WO2012140915A1 - 半導体デバイス - Google Patents

半導体デバイス Download PDF

Info

Publication number
WO2012140915A1
WO2012140915A1 PCT/JP2012/002597 JP2012002597W WO2012140915A1 WO 2012140915 A1 WO2012140915 A1 WO 2012140915A1 JP 2012002597 W JP2012002597 W JP 2012002597W WO 2012140915 A1 WO2012140915 A1 WO 2012140915A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier layer
thickness
quantum level
barrier
Prior art date
Application number
PCT/JP2012/002597
Other languages
English (en)
French (fr)
Inventor
内海 誠
禎宏 加藤
正之 岩見
拓也 古川
Original Assignee
次世代パワーデバイス技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 次世代パワーデバイス技術研究組合 filed Critical 次世代パワーデバイス技術研究組合
Priority to CN2012800078537A priority Critical patent/CN103348479A/zh
Priority to EP12770971.5A priority patent/EP2698823A4/en
Priority to KR1020137018278A priority patent/KR20140042770A/ko
Publication of WO2012140915A1 publication Critical patent/WO2012140915A1/ja
Priority to US13/952,640 priority patent/US20140008615A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to a semiconductor device.
  • HFET Heterojunction Field Effect Transistor
  • GaN gallium nitride
  • AlGaN aluminum nitride
  • the multilayer film is formed by laminating a layer made of GaN and a layer made of AlN with a thickness that does not form a quantum level.
  • the distribution of the two-dimensional electron gas can be prevented from spreading to the barrier layer, so that the carrier mobility can be increased.
  • crystal dislocation occurs at the heterojunction among the channel layer made of GaN, the multilayer film made of AlN, the multilayer film made of GaN, and the barrier layer made of AlGaN. This increases the number of dislocations penetrating the barrier layer. Since the dislocation becomes a current path, the leakage current between the electrode formed on the barrier layer and the channel layer increases.
  • a substrate, a channel layer formed on the substrate and made of the first nitride-based compound semiconductor, a barrier layer provided on the channel layer, and provided on the barrier layer are provided.
  • a barrier layer made of a compound compound semiconductor, and a third nitride compound semiconductor provided on the barrier layer and having a lower band gap energy than the second nitride compound semiconductor, and a quantum level was formed, And a semiconductor device having a quantum level layer.
  • SBD Schottky barrier diode
  • FIG. 1 is a cross-sectional view of an SBD 100 (Schottky barrier diode) according to the first embodiment of the present invention.
  • the SBD 100 includes a substrate 110, a buffer layer 120, a channel layer 130, a barrier layer 140, an insulating layer 150, an ohmic electrode 160, and a Schottky electrode 170.
  • the channel layer 130 is provided above the substrate 110 and is made of a nitride compound semiconductor.
  • the channel layer 130 may be formed of GaN.
  • the channel layer 130 may be made of GaN doped with impurities or non-doped.
  • the channel layer 130 has a thickness of 1000 nm, for example.
  • the barrier layer 140 is formed by repeatedly stacking the barrier layer 142 and the quantum level layer 144 on the channel layer 130.
  • the barrier layer 142 is made of a nitride compound semiconductor having a band gap energy larger than that of the nitride compound semiconductor forming the channel layer 130.
  • the barrier layer 142 may be formed of AlN.
  • the quantum level layer 144 is made of a nitride compound semiconductor having a band gap energy smaller than that of the nitride compound semiconductor forming the barrier layer 142.
  • the quantum level layer 144 may be formed of GaN.
  • a barrier layer 142 may be formed on the channel layer 130. Due to the heterojunction between the channel layer 130 and the barrier layer 140, a two-dimensional electron gas is generated at the interface of the channel layer 130 on the barrier layer 140 side. When the barrier layer 142 having a large band gap energy is in contact with the channel layer 130, the two-dimensional electron gas in the channel layer 130 can be prevented from spreading to the barrier layer 140. Thereby, carrier mobility in the channel layer 130 can be increased.
  • Quantum level layer 144 is formed on barrier layer 142.
  • the thicknesses of the barrier layer 142 and the quantum level layer 144 are adjusted and a well-type potential is formed by the barrier layer 142 and the quantum level layer 144, quantum levels are formed in the quantum level layer 144. Since carriers propagate through the quantum level formed in the quantum level layer 144, the contact resistance between the channel layer 130 and the ohmic electrode 160 is reduced.
  • the barrier layer 142 is formed thin, less transition is formed in the barrier layer 142. As a result, the leakage current between the Schottky electrode 170 and the channel layer 130 is reduced.
  • the barrier layer 142 is formed thin, the contact resistance between the ohmic electrode 160 and the channel layer 130 is reduced.
  • the substrate 110 may be a sapphire substrate.
  • the substrate 110 may be a substrate that can form a nitride-based compound semiconductor layer on the substrate surface, such as a Si substrate, a SiC substrate, or a GaN substrate.
  • a buffer layer 120 may be provided between the substrate 110 and the channel layer 130.
  • the buffer layer 120 may be a layer made of a nitride compound semiconductor.
  • the buffer layer 120 is formed of a layer made of AlN, a layer made of GaN, a layer made of AlGaN, or a multilayer film in which these layers are stacked.
  • the thickness of the buffer layer 120 is, for example, 20 nm.
  • the buffer layer 120 may be formed on the substrate 110 without the buffer layer 120.
  • the buffer layer 120, the channel layer 130, the barrier layer 142, and the quantum level layer 144 may be formed by MOCVD.
  • MOCVD metal-organic chemical vapor deposition
  • the substrate 110 is placed in an MOCVD apparatus, trimethylgallium (TMGa) and ammonia (NH 3 ) are introduced into the chamber of the MOCVD apparatus, and GaN is introduced. Epitaxial growth.
  • TMGa trimethylgallium
  • NH 3 ammonia
  • GaN is introduced.
  • Epitaxial growth When the buffer layer 120 or the barrier layer 142 is formed, trimethylaluminum (TMAl) and NH 3 are introduced into the chamber of the MOCVD apparatus, and AlN is epitaxially grown.
  • all or part of the buffer layer 120, the channel layer 130, the barrier layer 142, and the quantum level layer 144 may be formed by HVPE (hydride vapor phase epitaxy) or MBE (molecular beam epitaxy).
  • the barrier layer 142 may be formed of Al X Ga 1-X N (0 ⁇ X ⁇ 1).
  • the insulating layer 150 is formed on a part of the barrier layer 140.
  • the insulating layer 150 may be a layer made of an insulating material.
  • the insulating layer 150 is formed of a silicon oxide film.
  • the insulating layer 150 may be formed of a silicon nitride film.
  • a layer made of an insulating material is formed on the entire surface of the barrier layer 140, and then the layer made of the insulating material is removed in a portion where the ohmic electrode 160 and the Schottky electrode 170 are formed, and an opening is provided to provide insulation.
  • Layer 150 may be formed.
  • the insulating layer 150 may be formed by a CVD method and a photolithography method.
  • the ohmic electrode 160 may be formed on the barrier layer 140 where the insulating layer 150 is removed.
  • the ohmic electrode 160 is formed of a material that makes ohmic contact with the channel layer 130.
  • the material of the ohmic electrode 160 includes, for example, Ti.
  • the ohmic electrode 160 may be formed by laminating a layer made of Ti, a layer made of Al, and a layer made of Au in this order on the barrier layer 140.
  • the Schottky electrode 170 may be formed on the barrier layer 140 where the insulating layer 150 is removed.
  • the ohmic electrode 160 and the Schottky electrode 170 may be formed apart from each other by a predetermined distance.
  • the Schottky electrode 170 is formed of a material that forms a Schottky junction with the channel layer 130.
  • the material of the Schottky electrode 170 includes, for example, Ni.
  • the Schottky electrode 170 may be formed by laminating a layer made of Ni and a layer made of Au on the barrier layer 140 in this order.
  • the ohmic electrode 160 and the Schottky electrode 170 can be formed by sputtering using a lift-off method, but the formation method is not limited to this.
  • Table 1 shows the sheet resistance, carrier mobility, carrier density, contact resistance, and leakage current of the SBD 100 when the barrier layer 140 is formed by stacking the quantum level layer 144 made of GaN and the barrier layer 142 made of AlN. Indicates.
  • the electrode areas of the ohmic electrode 160 and the Schottky electrode 170 were 0.02 mm 2 , respectively.
  • the inter-electrode distance between the ohmic electrode 160 and the Schottky electrode 170 was 0.01 mm.
  • Contact resistance was measured by a transmission line model method using an ohmic electrode 160. Further, a voltage of ⁇ 50 V was applied to the Schottky electrode 170, and the current flowing between the ohmic electrode 160 and the Schottky electrode 170 was measured as a leakage current.
  • the thicknesses of the barrier layer 142 and the quantum level layer 144 were measured by X-ray diffraction.
  • the number of repetitions indicates the number of repetitions of stacking of the barrier layer 142 and the quantum level layer 144.
  • the number of repetitions of 4 indicates that four barrier layers 142 and four quantum level layers 144 are alternately stacked from the channel layer 130 toward the insulating layer 150. Therefore, the total thickness of the barrier layer 140 is obtained by adding the thickness of the barrier layer 142 and the quantum level layer 144 to the number of repetitions.
  • sample number 1 when the thickness of the barrier layer 142 exceeds 2 nm, the contact resistance is high and the leakage current is large. This is because the thickness of one layer of the barrier layer 142 is high, so that resistance is high and dislocation increases. Like sample number 6, when the thickness of the barrier layer 142 is 0.2 nm or less, the contact resistance is high and the leakage current is large. This is because if the thickness of the barrier layer 142 made of AlN becomes so thin that AlN does not form a unit lattice, the atomic arrangement is likely to be disturbed and a transition is likely to occur.
  • the thickness of the barrier layer 142 is preferably greater than 0.2 nm and less than or equal to 2.0 nm, and preferably greater than or equal to 0.25 nm and less than or equal to 1.5 nm. More preferred.
  • the thickness of the quantum level layer 144 is preferably 0.6 nm or more and 6.0 nm or less. This is because if the quantum level layer 144 is too thin, quantum levels are not formed. Therefore, the number of repetitions of stacking the barrier layer 142 and the quantum level layer 144 is preferably 4 times or more and 31 times or less, and more preferably 24 times or less.
  • the sheet resistance is high. This is because the carrier layer 140 has a low carrier density because the overall composition of the barrier layer 140 is GaN.
  • the total thickness of the barrier layer 142 included in the barrier layer 140 is larger than 39% with respect to the total thickness of the barrier layer 140 as in Sample No. 11, the leakage current is large. This is because defects are increased by the barrier layer 142 made of AlN. Therefore, referring to sample numbers 7 to 11, it is preferable that the total thickness of the barrier layer 142 included in the barrier layer 140 is 9% or more and 39% or less with respect to the total thickness of the barrier layer 140. 15% or more and 35% or less is more preferable.
  • the thickness of the barrier layer 140 is preferably 11 nm or more and less than 48 nm, more preferably 15 nm or more and 40 nm or less.
  • Table 2 shows the sheet resistance and carrier resistance of the SBD 100 in which the thickness of the quantum level layer 144 made of GaN is 1.6 nm, the number of repetitions of laminating the barrier layer 142 made of AlN and the quantum level layer 144 is 12 times. Shows mobility, carrier density, contact resistance, and leakage current. With respect to the barrier layer 142, all the other barrier layers 142 had the same thickness of 0.55 nm except for the barrier layer 142 formed at the bottom and closest to the channel layer 130. The thickness of the lowermost barrier layer 142 that is closest to the channel layer 130 may be different from the thickness of the other barrier layers 142. Table 2 shows the thickness of the barrier layer 142 formed at the bottom and closest to the channel layer 130 in each sample. In the SBD 100 according to the first embodiment, the barrier layer 142 formed at the bottom and closest to the channel layer 130 is in contact with the channel layer 130. Other conditions and measurement methods were the same as those in Table 1.
  • the sheet resistance is the lowest when the thickness of the barrier layer 142 formed at the bottom and closest to the channel layer 130 is 0.75 nm or more and 1 nm or less. If the thickness is thinner than this, the sheet resistance increases. .
  • the sheet resistance is slightly high. This is because since the barrier layer 142 is thin, the concentration of the two-dimensional electron gas generated in the channel layer 130 is low.
  • the thickness of the barrier layer 142 formed at the bottom and closest to the channel layer 130 is 2 nm or more, the leakage current is large. This is because the barrier layer 142 is thick and has many defects.
  • the mobility is slightly low and the sheet resistance is slightly high. This is because the barrier layer 142 is thick and has many defects. Therefore, it is preferable that the thickness of the barrier layer 142 formed at the lowermost part closest to the channel layer 130 is 1.9 nm or less, more preferably 0.25 nm or more and 1.5 nm or less, and More preferably, it is 5 nm or more and 1.25 nm or less.
  • Table 3 shows the sheet resistance and carrier of the SBD 100 in which the thickness of the barrier layer 142 made of AlN is 0.55 nm, the barrier layer 142 made of AlN, and the quantum level layer 144 made of GaN are stacked 12 times. Mobility, carrier density, contact resistance, and leakage current. With respect to the quantum level layer 144, the thicknesses of all other quantum level layers 144 are the same at 1.60 nm except for the quantum level layer 144 formed farthest from the channel layer 130 and formed at the top. did. The thickness of the quantum level layer 144 formed farthest away from the channel layer 130 may be different from the thicknesses of the other quantum level layers. Table 3 shows the thickness of the quantum level layer 144 formed at the top of each sample. In the SBD 100 according to the first embodiment, the quantum level layer 144 formed farthest from the channel layer 130 is in contact with the ohmic electrode 160 and the Schottky electrode 170. Other conditions and measurement methods were the same as those in Table 1.
  • the thickness of the quantum level layer 144 formed farthest away from the channel layer 130 is preferably 0.5 nm or more and 14 nm or less, more preferably 10 nm or less, and 6 nm or less. More preferably it is.
  • the thickness of the quantum level layer 144 formed near the channel layer 130 may be smaller than the thickness of other quantum level layers 144 formed away from the channel layer 130.
  • the width of the quantum well is narrowed, so that the level formed in the quantum level layer 144 is increased. Accordingly, since the inclination of the conduction band of the quantum level layer 144 becomes gentle toward the surface, the leakage current is small.
  • the thickness of any one of the quantum level layers 144 is thicker than the thickness of any one of the other quantum level layers 144 formed closer to the channel layer 130 and below the quantum level layer 144.
  • the thickness of the quantum level layer 144 may be equal to or greater than the thickness of any one of the other quantum level layers 144 formed nearer to the channel layer 130 and below the quantum level layer 144.
  • the quantum level layer 144 is divided into a plurality of groups including a plurality of quantum level layers 144 having the same thickness, and each of the quantum level layers 144 included in one of the plurality of groups.
  • the thickness may be larger than the thickness of the quantum level layer 144 included in another group close to the channel layer 130.
  • the quantum level layer 144 may be thinner as the thickness of each layer is closer to the channel layer 130. Even if the thickness of each layer of the quantum level layer 144 is linearly thicker from the quantum level layer 144 formed close to the channel layer 130 on the lower side to the quantum level layer 144 formed far away. Good.
  • the difference in thickness between adjacent quantum level layers 144 across the barrier layer 142 may gradually increase from the channel layer 130 to the insulating layer 150 toward the upper side.
  • All the barrier layers 142 may have the same thickness.
  • the thickness of the barrier layer 142 formed near the channel layer 130 may be thicker than the thickness of the other barrier layer 142 formed away from the channel layer 130. Thereby, the effect of confining the two-dimensional electron gas in the channel layer 130 by the barrier layer 142 is increased, so that the sheet resistance is decreased.
  • the thickness of any one layer of the barrier layer 142 is smaller than the thickness of any one layer of the other barrier layers 142 formed closer to the channel layer 130 and below the barrier layer 142.
  • the thickness of one layer of the barrier layer 142 may be equal to or less than the thickness of any one of the other barrier layers 142 formed closer to the channel layer 130 and below the barrier layer 142.
  • the barrier layer 142 is divided into a plurality of groups including a plurality of barrier layers 142 having the same thickness, and the thickness of each of the barrier layers 142 included in one of the plurality of groups is equal to the channel layer. It may be thinner than the thickness of the barrier layer 142 included in another group close to 130. Alternatively, the barrier layer 142 may be thicker as the thickness of each layer is closer to the channel layer 130. The thickness of each layer of the barrier layer 142 may decrease linearly from the barrier layer 142 formed on the lower side near the channel layer 130 toward the barrier layer 142 formed on the far side. Further, the difference in thickness between adjacent barrier layers 142 with the quantum level layer 144 interposed therebetween may gradually decrease from the channel layer 130 to the insulating layer 150 toward the upper side.
  • Table 4 shows an example of the thickness of the quantum level layer 144 made of GaN.
  • the thickness of all layers of the barrier layer 142 made of AlN was the same at 0.5 nm, and the number of repetitions of laminating the barrier layer 142 and the quantum level layer 144 was 12 times.
  • the column a represents the thickness of the quantum level layer 144 formed closest to the channel layer 130 in the quantum level layer 144.
  • the quantum level layer 144 is further away from the channel layer 130 in this order from a to l, and the quantum level layer in which the column of l is formed farthest from the channel layer 130 in the quantum level layer 144 A thickness of 144 is shown.
  • the SBD 100 of sample numbers 30, 31, and 32 has a leakage current from the Schottky electrode 170 to the channel layer 130 that is 50% smaller than that of the SBD of sample number 19. Therefore, it is preferable that the quantum level layer 144 formed farthest from the channel layer 130 among the quantum level layers 144 included in the barrier layer 140 has a thickness of 2.5 nm or more and 10 nm or less. It is more preferably 5 nm or more and 6 nm or less, and further preferably 2.5 nm or more and 4 nm or less. This is because the slope of the conduction band of the quantum level layer 144 becomes gentle as described above.
  • Table 5 shows an example of the thickness of the barrier layer 142 made of AlN and the quantum level layer 144 made of GaN.
  • the number of repetitions of stacking the barrier layer 142 and the quantum level layer 144 is 12 times.
  • the column a indicates the thickness of the barrier layer 142 and the quantum level layer 144 that are formed closest to the channel layer 130 among the barrier layer 142 and the quantum level layer 144.
  • the barrier layer 142 and the quantum level layer 144 are further away from the channel layer 130 in this order, and the column of l is farthest from the channel layer 130 among the barrier layer 142 and the quantum level layer 144.
  • the thicknesses of the barrier layer 142 and the quantum level layer 144 formed in the above are shown. That is, in the SBD 100 shown in Table 5, a barrier layer 142 made of AlN having a thickness of 0.75 nm is formed on the channel layer 130, and the insulating layer 150 is formed on the quantum level layer 144 made of GaN having a thickness of 3.0 nm. The ohmic electrode 160 and the Schottky electrode 170 are formed.
  • the SBD 100 of the sample number 33 has a leakage current from the Schottky electrode 170 to the channel layer 130 that is 50% smaller and the sheet resistance is 5% lower than the SBD of the sample number 19. This is because, as described above, the inclination of the conduction band of the quantum level layer 144 is gentle, and the barrier layer 142 has a large confinement effect of the two-dimensional electron gas in the channel layer 130.
  • FIG. 2 is a photoluminescence spectrum of the barrier layer 140 by ultraviolet excitation with a wavelength of 266 nm.
  • the white square corresponds to the barrier layer 140 of sample number 1, the black circle is sample number 2, the white triangle is sample number 4, the cross mark is sample number 5, and the short horizontal line ( ⁇ ) is sample number 6.
  • An emission peak of about 3.4 eV indicates an interband transition of GaN. As shown in FIG. 2, an emission peak was observed on the barrier layer 140 on the higher energy side than 3.4 eV. This is because a well-type potential is formed in the barrier layer 142 and the quantum level layer 144 included in the barrier layer 140, and a quantum level is formed in the quantum level layer 144.
  • the emission peak on the higher energy side than 3.4 eV becomes weaker as the thickness of the barrier layer 142 becomes thinner, and is hardly observed when the barrier layer 142 is thinner than 0.25 nm. This is because quantum levels are not formed when the barrier layer 142 is too thin.
  • the emission peak on the higher energy side than 3.4 eV moves to the higher energy side as the quantum level layer 144 becomes thinner. This is because if the quantum level layer 144 is thin, the width of the quantum well is narrow and the quantum level is high. In the SBDs 100 of sample numbers 2 to 4, it is shown that quantum levels are formed in the quantum level layer 144.
  • FIG. 3 is a cross-sectional view of an SBD 200 according to the second embodiment of the present invention.
  • the SBD 200 includes a substrate 110, a buffer layer 120, a channel layer 130, a barrier layer 140, an insulating layer 150, an ohmic electrode 160, and a Schottky electrode 170.
  • the barrier layer 140 is formed by stacking a barrier layer 142 and a quantum level layer 144 on the channel layer 130.
  • the quantum level layer 144 formed at the uppermost position farthest from the channel layer 130 is removed at the end of the SBD 200, and the insulating layer 150 is formed in the barrier layer 142 at the portion where the quantum level layer 144 is removed. However, it may be formed on the barrier layer 142 formed away from the channel layer 130.
  • the quantum level layer 144 that is farthest from the channel layer 130 and is formed at the top is formed by the Schottky electrode 170. May be removed at portions to be removed.
  • the Schottky electrode 170 is formed farthest from the channel layer 130 and formed in a portion where the quantum level layer 144 formed at the top is removed, and is formed farthest from the channel layer in the barrier layer 142. It may be formed on the barrier layer 142. Since the Schottky electrode 170 is in contact with the barrier layer 142, the Schottky barrier can be increased. Thereby, the leakage current from the Schottky electrode 170 to the channel layer 130 can be reduced.
  • the insulating layer 150 may be formed on the barrier layer 140, and the ohmic electrode 160 may be formed on the barrier layer 140 by removing the insulating layer 150 where the ohmic electrode 160 is to be formed next.
  • the ohmic electrode 160 can be formed by, for example, a lift-off method.
  • the insulating layer 150 and the quantum level layer 144 formed at the uppermost position farthest from the channel layer 130 may be removed, and the Schottky electrode 170 may be formed in the removed portion.
  • the quantum level layer 144 is formed of GaN and the barrier layer 142 is formed of AlN
  • the quantum level layer that is formed at the top most away from the channel layer 130 using the barrier layer 142 as an etching stop layer. 144 may be removed.
  • the quantum level layer 144 may be removed by dry etching using a chlorine-based gas.
  • the Schottky electrode 170 may be formed by, for example, a lift-off method.
  • the Schottky electrode 170 may be formed on the surface of any one of the barrier layers 142 included in the barrier layer 140. At this time, the Schottky electrode 170 is formed by the Schottky electrode 170, the quantum level layer 144 formed above the barrier layer 142 in contact with the surface, and the barrier layer 142 that exists when the barrier layer 142 is present. May be removed at portions to be removed. Thereby, the height of the Schottky barrier of the Schottky junction can be adjusted.
  • FIG. 4 is a cross-sectional view of an SBD 300 according to the third embodiment of the present invention.
  • the SBD 300 includes a substrate 110, a buffer layer 120, a channel layer 130, a barrier layer 140, an insulating layer 150, an ohmic electrode 160, and a Schottky electrode 170.
  • the barrier layer 140 is formed by stacking a barrier layer 142 and a quantum level layer 144 on the channel layer 130.
  • the barrier layer 140 may be removed at a portion where the Schottky electrode 170 is formed.
  • the Schottky electrode 170 may be formed on the channel layer 130 where the barrier layer 140 is removed. Since the Schottky electrode 170 is in contact with the channel layer 130, the leakage current from the Schottky electrode 170 to the channel layer 130 is not affected by the crystal defect of the barrier layer 140. Therefore, the leakage current can be reduced.
  • the quantum level layer 144 formed at the uppermost position farthest from the channel layer 130 is removed at the end of the SBD 200, and the insulating layer 150 is formed in the barrier layer 142 at the portion where the quantum level layer 144 is removed. However, it may be formed on the barrier layer 142 formed away from the channel layer 130.
  • the ohmic electrode 160 may be formed on the barrier layer 140 by removing the portion of the insulating layer 150 where the ohmic electrode 160 is to be formed.
  • the ohmic electrode 160 can be formed by, for example, a lift-off method.
  • the Schottky electrode 170 may be formed by removing the insulating layer 150 and the barrier layer 140 in a portion where the Schottky electrode 170 is to be formed.
  • the barrier layer 140 may be removed by dry etching using a chlorine-based gas and an argon gas, and the channel layer 130 may be exposed.
  • the Schottky electrode 170 is formed on the channel layer 130 by, for example, a lift-off method.
  • FIG. 5 is a cross-sectional view of an HFET 400 (heterojunction field effect transistor) according to the third embodiment of the present invention.
  • the HFET 400 includes a substrate 110, a buffer layer 120, a channel layer 130, a barrier layer 140, an insulating layer 150, a source electrode 410, a drain electrode 412, and a gate electrode 414.
  • the barrier layer 140 is formed by stacking a barrier layer 142 and a quantum level layer 144 on the channel layer 130.
  • the insulating layer 150 may be removed at a portion where the source electrode 410, the drain electrode 412, and the gate electrode 414 are formed.
  • the source electrode 410, the drain electrode 412, and the gate electrode 414 may be formed on the barrier layer 140 in a portion where the insulating layer 150 is removed.
  • the source electrode 410 and the drain electrode 412 may be formed of a material that is in ohmic contact with the channel layer 130.
  • the material of the source electrode 410 and the drain electrode 412 includes, for example, Ti.
  • the ohmic electrode 160 may be formed by laminating a layer made of Ti, a layer made of Al, and a layer made of Au on the barrier layer 140 in this order.
  • the gate electrode 414 may be formed of a material that forms a Schottky junction with the channel layer 130.
  • the material of the gate electrode 414 includes, for example, Ni.
  • the Schottky electrode 170 may be formed on the barrier layer 140 by laminating a layer made of Ni and a layer made of Au in this order.
  • the gate electrode 414, the source electrode 410, and the drain electrode 412 can be formed on the barrier layer 140 by sputtering using a lift-off method, but the formation method is not limited thereto.
  • a two-dimensional electron gas is generated at the interface of the channel layer 130 on the barrier layer 140 side.
  • the two-dimensional electron gas is controlled by the potential of the gate electrode 414.
  • the gate electrode 414 may be formed on the surface of any one of the barrier layers 142 included in the barrier layer 140. At this time, when the gate electrode 414, the quantum level layer 144 formed above the barrier layer 142 in contact with the surface, and the barrier layer 142 exist, the gate electrode 414 may be removed at a portion where the gate electrode 414 is formed. Thereby, the height of the Schottky barrier of the Schottky junction of the gate electrode 414 can be adjusted.
  • the barrier layer 140 may be removed at a portion where the gate electrode 414 is formed, and the gate electrode 414 may be formed at a portion where the barrier layer 140 on the channel layer 130 is removed. Since the gate electrode 414 is in contact with the channel layer 130, the leakage current from the gate electrode 414 to the channel layer 130 is not affected by the crystal defect of the barrier layer 140. As a result, the leakage current can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 基板と、基板上に設けられ第1の窒化物系化合物半導体からなるチャネル層と、チャネル層上に設けられたバリア層と、バリア層上に設けられた第1電極と、チャネル層の上方に設けられた第2電極とを備え、バリア層は、チャネル層上に設けられ第1の窒化物系化合物半導体よりバンドギャップエネルギーが大きい第2の窒化物系化合物半導体からなる障壁層と、第2の窒化物系化合物半導体よりバンドギャップエネルギーが小さい第3の窒化物系化合物半導体からなり量子準位が形成された量子準位層とを有する半導体デバイスを提供する。

Description

半導体デバイス
 本発明は、半導体デバイスに関する。
 窒化物系化合物半導体のGaN(窒化ガリウム)からなるチャネル層と、AlGaNからなるバリア層との間に、多層膜を挿入したHFET(ヘテロ接合電界効果型トランジスタ)が知られている(例えば、特許文献1)。多層膜は、GaNからなる層とAlNからなる層とを、量子準位を形成しない厚さで積層して形成される。
 特許文献1 特開2005―354101号公報
 厚さが2nmのAlNからなる層を、チャネル層とバリア層との間に形成することで、2次元電子ガスの分布が、バリア層に広がることを防止できるので、キャリアの移動度を高くできる。しかし、GaNからなるチャネル層、多層膜のAlNからなる層、多層膜のGaNからなる層、および、AlGaNからなるバリア層の間のヘテロ接合で結晶の転位が発生する。これにより、バリア層を貫通する転位の数が増える。転位は電流の経路となるから、バリア層上に形成された電極とチャネル層との間のリーク電流が増加する。
 また、チャネル層とバリア層との間に、AlNからなる層を挿入すると、バリア層上に形成するオーミック電極と、チャネル層との間のコンタクト抵抗が高くなる。以上のように、キャリアの移動度を高くすることによる低シート抵抗化と、リーク電流の低減、および、オーミック電極の接触抵抗の低減とを両立することが難しかった。
 本発明の第1の態様においては、基板と、基板上に設けられ、第1の窒化物系化合物半導体からなるチャネル層と、チャネル層上に設けられたバリア層と、バリア層上に設けられた第1電極と、チャネル層の上方に設けられた第2電極とを備え、バリア層は、チャネル層上に設けられ、第1の窒化物系化合物半導体よりバンドギャップエネルギーが大きい第2の窒化物系化合物半導体からなる障壁層と、障壁層上に設けられ、第2の窒化物系化合物半導体よりバンドギャップエネルギーが小さい第3の窒化物系化合物半導体からなり、量子準位が形成された、量子準位層と、を有する半導体デバイスを提供する。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本発明の第1の実施形態に係るショットキーバリアダイオード(SBD)の断面図である。 バリア層のフォトルミネッセンススペクトルである。 本発明の第2の実施形態に係るSBDの断面図である。 本発明の第3の実施形態に係るSBDの断面図である。 本発明の第4の実施形態に係るHFETの断面図である。
 以下、発明の実施の形態を通じて本発明の(一)側面を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本発明の第1の実施形態に係るSBD100(ショットキーバリアダイオード)の断面図である。SBD100は、基板110、バッファ層120、チャネル層130、バリア層140、絶縁層150、オーミック電極160、およびショットキー電極170を備える。
 チャネル層130は基板110の上方に設けられ、窒化物系化合物半導体からなる。チャネル層130は、GaNで形成してよい。チャネル層130は、不純物がドープされた、あるいは、ノンドープのGaNからなってよい。チャネル層130の厚さは、例えば1000nmである。バリア層140は、チャネル層130上に、障壁層142および量子準位層144が繰り返し積層されて形成される。障壁層142は、チャネル層130を形成する窒化物系化合物半導体よりバンドギャップエネルギーが大きい窒化物系化合物半導体からなる。障壁層142は、AlNで形成してよい。量子準位層144は、障壁層142を形成する窒化物系化合物半導体よりバンドギャップエネルギーが小さい窒化物系化合物半導体からなる。量子準位層144は、GaNで形成してよい。
 チャネル層130上に、障壁層142が形成されてよい。チャネル層130とバリア層140との間のヘテロ接合によって、チャネル層130のバリア層140側の界面に2次元電子ガスが発生する。バンドギャップエネルギーの大きい障壁層142がチャネル層130上に接すると、チャネル層130の2次元電子ガスがバリア層140に広がることを防止できる。これにより、チャネル層130におけるキャリアの移動度を高くできる。
 障壁層142上に量子準位層144が形成される。障壁層142および量子準位層144の厚さが調整されて、障壁層142および量子準位層144によって井戸型ポテンシャルが形成されると、量子準位層144に量子準位が形成される。キャリアが量子準位層144に形成された量子準位を伝わるので、チャネル層130とオーミック電極160との間の接触抵抗が低くなる。また、障壁層142が薄く形成されることにより、障壁層142に形成される転移が少なくなる。これにより、ショットキー電極170とチャネル層130との間のリーク電流が小さくなる。さらに、障壁層142が薄く形成されるので、オーミック電極160とチャネル層130との間の接触抵抗が低くなる。
 基板110は、サファイア基板であってよい。また、基板110は、Si基板、SiC基板、GaN基板その他の、基板表面上に窒化物系化合物半導体層を形成することができる基板であってもよい。
 バッファ層120が、基板110とチャネル層130の間に設けられてよい。バッファ層120は、窒化物系化合物半導体からなる層であってよい。例えば、バッファ層120は、AlNからなる層、GaNからなる層、AlGaNからなる層、または、これらを積層した多層膜で形成される。バッファ層120の厚さは、例えば20nmである。基板110として、結晶性のよい窒化物系化合物半導体層を形成することができる基板を用いるときは、バッファ層120を省略して、基板110上にバッファ層120を形成してもよい。
 バッファ層120、チャネル層130、障壁層142、および、量子準位層144がMOCVD法で形成されてよい。例えば、チャネル層130または量子準位層144を形成する場合、基板110をMOCVD装置に設置し、トリメチルガリウム(TMGa)とアンモニア(NH)とを、MOCVD装置のチャンバーに導入して、GaNをエピタキシャル成長する。また、バッファ層120または障壁層142を形成する場合、トリメチルアルミ(TMAl)とNHとを、MOCVD装置のチャンバーに導入して、AlNをエピタキシャル成長する。
 他の実施形態として、バッファ層120、チャネル層130、障壁層142、および、量子準位層144の全部または一部がHVPE法(ハイドライド気相成長法)、あるいは、MBE法(分子線エピタキシー法)で形成されてもよい。また、障壁層142は、AlGa1-XN(0<X<1)で形成されてもよい。
 絶縁層150が、バリア層140上の一部に形成される。絶縁層150は、絶縁性物質からなる層であってよい。例えば、絶縁層150がシリコン酸化膜で形成される。また、絶縁層150は、シリコン窒化膜で形成されてもよい。バリア層140上の全面に絶縁性物質からなる層が形成され、次にオーミック電極160およびショットキー電極170が形成される部分の絶縁性物質からなる層が除去されて開口部を設けて、絶縁層150が形成されてよい。このとき、絶縁層150がCVD法およびフォトリソグラフィー法で形成されてよい。
 オーミック電極160が、バリア層140上の、絶縁層150が除去された部分に形成されてよい。オーミック電極160はチャネル層130とオーミック接合する材料で形成される。オーミック電極160の材料は、例えば、Tiを含む。オーミック電極160は、Tiからなる層、Alからなる層、およびAuからなる層をこの順に、バリア層140上に積層して形成してよい。
 ショットキー電極170が、バリア層140上の、絶縁層150が除去された部分に形成されてよい。オーミック電極160とショットキー電極170は所定の距離だけ離れて形成されてよい。ショットキー電極170はチャネル層130とショットキー接合する材料で形成される。ショットキー電極170の材料は、例えば、Niを含む。ショットキー電極170は、Niからなる層およびAuからなる層をこの順に、バリア層140上に積層して形成されてよい。オーミック電極160およびショットキー電極170は、リフトオフ法を用いて、スパッタリングで形成されることができるが、形成方法はこれに限定されない。
 表1に、GaNからなる量子準位層144およびAlNからなる障壁層142を積層してバリア層140を形成した場合のSBD100のシート抵抗、キャリアの移動度、キャリア密度、コンタクト抵抗、およびリーク電流を示す。オーミック電極160およびショットキー電極170の電極面積は、それぞれ0.02mmとした。また、オーミック電極160とショットキー電極170との、電極間距離は0.01mmとした。コンタクト抵抗は、オーミック電極160を用いて、Transmission Line Model法により測定した。また、ショットキー電極170に-50Vの電圧を印加し、オーミック電極160とショットキー電極170との間に流れる電流をリーク電流として測定した。
 障壁層142および量子準位層144の厚さは、X線回折により測定した。表1において、繰り返し回数とは、障壁層142および量子準位層144の積層を繰り返す回数を示す。例えば、繰り返し回数が4とは、チャネル層130から絶縁層150に向かって、障壁層142と量子準位層144とが、それぞれ4層ずつ交互に積層されていることを示す。したがって、障壁層142の厚さと量子準位層144の厚さとを加えたものに、繰り返し回数をかけたものが、バリア層140全体の厚さとなる。
Figure JPOXMLDOC01-appb-T000001
 試料番号1のように、障壁層142の厚さが2nmを超えると、コンタクト抵抗が高く、かつ、リーク電流が大きい。これは、障壁層142の一層の厚さが厚いので、抵抗が高く、転位が増加することによる。試料番号6のように、障壁層142の厚さが0.2nm以下であると、コンタクト抵抗が高く、かつ、リーク電流が大きい。AlNからなる障壁層142の厚さが、AlNが単位格子を形成しないほど薄くなると、原子配列の乱れを生じやすく、転移が発生しやすいからである。
 したがって、試料番号1から6を参照して、障壁層142の厚さは、0.2nmより大きく、2.0nm以下であることが好ましく、0.25nm以上、1.5nm以下であることが、より好ましい。このとき、量子準位層144の厚さは、0.6nm以上、6.0nm以下であることが好ましい。量子準位層144が薄すぎると、量子準位が形成されないからである。このため、障壁層142および量子準位層144を積層する繰り返しの回数は、4回以上、31回以下であることが好ましく、24回以下であることが、より好ましい。
 試料番号7のように、バリア層140が有する障壁層142の厚さの合計が、バリア層140の全体の厚さに対して9%より小さいと、シート抵抗が高い。バリア層140の全体の組成がGaNよりなので、チャネル層130のキャリア密度が低いことによる。試料番号11のように、バリア層140が有する障壁層142の厚さの合計が、バリア層140の全体の厚さに対して39%より大きいと、リーク電流が大きい。これは、AlNからなる障壁層142によって、欠陥が増えるからである。したがって、試料番号7から11を参照して、バリア層140が有する障壁層142の厚さの合計が、バリア層140の全体の厚さに対して9%以上、39%以下であることが好ましく、15%以上、35%以下であることがより好ましい。
 試料番号12のように、バリア層140の厚さが48nm以上では、コンタクト抵抗が高く、かつ、リーク電流が大きい。バリア層140が厚いので、バリア層の抵抗が高く、また、欠陥が多いからである。試料番号17のように、バリア層140の厚さが11nmより薄いと、シート抵抗が高い。これは、バリア層140が薄いので、チャネル層130に発生する2次元電子ガスの濃度が低いからである。したがって、試料番号12から17を参照して、バリア層140の厚さが11nm以上で48nmより薄いことが好ましく、15nm以上、40nm以下であることが、より好ましい。
 表2に、GaNからなる量子準位層144の厚さを1.6nm、AlNからなる障壁層142および量子準位層144を積層する繰り返しの回数を12回としたSBD100のシート抵抗、キャリアの移動度、キャリア密度、コンタクト抵抗、およびリーク電流を示す。障壁層142について、チャネル層130に最も近い、最下部に形成された障壁層142をのぞいて、他の障壁層142の厚さはすべて0.55nmで同一とした。チャネル層130に最も近い、最下部に形成された障壁層142の厚さは、他の障壁層142の厚さと異なってよい。各試料における、チャネル層130に最も近い、最下部に形成された障壁層142の厚さを表2に示した。第1の実施形態に係るSBD100においては、チャネル層130に最も近い、最下部に形成された障壁層142はチャネル層130に接している。その他の条件および測定方法は表1の測定と同様とした。
Figure JPOXMLDOC01-appb-T000002
 チャネル層130に最も近い、最下部に形成された障壁層142の厚さが0.75nm以上、1nm以下のときに、シート抵抗が最も低く、これより厚さが薄いと、シート抵抗が高くなる。試料番号18のように、チャネル層130に最も近い、最下部に形成された障壁層142の厚さが0.25nmでは、シート抵抗がやや高い。障壁層142が薄いので、チャネル層130に発生する2次元電子ガスの濃度が低いからである。試料番号24のように、チャネル層130に最も近い、最下部に形成された障壁層142の厚さが2nm以上では、リーク電流が大きい。障壁層142が厚いので欠陥が多いからである。また、試料番号24では、移動度がやや低く、シート抵抗がやや高い。これは障壁層142が厚いために欠陥が多いことによる。したがって、チャネル層130に最も近い、最下部に形成された障壁層142の厚さが1.9nm以下であることが好ましく、0.25nm以上、1.5nm以下であることがより好ましく、0.5nm以上、1.25nm以下であることが、さらに好ましい。
 表3に、AlNからなる障壁層142の厚さを0.55nm、AlNからなる障壁層142およびGaNからなる量子準位層144を積層する繰り返しの回数を12回としたSBD100のシート抵抗、キャリアの移動度、キャリア密度、コンタクト抵抗、およびリーク電流を示す。量子準位層144については、チャネル層130から最も離れて、最上部に形成された量子準位層144を除いて、他のすべての量子準位層144の厚さを1.60nmで同一とした。チャネル層130から最も離れて、最上部に形成された量子準位層144の厚さは、他の量子準位層の厚さと異なってよい。各試料における最上部に形成された量子準位層144の厚さを表3に示した。第1の実施形態に係るSBD100においては、チャネル層130から最も離れて、最上部に形成された量子準位層144はオーミック電極160およびショットキー電極170に接している。その他の条件および測定方法は表1の測定と同様とした。
Figure JPOXMLDOC01-appb-T000003
 試料番号29のように、チャネル層130から最も離れて、最上部に形成された量子準位層144の厚さが15nm以上では、コンタクト抵抗が高い。量子準位層144が厚いからである。また、キャリア密度がやや低く、シート抵抗がやや高い。バリア層140の組成がGaNに近いので、チャネル層130の2次元電子ガスの濃度が低いからである。試料番号25から29を参照して、最上部に形成された量子準位層144の厚さが厚い方が結晶の欠陥が少ないので、リーク電流が小さい。したがって、チャネル層130から最も離れて、最上部に形成された量子準位層144の厚さが0.5nm以上、14nm以下であることが好ましく、10nm以下であることがより好ましく、6nm以下であることがさらに好ましい。
 実施形態1に係るSBD100において、チャネル層130の近くに形成された量子準位層144の厚さが、チャネル層130から離れて形成された他の量子準位層144の厚さより薄くてよい。量子準位層144が薄くなると、量子井戸の幅が狭くなるので、量子準位層144に形成される準位が高くなる。したがって、量子準位層144のコンダクションバンドの傾きが、表面に向けて緩やかになるから、リーク電流が小さい。例えば、量子準位層144のいずれか一層の厚さが、当該量子準位層144よりチャネル層130に近く下側に形成された他の量子準位層144のいずれか一層の厚さより厚い。量子準位層144の一層の厚さが、当該量子準位層144よりチャネル層130に近く下側に形成された他のいずれの量子準位層144の一層の厚さ以上であってよい。
 量子準位層144が、各層の厚さが同一である複数の量子準位層144を含む複数のグループに分かれ、当該複数のグループのうちの一つに含まれる量子準位層144の各層の厚さが、チャネル層130に近い他のグループに含まれる量子準位層144の厚さより厚くてもよい。あるいは、量子準位層144の各層の厚さがチャネル層130に近いほど薄くてもよい。量子準位層144の各層の厚さが、チャネル層130に近く下側に形成された量子準位層144から、遠くに形成された量子準位層144に向かって、直線的に厚くてもよい。あるいは、障壁層142を挟んで隣接する量子準位層144同士の厚さの差が、チャネル層130から絶縁層150へと上側に向かって徐々に大きくなってもよい。
 すべての障壁層142の厚さを同一としてよい。あるいは、チャネル層130の近くに形成された障壁層142の厚さが、チャネル層130から離れて形成された他の障壁層142の厚さより厚くてよい。これにより、障壁層142によるチャネル層130への2次元電子ガスの閉じ込め効果が大きくなるので、シート抵抗が小さくなる。例えば、障壁層142のいずれか一層の厚さが、当該障壁層142よりチャネル層130に近く下側に形成された他の障壁層142のいずれか一層の厚さより薄い。障壁層142の一層の厚さが、当該障壁層142よりチャネル層130に近く下側に形成された他のいずれの障壁層142の一層の厚さ以下であってよい。
 障壁層142が、各層の厚さが同一である複数の障壁層142を含む複数のグループに分かれ、当該複数のグループのうちの一つに含まれる障壁層142の各層の厚さが、チャネル層130に近い他のグループに含まれる障壁層142の厚さより薄くてもよい。あるいは、障壁層142の各層の厚さがチャネル層130に近いほど厚くてもよい。障壁層142の各層の厚さが、チャネル層130に近く下側に形成された障壁層142から、遠くに形成された障壁層142に向かって、直線的に薄くてもよい。また、量子準位層144を挟んで隣接する障壁層142同士の厚さの差が、チャネル層130から絶縁層150へと上側に向かって徐々に小さくなってもよい。
 表4に、GaNからなる量子準位層144の厚さの例を示す。表4に示した例において、AlNからなる障壁層142のすべての層の厚さを0.5nmで同一とし、障壁層142および量子準位層144を積層する繰り返しの回数を12回とした。表4においてaの列が、量子準位層144のうちでチャネル層130の最も近くに形成された量子準位層144の厚さを示す。aからlにいくにしたがって、この順に量子準位層144がチャネル層130から遠くなり、lの列が、量子準位層144のうちでチャネル層130から最も離れて形成された量子準位層144の厚さを示す。
Figure JPOXMLDOC01-appb-T000004
 試料番号30、31および32のSBD100は、試料番号19のSBDに比べて、ショットキー電極170からチャネル層130へのリーク電流が50%小さい。したがって、バリア層140が有する量子準位層144のうち、チャネル層130から最も離れて形成された量子準位層144の厚さが、2.5nm以上、10nm以下であることが好ましく、2.5nm以上、6nm以下であることがより好ましく、2.5nm以上、4nm以下であることがさらに好ましい。これは、上記のように、量子準位層144のコンダクションバンドの傾きが緩やかになるからである。
 表5に、AlNからなる障壁層142およびGaNからなる量子準位層144の厚さの例を示す。表5に示した例において、障壁層142および量子準位層144を積層する繰り返しの回数は12回である。表5においてaの列が、障壁層142および量子準位層144のうちでチャネル層130に最も近くに形成された障壁層142および量子準位層144の厚さを示す。aからlにいくにしたがって、この順に障壁層142および量子準位層144がチャネル層130から遠くなり、lの列が、障壁層142および量子準位層144のうちでチャネル層130から最も離れて形成された障壁層142および量子準位層144の厚さを示す。すなわち、表5に示したSBD100において、チャネル層130上に厚さ0.75nmのAlNからなる障壁層142が形成され、厚さ3.0nmのGaNからなる量子準位層144上に絶縁層150、オーミック電極160およびショットキー電極170が形成される。
Figure JPOXMLDOC01-appb-T000005
 試料番号33のSBD100は、試料番号19のSBDに比べて、ショットキー電極170からチャネル層130へのリーク電流が50%小さく、かつ、シート抵抗が5%低い。これは、上記で説明したように、量子準位層144のコンダクションバンドの傾きが緩やかで、かつ、障壁層142によるチャネル層130への2次元電子ガスの閉じ込め効果が大きいからである。
 図2は、波長266nmの紫外線励起によるバリア層140のフォトルミネッセンススペクトルである。白い四角が試料番号1、黒い丸が試料番号2、白い三角が試料番号4、バツ印が試料番号5、そして短い横線(-)が試料番号6のバリア層140に対応する。約3.4eVの発光ピークがGaNのバンド間遷移を示す。図2に示すように、バリア層140で3.4eVより高エネルギー側に発光ピークが観察された。これは、バリア層140が有する障壁層142および量子準位層144で井戸型ポテンシャルが形成され、量子準位層144に量子準位が形成されるからである。
 3.4eVより高エネルギー側の発光ピークは、障壁層142の厚さが薄くなるに従って強度が弱くなり、障壁層142が0.25nmより薄いとほぼ観察されない。障壁層142が薄すぎると量子準位が形成されないからである。また、3.4eVより高エネルギー側の発光ピークは、量子準位層144の厚さが薄くなるに従って、高エネルギー側に移動する。量子準位層144が薄いと、量子井戸の幅が狭く、量子準位が高いからである。試料番号2から4のSBD100では、量子準位層144に量子準位が形成されていることを示す。
 図3は、本発明の第2の実施形態に係るSBD200の断面図である。図3において図1と同一の符号を付した要素は、図1において説明した要素と同一の機能および構成を有してよい。SBD200は、基板110、バッファ層120、チャネル層130、バリア層140、絶縁層150、オーミック電極160、およびショットキー電極170を備える。バリア層140は、チャネル層130上に、障壁層142および量子準位層144を積層して形成される。チャネル層130から最も離れて、最上部に形成された量子準位層144がSBD200の端部で除去され、量子準位層144が除去された部分で絶縁層150が、障壁層142の中でもっともチャネル層130から離れて形成されている障壁層142上に形成されてよい。
 第2の実施形態に係るSBD200において、バリア層140が有する量子準位層144のうち、チャネル層130から最も離れて、最上部に形成された量子準位層144は、ショットキー電極170が形成される部分で除去されてよい。ショットキー電極170は、チャネル層130から最も離れて、最上部に形成された量子準位層144が除去された部分に形成されて、障壁層142のなかでチャネル層から最も離れて形成された障壁層142上に形成されてよい。ショットキー電極170が障壁層142に接するので、ショットキーバリアを高くすることができる。これにより、ショットキー電極170からチャネル層130へのリーク電流を小さくすることができる。
 絶縁層150がバリア層140上に形成され、次にオーミック電極160を形成する部分の絶縁層150を除去して、バリア層140上にオーミック電極160が形成されてよい。オーミック電極160は例えばリフトオフ法で形成できる。
 絶縁層150、および、チャネル層130から最も離れて最上部に形成された量子準位層144が除去されて、除去された部分にショットキー電極170が形成されてよい。量子準位層144がGaNで形成され、障壁層142がAlNで形成されているときは、障壁層142をエッチングストップ層として、チャネル層130から最も離れて最上部に形成された量子準位層144が除去されてよい。量子準位層144が、塩素系のガスを用いたドライエッチングで除去されてよい。ショットキー電極170は例えばリフトオフ法で形成されてよい。
 ショットキー電極170は、バリア層140が有する障壁層142のうち、いずれか一つの障壁層142の表面上に形成されてよい。このとき、ショットキー電極170と、表面が接する障壁層142よりも上側に形成された量子準位層144、および障壁層142が存在するときは存在する障壁層142が、ショットキー電極170が形成される部分で除去されてよい。これにより、ショットキー接合のショットキーバリアの高さを調節することができる。
 図4は、本発明の第3の実施形態に係るSBD300の断面図である。図4において図1と同一の符号を付した要素は、図1において説明した要素と同一の機能および構成を有してよい。SBD300は、基板110、バッファ層120、チャネル層130、バリア層140、絶縁層150、オーミック電極160、およびショットキー電極170を備える。バリア層140は、チャネル層130上に、障壁層142および量子準位層144を積層して形成される。
 バリア層140は、ショットキー電極170が形成される部分で除去されてよい。ショットキー電極170はチャネル層130上の、バリア層140が除去された部分に形成されてよい。ショットキー電極170がチャネル層130に接するので、ショットキー電極170からチャネル層130へのリーク電流が、バリア層140の結晶欠陥の影響を受けない。したがって、リーク電流を小さくできる。チャネル層130から最も離れて、最上部に形成された量子準位層144がSBD200の端部で除去され、量子準位層144が除去された部分で絶縁層150が、障壁層142の中でもっともチャネル層130から離れて形成されている障壁層142上に形成されてよい。
 絶縁層150がバリア層140上に形成された後、オーミック電極160が形成される部分の絶縁層150を除去して、オーミック電極160がバリア層140上に形成されてよい。オーミック電極160は例えばリフトオフ法で形成できる。
 ショットキー電極170を形成する部分の、絶縁層150、および、バリア層140が除去されて、ショットキー電極170が形成されてよい。バリア層140が、塩素系のガスおよびアルゴンガスを用いたドライエッチングで除去されて、チャネル層130が露出されてよい。ショットキー電極170が、例えばリフトオフ法でチャネル層130上に形成される。
 図5は、本発明の第3の実施形態に係るHFET400(ヘテロ接合電界効果型トランジスタ)の断面図である。図5において図1と同一の符号を付した要素は、図1において説明した要素と同一の機能および構成を有してよい。HFET400は、基板110、バッファ層120、チャネル層130、バリア層140、絶縁層150、ソース電極410、ドレイン電極412、および、ゲート電極414を備える。バリア層140は、チャネル層130上に、障壁層142および量子準位層144を積層して形成される。
 絶縁層150は、ソース電極410、ドレイン電極412、およびゲート電極414を形成する部分で、除去されてよい。ソース電極410、ドレイン電極412、およびゲート電極414は、絶縁層150が除去された部分でバリア層140上に形成されてよい。ソース電極410およびドレイン電極412は、チャネル層130とオーミック接合する材料で形成されてよい。ソース電極410およびドレイン電極412の材料は、例えば、Tiを含む。オーミック電極160は、Tiからなる層、Alからなる層、およびAuからなる層をこの順にバリア層140上に積層して形成されてよい。
 ゲート電極414はチャネル層130とショットキー接合する材料で形成されてよい。ゲート電極414の材料は、例えば、Niを含む。ショットキー電極170は、Niからなる層およびAuからなる層をこの順に積層してバリア層140上に形成されてよい。ゲート電極414、ソース電極410およびドレイン電極412は、リフトオフ法を用いて、スパッタリングでバリア層140上に形成されることができるが、形成方法はこれに限定されない。
 チャネル層130と障壁層142とのヘテロ接合によって、チャネル層130のバリア層140側の界面には、2次元電子ガスが発生する。ゲート電極414の電位によって2次元電子ガスを制御する。
 ゲート電極414は、バリア層140が有する障壁層142のうち、いずれか一つの障壁層142の表面上に形成されてよい。このとき、ゲート電極414と、表面が接する障壁層142よりも上側に形成された量子準位層144、および障壁層142が存在するときは、ゲート電極414を形成する部分で除去されてよい。これにより、ゲート電極414のショットキー接合のショットキーバリアの高さを調節することができる。
 バリア層140がゲート電極414を形成する部分で除去され、ゲート電極414がチャネル層130上のバリア層140を除去した部分に形成されてよい。ゲート電極414がチャネル層130に接するので、ゲート電極414からチャネル層130へのリーク電流が、バリア層140の結晶欠陥の影響を受けない。これによりリーク電流を小さくすることができる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
100 SBD、110 基板、120 バッファ層、130 チャネル層、140 バリア層、142 障壁層、144 量子準位層、150 絶縁層、160 オーミック電極、170 ショットキー電極、200 SBD、300 SBD、400 HFET、410 ソース電極、412 ドレイン電極、414 ゲート電極

Claims (19)

  1.  基板と、
     前記基板の上方に設けられ、第1の窒化物系化合物半導体からなるチャネル層と、
     前記チャネル層上に設けられたバリア層と、
     前記バリア層上に設けられた第1電極と、
     前記チャネル層の上方に設けられた第2電極と、を備え
     前記バリア層は、
     前記チャネル層上に設けられ、前記第1の窒化物系化合物半導体よりバンドギャップエネルギーが大きい第2の窒化物系化合物半導体からなる障壁層と、
     前記障壁層上に設けられ、前記第2の窒化物系化合物半導体よりバンドギャップエネルギーが小さい第3の窒化物系化合物半導体からなり、量子準位が形成された、量子準位層と、が繰り返し積層されている
    半導体デバイス。
  2.  前記第2の窒化物系化合物半導体はAlNであり、
     前記第3の窒化物系化合物半導体はGaNである請求項1に記載の半導体デバイス。
  3.  前記バリア層の厚さが15nm以上、40nm以下であり、
     前記障壁層の各層の厚さが0.25nm以上、1.5nm以下である請求項1または2に記載の半導体デバイス。
  4.  前記バリア層が有する障壁層の厚さの合計が、前記バリア層の厚さに対して15%以上である請求項1から3のいずれか一項に記載の半導体デバイス。
  5.  前記バリア層が有する前記障壁層のうち、前記チャネル層に最も近い前記障壁層の厚さが0.5nm以上、1.5nm以下である請求項1から4のいずれか一項に記載の半導体デバイス。
  6.  前記バリア層が有する前記障壁層のうち、前記チャネル層に最も近い前記障壁層の厚さが、他の前記障壁層の厚さと異なる請求項1から5のいずれか一項に記載の半導体デバイス。
  7.  前記バリア層が有する前記量子準位層のうち、前記チャネル層から最も離れて形成された前記量子準位層の厚さが0.5nm以上、10nm以下である請求項1から6のいずれか一項に記載の半導体デバイス。
  8.  前記バリア層が有する前記量子準位層のうち、前記チャネル層から最も離れて形成された前記量子準位層の厚さが2.5nm以上、10nm以下である請求項1から6のいずれか一項に記載の半導体デバイス。
  9.  前記バリア層が有する前記量子準位層のうち、前記チャネル層から最も離れて形成された前記量子準位層の厚さが、他の前記量子準位層の厚さと異なる請求項1から8のいずれか一項に記載の半導体デバイス。
  10.  前記量子準位層のいずれか一層の厚さが、前記チャネル層に近い他の前記量子準位層のいずれか一層の厚さより厚い請求項1から8のいずれか一項に記載の半導体デバイス。
  11.  前記量子準位層の一層の厚さが、前記チャネル層に近い他の前記量子準位層の一層の厚さ以上である請求項1から10のいずれか一項に記載の半導体デバイス。
  12.  前記量子準位層が、各層の厚さが同一である複数の前記量子準位層を含む複数のグループに分かれ、
     前記複数のグループの一つに含まれる前記量子準位層の各層の厚さが、前記複数のグループの他の一つに含まれ、前記チャネル層に近い他の前記量子準位層の厚さより厚い請求項1から11のいずれか一項に記載の半導体デバイス。
  13.  前記量子準位層の各層の厚さが、前記チャネル層に近いほど薄い請求項1から9のいずれか一項に記載の半導体デバイス。
  14.  前記障壁層のいずれか一層の厚さが、前記チャネル層に近い他の前記障壁層のいずれか一層の厚さより薄い請求項1から13のいずれか一項に記載の半導体デバイス。
  15.  前記障壁層の一層の厚さが、前記チャネル層に近い他の前記障壁層の一層の厚さ以下である請求項1から14のいずれか一項に記載の半導体デバイス。
  16.  前記第1電極が前記チャネル層にオーミック接続し、
     前記第2電極が前記チャネル層にショットキー接続する、
    請求項1から15のいずれか一項に記載の半導体デバイス。
  17.  前記バリア層上に設けられ、前記チャネル層にオーミック接続した第3電極をさらに備える請求項16に記載の半導体デバイス。
  18.  前記第2電極が前記障壁層の表面に接して設けられた請求項16または17に記載の半導体デバイス。
  19.  前記第2電極が前記チャネル層に接して設けられた請求項16または17に記載の半導体デバイス。
PCT/JP2012/002597 2011-04-15 2012-04-13 半導体デバイス WO2012140915A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2012800078537A CN103348479A (zh) 2011-04-15 2012-04-13 半导体器件
EP12770971.5A EP2698823A4 (en) 2011-04-15 2012-04-13 SEMICONDUCTOR DEVICE
KR1020137018278A KR20140042770A (ko) 2011-04-15 2012-04-13 반도체 디바이스
US13/952,640 US20140008615A1 (en) 2011-04-15 2013-07-28 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-091332 2011-04-15
JP2011091332A JP2012227227A (ja) 2011-04-15 2011-04-15 半導体デバイス

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/952,640 Continuation US20140008615A1 (en) 2011-04-15 2013-07-28 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2012140915A1 true WO2012140915A1 (ja) 2012-10-18

Family

ID=47009104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002597 WO2012140915A1 (ja) 2011-04-15 2012-04-13 半導体デバイス

Country Status (6)

Country Link
US (1) US20140008615A1 (ja)
EP (1) EP2698823A4 (ja)
JP (1) JP2012227227A (ja)
KR (1) KR20140042770A (ja)
CN (1) CN103348479A (ja)
WO (1) WO2012140915A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2800139A1 (en) * 2013-04-30 2014-11-05 Azzurro Semiconductors AG Layer sequence for an electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6168978B2 (ja) * 2013-12-09 2017-07-26 古河電気工業株式会社 窒化物半導体装置およびその製造方法、ならびにダイオードおよび電界効果トランジスタ
CN111477536A (zh) * 2020-03-31 2020-07-31 华为技术有限公司 一种半导体外延结构及半导体器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172164A (ja) * 1995-12-19 1997-06-30 Nec Corp 電界効果トランジスタ
JP2001274375A (ja) * 2000-03-28 2001-10-05 Nec Corp ヘテロ接合電界効果トランジスタ
JP2005302861A (ja) * 2004-04-08 2005-10-27 Matsushita Electric Ind Co Ltd Iii−v族窒化物半導体を用いた半導体装置
JP2005354101A (ja) 2005-08-01 2005-12-22 National Institute Of Advanced Industrial & Technology 窒化物半導体材料を用いたヘテロ接合電界効果型トランジスタ
JP2006279032A (ja) * 2005-03-02 2006-10-12 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2008198783A (ja) * 2007-02-13 2008-08-28 Sharp Corp 電界効果トランジスタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3094500B2 (ja) * 1991-05-21 2000-10-03 日本電気株式会社 電界効果トランジスタ
US20050006639A1 (en) * 2003-05-23 2005-01-13 Dupuis Russell D. Semiconductor electronic devices and methods
FR2875337A1 (fr) * 2004-09-13 2006-03-17 Picogiga Internat Soc Par Acti Structures hemt piezoelectriques a desordre d'alliage nul
FR2875338B1 (fr) * 2004-09-13 2007-01-05 Picogiga Internat Soc Par Acti Methode d'elaboration de structures hemt piezoelectriques a desordre d'alliage nul
US8384129B2 (en) * 2009-06-25 2013-02-26 The United States Of America, As Represented By The Secretary Of The Navy Transistor with enhanced channel charge inducing material layer and threshold voltage control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172164A (ja) * 1995-12-19 1997-06-30 Nec Corp 電界効果トランジスタ
JP2001274375A (ja) * 2000-03-28 2001-10-05 Nec Corp ヘテロ接合電界効果トランジスタ
JP2005302861A (ja) * 2004-04-08 2005-10-27 Matsushita Electric Ind Co Ltd Iii−v族窒化物半導体を用いた半導体装置
JP2006279032A (ja) * 2005-03-02 2006-10-12 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2005354101A (ja) 2005-08-01 2005-12-22 National Institute Of Advanced Industrial & Technology 窒化物半導体材料を用いたヘテロ接合電界効果型トランジスタ
JP2008198783A (ja) * 2007-02-13 2008-08-28 Sharp Corp 電界効果トランジスタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2698823A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2800139A1 (en) * 2013-04-30 2014-11-05 Azzurro Semiconductors AG Layer sequence for an electronic device
WO2014177401A1 (en) * 2013-04-30 2014-11-06 Azzurro Semiconductors Ag Layer sequence for an electronic device

Also Published As

Publication number Publication date
EP2698823A4 (en) 2014-10-01
JP2012227227A (ja) 2012-11-15
KR20140042770A (ko) 2014-04-07
US20140008615A1 (en) 2014-01-09
CN103348479A (zh) 2013-10-09
EP2698823A1 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
US9548376B2 (en) Method of manufacturing a semiconductor device including a barrier structure
US9735260B2 (en) III-V HEMT devices
JP6174874B2 (ja) 半導体装置
US9401403B2 (en) Nitride semiconductor structure
JP5564842B2 (ja) 半導体装置
US8866192B1 (en) Semiconductor device, high electron mobility transistor (HEMT) and method of manufacturing
CN107408511B (zh) 化合物半导体基板
US9478632B2 (en) Method of manufacturing a semiconductor device
JP5787417B2 (ja) 窒化物半導体基板
US7985984B2 (en) III-nitride semiconductor field effect transistor
JP6035721B2 (ja) 半導体装置の製造方法
EP2290696B1 (en) Epitaxial substrate for semiconductor device, semiconductor device, and method of manufacturing epitaxial substrate for semiconductor device
JP2010225765A (ja) 半導体装置及びその製造方法
JP2011166067A (ja) 窒化物半導体装置
WO2011024754A1 (ja) Iii族窒化物半導体積層ウェハ及びiii族窒化物半導体デバイス
JP2005085852A (ja) 半導体電子デバイス
JP2009032713A (ja) GaNをチャネル層とする窒化物半導体トランジスタ及びその作製方法
EP2555232A1 (en) Epitaxial substrate for semiconductor element and semiconductor element
JP2010232297A (ja) 半導体装置
CN111406306B (zh) 半导体装置的制造方法、半导体装置
US20140327012A1 (en) Hemt transistors consisting of (iii-b)-n wide bandgap semiconductors comprising boron
JP2010258313A (ja) 電界効果トランジスタ及びその製造方法
JP2011049271A (ja) 半導体装置
US20120168771A1 (en) Semiconductor element, hemt element, and method of manufacturing semiconductor element
WO2012140915A1 (ja) 半導体デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12770971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137018278

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012770971

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE