質層1bの形成方法としては、まず、正極活物質粉末およびバインダーを、水系媒体または有機溶媒中に分散してスラリーを調整する。必要に応じて、導電性粉末を混入させてもよい。次に、調整したスラリーを正極集電体1aの表面に塗布して乾燥させる。このようにして、正極活物質層1bを得ることをできる。
 負極2は、負極集電体2aと、負極活物質層2bと、を有する。負極集電体2aとしては、多孔性の金属箔を用いることができる。負極集電体2aの材質としては、例えば、銅、ステンレス、ニッケルが挙げられる。負極集電体2aの厚みは、例えば、10μm以上50μm以下である。負極集電体2aは、負極リード7を介して、負極端子18に接続されている。
 負極活物質層2bは、負極集電体2aに形成されている。図示の例では、負極活物質層2bは、負極集電体2aの両面に形成されているが、片面にのみ形成されていてもよい。負極活物質層2bの厚みは、例えば、20μm以上50μm以下である。
 負極活物質層2bは、負極活物質を含有している。負極活物質は、リチウムイオンを可逆的に吸蔵できる物質である。より具体的には、負極活物質としては、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、もしくはそれらの粉砕品が挙げられる。
 負極活物質層2bの形成方法としては、まず、負極活物質粉末およびバインダーを、水系媒体または有機溶媒中に分散してスラリーを調整する。必要に応じて、導電性粉末を混入させてもよい。次に、調整したスラリーを負極集電体2aの表面に塗布して乾燥させる。このようにして、負極活物質層2bを得ることをできる。
 リチウム極3は、リチウム極集電体3aと、リチウム箔3bと、を有する。リチウム極集電体3aとしては、多孔性の金属箔を用いることができる。リチウム極集電体3aの材質としては、例えば、銅、ステンレスが挙げられる。リチウム極集電体3aの厚みは、例えば、10μm以上200μm以下である。
 リチウム箔3bは、例えば、リチウム極集電体3aの一方の面に圧着されている。リチウム箔3bの材質は、リチウムである。リチウム箔3bは、リチウムイオンの供給源として機能することができる。すなわち、リチウム極集電体3aと負極集電体2aとを負極リード7を介して接続させて短絡させることにより、リチウム箔3bは、電解液に溶解してリチウムイオンとなることができる。そして、リチウムイオンは、電気化学的に電解液を介して負極活物質層2bにドープ(「プレドープ」ともいえる)される。その結果、負極2の電位を下げることができる。リチウム箔3bの厚みは、例えば、50μm以上300μm以下である。
 なお、リチウム箔3bは、プレドープによって、例えば完全に電解液に溶解するが、図示の例では、便宜上、電解液の図示を省略し、電解液に溶解する前のリチウム箔3bを図示している。
 電解液としては、リチウム塩を電解質とする非プロトン性有機溶媒電解質溶液を用いる。非プロトン性有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホランなどが挙げられる。これらの溶媒は、単独で用いてもよいし、2種類以上を混合して用いてもよい。リチウム塩としては、LiPF、LiBF、LiClO、LiAsF、Li(CSONなどが挙げられる。
 セパレータ4は、正極活物質、負極活物質、および電解質に対して耐久性がある多孔性材料を用いることができる。セパレータ4としては、セルロース、レーヨン、ポリエチレン、ポリプロピレン、アラミド樹脂、アミドイミド、ポリフェニレンサルファイド、ポリイミドなどからなる不織布や、多孔質のフィルムなどを用いることができる。セパレータ4の厚みは、例えば、20μm以上50μm以下である。セパレータは、正極1と負極2との間や、負極2とリチウム極3との間を、隔離することができる。さらに、セパレータ4は、電解質を浸潤することができる。
 本実施形態に係る蓄電デバイス100は、例えば、以下の特徴を有する。
 蓄電デバイス100によれば、除熱部材30は、相変化することにより蓄電セル10から発生する熱を吸収する化合物を含有している。これにより、蓄電デバイス100では、蓄電セル10が急速に発熱した場合でも、例えば化合物の潜熱を利用して、急速に熱を吸収することができる。すなわち、除熱部材30は、相変化する化合物の相変化が完了するまで、例えば融点で一定温度となっていることができ、蓄電セル10の温度変化を抑制することができる。また、発熱が終了した後も、除熱部材30によって、蓄電セル10の温度を一定の範囲に維持することができる。
 さらに、蓄電デバイス100は、除熱部材30と接する放熱部材40を有している。そのため、除熱部材30によって吸収された熱を、外部に放熱することができる。これにより、蓄電セル10の発熱が終わった後に(例えば充放電が終わった後に)、除熱部材30に含有された相変化による熱を吸収する化合物は、熱を吸収した状態の相(例えば、液体のように流動性の高い状態)から、熱を放出した状態の相(例えば、固体のように流動性の小さい状態)に戻ることができる。そして、再度、蓄電セル10の発熱した際に、除熱部材30に含有された相変化により熱を吸収する化合物は、相変化により蓄電セル10の熱を吸収することができる。また、除熱部材30において吸収しきれなかった熱がある場合、放熱部材40によって、該熱を外部に放熱させることができ、蓄電セル10の温度上昇を抑制することができる。また、放熱部材40により、除熱部材30によって吸収された熱を、外部に放熱することができるため、除熱部材30の温度をより効果的に制御することができる。
 以上のように、蓄電デバイス100は、蓄電セル10からの熱を効率よく除去することができ、高い信頼性を有することができる。
 蓄電デバイス100によれば、放熱部材40は、蓄電セル10と離間しており、外装体12は、除熱部材30によって覆われていることができる。そのため、例えば、放熱部材と外装体が接している場合に比べて、外装体12と除熱部材30との接触面積を大きくすることができる。これにより、蓄電デバイス100では、蓄電セル10で発生した熱を、効率よく除熱部材30に伝えることができる。さらに、除熱部材30によって、蓄電セル10の耐水性や防塵製を向上させることができる。
 蓄電デバイス100によれば、除熱部材30は、相変化する化合物が有機化合物(例えばパラフィン)であることができる。そのため、炭素数を変更することにより、緻密に該有機化合物の融点を変更することができる。すなわち、蓄電セル10の発熱量に応じて、緻密に該有機化合物の融点を変更することができ、蓄電セル10の充放電を最適温度で動作させることができる。例えば、相変化する材料として無機化合物を用いる場合は、保持できる温度は、無機化合物の材料の融点に限定されてしまう。その結果、蓄電セルの動作温度を緻密に制御することができず、蓄電セルの充放電を最適温度で動作させることが困難となる場合がある。さらに、無機化合物を用いることにより蓄電デバイスの重量が増大し、単位重量当たりの蓄電容量が小さくなってしまう場合がある。
 蓄電デバイス100によれば、除熱部材30には、フィラーが分散されていることができる。これにより、除熱部材30の難燃性および熱伝導性を向上させることができる。除熱部材30の熱伝導率が向上することにより、除熱部材30は、吸収された熱を、効率よく外部に放熱することができる。例えば、フィラーの量を調整することにより、蓄電デバイス100の放熱性を向上させることができる。
 蓄電デバイス100によれば、除熱部材30は、熱可塑性樹脂を含有することができる。これにより、相変化した化合物の流動性が大きくなっても、除熱部材30をゲル状態とし、除熱部材30全体として流動性が大きくなることを抑制することができる。したがって、除熱部材30は、筐体20内に蓄電セル10を安定して保持させることができ、蓄電デバイス100の耐震性を向上させることができる。
 さらに、蓄電デバイス100では、除熱部材30が熱可塑性樹脂を含有することにより、筐体20に外力が加わった場合に、蓄電セル10に伝達されるショックを緩和することができる。その結果、蓄電デバイス100の耐ショック性を向上させることができる。すなわち、除熱部材30は、緩衝材として機能することもできる。
 蓄電デバイス100によれば、蓄電セル10は、リチウムイオンキャパシタであることができる。リチウムイオンキャパシタは、例えば二次電池に比べて、急速な充放電に伴い短時間に大電流が流れるため、急速に発熱する場合がある。このように、急速に発熱した場合でも、蓄電デバイス100では、上述のように除熱部材30によって、急速に熱を吸収することができる。したがって、蓄電セル10からの熱を効率よく除去することができる。
 蓄電デバイス100によれば、筐体20内は、外装体12が収容された外装体収容領域21と、正極端子16および負極端子18の少なくとも一方が収容された端子収容領域22と、に区画され、除熱部材30は、外装体収容領域21に配置されていることができる。そのため、正極端子16および負極端子18は、除熱部材30に覆われておらず端子収容領域22内に露出している。したがって、正極端子16および負極端子18と、外部の端子(図示せず)と、を容易に接続することができ、蓄電デバイス100の利便性を向上させることができる。
 2. 変形例
 2.1. 第1変形例
 次に、本実施形態の第1変形例に係る蓄電デバイスについて、図面を参照しながら説明する。図6は、本実施形態の第1変形例に係る蓄電デバイス200を模式的に示す断面図であって、図3に対応している。図7は、本実施形態の第1変形例に係る蓄電デバイス200を模式的に示す断面図であって、図4に対応している。なお、図6および図7では、便宜上、外装体12内に収容される正極や負極等を省略して図示している。
 以下、本実施形態の第1変形例に係る蓄電デバイス200において、本実施形態に係る蓄電デバイス100の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
 蓄電デバイス100の例では、図3および図4に示すように、放熱部材40は、蓄電セル10と離間していた。これに対し、蓄電デバイス200では、図6および図7に示すように、放熱部材40は、蓄電セル10の外装体12に接している。図示の例では、放熱部材40は、第1扁平面13に接しているが、第2扁平面14に接していてもよい。また、放熱部材40は2つ設けられ、第1扁平面13および第2扁平面14の両面に接していてもよい。
 放熱部材40は、蓄電セル10の外装体12に接合されている。放熱部材40と蓄電セル10との接合は、例えば接着剤を用いて行われる。接着剤としては、例えば、粘着性および熱伝熱率が高く、熱抵抗の低い、アクリル系熱伝導シートや、アクリル接着剤付グラファイトシートを用いることができる。放熱部材40は、筐体20の内面29に接合されていてもよい。放熱部材40と筐体20との接合は、例えば上記のような接着剤を用いて行われてもよい。
 蓄電デバイス200によれば、放熱部材40によって、蓄電セル10をより安定して筐体20内に保持することができる。そのため、蓄電デバイス200は、例えば蓄電デバイス100の例に比べて、より高い耐震性を有することができる。
 2.2. 第2変形例
 次に、本実施形態の第2変形例に係る蓄電デバイスについて、図面を参照しながら説明する。図8は、本実施形態の第2変形例に係る蓄電デバイス300を模式的に示す断面図であって、図3に対応している。図9は、本実施形態の第2変形例に係る蓄電デバイス300を模式的に示す断面図であって、図4に対応している。なお、図8および図9では、便宜上、外装体12内に収容される正極や負極等を省略して図示している。
 以下、本実施形態の第2変形例に係る蓄電デバイス300において、本実施形態に係る蓄電デバイス100の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
 蓄電デバイス100の例では、図3および図4に示すように、1つの蓄電セル10を有していた。これに対し、蓄電デバイス200は、図8および図9に示すように、複数の蓄電セル10を有する。図示の例では、蓄電デバイス10は、4つ設けられているが、その数は特に限定されず、蓄電デバイス300の用途に応じて適宜変更することができる。複数の蓄電デバイス10は、除熱部材30によって固定されていてもよい。除熱部材30は、複数の蓄電デバイス10から発生する熱を吸収することができる。
 図示の例では、複数の蓄電セル10は、X軸方向に沿って配置されている。隣り合う蓄電セル10は、除熱部材30を介して、例えば第1扁平面13と第2扁平面14とが対向するように、配置されている。図示はしないが、隣り合う蓄電セル10は、除熱部材30を介して、第1扁平面13同士、または第2扁平面14同士が対向するように配置されていてもよい。
 図8に示す例では、隣り合う蓄電セル10の正極端子16および負極端子18は、配線17を介して接続され、複数の蓄電セル10は、直列に接続されている。図示はしないが、蓄電デバイス300の用途に応じて、複数の蓄電セル10は、並列に接続されてもよい。
 放熱部材40は、隣り合う蓄電セル10の間に設けられている。図示の例では、放熱部材40は、4つ設けられ、蓄電セル10と放熱部材40とは、X軸方向に沿って交互に配置されている。
 蓄電デバイス300によれば、例えば蓄電デバイス100に比べて、高エネルギー化を図ることができる。
 蓄電デバイス300によれば、特に除熱部材30に熱伝導性のフィラーが分散されている場合には、樹脂体30は高い熱伝導率を有することができるため、複数の蓄電セル10の温度の均一化を図ることができる。すなわち、複数の蓄電セル10を熱的に連結することができる。これにより、複数の蓄電セル10の劣化速度や充放電特性の差を小さくすることができ、蓄電デバイス300は、高い信頼性を有することができる。
 蓄電セル300によれば、蓄電セル10の1つが(例えば複数の蓄電セル10のうち中央部に配置された蓄電セル10が)極端に温度上昇することを抑制できるので、仮に、安全弁(図示せず)が動作して電解液が噴出したとしても噴出量を少なくすることができ、かつ電解液の温度を低くすることができる。そのため、例えば、電解液を吸収させるための部材が不要となり、その分、小型化を図ることができる。
 蓄電セル300によれば、複数の蓄電セル10は、除熱部材30によって、物理的に隔離されている。そのため、仮に、過充電により1つの蓄電セル10の温度が上昇し、安全弁(図示せず)が作動して蓄電セル10内部の電解液が噴出したとしても、電解液が噴出した蓄電セル10が、他の蓄電セル10に及ぼす影響を小さくすることができる。電解液が噴出した蓄電セルは、非常に高温(150℃程度)となるが、例えば、蓄電セル同士が密着している形態では、高温となった蓄電セルおよび電解液によって隣接する蓄電セルの温度が上昇し、連鎖的に蓄電セルの破壊が発生する場合がある。蓄電デバイス300では、このような問題を回避することができる。
 2.3. 第3変形例
 次に、本実施形態の第3変形例に係る蓄電デバイスについて、図面を参照しながら説明する。図10は、本実施形態の第3変形例に係る蓄電デバイス400を模式的に示す図であって、図2に対応している。図11は、本実施形態の第3変形例に係る蓄電デバイス400を模式的に示す断面図であって、図4や図9に対応している。なお、便宜上、図10では、筐体20の一部を透視して図示している。また、便宜上、図11では、外装体12内に収容される正極や負極等を省略して図示している。
 蓄電デバイス400は、図10および図11に示すように、ヒートシンク50を含むことができる。
 ヒートシンク50は、放熱部材40と接合されている。図11に示すように、放熱部材40が複数設けられている場合は、ヒートシンク50は、複数の放熱部材40と接合されていてもよい。より具体的には、複数の放熱部材40は、Z軸方向に沿って延出されて、放熱部材40の端部42においてヒートシンク50と接合されている。
 端部42は、放熱部材40のZ軸方向における端部である。端部42は、例えば、放熱部材40の端部42以外の部分に比べて、大きな厚みを有することができる。すなわち、端部42は、X軸方向の長さが大きい。これにより、ヒートシンク50との接合面積を大きくすることができる。端部42は、放熱部材40のヒートシンク50と接合されている部分であるともいえる。
 図示の例では、ヒートシンク50は、全ての放熱部材40と接合されている。除熱部材30によって吸収された熱は、放熱部材40をZ軸方向に伝わり、端部42からヒートシンク50へ伝熱されて、ヒートシンク50から放熱されることができる。ヒートシンク50の材質としては、例えば、アルミニウム、銅が挙げられる。
 ヒートシンク50と放熱部材40との接合は、特に限定されないが、例えば、予め、ヒートシンク50および放熱部材40の端部42に複数の穴(図示せず)を設け、ヒートシンク50の穴と端部42の穴とが重なるように両者を配置したのち、該穴径(直径)より外径の大きいノックピン(図示せず)を圧入することにより行うことができる。ノックピンは、塑性変形しながら穴に挿入されるため、ノックピンと穴との間に空隙が生じず、ヒートシンク50と放熱部材40と間の熱抵抗を小さくすることができる。これにより、放熱部材40に伝わった除熱部材30の熱を、効率よくヒートシンク50から放熱することができる。さらに、ヒートシンク50と端部42との間に、シリコングリスや銀入りペースト等の高い伝熱特性を示す材料を塗布して、放熱部材40とヒートシンク50等との間の空隙を充填してもよい。これにより、放熱部材40とヒートシンク50等との間の熱抵抗を小さくすることができる。
 ヒートシンク50は、例えば、直方体の一面に複数の凹部を形成してなる凸部52を有する。凸部52は、ヒートシンク50の放熱部材40と接合された面と反対側の面に形成されている。凸部52の数は、特に限定されない。凸部52により、ヒートシンク50の表面積を大きくすることができ、放熱性を向上させることができる。
 蓄電デバイス400によれば、ヒートシンク50によって、除熱部材30によって吸収された熱を、より効率よく外部に放熱することができる。さらに、複数の放熱部材40をヒートシンク50に接続させることができるので、複数の放熱部材40を熱的に連結することができる。これにより、複数の蓄電セル10の温度差を、さらに小さくすることができる。その結果、蓄電セル10の劣化速度や充放電特性の差を小さくすることができる。
 なお、図示はしないが、ヒートシンク50は、複数設けられていてもよい。例えば、Z軸方向において、放熱部材40を挟むように、2つのヒートシンク50が対向配置されていてもよい。このような形態においても、複数の蓄電セル10の温度の均一化を考慮すると、2つのヒートシンク50の各々は、複数の放熱部材40と接合されていることが望ましい。
 2.4. 第4変形例
 次に、本実施形態の第4変形例に係る蓄電デバイスについて、図面を参照しながら説明する。図12は、本実施形態の第4変形例に係る蓄電デバイス500を模式的に示す図であって、図2や図10に対応している。図13は、本実施形態の第4変形例に係る蓄電デバイス500を模式的に示す図であって、図12のY軸方向から見た図である。なお、便宜上、図12では、筐体20の一部を透視して図示している。
 以下、本実施形態の第4変形例に係る蓄電デバイス500において、本実施形態の第3変形例に係る蓄電デバイス400の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
 蓄電デバイス500は、図12および図13に示すように、冷却部60を有する。冷却部60としては、ヒートシンク50を冷却することができれば、その形態は特に限定されないが、例えば、冷却ファンを用いることができる。冷却部60の配置は、例えば、ヒートシンク50の凸部52に直接送風できるように、ヒートシンク50に接続されている。これにより、ヒートシンク50は、より効率よく放熱することができる。図示はしないが、冷却部60は、複数設けられていてもよい。
 蓄電デバイス500によれば、冷却部60によって、除熱部材30によって吸収された熱を、よりいっそう効率よく外部に放熱することができる。
 本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。本発明は、上述した各実施形態および各変形例を適宜組み合わせることも可能である。また、本発明は、例えば、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
1…正極、1a…正極集電体、1b…正極活物質層、2…負極、2a…負極集電体、2b…負極活物質層、3…リチウム極、3a…リチウム極集電体、3b…リチウム箔、4…セパレータ、5…電極積層体、6…正極リード、7…負極リード、10…蓄電セル、12…外装体、12a…1ラミネートフィルム、12b…第2ラミネートフィルム、13…第1扁平面、14…第2扁平面、16…正極端子、17…配線、18…負極端子、20…筐体、21…外装体収容領域、22…端子収容領域、23…仕切板、24…仕切板、25…基部、26…蓋部、27…ネジ部、29…内面、30…除熱部材、40…放熱部材、42…端部、50…ヒートシンク、60…冷却部、100~500…蓄電デバイス

Claims (14)

  1.  正極、負極、および電解液が収容された外装体を有する蓄電セルと、
     前記蓄電セルが収容された筐体と、
     除熱部材と、
     放熱部材と、
    を含み、
     前記除熱部材は、相変化することにより前記蓄電セルから発生する熱を吸収する化合物を含有する、蓄電デバイス。
  2.  請求項1において、
     前記除熱部材が前記筐体内に収容されている、蓄電デバイス。
  3.  請求項1または2において、
     前記放熱部材が前記筐体内に収容されている、蓄電デバイス。
  4.  請求項1ないし3のいずれか1項において、
     前記放熱部材は、前記除熱部材と接している、蓄電デバイス。
  5.  請求項1ないし4のいずれか1項において、
     前記除熱部材は、前記外装体の外表面と接している、蓄電デバイス。
  6.  請求項1ないし5のいずれか1項において、
     前記放熱部材は、前記蓄電セルと離間しており、
     前記外装体の外表面は、前記除熱部材によって覆われている、蓄電デバイス。
  7.  請求項1ないし5のいずれか1項において、
     前記放熱部材は、前記外装体の外表面に接合されている、蓄電デバイス。
  8.  請求項1ないし7のいずれか1項において、
     前記相変化することにより前記蓄電セルから発生する熱を吸収する化合物は、有機化合物である、蓄電デバイス。
  9.  請求項8において、
     前記相変化することにより前記蓄電セルから発生する熱を吸収する前記有機化合物は、パラフィンである、蓄電デバイス。
  10.  請求項1ないし9のいずれか1項において、
     前記除熱部材には、フィラーが分散されている、蓄電デバイス。
  11.  請求項1ないし10のいずれか1項において、
     前記除熱部材は、熱可塑性樹脂を含有する、蓄電デバイス。
  12.  請求項1ないし11のいずれか1項において、
     前記蓄電セルは、リチウムイオンキャパシタである、蓄電デバイス。
  13.  請求項1ないし12のいずれか1項において、
     前記蓄電セルは、
     前記正極と電気的に接続され、前記外装体から延出された正極端子と、
     前記負極と電気的に接続され、前記外装体から延出された負極端子と、
    を有し、
     前記筐体内は、
     前記外装体が収容された外装体収容領域と、前記正極端子および前記負極端子の少なくとも一方が収容された端子収容領域と、に区画され、
     前記除熱部材は、前記外装体収容領域に配置されている、蓄電デバイス。
  14.  請求項1ないし13のいずれか1項において、
     前記蓄電セルは、複数設けられ、
     複数の前記蓄電セルは、直列に接続されており、
     前記放熱部材は、隣り合う前記蓄電セルの間に設けられている、蓄電デバイス。
PCT/JP2012/059859 2011-04-12 2012-04-11 蓄電デバイス WO2012141191A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20137023597A KR20140057195A (ko) 2011-04-12 2012-04-11 축전 디바이스
JP2013509935A JPWO2012141191A1 (ja) 2011-04-12 2012-04-11 蓄電デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-087961 2011-04-12
JP2011087961 2011-04-12

Publications (1)

Publication Number Publication Date
WO2012141191A1 true WO2012141191A1 (ja) 2012-10-18

Family

ID=47009362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059859 WO2012141191A1 (ja) 2011-04-12 2012-04-11 蓄電デバイス

Country Status (3)

Country Link
JP (1) JPWO2012141191A1 (ja)
KR (1) KR20140057195A (ja)
WO (1) WO2012141191A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127342A (ja) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd 電池モジュール
JP2016524297A (ja) * 2013-07-05 2016-08-12 ルノー エス.ア.エス. 電気車両用バッテリの熱管理デバイス
JPWO2016013661A1 (ja) * 2014-07-25 2017-06-29 積水化学工業株式会社 二次電池を備えた発電装置
CN107636887A (zh) * 2015-10-08 2018-01-26 株式会社Lg化学 电池模块
WO2018074133A1 (ja) * 2016-10-18 2018-04-26 株式会社日立製作所 二次電池モジュール
JP2018525797A (ja) * 2016-05-31 2018-09-06 エルジー・ケム・リミテッド 相転移物質を含む電池セル
WO2018173860A1 (ja) * 2017-03-22 2018-09-27 積水ポリマテック株式会社 バッテリモジュールおよびバッテリパック
JP2021500724A (ja) * 2018-07-27 2021-01-07 エルジー・ケム・リミテッド バッテリーモジュール及びそれを含むバッテリーパック
CN113381131A (zh) * 2021-05-27 2021-09-10 万向一二三股份公司 一种锂离子电池极耳箔材断裂改善方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6816937B2 (ja) * 2015-04-28 2021-01-20 昭和電工パッケージング株式会社 蓄電デバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168230U (ja) * 1981-04-20 1982-10-23
JP2002093970A (ja) * 2000-09-14 2002-03-29 Kitagawa Ind Co Ltd 熱伝導材及びその製造方法
JP2008300692A (ja) * 2007-05-31 2008-12-11 Fuji Heavy Ind Ltd 蓄電デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168230U (ja) * 1981-04-20 1982-10-23
JP2002093970A (ja) * 2000-09-14 2002-03-29 Kitagawa Ind Co Ltd 熱伝導材及びその製造方法
JP2008300692A (ja) * 2007-05-31 2008-12-11 Fuji Heavy Ind Ltd 蓄電デバイス

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127342A (ja) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd 電池モジュール
JP2016524297A (ja) * 2013-07-05 2016-08-12 ルノー エス.ア.エス. 電気車両用バッテリの熱管理デバイス
JPWO2016013661A1 (ja) * 2014-07-25 2017-06-29 積水化学工業株式会社 二次電池を備えた発電装置
US10454083B2 (en) 2015-10-08 2019-10-22 Lg Chem, Ltd. Battery module
CN107636887A (zh) * 2015-10-08 2018-01-26 株式会社Lg化学 电池模块
JP2018522386A (ja) * 2015-10-08 2018-08-09 エルジー・ケム・リミテッド 電池モジュール
JP2018525797A (ja) * 2016-05-31 2018-09-06 エルジー・ケム・リミテッド 相転移物質を含む電池セル
US10547092B2 (en) 2016-05-31 2020-01-28 Lg Chem, Ltd. Battery cell including phase change material
WO2018074133A1 (ja) * 2016-10-18 2018-04-26 株式会社日立製作所 二次電池モジュール
JPWO2018173860A1 (ja) * 2017-03-22 2019-04-25 積水ポリマテック株式会社 バッテリパック
CN110431710A (zh) * 2017-03-22 2019-11-08 积水保力马科技株式会社 电池模块及电池组
WO2018173860A1 (ja) * 2017-03-22 2018-09-27 積水ポリマテック株式会社 バッテリモジュールおよびバッテリパック
CN110431710B (zh) * 2017-03-22 2023-04-04 积水保力马科技株式会社 电池模块及电池组
JP2021500724A (ja) * 2018-07-27 2021-01-07 エルジー・ケム・リミテッド バッテリーモジュール及びそれを含むバッテリーパック
JP7060688B2 (ja) 2018-07-27 2022-04-26 エルジー エナジー ソリューション リミテッド バッテリーモジュール及びそれを含むバッテリーパック
CN113381131A (zh) * 2021-05-27 2021-09-10 万向一二三股份公司 一种锂离子电池极耳箔材断裂改善方法
CN113381131B (zh) * 2021-05-27 2022-09-02 万向一二三股份公司 一种锂离子电池极耳箔材断裂改善方法

Also Published As

Publication number Publication date
KR20140057195A (ko) 2014-05-12
JPWO2012141191A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
WO2012141191A1 (ja) 蓄電デバイス
JP3191519U (ja) 蓄電デバイス
JP6755341B2 (ja) バッテリーモジュール、これを含むバッテリーパック及びこのバッテリーパックを含む自動車
KR101106103B1 (ko) 안전성이 향상된 전지모듈
EP3032607B1 (en) Battery module
WO2010150489A1 (ja) 蓄電ユニット
KR102172515B1 (ko) 배터리 모듈
JP2012174972A (ja) 蓄電デバイス
KR101526667B1 (ko) 친환경 차량의 배터리모듈 간접 냉각 및 가열 장치
JP6152483B2 (ja) 電池モジュール
JP5534264B2 (ja) 蓄電デバイス
KR101449103B1 (ko) 배터리 셀 모듈용 열 제어 플레이트 및 이를 갖는 배터리 셀 모듈
KR20100047907A (ko) 전지 카트리지와 이를 포함하는 전지모듈
US20220093986A1 (en) Battery Module
WO2019107560A1 (ja) 仕切り部材及び組電池
WO2013157560A1 (ja) 二次電池、二次電池を組み込んだ二次電池モジュール、及び二次電池モジュールを組み込んだ組電池システム
KR20120102344A (ko) 배터리 팩
JP2013178966A (ja) 電池モジュール
JPWO2011096032A1 (ja) 電源装置
JP2010010381A (ja) 蓄電ユニット及びその製造方法
KR20170135473A (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
JP5599344B2 (ja) 蓄電デバイス
JPH10294098A (ja) リチウム電池
JP2012174971A (ja) 蓄電デバイス
KR101865944B1 (ko) 열전도도 제어용 스마트 복합재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137023597

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013509935

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12771560

Country of ref document: EP

Kind code of ref document: A1