WO2012140278A1 - Torre andamio reparadora-limpiadora para aerogeneradores eólicos. - Google Patents

Torre andamio reparadora-limpiadora para aerogeneradores eólicos. Download PDF

Info

Publication number
WO2012140278A1
WO2012140278A1 PCT/ES2011/000134 ES2011000134W WO2012140278A1 WO 2012140278 A1 WO2012140278 A1 WO 2012140278A1 ES 2011000134 W ES2011000134 W ES 2011000134W WO 2012140278 A1 WO2012140278 A1 WO 2012140278A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
scaffolding
robotic arm
wheels
gangway
Prior art date
Application number
PCT/ES2011/000134
Other languages
English (en)
French (fr)
Inventor
Francisco Olea Porcel
José Antonio AVILA ESPIGARES
Original Assignee
Mantenimientos Eléctricos Campo De Aviación, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mantenimientos Eléctricos Campo De Aviación, S.L. filed Critical Mantenimientos Eléctricos Campo De Aviación, S.L.
Priority to EP11863488.0A priority Critical patent/EP2698528A4/en
Priority to PCT/ES2011/000134 priority patent/WO2012140278A1/es
Priority to MX2013012043A priority patent/MX2013012043A/es
Priority to US14/111,920 priority patent/US20140034418A1/en
Publication of WO2012140278A1 publication Critical patent/WO2012140278A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G5/00Component parts or accessories for scaffolds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F11/00Lifting devices specially adapted for particular uses not otherwise provided for
    • B66F11/04Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G1/00Scaffolds primarily resting on the ground
    • E04G1/18Scaffolds primarily resting on the ground adjustable in height
    • E04G1/20Scaffolds comprising upright members and provision for supporting cross-members or platforms at different positions therealong
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G1/00Scaffolds primarily resting on the ground
    • E04G1/36Scaffolds for particular parts of buildings or buildings of particular shape, e.g. for stairs, cupolas, domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/50Maintenance or repair
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/50Maintenance or repair
    • F03D80/55Cleaning
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G1/00Scaffolds primarily resting on the ground
    • E04G1/24Scaffolds primarily resting on the ground comprising essentially special base constructions; comprising essentially special ground-engaging parts, e.g. inclined struts, wheels
    • E04G2001/242Scaffolds movable on wheels or tracks
    • E04G2001/244Scaffolds movable on wheels or tracks mechanically operated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention is part of the technical procedure by which maintenance, repair, cleaning and all the necessary work on the blades of wind turbines can be carried out through a basket that will carry the specific elements and devices necessary for each job, as well as the technicians who will use them, if necessary.
  • This basket is attached to a robotic arm, which is inside a structural element, which is responsible for the displacement of the robotic arm through the scaffolding tower.
  • the Aspa is lowered to the ground, by means of several large tonnage cranes, which must arrive from the base of the wind turbine to the anchor of the blade, to detach it from the rotor of the wind turbine
  • the work also has to be developed with very high disassembly and assembly costs, in addition to the rental of cranes, also rigging the
  • REPLACEMENT SHEET (Rule 26) decrease in wind turbine energy productivity.
  • the blade once on the ground is repaired, replaced or cleaned according to the anomaly found, being the average time used in this process (depending on the problem), it ranges between 5 and 14 days.
  • the losses of time and material necessary in these works are very high, if compared with the procedure carried out by our invention.
  • the present invention corresponds to a novel system to be able to carry out any type of work on the wind turbine blades without these having to be lowered to the ground, to perform said works.
  • repair-scaffolding tower-scaffold for wind turbines will be able to carry out these maintenance and repair work on the blades, provided that it is located near the wind turbine tower, as described below.
  • REPLACEMENT SHEET (Rule 26) (Fig. 2) (Fig. 3) which must be supported on the firm ground, in order to achieve the total stability of the truck (20) (Fig. 2), (Fig. 3) bearing the first section (25 ) (Fig. 3) of the scaffolding tower (1) (Fig. 1).
  • This truck (20) (Fig. 2), (Fig. 3) for carrying out the works is equipped with a 7500 liter water tank, (34) (Fig. 2), (Fig. 3) a group booster (35) (Fig. 2), (Fig. 3) and a generator set (36) (Fig. 2), (Fig. 3) for the power supply of the electrical system necessary to carry out the work of the Blade cleaning (54) (Fig. 9), (Fig. 10) (Fig. 1 1). It also has a television circuit and a scanner system (37) (Fig.2) (Fig.3), to visualize the blades (54) (Fig.9), all this will be stored through an integrated computer circuit , in which it will remain recorded on the hard disk, to later individualize it on its disk, which will remain stored with No. ... of Wind Turbine, location of the air generator in UTM coordinates. and day of completion of work.
  • the base (24) (Fig. 2) (Fig. 3) (Fig. 4) of the scaffolding tower (l) (Fig. 1), is mounted through a shaft on a fork (22), (Fig .2) (Fig. 3) which is fixed and is attached to the truck chassis (20) (Fig. 2) (Fig. 3).
  • FIG. 2 (Fig. 2) (Fig. 3) (Fig. 4) of the scaffolding tower (l) (Fig. 1) is lifted by means of a rotating pulley system (23) (Fig. 2) (Fig. 3), motorized mounted to the truck chassis (20) (Fig. 2), (Fig. 3) and to the base (24) (Fig. 2) (Fig. 3) (Fig. 4) of the tower-scaffolding ( 1) (Fig. 1) until reaching its verticality.
  • the base (24) (Fig. 2) (Fig. 3) (Fig. 4) of the scaffolding tower (1) (Fig. 1) has a damping system (38) (Fig. 2) (Fig. 3) to brake the pulley system (23) (Fig. 2) (Fig. 3), so that once it has reached its working position it is locked.
  • the base (24) (Fig.2) (Fig.3) (Fig.4) of the scaffolding tower (l) (Fig.1) will reach its working position when it comes into contact with the wind turbine mast (31) (Fig. 1) (Fig. 2) (Fig. 3) (Fig. 5)
  • the base (24) (Fig. 1) (Fig. 2) (Fig. 3) (Fig. 4) (Fig. 5) of the scaffolding tower (l) (Fig. 1) is formed by a section of structure metal 10 meters high, the last 2 meters of the base (24) (Fig. 2) (Fig. 3) (Fig. 4) of the scaffolding tower (1) (Fig. 1) on all sides or closed sides (39) (Fig. 4); however, the remaining 8 meters are open (40) (Fig. 4) by one of its sides (through which the different sections (19) (Fig. 5) that make up the scaffolding tower (1) will be introduced (Fig. .one ).
  • a fixed platform (27) will be placed ( Fig. 2) (Fig. 3) which is accessed by a safety ladder (28) (Fig. 2) (Fig. 3) (Fig. 4) installed on the side of the base (24) (Fig. 2) (Fig. 3) (Fig. 4) of the scaffolding tower (1) (Fig. 1), this fixed platform (27) (Fig. 2) (Fig. 3), helps us to perform the work to assemble and assemble all the components of the scaffolding tower (l) (Fig. 1).
  • the inside corners of the base (24) (Fig. 2) (Fig. 3) (Fig. 4) of the scaffolding tower (1) (Fig. 1) are of cylindrical structure (18) (Fig. 4), for that they can turn the 12 convex guide wheels (17) (Fig. 4) that are attached to the corners of the base (24) (Fig. 2) (Fig. 3) (Fig. 4) of the scaffolding tower ( 1) (Fig. 1) which are held by a rectangular structure (41) (Fig. 4), being three per corner.
  • These wheels will serve to help the reduction motors (26) (Fig. 4) in the displacement of the inner sections (19) (Fig. 5).
  • the sections (19) (Fig. 5) that are introduced into the base (24) (Fig. 2) (Fig. 3) (Fig. 4) of the scaffolding tower (1) (Fig. 1), as well as The base (24) (Fig. 2) (Fig. 3) (Fig. 4) of the scaffolding tower (1) (Fig. 1), are composed of a quadrangular metal structure 7.5 meters high, which is It is closed (42) (Fig. 5) on three sides and being part of an open side (43) (Fig. 5). At the ends of these sides we will find cylindrical tubes (44) (Fig. 5) that will facilitate the passage and help us to stiffen the structure of the scaffolding tower (1) (Fig. 1), to the working step of the system of displacement (12) (Fig. 6) of the robotic arm (13) (Fig. 7) (Fig. 8).
  • the inner (45) (Fig. 5) and outer (46) (Fig. 5) corners of these sections are cylindrical in structure; the outer cylindrical corners (46) (Fig. 5) help us to turn on them the 12 convex wheels (17) (Fig. 4) that have the corners of the base coupled (24) (Fig. 2) (Fig. 2) (Fig. 2) .3) (Fig. 4) of the scaffolding tower (1) (Fig. 1) which are coupled to a rectangular structure.
  • the sections (1 9) (Fig. 5) introduced have a double zipper (1 6) on their left and right sides (Fig. 5) which is the one that will be used for lifting.
  • these sections (1 9) (Fig. 5) have a zip inside (16) (Fig. 5) on the left and right side which is used to move the displacement structure (12) internally (Fig. 6) ) of the robotic arm (13) (Fig. 7) (Fig. 8)
  • this first section (25) (Fig. 3) incorporates the structural displacement section (12) (Fig. 6) of the robotic arm (13) (Fig. 7) (Fig. 8), with is included
  • the structural displacement section (12) (Fig. 6) of the robotic arm (13) (Fig. 7) (Fig. 8), is composed of a 6-meter high quadrangular metal structure, the first 2 meters and the last of the section of the structural displacement element (12) (Fig. 6) on all its closed sides (48) (Fig. 6); however, the remaining 3 meters are open (49) (Fig. 6) on one of its sides, through which the robotic arm (13) (Fig. 7) (Fig. 8) that holds the basket (1) will have movement 1) (Fig. 9) (Fig. 10) (Fig. 1 1)
  • the corners of the structural displacement section (12) (Fig. 6) of the robotic arm (13) (Fig. 7) (Fig. 8) are cylindrical in shape (50) (Fig. 8) and serve to make they can turn the 12 convex wheels (47) (Fig. 5) that have the corners of all the sections (19) coupled (Fig. 5) that make up the tower-scaffold (1) (Fig. 1) and therefore facilitate the displacement of the bearing section of the robotic arm (13) (Fig. 7) (Fig. 8) inside the scaffolding tower (1) (Fig. 1).
  • the structural displacement section (12) (Fig. 6) with the robotic arm (13) (Fig. 7) (Fig. 8), being inside the first section (25) (Fig. 3) of assembly of the base (24) (Fig. 2) (Fig. 3) (Fig. 4) of the scaffolding tower (1) (Fig. 1), will rise in height as sections (19) are coupled (Fig. 3) from the bottom of the base (24) (Fig. 2) (Fig. 3) (Fig. 4) of the scaffolding tower (1) (Fig. 1), until it reaches the desired height (Fig. 1).
  • the structural displacement section (12) (Fig. 6) with the robotic arm (13) (Fig. 7) (Fig. 8) will be lowered to the base head (24) (Fig. 2) (Fig. 3) (Fig. 4) of the scaffolding tower (1) (Fig. 1).
  • the sections (1 9) (Fig. 5) of the scaffolding tower (1) (Fig. 1) will carry the winds (32) (Fig. 1), adhesive wheels (29) (Fig. 1) (Fig. 5) ) and electromagnets (30) (Fig. 1) (Fig. 5) that are necessary for its stabilization and work safety.
  • These winds (32) (Fig. 1) as well as the sticker wheels (29) (Fig. 1) (Fig. 5) and electromagnets (30) (Fig. 1) (Fig. 5) will be mounted in unison hoisting the scaffolding tower (1) (Fig. 1).
  • the winds (32) (Fig. 1) will be previously set to
  • REPLACEMENT SHEET (Rule 26) a hydraulic turbine system with working tension which is fixed to the ground by means of a foundation using it as wind anchor (33) (Fig. 1). Before lowering the robotic arm (13) (Fig. 7) (Fig. 8).
  • the structural displacement section (12) (Fig. 6) is moved by means of two reduction motors (1 5) (Fig. 6) (Fig. 7) (Fig. 8) that are coupled to the structure of this section.
  • the reduction motors (15) (Fig. 6) (Fig. 7) (Fig. 8) that have crowns (52) incorporated (Fig. 6) (Fig. 7) (Fig. 8) will be responsible for carrying out the displacement through the zippers (16) (Fig. 5) existing in the sections (19) (Fig. 5) of the scaffolding tower (1) (Fig. 1).
  • FIG. 7 (Fig. 8) incorporates a structure with rotating wheels (51) (Fig. 8) that will be hugging and moving through the outer cylindrical tubes (44) (Fig. 5) of the part open (43) (Fig. 5) of the scaffolding tower (1) (Fig. 1) thus achieving the work stiffening of both the tower and the robotic arm (13) (Fig. 7) (Fig. 8) ).
  • the robotic arm (13) (Fig. 7) (Fig. 8) will be placed horizontally to be able to attach the work basket (1 1) (Fig. 9) (Fig. 10) (Fig. 1).
  • the robotic arm (13) (Fig. 7) (Fig. 8) can perform the vertical displacement maneuvers thanks to its serrated rotation system crowns (53) (Fig. 6) (Fig. 7) (Fig. 8) which carries inside the displacement structure (12) (Fig. 6), which is attached to this arm (13), this crown of the turning system (53) (Fig. 7) (Fig. 8) ( Fig. 9) carries out its movements through two reducing motors (14) (Fig. 6) (Fig. 8) with brakes that transmit their energy through crowns.
  • This robotic arm (13) (Fig. 7) (Fig. 8) and the crown of the turning system (53) (Fig. 6) (Fig. 7) (Fig. 8) of movement have a connecting rod system automatic leveling (2) (Fig. 7) to always achieve the horizontality of the basket (1 1) (Fig. 9) which will be unified to this robotic arm (13) (Fig. 7) (Fig. 8)
  • the basket (1 1) (Fig. 9) that is unified to the robotic arm (13) (Fig. 7) (Fig. 8), is a metal structure that is composed of several sections (3)
  • REPLACEMENT SHEET (Rule 26) (Fig. 9) coupled to each other, by tapered bearings (4) (Fig. 9) and turning crowns (55) (Fig. 9), you can also adopt any shape or figure according to the needs for performing the work (Fig. .9) (Fig. 10). (Fig. 1 1).
  • the Basket (1 1) (Fig. 9) (Fig. 10) (Fig. 1 1) also has a semi-automatic manual system with safety sensors (10) (Fig. 9) so as not to damage the blades (54) (Fig. .9) (Fig. 10) (Fig. 1 1) of the wind turbine.
  • the safety of workers is considered a priority, since if for any circumstance or reason they had to move the basket (1 1) (Fig. 1) (from where they work) of the trajectory of the blades ( 54) (Fig. 1), could be carried out quickly and in the most effective way depending on the circumstances.
  • One of the new accessories incorporated to the scaffolding tower (60) (Fig. 12), is the collar-clamp with gangway (56), (Fig. 12, 13,14), which is incorporated into the first section (61) (Fig. 12, 13) of the scaffolding tower (60) (Fig. 12). It is formed by two symmetrical metal structures, of variable shape, which are coupled in parallel to the perimeter of the tower-mast (62) (Fig. 12) of the wind turbine, in addition they possess these tornapuntas (57) (Fig. 12, 13 , 14), thus achieving maximum stability and security.
  • the structure of the collar-clamp with gangway (56) (Fig. 12, 13,14), has adhesive wheels (58) (Fig. 12, 13,14), placed in the upper and lower part of it.
  • the wheels have a pneumatic system controlled by a pressure regulator (59), (Fig. 12, 13), to achieve balance and stabilization of the scaffolding tower (60) (Fig. 12), in its self-assembly movement on the mast tower (62) (Fig. 12), to achieve its different working positions.
  • FIG. 12 Another new accessory of the scaffolding tower is the collar-clamp without gangway (68) (Fig. 12), which are incorporated in the upper part of the base (69) (Fig. 12) of the scaffolding tower (60) ( Fig. 12) and in how many sections (70) (Fig. 12) of this are necessary.
  • This accessory is formed by two symmetrical metal structures, of variable shape, which are coupled in parallel to the perimeter of the mast tower (62) (Fig. 12) of the wind turbine.
  • the structure of the collar-clamp (68) (Fig. 12), carries stickers wheels (58) (Fig. 12) placed on the top and bottom of it.
  • the wheels have a pneumatic system (59) (Fig. 12) controlled by a pressure regulator, to achieve the balance and stabilization of the scaffolding tower (60) (Fig. 12), in its displacement of self-assembly on the tower - mast (62) (Fig. 12).
  • the robotic arm (71) (Fig. 15) inside the structural displacement section (72) (Fig. 15) is assembled by penetrating a structural piece in the form of "L" (73), secured by pin (74) (Fig. 15).
  • the robotic arm displacement system (72) (Fig. 15) will be lowered to the base head (69) (Fig. 12) of the scaffolding tower (60) (Fig. 12); the robotic arm (71) (Fig.15) will be placed in a horizontal position and part of the robotic arm (75) (Fig.15) where the basket for work on the blades was connected is removed.
  • a walkway (78) (Fig. 1 5) will be placed to step on, formed by a light metal structure of variable shape, with railings (63) (Fig. 13), skirting boards (64)
  • REPLACEMENT SHEET (Rule 26) (Fig. 13) of safety, and the different supports for the installation of the different cleaning systems (65) (Fig. 14), scanned (66) (Fig. 14), photographed (67) (Fig. 14) and repairs in general.
  • the walkway (78) (Fig. 13, 14)
  • has a complementary walkway (79) (Fig. 13, 14) that will facilitate the passage of workers from it to the clamp collar with gangway and vice versa.
  • the gangway of the robotic arm in the "L" shape (73) (Fig. 15) has a spindle (81) (Fig. 13, 14), thus achieving maximum stability and safety.
  • Figure 1 Scaffolding tower, repair-cleaner for wind turbines.
  • Figure 2 Positioning of the base of the tower - scaffolding at the foot of the wind turbine, with all its components.
  • Figure 3 Positioning of the base of the tower - scaffolding at the foot of the wind turbine, with elevation of the first section with all its components.
  • Figure 4 Plan and front elevation of the base of the tower-Scaffolding where the sections that make up the tower-scaffolding are introduced
  • Figure 5 Plan and front elevation of the sections of the tower-scaffolding.
  • Figure 6 Structural section of movement seen from the front with a robotic arm.
  • Figure 7 Structural section of movement seen from the right side with robotic arm.
  • Figure 8 Structural section of movement seen on the floor with robotic arm.
  • Figure 9 Plan view of the Scaffolding Tower, repair-cleaner for wind turbines, with position of the sections of the basket in the realization of the different works on the blades.
  • Figure 10 Plan view of the scaffolding tower, repair-cleaner for wind turbines, with position of the sections of the basket in the realization of the different works on the blades.
  • Figure 1 1 Plan view of the scaffolding tower, repair-cleaner for wind turbines, with different positions of the sections that make up the basket, until its total opening.
  • Figure 12 Scaffolding tower, repair-cleaner for wind turbines with new built-in accessories, collar-clamp with gangway, robotic L-arm with gangway and collar-clamp without gangway.
  • Figure 13 Elevation view of the position of the robotic arm with gangway in carrying out the different works on the gondola.
  • Figure 14 Plan view of the position of the robotic arm with gangway in carrying out the different works on the gondola.
  • Figure 15 Structural section of movement, seen from the right side, with robotic arm in L.

Abstract

Es una torre andamio, reparadora-limpiadora para aerogeneradores eólicos, de estructura metálica, abierta y cerrada, semiautomática, con brazo robotizado que sostiene una canasta de forma y figura variable desde tres hasta infinitos lados, según necesidades. Teniendo un dispositivo de seguridad dicha canasta para su retirada inmediata de la afección de las palas. Además al brazo robotizado se le adapta una pieza estructural en forma de "L" que sostiene una pasarela para mantenimiento de la góndola. A la torre andamio, reparadora-limpiadora lleva un collarín-abrazadera con pasarela para mantenimiento de la torre mástil y varios collarines-abrazaderas sin pasarela para estabilidad de la torre-andamio.

Description

Torre andamio reparadora-limpiadora para aerogeneradores eólicos.
Sector de la Técnica
La invención se encuadra en el procedimiento técnico por el cual se pueden llevar a cabo las tareas de mantenimiento, reparación , limpieza y todos los trabajos que fueran necesarios sobre las aspas de los aerogeneradores eólicos a través de una canasta que portará los elementos y dispositivos específicos necesarios para cada trabajo, así como a los técnicos que los utilizarán, si es que fuese necesario.
Esta canasta se encuentra unida a un brazo robotizado, el cual se encuentra en el interior de un elemento estructural, que es el encargado del desplazamiento del brazo robotizado a través de la torre-andamio.
Además, gracias a los nuevos accesorios incorporados a la torre-andamio como son el collarín-abrazadera con pasarela y sin pasarela y la cesta en el nuevo acople del brazo robotizado podremos realizar todos los trabajos necesarios sobre el mástil y la góndola del aerogenerador respectivamente.
Estado de la Técnica
Debido a la necesidad de mantener en óptimas condiciones las aspas de los aerogeneradores eólicos y por su elevado coste de reparación en general, es por lo que creemos necesario la técnica que después de la actual, describiremos.
En la actualidad se conocen varios procedimientos por los cuales se llevan a cabo los trabajos de mantenimiento, reparación y limpieza de las Aspas de los Aerogeneradores Eólicos.
Una vez es tomada la decisión de la reparación, mantenimiento o limpieza, el Aspa es bajada al suelo, por medio de varias grúas de gran tonelaje, que han de llegar desde la base del aerogenerador hasta el anclaje del aspa, para desprenderla del rotor del aerogenerador.
Es obvio entender que este proceso se lleva a cabo después de parar dicho aerogenerador para poder bajar el aspa al suelo.
El trabajo además, ha de ser desarrollado con elevad ísimos costes de desmontaje y montaje, además del alquiler de las grúas, aparejando igualmente la
HOJA DE REEMPLAZO (Regla 26) disminución de la productividad energética del aerogenerador. El aspa una vez en el suelo es reparada, sustituida o limpiada según la anomalía encontrada, siendo el tiempo medio que se utiliza en este proceso (dependiendo del problema), oscila entre 5 y 14 días. Así las pérdidas de tiempo y material necesario en estos trabajos son altísimas, si se comparan con el procedimiento llevado a cabo por nuestro invento.
Por consiguiente, también adaptamos estos nuevos accesorios para mantener en óptimas condiciones el mástil y la góndola del aerogenerador.
Con nuestro invento se desplazarían los técnicos que realizarían los trabajos oportunos para solucionar las distintas anomalías encontradas (sin hablar de la disminución de los posibles riesgos asociados, por no haber tenido el mantenimiento Preventivo), consiguiéndose una verdadera disminución de costes dado el mayor rendimiento- hora del aerogenerador al no tener que estar inactivo tanto tiempo.
Descripción de la Invención.
La presente invención corresponde a un sistema novedoso para poder realizar cualquier tipo de trabajo sobre las aspas de los aerogeneradores eólicos sin que estas tengan que ser bajadas al suelo, para realizar dichos trabajos.
El nuevo sistema denominado torre-andamio reparadora-limpiadora para aerogeneradores eólicos, podrá llevar a cabo estos trabajos de mantenimiento y reparación de las aspas, siempre que esta se sitúe cerca de la torre del aerogenerador eólico, como se describe a continuación.
Además, al adaptar a la torre-andamio reparadora-limpiadora los nuevos accesorios, también podremos mantener y reparar el mástil así como la góndola del aerogenerador.
La base (24) (Fig.2)(Fig.3)(Fig.4) de la torre andamio (1 )(Fig.1 ), va situado sobre un camión especial (20) (Fig.2), (Fig.3) , este camión (20) (Fig.2), (Fig.3) posee las siguientes características:
Posee un sistema de nivelación hidráulica (21 )(Fig.2)(Fig.3) que consiste en unos brazos extensibles que salen de la estructura del propio camión(20)
HOJA DE REEMPLAZO (Regla 26) (Fig.2)(Fig.3) los cuales se deben de apoyar sobre el terreno firme, para con ello conseguir la estabilidad total del camión(20) (Fig.2), (Fig.3) portante del primer tramo (25) (Fig.3) de la torre andamio(1 ) (Fig .1 ).
Este camión(20) (Fig.2), (Fig.3) para la realización de los trabajos, esta equipado con un depósito de agua de 7500 litros, (34) (Fig.2), (Fig.3) un grupo elevador de presión (35) (Fig.2), (Fig.3) y un grupo electrógeno (36) (Fig.2), (Fig.3) para la alimentación del sistema eléctrico necesario para la realización de los trabajos de la limpieza de las aspas(54) (Fig.9), (Fig.10) (Fig.1 1 ). Además posee un circuito de televisión y un sistema de escáner(37)(Fig.2)(Fig.3), para visualizar las aspas(54)(Fig.9), todo ello se almacenará a través de un circuito integrado de ordenador, en el cual permanecerá grabado en el disco duro, para posteriormente individualizarlo en su disco, que permanecerá almacenado con n°... de Aerogenerador, situación del aereogenador en coordenadas UTM. y día de la realización de los trabajos.
La base (24)(Fig.2)(Fig.3)(Fig .4) de la torre-andamio(l ) (Fig.1 ), va montada a través de un eje en una horquilla (22), (Fig.2)(Fig.3) que es fija y esta unida al chasis del camión (20)(Fig.2) (Fig.3).
Esta horquilla, (22)(Fig.2)(Fig.3) sobre la que girara, la base(24)
(Fig.2)(Fig.3)(Fig.4) de la torre-andamio(l ) (Fig.1 ) es izada por medio de un sistema de poleas de giro (23)(Fig.2)(Fig.3), motororizadas adosada al chasis del camión (20) (Fig .2), (Fig.3) y a la base(24)(Fig.2)(Fig.3)(Fig.4) de la torre- andamio(1 ) (Fig.1 ) hasta alcanzar su verticalidad.
La base (24)(Fig.2)(Fig. 3)(Fig 4) de la torre-andamio (1 ) (Fig.1 ) posee un sistema de amortiguación (38) (Fig.2) (Fig.3) para frenar el sistema de poleas de giro(23)(Fig.2)(Fig.3), para que una vez haya alcanzado su posición de trabajo esta sea bloqueada.
La base (24)(Fig.2)(Fig.3)(Fig.4) de la torre-andamio(l ) (Fig.1 ) alcanzará su posición de trabajo cuando entre en contacto con el mástil del aerogenerador (31 ) (Fig.1 )(Fig.2) (Fig.3) (Fig.5)
Este contacto se realiza por medio de unas ruedas engomadas (29) (Fig.1 ) (Fig.5) que están situadas en la parte superior del primer tramo (25) (Fig.3) de la torre- andamio (1 ) (Fig.1 ), estas ruedas están colocadas con un grado de giro para poder abrazar el mástil del aerogenerador (31 ) (Fig.1 ).
HOJA DE REEMPLAZO (Regla 26) La base (24) (Fig.1 ) (Fig.2)(Fig.3)(Fig.4)(Fig.5) de la torre-andamio(l ) (Fig .1 ) está formada por un tramo de estructura metálica de 10 metros de altura, estando los 2 últimos metros de la base(24)(Fig.2)(Fig.3)(Fig.4) de la torre andamio (1 ) (Fig.1 ) por todos sus lados o laterales cerrados (39) (Fig.4); si embargo los 8 metros restantes se encuentran abiertos (40)(Fig.4) por uno de sus laterales (por el cual serán introducidos los diferentes tramos (19)(Fig.5) que componen la torre-andamio (1 ) (Fig.1 ).
Exteriormente en los dos últimos metros cerrados de la base (24)(Fig.2)(Fig.3)(Fig.4) de la torre-andamio(l ) (Fig.1 ) se colocará una plataforma fija (27) (Fig.2)(Fig.3) a la cual se accede mediante una escalera de seguridad(28)(Fig.2)(Fig.3)(Fig.4)instalada en el lateral de la base(24)(Fig.2)(Fig.3)(Fig. 4) de la torre-andamio (1 )(Fig. 1 ), esta plataforma fija (27) (Fig .2) (Fig.3), nos sirve para poder realizar los trabajos de ensamblar y montar todos los componentes de la torre-andamio(l ) (Fig.1 ).
La esquinas interiores de la base(24) (Fig.2)(Fig.3)(Fig.4) de la torre andamio (1 ) (Fig.1 ) son de estructura cilindrica (18) (Fig.4), para que sobre ellas puedan girar las 12 ruedas convexas guías (17)(Fig.4) que lleva acopladas en las esquinas de la base(24)(Fig.2)(Fig.3)(Fig.4) de la torre andamio(1 ) (Fig.1 ) las cuales se encuentran sujetas mediante una estructura rectangular (41 ) (Fig.4), encontrándose tres por esquina. Estas ruedas servirán para ayudar a los motores reductores (26) (Fig.4) en el desplazamiento de los tramos (19)(Fig.5) de montaje interiores.
Los tramos (19)(Fig.5) metálicos de la torre andamio(1 ) que se introducen a través de la base (24)(Fig.2)(Fig.3)(Fig.4) de la torre andamio(1 ) (Fig.1 ) para posteriormente ser izados por medio de cuatro motores reductores (26) (Fig.4), los cuales se encuentran situados en la parte superior de la base (24) (Fig.2)(Fig.3)(Fig.4) de la torre andamio (1 ) (Fig.1 justamente alojados en los dos laterales contiguos a la zona abierta de la base(24) (Fig.2)(Fig.3)(Fig.4) de la torre andamio(1 ) (Fig.1 );
Estos tramos (1 9)(Fig.5) de la torre andamio(1 )serán izados por los motores (26) (Fig.4) situados en cabeza de la base(24)(Fig.2)(Fig.3)(Fig.4) de la torre andamio (1 ) (Fig.1 ), por medio del sistema de cremallera (16)(Fig.5).
HOJA DE REEMPLAZO (Regla 26) Los tramos(19)(Fig.5) que son introducidos en la base(24)(Fig.2)(Fig.3)(Fig. 4) de la torre andamio (1 ) (Fig.1 ), al igual que la base(24) (Fig.2)(Fig.3)(Fig.4) de la torre andamio(1 ) (Fig.1 ), están compuestos por una estructura metálica cuadrangular de 7,5 metros de altura, que se encuentra cerrada(42) (Fig.5) por tres de sus lados y siendo parte de un lateral abierto(43) (Fig.5). En los extremos de estos laterales nos encontraremos unos tubos cil indricos (44)(Fig.5) que facilitarán el paso y nos ayudaran a rigidizar la estructura de la torre andamio(1 ) (Fig.1 ), al paso de trabajo del sistema de desplazamiento (12)(Fig.6) del brazo robotizado (13) (Fig.7)(Fig.8) .
Las esquinas interiores(45) (Fig.5) y exteriores(46) (Fig.5) de estos tramos son de estructura cil indrica; las esquinas cilindricas exteriores(46) (Fig.5) nos sirven para que sobre ellas puedan girar las 12 ruedas convexas(17)(Fig.4) que lleva acopladas las esquinas de la base(24)(Fig.2)(Fig.3)(Fig.4) de la torre andamio (1 ) (Fig.1 ) las cuales se encuentran acopladas a una estructura rectangular.
Los tramos (1 9)(Fig.5) introducidos llevan en sus laterales izquierdo y derecho insertados una doble cremallera (1 6)(Fig.5) que es la que se usará para su elevación.
Además estos tramos (1 9)(Fig.5) llevan interiormente una cremallera (16)(Fig.5) en el lateral izquierdo y derecho que es la que sirve para poder mover interiormente la estructura de desplazamiento (12) (Fig.6) del brazo robotizado (13) (Fig.7)(Fig .8)
El primer tramo (25) (Fig.3) que será izado por el interior de la base (24) (Fig.2)(Fig.3)(Fig.4) de la torre andamio(1 ) (Fig.1 ), viene ubicado ya en el interior de esta. (Fig.2) (Fig.3)
En la parte superior de este primer tramo (25) (Fig.3) llevará acopladas exteriormente dos ruedas engomadas (29) (Fig.1 ) (Fig.5) colocadas con un grado de giro para poder abrazar el mástil del aerogenerador (31 ) (Fig.1 ) y un electroimán (30) (Fig.1 ) (Fig.5) para acople a la torre del Aerogenerador (31 ) (Fig.1 ).
A su vez este primer tramo (25) (Fig.3) lleva incorporado en su interior el tramo estructural de desplazamiento (12) (Fig.6) del brazo robotizado (13) (Fig.7)(Fig.8), con este incluido.
HOJA DE REEMPLAZO (Regla 26) El tramo estructural de desplazamiento (12) (Fig.6) del brazo robotizado (13) (Fig.7)(Fig.8), esta compuesto por una estructura cuadrangular metálica de 6 metros de altura , siendo los 2 primeros metros y el ultimo del tramo del elemento estructural de desplazamiento (12) (Fig.6) por todos sus lados cerrados (48) (Fig.6); si embargo los 3 metros restantes se encuentran abiertos (49) (Fig.6) por uno de sus lados, por el cual tendrá movimiento el brazo robotizado (13) (Fig.7)(Fig.8) que sostiene la canasta(1 1 ) (Fig.9) (Fig.10) (Fig.1 1 )
Las esquinas del tramo estructural de desplazamiento (12) (Fig.6) del brazo robotizado (13) (Fig.7)(Fig.8) son de forma cil indrica (50) (Fig.8) y nos sirven para que sobre ellas puedan girar las 12 ruedas convexas (47) (Fig.5)que lleva acopladas las esquinas de todos los tramos (19)(Fig.5) que componen la torre- andamio(1 ) (Fig.1 ) y por tanto faciliten el desplazamiento del tramo portante del brazo robotizado (13) (Fig.7)(Fig.8) por el interior de la torre andamio(1 ) (Fig.1 ).
Estas 12 ruedas interiores (47)(Fig.5) están repartidas uniformemente en las cuatro esquinas interiores de cada tramo (47)(Fig.5) de la torre andamio (1 ) (Fig.1 ), es decir nos encontraremos tres ruedas (47)(Fig.5) por esquina de cada tramo (19)(Fig.5) de torre-andamio(l ) (Fig.1 )
El tramo estructural de desplazamiento(12) (Fig.6) con el brazo robotizado(13) (Fig.7)(Fig.8), al estar en el interior del primer tramo(25) (Fig.3) de montaje de la base(24) (Fig.2)(Fig.3)(Fig.4) de la torre andamio(1 ) (Fig.1 ), irá subiendo en altura conforme se vayan acoplando tramos (19)(Fig.3) por la parte inferior de la base(24) (Fig .2)(Fig.3)(Fig.4) de la torre andamio(1 ) (Fig.1 ), hasta llegar a la altura deseada(Fig.l ).
Una vez la torre-andamio (1 ) (Fig.1 ) halla alcanzado la altura deseada de trabajo (Fig.1 ), el tramo estructural de desplazamiento (12) (Fig.6) con el brazo robotizado (13) (Fig.7) (Fig .8) será bajado hasta la cabeza de la base (24) (Fig.2)(Fig.3)(Fig.4) de la torre andamio(1 ) (Fig.1 ).
Los tramos (1 9) (Fig.5) de la torre-andamio (1 ) (Fig.1 ) llevarán los vientos (32) (Fig.1 ), ruedas engomadas (29) (Fig.1 ) (Fig.5) y electroimanes (30) (Fig.1 ) (Fig.5) que sean necesarios para su estabilización y seguridad de trabajo. Estos vientos (32) (Fig .1 ) al igual que las ruedas engomadas (29) (Fig.1 ) (Fig.5) y electroimanes (30) (Fig.1 ) (Fig.5) se irán montando al unísono del izado de la torre-andamio (1 ) (Fig.1 ). Los vientos (32) (Fig.1 ), previamente estarán fijados a
HOJA DE REEMPLAZO (Regla 26) un sistema de turbina hidráulica con tensión de trabajo la cual se encuentra fijada al terreno por medio de una cimentación usándola como anclaje de los vientos (33) (Fig.1 ). Antes de la bajada del brazo robotizado (13) (Fig.7) (Fig.8).
El tramo estructural de desplazamiento (12) (Fig.6) se desplaza por medio de dos motores reductores (1 5)(Fig.6)(Fig.7)(Fig.8) que van acoplados a la estructura de este tramo. Los motores reductores (15) (Fig.6) (Fig.7) (Fig.8) que llevan incorporadas unas coronas (52) (Fig.6) (Fig.7) (Fig.8) serán las encargadas de realizar el desplazamiento por las cremalleras (16)(Fig.5) existentes en los tramos (19)(Fig .5) de la torre andamio (1 ) (Fig.1 ).
El sistema estructural de desplazamiento (12) (Fig.6) del brazo robotizado
(13) (Fig.7)(Fig.8) lleva incorporada una estructura con ruedas giratororias (51 ) (Fig.8) que Irán abrazando y desplazándose por los tubos cil indricos exteriores (44) (Fig .5) de la parte abierta (43) (Fig.5) de la torre andamio (1 ) (Fig.1 ) consiguiendo de esta manera la rigidización de trabajo tanto de la torre como la del brazo robotizado(13) (Fig.7)(Fig.8).
Una vez situada en la parte superior de la base (24) (Fig.2) (Fig.3) (Fig.4) de la torre andamio (1 ) (Fig.1 ), el brazo robotizado (13) (Fig.7) (Fig.8) se colocara en posición horizontal para poderle acoplar la canasta (1 1 ) de trabajo (Fig. 9) (Fig. 10) (Fig.1 1 ).
El brazo robotizado (13) (Fig .7)(Fig.8) puede realizar las maniobras de desplazamiento vertical gracias a sus coronas del sistema de giro (53) dentadas (Fig.6)(Fig.7)(Fig.8) que lleva en el interior de la estructura de desplazamiento(12) (Fig.6), que se encuentra unificada a este brazo(13), esta corona del sistema de giro (53) (Fig.7) (Fig .8) (Fig.9) realiza sus movimientos a través de dos motores reductores (14) (Fig.6)(Fig .8) con freno que transmiten su energía por medio de coronas .
Este brazo robotizado (13) (Fig.7)(Fig.8) y la corona del sistema de giro (53)(Fig.6)(Fig.7)(Fig.8) de movimiento llevan incorporados un sistema de bielas de nivelación automáticas(2) (Fig.7)para conseguir siempre la horizontalidad de la canasta(1 1 )(Fig.9) la cual será unificada a este brazo robotizado (13) (Fig.7)(Fig.8)
La canasta (1 1 ) (Fig.9) que va unificada al brazo robotizado (13) (Fig.7)(Fig.8), es una estructura metálica que está compuesta de varios tramos(3)
HOJA DE REEMPLAZO (Regla 26) (Fig.9) acoplados entre si, por rodamientos cónicos (4) (Fig.9) y coronas para giros (55) (Fig .9), además podrá adoptar cualquier figura o forma según necesidades para la realización de los trabajos(Fig.9) (Fig.10). (Fig.1 1 ).
Estos tramos (3)(Fig.9)(Fig.10)(Fig.1 1 ) metálicos de figura variable, llevan pasarela (5)(Fig.9)para pisar y barandilla de seguridad (6), (Fig.9)admiten distintos soportes para la instalación de sus diferentes aplicaciones como son:
- Sistema de limpieza (7) (Fig.9)
- Sistema de escaneados (8) (Fig.9)
- Sistema de fotografiado (9) (Fig.9).
- Reparaciones en general.
La Canasta (1 1 ) (Fig.9) (Fig.10) (Fig .1 1 ) además lleva un sistema manual semiautomático con censores de seguridad (10) (Fig.9) para no dañar las aspas (54) (Fig.9) (Fig.10) (Fig.1 1 ) del aerogenerador. De igual forma la seguridad de los trabajadores se ve contemplada de forma prioritaria, ya que si por cualquier circunstancia o motivo tuvieran que desplazar la canasta (1 1 ) (Fig.1 1 ) (desde donde trabajan) de la trayectoria de las aspas (54) (Fig.1 1 ), lo podrían llevar a cabo rápidamente y de la manera más efectiva según las circunstancias.
Uno de los nuevos accesorios incorporados a la torre-andamio (60) (Fig.12), es el collarín-abrazadera con pasarela (56), (Fig.12, 13,14), que es incorporado al primer tramo (61 ) (Fig.12, 13) de la torre-andamio (60) (Fig.12). Esta formado por dos estructuras metálicas simétricas, de forma variable, las cuales se acoplan en paralelo al perímetro de la torre-mástil (62) (Fig.12) del aerogenerador, además poseen estas unos tornapuntas (57) (Fig.12, 13,14), consiguiendo así su máxima estabilidad y seguridad.
La estructura del collarín-abrazadera con pasarela (56) (Fig.12, 13,14), posee unas ruedas engomadas (58) (Fig.12, 13,14), colocadas en la parte superior e inferior de esta. Las ruedas poseen un sistema neumático controlado por un regulador de presión (59), (Fig.12, 13), para conseguir el equilibrio y estabilización de la torre-andamio (60) (Fig.12), en su desplazamiento de auto montaje sobre la torre- mástil (62) (Fig.12), para conseguir sus distintas posiciones de trabajo.
La estructura del collarín-abrazadera con pasarela (56) (Fig.12, 13,14), para pisar, además posee barandillas (63) (Fig.12, 13), rodapiés de seguridad
HOJA DE REEMPLAZO (Regla 26) (64) (Fig.12, 13), y los distintos soportes para la instalación de los diferentes sistemas.
- Sistema de limpieza (65), (Fig.14), escaneados (66), (Fig.14) fotografiado (67) (Fig.14) y reparaciones en general .
Otro nuevo accesorio de la torre-andamio son los collarines-abrazadera sin pasarela (68) (Fig.12), que son incorporados en la parte superior de la base (69) (Fig.12) de la torre andamio (60) (Fig.12) y en cuantos tramos (70) (Fig.12) de esta sean necesarios. Este accesorio esta formado por dos estructuras metálicas simétricas, de forma variable, las cuales se acoplan en paralelo al perímetro de la torre-mástil (62) (Fig.12) del aerogenerador.
La estructura del collarín-abrazadera (68) (Fig.12), porta unas ruedas engomadas (58) (Fig.12) colocadas en la parte superior e inferior de esta. Las ruedas poseen un sistema neumático (59) (Fig.12) controlado por un regulador de presión, para conseguir el equilibrio y estabilización de la torre-andamio (60) (Fig.12), en su desplazamiento de auto montaje sobre la torre- mástil (62) (Fig.12).
El brazo robotizado (71 ) (Fig.15) que se encuentra en el interior del tramo estructural de desplazamiento (72) (Fig.15) se le ensambla mediante penetración una pieza estructural en forma de "L" (73), asegurada por pasador (74) (Fig.15). Para poder realizar esta tarea el sistema de desplazamiento del brazo robotizado (72) (Fig.15), será bajado hasta la cabeza de la base (69) (Fig.12) de la torre andamio (60) (Fig.12); el brazo robotizado (71 ) (Fig.15) se colocará en posición horizontal y se le retira parte del brazo robotizado (75) (Fig.15) donde se conectaba la canasta para trabajos sobre las aspas. Al mismo tiempo se bloquean las coronas del sistema de giro (76) (Fig.15) del brazo robotizado (71 ) (Fig.15) y se le retira el sistema de bielas de nivelación automáticas (77) (Fig.15), consiguiendo así que el brazo robotizado (71 ) (Fig.15) con la pieza estructural en forma de "L"(73) (Fig.15) quede en posición paralela y a una altura idónea para poder realizar los trabajos necesarios en la góndola (80) (Fig.12) del aerogenerador.
En la parte superior del tramo estructural en forma de "L" (73) (Fig.15) se le colocara una pasarela (78) (Fig.1 5) para pisar, formada por una estructura metál ica ligera de forma variable, con barandillas (63) (Fig.13), rodapiés (64)
HOJA DE REEMPLAZO (Regla 26) (Fig.13) de segundad, y los distintos soportes para la instalación de los diferentes sistemas de limpieza (65) (Fig.14) , escaneados (66) (Fig.14) , fotografiado (67) (Fig.14) y reparaciones en general.
Además la pasarela (78) (Fig.13, 14), posee una pasarela complementaria (79) (Fig.13, 14) que facilitara el paso de los trabajadores desde esta al collarín abrazadera con pasarela y viceversa. La pasarela del brazo robotizado en forma "L" (73) (Fig.15) posee unos tornapuntas (81 ) (Fig.13, 14), consiguiendo así su máxima estabilidad y seguridad. Descripción de los dibujos
Para cumplimentar la descripción que se esta realizando y con objeto de ayudar a una mejor compresión de las características del invento, de acuerdo con un ejemplo preferente de realización practica del mismo, se acompaña como parte integral de la descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo se representa lo siguiente:
Figura 1 : Torre andamio, reparadora-limpiadora para aerogeneradores eólicos.
Figura 2: Posicionamiento de la base de la torre - andamio al pie del aerogenerador, con todos sus componentes.
Figura 3: Posicionamiento de la base de la torre - andamio al pie del aerogenerador, con elevación del primer tramo con todos sus componentes.
Figura 4: Planta y alzado frontal de la base de la torre-Andamio por donde son introducidos los tramos que componen la torre- andamio
Figura 5: Planta y alzado frontal de los tramos de la torre-andamio.
Figura 6: Tramo estructural de desplazamiento visto de frente con brazo robotizado.
Figura 7: Tramo estructural de desplazamiento visto desde el lateral derecho con brazo robotizado.
Figura 8: Tramo estructural de desplazamiento visto en planta con brazo robotizado.
Figura 9: Vista en planta de la Torre andamio, reparadora-limpiadora para aerogeneradores eólicos, con posición de los tramos de la canasta en la realización de los diferentes trabajos sobre las aspas.
HOJA DE REEMPLAZO (Regla 26) Figura 10: Vista en planta de la Torre andamio, reparadora-limpiadora para aerogeneradores eólicos, con posición de los tramos de la canasta en la realización de los diferentes trabajos sobre las aspas.
Figura 1 1 : Vista en planta de la Torre andamio, reparadora-limpiadora para aerogeneradores eólicos, con diferentes posiciones de los tramos que componen la canasta, hasta su total apertura.
Figura 12: Torre andamio, reparadora-limpiadora para aerogeneradores eólicos con nuevos accesorios incorporados, el collarín-abrazadera con pasarela, el brazo robotizado en L con pasarela y el collarín-abrazadera sin pasarela.
Figura 13: Vista en alzado, de la posición del brazo robotizado con pasarela en la realización de los diferentes trabajos sobre la góndola.
Y vista en alzado de la posición del collarín-abrazadera con pasarela en la realización de los diferentes trabajos sobre la torre-mástil del aerogenerador. Figura 14: Vista en planta, de la posición del brazo robotizado con pasarela en la realización de los diferentes trabajos sobre la góndola.
Y vista en planta de la posición del collarín-abrazadera con pasarela en la realización de los diferentes trabajos sobre la torre-mástil del aerogenerador. Figura 15: Tramo estructural de desplazamiento, visto desde el lateral derecho, con brazo robotizado en L.
HOJA DE REEMPLAZO (Regla 26)

Claims

Reivindicaciones
1 . Torre andamio reparadora-limpiadora para aerogeneradores eólicos caracterizada porque comprende, la base (24) de la torre-andamio (1 ), tramo estructural de desplazamiento (1 2) del brazo robotizado (13), brazo robotizado(13), la canasta (1 1 ), los vientos (32), anclaje de vientos (33), ruedas engomadas (29) y electroimán (30).
- Base (24) de estructura metálica cerrada(39), con esquinas redondas (18) y con ruedas convexas (1 7) en el interior de su estructura, siendo un lateral abierto (40), para introducir los diferentes tramos (19) de la torre andamio(1 ), de estructura metál ica cerrada (42), con esquinas redondas (45,46) y ruedas convexas (47) en el interior del tramo, este tiene un lateral abierto (43) siendo los extremos de forma cil indrica (44) para el paso de las ruedas (51 ) del tramo estructural de desplazamiento (12).
-Tramo estructural de desplazamiento (12) que se desplaza por el interior de la torre-andamio (1 ) y consta de la estructura metálica cerrada (48), y tiene un lateral abierto (49), con esquinas redondas (50), sistema de cremallera (16), motores (15) y coronas (52). El lateral abierto (49), permite el movimiento del brazo robotizado (13).
- Brazo robotizado que consta de corona del sistema de giro (53) y sistema de bielas de nivelación automáticas (2).
-Canasta (1 1 ) compuesta por sistema manual semiautomático de seguridad (10) para los trabajadores y las aspas (54) y varios tramos (3) de estructura metálica acoplados entre si, por rodamientos cónicos (4) y coronas para giros (55) que se acoplan paralelamente al aspa. Los tramos (3), constan de una pasarela (5), elementos de seguridad (6), y los sistemas de limpieza (7), sistemas de escaneo (8) y sistema de fotografiado (9).
-Pieza estructural en forma de "L" (73), que se ensambla mediante penetración en el brazo robotizado (71 ) que se encuentra en el interior del tramo estructural de desplazamiento (72) y se asegura mediante pasador (74).
- Pasarela(78) para pisar, se colocará en la parte superior del tramo estructural en forma de "L" (73) , formada por una estructura metálica ligera de forma variable, que consta de barandillas (63) , rodapiés (64) de seguridad, y los diferentes sistemas de limpieza (65) , sistemas de escaneado(66), sistemas de fotografiado
HOJA DE REEMPLAZO (Regla 26) (67). Además la pasarela (78), posee una pasarela complementaria (79) que facilita el acceso, desde esta, al collarín abrazadera con pasarela y viceversa. La pasarela del brazo robotizado en forma "L" (73) posee unos tornapuntas (81 ) consiguiendo así su máxima estabilidad y seguridad.
-Collarín-abrazadera con pasarela (56), formado por dos estructuras metálicas simétricas, de forma variable, con unos tornapuntas (57). La estructura posee unas ruedas engomadas (58), en la parte superior e inferior de esta, con un sistema neumático controlado por un regulador de presión (59), para conseguir el equilibrio y estabilización de la torre-andamio (60), en su desplazamiento de auto montaje sobre la torre- mástil (62). La estructura posee una pasarela (56), para pisar, barandillas (63), rodapiés de seguridad (64) y los diferentes sistemas de limpieza (65), sistemas de escaneado (66) y sistemas de fotografiado (67).
-Collarín-abrazadera sin pasarela (68), formado por dos estructuras metálicas simétricas, de forma variable, que se acoplan en paralelo al perímetro de la torre- mástil (62) del aerogenerador, incorporados en la parte superior de la base (69) y en cuantos tramos (70) de de la torre andamio (60) sean necesarios.
La estructura, porta unas ruedas engomadas (58) colocadas en la parte superior e inferior de esta. Las ruedas poseen un sistema neumático (59) controlado por un regulador de presión, para conseguir el equilibrio y estabilización de la torre- andamio (60), en su desplazamiento de auto montaje sobre la torre- mástil (62).
HOJA DE REEMPLAZO (Regla 26)
PCT/ES2011/000134 2011-04-14 2011-04-14 Torre andamio reparadora-limpiadora para aerogeneradores eólicos. WO2012140278A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11863488.0A EP2698528A4 (en) 2011-04-14 2011-04-14 REPAIRING-CLEANING SCAFFOLDING TOWER FOR WIND TURBINES
PCT/ES2011/000134 WO2012140278A1 (es) 2011-04-14 2011-04-14 Torre andamio reparadora-limpiadora para aerogeneradores eólicos.
MX2013012043A MX2013012043A (es) 2011-04-14 2011-04-14 Torre andamio reparadora-limpiadora para aerogeneradores eolicos.
US14/111,920 US20140034418A1 (en) 2011-04-14 2011-04-14 Repair/cleaning scaffolding tower for wind turbines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/000134 WO2012140278A1 (es) 2011-04-14 2011-04-14 Torre andamio reparadora-limpiadora para aerogeneradores eólicos.

Publications (1)

Publication Number Publication Date
WO2012140278A1 true WO2012140278A1 (es) 2012-10-18

Family

ID=47008856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000134 WO2012140278A1 (es) 2011-04-14 2011-04-14 Torre andamio reparadora-limpiadora para aerogeneradores eólicos.

Country Status (4)

Country Link
US (1) US20140034418A1 (es)
EP (1) EP2698528A4 (es)
MX (1) MX2013012043A (es)
WO (1) WO2012140278A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110127109A1 (en) * 2008-06-26 2011-06-02 Pp Energy Aps Device for enabling access to a wind turbine
US10865078B1 (en) 2017-07-27 2020-12-15 S&LAccess Systems AB Lifting assembly for elevating components to a wind turbine and a method for using the lifting assembly
CN114837399A (zh) * 2022-05-06 2022-08-02 上海建工四建集团有限公司 一种适用于盘扣式钢管的铲刀梁
CN117028178A (zh) * 2023-09-08 2023-11-10 北京国领智能科技有限公司 一种曲面自适应气动多模块刮板清洁组件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10650582B2 (en) * 2015-04-14 2020-05-12 ETAK Systems, LLC Systems and methods for closing out maintenance or installation work at a telecommunications site
CN104819108A (zh) * 2015-05-15 2015-08-05 湖南大学 一种风力发电机塔筒外壁维护施工装置
ES2603434B1 (es) * 2015-08-17 2017-12-22 Gamesa Innovation & Technology, S.L. Máquina de limpieza exterior en torres de aerogeneradores
US10648235B2 (en) * 2016-08-15 2020-05-12 The Boeing Company Work stand configurable for different work areas
US10634123B2 (en) * 2017-12-14 2020-04-28 The Boeing Company Apparatus and methods for maintenance of wind turbine blades
WO2020065103A1 (es) * 2018-09-28 2020-04-02 Colino Llamas Carlos Sistema y método para mantenimiento turbina eólica

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081373A2 (de) * 2003-03-11 2004-09-23 aeroconcept Ingenieurgesellschaft für Luftfahrttechnik und Faserverbundtechnologie mbH Wartungsplattform
WO2005054672A1 (en) * 2003-12-04 2005-06-16 Pp Energy Aps Method and apparatus for treatment of a part of a wind turbine
ES2244292A1 (es) * 2003-09-19 2005-12-01 Peri, S.A. Dispositivo elevador de personas por el fuste de un aerogenerador.
ES2257558T3 (es) * 2002-05-27 2006-08-01 Vestas Wind Systems A/S Metodos de manipulacion de palas de turbinas eolicas y de montaje de dichas palas en una turbina eolica, sistema y unidad de agarre para manipular una pala de turbina eolica.
DE102007003000A1 (de) * 2006-09-04 2008-03-20 Jeremy Sheppard Vorrichtung zum Befahren einer Windenergieanlage

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493079A (en) * 1967-12-18 1970-02-03 Dallas L Dudschus Foldable,adjustable height platform assembly mountable on a vehicle
US3938670A (en) * 1969-04-09 1976-02-17 General Crane Industries Limited Tower crane
GB1404136A (en) * 1971-11-04 1975-08-28 Gen Crane Industries Mobile load holding means particularly tower cranes
US5259479A (en) * 1991-10-15 1993-11-09 Gestion Des Brevets Fraco Ltee Self-raising cantilever-type work platform assembly
US5159993A (en) * 1991-10-15 1992-11-03 Gestion Des Brevets Fraco Limitee Self-raising work platform assembly
DE4406987C1 (de) * 1994-03-03 1995-07-06 Paul Lingen Hubgerüst
US5636705A (en) * 1995-05-24 1997-06-10 St-Germain; Andre Apparatus for moving a work platform along a rail
FR2774083B1 (fr) * 1998-01-27 2000-04-07 Kidde Ind Inc Dispositif elevateur perfectionne
DE10022600B4 (de) * 1999-06-28 2007-09-27 Terex-Demag Gmbh & Co. Kg Teleskopkran
DE19938578A1 (de) * 1999-08-18 2001-02-22 Delmag Maschinenfabrik Fahrbares Arbeitsgerät
JP4012974B2 (ja) * 2000-03-09 2007-11-28 東京電力株式会社 風力発電タワーの組立装置及び組立方法
WO2003048569A2 (en) * 2001-12-06 2003-06-12 Pp Energy Aps Method and apparatus for treatment of a rotor blade on a windmill
EP1534953A1 (en) * 2002-09-04 2005-06-01 PP Energy ApS A method and a device for lifting and/or lowering of objects at a wind turbine or the like and uses hereof
US7395899B2 (en) * 2003-01-27 2008-07-08 Exterior Elevator, Llc Method and apparatus for reaching from outside an upper level of a tall structure
WO2004092577A1 (en) * 2003-04-15 2004-10-28 Vestas Wind Systems A/S Method of servicing the outer components of a wind turbine such as the wind turbine blades and the tower with a work platform and work platform
AU2003236736A1 (en) * 2003-06-11 2005-01-04 General Electric Company Remote shut down of offshore wind turbine
DK1706636T3 (en) * 2003-12-30 2018-11-05 Pp Energy Aps Device to enable access to a ground level construction
SE526546C2 (sv) * 2004-03-12 2005-10-04 Alimak Ab Hissystem
GB2417499B (en) * 2004-08-24 2010-02-17 Marks Barfield Ltd Observation tower
EP1894883B1 (de) * 2004-12-03 2010-09-15 Manitowoc Crane Group Germany GmbH Fahrzeugkran
AU2005325506B2 (en) * 2005-01-19 2011-04-07 Iti Scotland Limited A clamp, self-advancing climbing device, and method of coupling same to a tubular
US7278198B2 (en) * 2005-02-01 2007-10-09 The Boeing Company Mandrel segment loader
NZ570732A (en) * 2006-01-27 2010-09-30 Pp Energy Aps Device that surrounds a rotor blade on a wind turbine, running on the inner and outer edges of the blade
US8381460B1 (en) * 2007-02-27 2013-02-26 Patrick P. McDermott Extendable beam structure (EBS)
US20080302605A1 (en) * 2007-06-08 2008-12-11 Andre St-Germain Size adjustable platform for scaffolding
DK2313649T3 (en) * 2008-06-26 2013-06-24 Pp Energy Aps Device for enabling access to a wind turbine
AT506625B1 (de) * 2008-09-04 2009-10-15 Palfinger Systems Gmbh Instandhaltungsplattform
DE112010002148A5 (de) * 2009-05-29 2012-10-31 Ebf Dresden Gmbh Vorrichtung für inspektions- und wartungsarbeiten an rotorblättern und/ oder der turmoberfläche grosser windkraftanlagen, insbesondere off-shore-anlagen
US8062431B2 (en) * 2009-06-16 2011-11-22 General Electric Company Method and apparatus for cleaning and de-icing wind turbine rotor blades
GB201002581D0 (en) * 2010-02-16 2010-03-31 Extreme Access Hire Ltd Service platform
CA2699556C (en) * 2010-04-15 2012-03-13 Joseph L.J. Earl Mobile elevating work platform
US8621954B1 (en) * 2010-06-04 2014-01-07 University Of Washington Through Its Center For Commercialization Systems and methods for gravity compensation
NL2004871C2 (nl) * 2010-06-10 2011-12-13 Special Blade Service B V Hoogwerker voor windturbines.
US8544484B2 (en) * 2010-06-23 2013-10-01 Dustin Jensen Wind turbine blade treatment apparatuses and methods
US8965571B2 (en) * 2010-08-12 2015-02-24 Construction Robotics, Llc Brick laying system
CN102434403B (zh) * 2010-09-29 2015-09-09 通用电气公司 用于风力涡轮机检查的系统及方法
US8743196B2 (en) * 2010-12-16 2014-06-03 General Electric Company System and method for performing an external inspection on a wind turbine rotor blade
US8579085B2 (en) * 2010-12-29 2013-11-12 Sky Climber Llc Suspended access chair with rescue system
US8347900B2 (en) * 2011-04-05 2013-01-08 Jensen dustin Wind turbine fluid application apparatus
US20130228397A1 (en) * 2012-03-02 2013-09-05 Tom D. Horn Wind tower maintenance platforms and techniques
CA2834094C (en) * 2012-11-23 2019-08-20 Fiducie Familiale Andre St-Germain Self-contained, portable and self-supporting scaffolding kit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2257558T3 (es) * 2002-05-27 2006-08-01 Vestas Wind Systems A/S Metodos de manipulacion de palas de turbinas eolicas y de montaje de dichas palas en una turbina eolica, sistema y unidad de agarre para manipular una pala de turbina eolica.
WO2004081373A2 (de) * 2003-03-11 2004-09-23 aeroconcept Ingenieurgesellschaft für Luftfahrttechnik und Faserverbundtechnologie mbH Wartungsplattform
ES2244292A1 (es) * 2003-09-19 2005-12-01 Peri, S.A. Dispositivo elevador de personas por el fuste de un aerogenerador.
WO2005054672A1 (en) * 2003-12-04 2005-06-16 Pp Energy Aps Method and apparatus for treatment of a part of a wind turbine
DE102007003000A1 (de) * 2006-09-04 2008-03-20 Jeremy Sheppard Vorrichtung zum Befahren einer Windenergieanlage

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 2004-699470, XP003030264 *
DATABASE WPI Derwent World Patents Index; AN 2007-161672, XP003030265 *
See also references of EP2698528A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110127109A1 (en) * 2008-06-26 2011-06-02 Pp Energy Aps Device for enabling access to a wind turbine
US20110127108A1 (en) * 2008-06-26 2011-06-02 Pp Energy Aps Device for enabling access to a wind turbine
US10161389B2 (en) * 2008-06-26 2018-12-25 Pp Energy Aps Device for enabling access to a wind turbine
US10865078B1 (en) 2017-07-27 2020-12-15 S&LAccess Systems AB Lifting assembly for elevating components to a wind turbine and a method for using the lifting assembly
CN114837399A (zh) * 2022-05-06 2022-08-02 上海建工四建集团有限公司 一种适用于盘扣式钢管的铲刀梁
CN114837399B (zh) * 2022-05-06 2023-05-26 上海建工四建集团有限公司 一种适用于盘扣式钢管的铲刀梁
CN117028178A (zh) * 2023-09-08 2023-11-10 北京国领智能科技有限公司 一种曲面自适应气动多模块刮板清洁组件
CN117028178B (zh) * 2023-09-08 2024-02-09 北京国领智能科技有限公司 一种曲面自适应气动多模块刮板清洁组件

Also Published As

Publication number Publication date
US20140034418A1 (en) 2014-02-06
EP2698528A1 (en) 2014-02-19
MX2013012043A (es) 2014-05-27
EP2698528A4 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
WO2012140278A1 (es) Torre andamio reparadora-limpiadora para aerogeneradores eólicos.
ES2556997B1 (es) Método y dispositivo de sustitución de pala en aerogeneradores
ES2796333T3 (es) Sistema que comprende una plataforma de trabajo giratoria
ES2595231T3 (es) Método de construcción de torre híbrida para un generador eólico
ES2717904T3 (es) Conjunto y procedimiento para elevar cargas
ES2206014B1 (es) Grua para montaje de aerogeneradores y proceso de montaje.
ES2565160T3 (es) Método de montaje para un árbol de rotor principal y herramienta de instalación correspondiente
ES2630904T3 (es) Dispositivo de elevación para instalar y retirar componentes de una turbina eólica
ES2559211T3 (es) Plataforma de ensamblaje para el ensamblaje de una torre de turbina eólica o secciones de torre de turbina eólica
ES2316200B1 (es) Aerogenerador con grua desmontable y pescante auxiliar y procedimiento de montaje de dicha grua.
ES2435211B2 (es) Grúa telescópica autotrepante y procedimiento de montaje de torres prefabricadas de hormigón
ES2640988T3 (es) Generador de turbina eólica con un dispositivo de elevación
CA2828907A1 (en) Method for accessing the outer surface of wind turbine towers and device for use with this method
ES2265743A1 (es) Aerogenerador con grua desmontable.
ES2381833A1 (es) Montaje de elementos en el interior de un gran aerogenerador.
US20120305331A1 (en) Service platform
ES2676930T3 (es) Dispositivo de fijación para mantenimiento de componentes de turbina eólica
ES2244292A1 (es) Dispositivo elevador de personas por el fuste de un aerogenerador.
WO2015140357A1 (es) Sistema para el montaje/desmontaje de palas en aerogeneradores
ES2860982T3 (es) Dispositivo de izado de palas de aerogeneradores y método asociado
ES2612759T3 (es) Herramienta para el montaje de las palas del rotor en un buje del rotor, dispositivo de construcción marino y procedimiento de ensamblaje de un generador eólico
WO2018020056A1 (es) Sistema para el montaje/desmontaje de palas en aerogeneradores
ES2789025T3 (es) Procedimiento y sistema para reemplazar una única pala de turbina eólica
ES2362526A1 (es) Torre andamio, reparadora - limpiadora para aerogeneradores eólicos.
ES2665004B1 (es) Grua de una turbina eólica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014504360

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14111920

Country of ref document: US

Ref document number: MX/A/2013/012043

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013026454

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013026454

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112013026454

Country of ref document: BR