WO2012139726A1 - Verfahren zur herstellung eines photokatalysators auf basis von titandioxid - Google Patents

Verfahren zur herstellung eines photokatalysators auf basis von titandioxid Download PDF

Info

Publication number
WO2012139726A1
WO2012139726A1 PCT/EP2012/001490 EP2012001490W WO2012139726A1 WO 2012139726 A1 WO2012139726 A1 WO 2012139726A1 EP 2012001490 W EP2012001490 W EP 2012001490W WO 2012139726 A1 WO2012139726 A1 WO 2012139726A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
iii
photocatalyst
titanium dioxide
ions
Prior art date
Application number
PCT/EP2012/001490
Other languages
English (en)
French (fr)
Inventor
Katja Scharf
Michael Schmidt
Original Assignee
Kronos International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kronos International, Inc. filed Critical Kronos International, Inc.
Priority to CN201280018076.6A priority Critical patent/CN103501897A/zh
Priority to KR1020137030051A priority patent/KR20140027261A/ko
Priority to EP12714578.7A priority patent/EP2696975A1/de
Priority to JP2014504200A priority patent/JP2014516766A/ja
Priority to BR112013026008A priority patent/BR112013026008A2/pt
Publication of WO2012139726A1 publication Critical patent/WO2012139726A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a process for the preparation of an iron-containing photocatalyst based on titanium dioxide, which is also active in visible light and its use.
  • Photocatalytic materials are semiconductors in which, under the action of light, electron-hole pairs are formed, which generate highly reactive free radicals on the material surface.
  • Titanium dioxide is one such semiconductor. It is known that titanium dioxide can remove natural and artificial air and water contaminants by exposure to UV light by reducing atmospheric oxygen and oxidizing (mineralizing) the contaminants to environmentally friendly end products. In addition, the surface of titanium dioxide becomes superhydrophilic by absorbing ultraviolet light. This is the result of the anti-fog effect of thin titanium dioxide films on mirrors and windows.
  • titanium dioxide A serious disadvantage of titanium dioxide is the fact that it only affects the UV fraction of the sunlight, i. Only 3 to 4% of the radiation can be used and is either not at all or only very weakly catalytically active in diffuse daylight.
  • titanium dioxide in such a way that it can also use the majority of the photochemically effective sunlight - the visible spectral range from 400 to about 700 nm - to produce the phenomena mentioned.
  • Ti0 2 photocatalytically active for daylight is to generate oxygen vacancies in the Ti0 2 crystal lattice by reducing Ti 4+ .
  • Possibility is the doping with non-metals such as nitrogen, carbon or sulfur. Also known is the doping with metals such as vanadium, chromium, platinum, etc. These developments, however, sometimes require elaborate production techniques such as
  • titanium dioxide particles containing an iron component have improved photocatalytic activity also in visible light.
  • Various processes have been published for the preparation of iron-containing titanium dioxide photocatalysts.
  • EP 0 666 107 B1 discloses a titania photocatalyst containing from 5 ppm to 10% by weight of iron.
  • the photocatalyst is prepared by hydrolyzing an aqueous solution containing a titanium compound and an iron compound in dissolved form.
  • EP 1 036 593 A1 discloses a photocatalyst doped with trivalent iron and an equimolar amount of pentavalent ions, which is likewise prepared by hydrolysis of the individual components dissolved in a solvent and subsequent drying and sintering.
  • US 2007/0193875 A1 discloses a process for producing an iron ion-doped titanium dioxide photocatalyst comprising a mixture of the respective ones
  • Precursor compounds eg the respective chlorides
  • Precursor compounds are dialyzed to remove the chlorine ions, and the resulting product is then dried and calcined.
  • the invention has for its object to provide a new cost-effective method for the production of iron-containing, active in the visible spectral range photocatalysts based on titanium dioxide.
  • the object is achieved by a method for producing a photocatalyst based on titanium dioxide comprising the steps:
  • the invention relates to a simple and inexpensive process for the preparation of iron-containing photocatalysts based on titanium dioxide, which has a significant activity in the Visible spectral range and the use of photocatalysts for the degradation of contaminants and pollutants in liquids, gases and on surfaces and in photovoltaic cells and water splitting.
  • the first step of the process of the invention comprises providing an aqueous suspension containing titania hydrate nanoparticles.
  • Titanium oxide hydrate also includes metatitanic acid, titanium oxyhydrate, titanium hydrate, titanium hydroxide, amorphous titanium dioxide or titanium oxide, hydrous titanium dioxide or hydrous titanium oxide.
  • Nanoparticles should be understood as meaning particles which have a primary particle size of ⁇ 100 nm.
  • the titanium oxide hydrate can be produced, for example, in the titanium dioxide production either by the sulphate process or by the chloride process, the titanium oxide hydrate being precipitated by hydrolysis of titanyl sulphate or titanyl chloride.
  • the titanium oxide hydrate is preferably amorphous to microcrystalline.
  • the primary particle size is less than 10 nm (determined from electron micrographs).
  • the suspension preferably has an SO 3 content of not more than 10% by weight, preferably from 4 to 7% by weight.
  • the iron content of the suspension is preferably less than 100 ppm, in particular less than 50 ppm and more preferably less than 20 ppm.
  • the pH of the suspension is at most about 7.
  • the second step of the process of the invention comprises the addition of trivalent iron ions to the suspension.
  • the iron ions become water soluble in the form
  • inorganic or short-chain organic iron compounds added, for example, as a solution of iron (III) sulfate or iron oxalate.
  • a water-soluble bivalent iron salt may be used, wherein the salt (eg, ferrous sulfate) in dissolved form, first with a Oxidizing agent such as H 2 0 2 quantitatively oxidized to iron (III) sulfate and then added to the suspension.
  • the iron (II) sulfate may be, for example, iron (II) sulfate heptahydrate, which is used as so-called green salt in the digestion of the iron titer ore during the sulfate process
  • the amount of iron (III) ions added is preferably 0.05 to 5% by weight, more preferably 0.05 to 3% by weight and most preferably 0.05 to 1% by weight of Fe, based on TiO 2 .
  • the third step of the method according to the invention comprises the precipitation of
  • the pH of the suspension is mixed with suitable pH controlling substances (for example, alkalis such as NaOH or acids such as H 2 S0 4) adjusted to 6 to 8 and the iron (III) hydrate quantitatively precipitated.
  • suitable pH controlling substances for example, alkalis such as NaOH or acids such as H 2 S0 4
  • the temperature in the precipitation is preferably from 20 to 80 ° C.
  • the fourth step of the process according to the invention comprises the separation of the mixture of titanium oxide hydrate and iron (III) hydrate.
  • the separation is preferably carried out by
  • the filter cake is preferably washed. Finally, the filter cake preferably has one or more of
  • the S0 3 content is at most 1, 5 wt .-%, preferably at ⁇ 0.3 wt .-%.
  • the sodium content is at most 0.1% by weight, preferably ⁇ 0.05% by weight.
  • the conductivity is a maximum of 5 mS / cm.
  • the moisture is at most 70 wt .-%, preferably at ⁇ 65 wt .-%.
  • the fifth step of the process according to the invention comprises the heat treatment of the titanium oxide hydrate and iron (III) hydrate-containing mixture at temperatures of 100 ° C. and above.
  • the temperatures are from 100 ° C to 900 ° C, especially at 100 ° C to 400 ° C.
  • the heat treatment can take place in conventional equipment such as fluidized bed plants, 0 spray drier or rotary kiln. When the heat treatment takes place at 100 ° C to about 150 ° C, it preferably takes place in the fluidized bed plant or in the spray dryer.
  • the heat treatment may be carried out in two stages by first drying at about 100 ° C.
  • the residual moisture content of the filter cake after drying is preferably 3 to 10% by weight, in particular 5 to 7% by weight.
  • the photocatalyst produced by the process according to the invention preferably has a BET surface area of about 25 to 300 m 2 / g. It is known to the person skilled in the art that the specific surface of the product can be influenced by the temperature of the heat treatment, the specific surface area decreasing with increasing temperature.
  • the photocatalyst produced by the process according to the invention is photoactive both in the UV range and in the visible spectral range and is outstandingly suitable for pollutant degradation in liquids and gases as well as for self-cleaning surfaces both indoors and outdoors.
  • the photocatalyst can also be used in photovoltaic cells and in photolysis.
  • Titanium oxide hydrate from titanium dioxide production by the sulphate process was made into a suspension with 300 g / l of TiO 2 in a tempered jacketed vessel (40 ° C.) using 90 l of water.
  • a separate vessel 1.33 kg of iron (II) sulfate heptahydrate (green salt) having an iron (II) content of 17.8% by weight was dissolved in 5.2 L of water, and while stirring, 274 g of 30% strength H. 2 0 2 solution, whereby Fe (II) was quantitatively oxidized to Fe (III). 6.8 kg of the iron (III) -containing solution was added with stirring to the titania hydrate suspension. Subsequently, the pH of the suspension was adjusted to about 7 by addition of NaOH.
  • the suspension was filtered through vacuum plates and the filter cake was heated with 50 ° C to 60 ° C warm water to a S0 3 content of ⁇ 1 wt .-%, a Na content of ⁇ 0.02 wt .-% and a Conductivity in the filtrate of ⁇ 5 mS / cm washed.
  • the filter cake was then pasted into water (solids content 25 to 27%) and heat treated at about 120 ° C in a spray dryer.
  • the residual moisture of the dried product was 5 to 7 wt .-%.
  • the product had an Fe content of 1, 0 wt .-%, a S0 3 content of 0, 11 wt .-% and a specific surface area (BET) of 310 m 2 / g.
  • BET specific surface area
  • Example 2 The procedure was as in Example 1 with the following differences: 17 kg of the iron (III) -containing solution was added to the suspension. After drying at 120 ° C in a spray dryer, the product was heat treated at 510 ° C for 2 hours:
  • the residual moisture of the dried product was 5 to 7 wt .-%.
  • the product had an Fe content of 2.5% by weight, a S0 3 content of 0.10% by weight and a specific surface area (BET) of 89 m 2 / g.
  • BET specific surface area
  • Example 2 The procedure was as in Example 1 with the following differences. No iron-containing solution was added to the suspension. After drying at 120 ° C in
  • the residual moisture of the dried product was 5 to 7 wt .-%.
  • the product had an Fe content of 0% by weight, a S0 3 content of 0.35% by weight and a specific
  • the Fe, S0 3 and Na contents were determined by X-ray fluorescence.
  • the BET surface area was measured using a Tristar 3000 from Micromeritics using the static volumetric principle.
  • the photocatalytic activity of the photocatalysts was determined by the degradation of
  • the measuring apparatus and method was developed by JR Searle ("Titanium dioxide pigment photocatalytic degradation of PVC and plasticised PVD coatings ", PhD thesis, University of Swansea, Wales, 2002).
  • edge filters were used: 305 nm and 385 nm.
  • the concentration change of the isopropanol was monitored by means of an FTIR detector. After 5% of the isopropanol had been degraded, the negative slope became
  • Edge filter 305 nm Edge filter 385
  • Visible photocatalyst is about 10% of the total activity (edge filter 305 nm).
  • the Fe-free photocatalyst according to Comparative Example 5 has only a low photocatalytic activity in the spectral range> 385 nm (edge filter 385 nm), which is primarily due to the fact that iron traces of up to 50 ppm can still be present in the photocatalyst due to the washing processes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines eisenhaltigen Photokatalysators aufBasis Titandioxid. Der Photokatalysator wird hergestellt, indem in eine wässrige Suspension von Titanoxidhydrat-Nanopartikeln Eisen(lll)-lonen gegeben werden, anschließend Eisen(lll)hydrat gefällt wird, die Mischung aus Titanoxidhydrat und Eisen(lll)hydrat abgetrennt und bei einer Temperatur von mindestens 100°C wärmebehandelt wird: Der nach dem erfindungsgemäßen Verfahren hergestellte Photokatalysator ist sowohl im UV-Bereich wie im sichtbaren Spektralbereich photoaktiv.

Description

Verfahren zur Herstellung eines Photokatalysators auf Basis von Titandioxid
Gebiet der Erfindung
Die Erfindung betrifft ein Verfahren zur Herstellung eines eisenhaltigen Photokatalysators auf Basis Titandioxid, der auch im sichtbaren Licht aktiv ist sowie seine Verwendung.
Technologischer Hintergrund der Erfindung
Photokatalytische Materialien sind Halbleiter, bei denen unter Lichteinwirkung Elektron-Loch- Paare entstehen, welche an der Materialoberfläche hochreaktive freie Radikale erzeugen. Titandioxid ist ein solcher Halbleiter. Es ist bekannt, dass Titandioxid natürliche und artifizielle Verunreinigungen in Luft und Wasser durch Bestrahlen mit UV-Licht entfernen kann, indem der Luftsauerstoff reduziert und die Verunreinigungen zu umweltfreundlichen Endprodukten oxidiert (mineralisiert) werden. Zusätzlich wird die Oberfläche von Titandioxid durch Absorption von UV-Licht superhydrophil. Darauf beruht der Antibeschlageffekt dünner Titandioxidfilme auf Spiegeln und Fenstern.
Ein gravierender Nachteil von Titandioxid ist die Tatsache, dass es nur den UV-Anteil des Sonnenlichts, d.h. nur 3 bis 4 % der Strahlung, nutzen kann und im diffusen Tageslicht entweder gar nicht oder nur sehr schwach katalytisch aktiv ist.
Man versucht deswegen seit längerem, Titandioxid so zu modifizieren, dass es auch den Hauptanteil des photochemisch wirksamen Sonnenlichts - das sichtbare Spektralgebiet von 400 bis etwa 700 nm - zur Erzeugung der genannten Phänomene nutzen kann.
Ein Weg, Ti02 für Tageslicht photokatalytisch aktiv zu machen, ist die Erzeugung von Sauerstoff-Leerstellen im Ti02-Kristallgitter durch Reduktion des Ti4+. Eine andere
Möglichkeit ist die Dotierung mit Nichtmetallen wie Stickstoff, Kohlenstoff oder Schwefel. Bekannt ist ebenfalls die Dotierung mit Metallen wie Vanadium, Chrom, Platin usw. Diese Entwicklungen erfordern allerdings teilweise aufwändige Herstellungstechniken wie
Ionenimplantation oder Plasmabehandlung. Des Weiteren ist bekannt, dass Titandioxidpartikel, die eine Eisenkomponente enthalten, verbesserte photokatalytische Aktivität auch im sichtbaren Licht aufweisen. Zur Herstellung von Eisen-haltigen Titandioxid-Photokatalysatoren wurden verschiedene Verfahren veröffentlicht.
Die EP 0 666 107 B1 offenbart einen Titandioxid-Photokatalysator, der 5 ppm bis 10 Gew.-% Eisen enthält. Der Photokatalysator wird durch Hydrolyse einer wässrigen Lösung, die eine Titanverbindung und eine Eisenverbindung in gelöster Form enthält, hergestellt.
Die EP 1 036 593 A1 offenbart einen mit dreiwertigem Eisen und einer äquimolaren Menge an fünfwertigen Ionen dotierten Photokatalysator, der ebenfalls durch Hydrolyse der in einem Lösemittel gelösten Einzelkomponenten und anschließender Trocknung und Sinterung hergestellt wird.
Die US 2007/0193875 A1 offenbart ein Verfahren zur Herstellung eines mit Eisenionen dotierten Titandioxid-Photokatalysators, bei dem eine Mischung der jeweiligen
Vorläuferverbindungen (z. B. die jeweiligen Chloride) einer Dialyse unterzogen wird, um die Chlorionen zu entfernen, und das entstandene Produkt anschließend getrocknet und calciniert wird.
Aufgabenstellung und Kurzbeschreibunq der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein neues kostengünstiges Verfahren zur Herstellung von eisenhaltigen, im sichtbaren Spektralbereich aktiven Photokatalysatoren auf Basis Titandioxid bereitstellen. Die Aufgabe wird gelöst durch ein Verfahren zur Herstellung eines Photokatalysators auf Basis Titandioxid umfassend die Schritte:
- Bereitstellung einer wässrigen Suspension enthaltend Titanoxidhydrat-Nanopartikel
- Zugabe von Eisen(lll)-lonen
- Fällen von Eisen(lll)hydrat
- Abtrennen einer Mischung, die Titanoxidhydrat und Eisen(lll)hydrat umfasst
- Wärmebehandlung der Mischung bei Temperaturen von mindestens 100°C.
Weitere vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen angegeben. Gegenstand der Erfindung ist ein einfaches und kostengünstiges Verfahren zur Herstellung von eisenhaltigen Photokatalysatoren auf Basis Titandioxid, die eine signifikante Aktivität im sichtbaren Spektralbereich aufweisen sowie die Verwendung der Photokatalysatoren zum Abbau von Verunreinigungen und Schadstoffen in Flüssigkeiten, Gasen und auf Oberflächen sowie in Photovoltaikzellen und zur Wasserspaltung.
Beschreibung der Erfindung
Alle im Folgenden offenbarten Angaben bezüglich pH-Wert, Temperatur, Konzentration in Gew.-% usw. sind so zu verstehen, dass alle Werte, die im Bereich der dem Fachmann bekannten jeweiligen Messgenauigkeit liegen, mit umfasst sind.
Der erste Schritt des erfindungsgemäßen Verfahrens umfasst die Bereitstellung einer wässrigen Suspension, die Titanoxidhydrat-Nanopartikel enthält. Im Folgenden sollen unter Titanoxidhydrat auch Metatitansäure, Titanoxyhydrat, Titanhydrat, Titanhydroxid, amorphes Titandioxid oder Titanoxid, wasserhaltiges Titandioxid oder wasserhaltiges Titanoxid verstanden werden. Unter Nanopartikeln sollen solche Partikel verstanden werden, die eine Primärpartikelgröße von <100 nm aufweisen.
Das Titanoxidhydrat kann beispielsweise bei der Titandioxidherstellung entweder nach dem Sulfatverfahren oder nach dem Chloridverfahren erzeugt werden, wobei das Titanoxidhydrat durch Hydrolyse von Titanylsulfat bzw. Titanylchlorid gefällt wird. Das Titanoxidhydrat ist vorzugsweise amorph bis mikrokristallin. Insbesondere liegt die Primärpartikelgröße bei unter 10 nm (ermittelt aus Elektronenmikroskopaufnahmen). Wenn das Titanoxidhydrat dem Sulfatverfahren entstammt, wird es vorzugsweise vor der Herstellung der Suspension gewaschen.
Die Suspension weist bevorzugt einen S03-Gehalt von maximal 10 Gew.-%, bevorzugt 4 bis 7 Gew.-% auf. Der Eisengehalt der Suspension liegt bevorzugt bei weniger als 100 ppm, insbesondere bei weniger als 50 ppm und besonders bevorzugt bei weniger als 20 ppm. In einer weiteren Ausführung der Erfindung liegt der pH-Wert der Suspension bei maximal etwa 7.
Der zweite Schritt des erfindungsgemäßen Verfahrens umfasst die Zugabe von dreiwertigen Eisenionen zu der Suspension. Die Eisenionen werden in Form wasserlöslicher
anorganischer oder kurzkettiger organischer Eisenverbindungen zugegeben, beispielsweise als Lösung von Eisen(lll)sulfat oder von Eisenoxalat.
In einer Ausführung der Erfindung kann ein wasserlösliches Salz mit zweiwertigem Eisen verwendet werden, wobei das Salz (z.B. Eisen(ll)sulfat) in gelöster Form zunächst mit einem Oxidationsmittel wie beispielsweise H202 quantitativ zu Eisen(lll)sulfat oxidiert und anschließend in die Suspension gegeben wird. Bei dem Eisen(ll)sulfat kann es sich beispielsweise um Eisen(ll)sulfat-Heptahydrat handeln, welches als sogenanntes Grünsalz beim Aufschluss des Eisentitanerzes während des Sulfatverfahrens zur
5 Titandioxidherstellung anfällt.
Die Menge der zugegebenen Eisen(lll)-lonen beträgt vorzugsweise 0,05 bis 5 Gew.-%, insbesondere 0,05 bis 3 Gew.-% und insbesondere bevorzugt 0,05 bis 1 Gew.-% Fe bezogen auf Ti02. io Der dritte Schritt des erfindungsgemäßen Verfahrens umfasst die Fällung von
Eisen(lll)hydrat. Vorzugsweise wird der pH-Wert der Suspension mit geeigneten pH- steuernden Substanzen (z.B. Laugen wie NaOH oder Säuren wie H2S04) auf 6 bis 8 eingestellt und das Eisen(lll)hydrat quantitativ gefällt.
Die Temperatur bei der Fällung liegt bevorzugt bei 20 bis 80°C
I 5
Der vierte Schritt des erfindungsgemäßen Verfahrens umfasst die Abtrennung der Mischung von Titanoxidhydrat und Eisen(lll)hydrat. Die Abtrennung erfolgt vorzugsweise durch
Filtration. Dem Fachmann sind entsprechende Verfahren bekannt, beispielsweise
Vakuumplattenfiltration oder Vakuumplanfilterfiltration. Der Filterkuchen wird vorzugsweise0 gewaschen. Abschließend weist der Filterkuchen bevorzugt eines oder mehrere der
folgenden Merkmale auf: Der S03-Gehalt liegt bei maximal 1 ,5 Gew.-%, bevorzugt bei <0,3 Gew.-%. Der Natriumgehalt liegt bei maximal 0,1 Gew.-%, bevorzugt bei <0,05 Gew.-%. Die Leitfähigkeit beträgt maximal 5 mS/cm. Die Feuchte liegt bei maximal 70 Gew.-%, bevorzugt bei <65 Gew.-%.
5
Der fünfte Schritt des erfindungsgemäßen Verfahrens umfasst die Wärmebehandlung der Titanoxidhydrat- und Eisen(lll)hydrat-haltigen Mischung bei Temperaturen 100°C und darüber. Bevorzugt liegen die Temperaturen bei 100°C bis 900°C, insbesondere bei 100°C bis 400°C. Die Wärmebehandlung kann in üblichen Apparaturen wie Wirbelschichtanlagen,0 Sprühtrockner oder Drehrohrofen stattfinden. Wenn die Wärmebehandlung bei 100°C bis etwa 150°C stattfindet, findet sie bevorzugt in der Wirbelschichtanlage oder im Sprühtrockner statt.
In einer Ausführung des Verfahrens kann die Wärmebehandlung zweistufig durchgeführt werden, indem zuerst eine Trocknung bei etwa 100°C stattfindet.
5 Die Restfeuchte des Filterkuchens beträgt nach der Trocknung bevorzugt 3 bis 10 Gew.-%, insbesondere 5 bis 7 Gew.-% Der mit dem erfindungsgemäßen Verfahren erzeugte Photokatalysator weist vorzugsweise eine BET-Oberfläche von etwa 25 bis 300 m2/g auf. Dem Fachmann ist bekannt, dass die spezifische Oberfläche des Produkts mit der Temperatur der Wärmebehandlung beeinflusst werden kann, wobei die spezifische Oberfläche mit steigender Temperatur sinkt.
Der nach dem erfindungsgemäßen Verfahren hergestellte Photokatalysator ist sowohl im UV-Bereich wie im sichtbaren Spektralbereich photoaktiv und ist hervorragend geeignet für den Schadstoffabbau in Flüssigkeiten und Gasen sowie für selbstreinigende Oberflächen im Innen- wie im Außenbereich. Der Photokatalysator kann weiterhin eingesetzt werden in Photovoltaikzellen und in der Photolyse.
Beispiele
Die Erfindung wird anhand der nachfolgenden Beispiele erläutert; dies ist jedoch nicht als Einschränkung der Erfindung zu verstehen.
Beispiel 1
Titanoxidhydrat aus der Titandioxidproduktion nach dem Sulfatverfahren wurde mit 90 L Wasser zu einer Suspension mit 300 g/L Ti02 in einem temperierten Doppelmantelgefäß (40°C) angeteigt. In einem gesonderten Gefäß wurde 1 ,33 kg Eisen(ll)sulfatheptahydrat (Grünsalz) mit einem Eisen(ll)-Gehalt von 17,8 Gew.-% in 5,2 L Wasser gelöst und unter Rühren wurde 274 g 30%ige H202-Lösung hinzugegeben, wodurch Fe(ll) quantitativ zu Fe(lll) aufoxidiert wurde. 6,8 kg der eisen(lll)-haltigen Lösung wurde unter Rühren zu der Titanoxidhydrat-Suspension gegeben. Anschließend wurde der pH-Wert der Suspension durch Zugabe von NaOH auf etwa 7 eingestellt.
Die Suspension wurde über Vakuumplatten filtriert, und der Filterkuchen wurde mit 50°C bis 60°C warmem Wasser auf einen S03-Gehalt von <1 Gew.-%, einen Na-Gehalt von < 0,02 Gew.-% und eine Leitfähigkeit im Filtrat von <5 mS/cm gewaschen.
Der Filterkuchen wurde anschließend in Wasser angeteigt (Feststoffgehalt 25 bis 27 %) und bei etwa 120°C im Sprühtrockner wärmebehandelt.
Die Restfeuchte des getrockneten Produkts lag bei 5 bis 7 Gew.-%. Das Produkt wies einen Fe-Gehalt von 1 ,0 Gew.-%, einen S03-Gehalt von 0, 11 Gew.-% und eine spezifische Oberfläche (BET) von 310 m2/g auf. Beispiel 2
Es wurde verfahren wie in Beispiel 1 mit folgenden Unterschieden: Es wurde 17 kg der eisen(lll)-haltigen Lösung zu der Suspension gegeben. Nach der Trocknung bei 120 °C im Sprühtrockner wurde das Produkt für 2 Stunden bei 510 °C wärmebehandelt:
Die Restfeuchte des getrockneten Produkts lag bei 5 bis 7 Gew.-%. Das Produkt wies einen Fe-Gehalt von 2,5 Gew.-%, einen S03-Gehalt von 0,10 Gew.-% und eine spezifische Oberfläche (BET) von 89 m2/g auf. Vergleichsbeispiel
Es wurde verfahren wie in Beispiel 1 mit folgenden Unterschieden. Es wurde keine eisenhaltige Lösung in die Suspension gegeben. Nach der Trocknung bei 120 °C im
Sprühtrockner wurde das Produkt für 2 Stunden bei 300 °C wärmebehandelt:
Die Restfeuchte des getrockneten Produkts lag bei 5 bis 7 Gew.-%. Das Produkt wies einen Fe-Gehalt von 0 Gew.-%, einen S03-Gehalt von 0,35 Gew.-% und eine spezifische
Oberfläche (BET) von 98 m2/g auf.
Testmethoden
Chemische Analyse
Der Fe-, S03-und Na-Gehalt wurde mit Röntgenfluoreszenz bestimmt.
Spezifische Oberfläche nach BET
Die BET-Oberfläche wurde mit einem Tristar 3000 der Fa. Micromeritics nach dem statisch volumetrischen Prinzip gemessen.
Photokatalytische Aktivität
Die photokatalytische Aktivität der Photokatalysatoren wurde über den Abbau von
Isopropanol bestimmt.
Die Messung des Isopropanol-Abbaus wurde in einer Messapparatur vorgenommen, wie sie in der Veröffentlichung von R. Nothhelfer-Richter et al. („New methodology for the determination of the photocatalytic stability and activity of pigments and organic coatings", Congress Proceedings Nürnberg Congress, Vincentz Network, Hannover 2007) beschrieben ist. Zur Belichtung diente eine 450W XBO-Lampe.
Die Messapparatur und die Messmethode wurde von J.R. Searle entwickelt ("Titanium dioxide pigment photocatalysed degradation of PVC and plasticised PVD coatings", PhD- thesis, University of Swansea, Wales, 2002).
Vor der eigentlichen Messung wurden die pulverförmigen Proben konditioniert, indem sie 4 Tage ohne UV-Filter belichtet wurden. Dabei wurden adsorbierte organische Verbindungen
5 zu C02 und H20 abgebaut. Anschließend wurde die Prüfkammer mit neuem Prüfgas
(Isopropanol) gefüllt und der neue Gleichgewichtszustand abgewartet.
Anschließend wurde mittels einer Glasspritze 5 μΙ Isopropanol in die Messkammer eingebracht. Es erfolgte die Dunkeladsorption an der Probe. Die Adsorption war beendet, wenn der Messwert des Isopropanols sich innerhalb von 10 Minuten um weniger als 2 ppm
I 0 änderte.
Anschließend wurde belichtet. Es wurden folgende Kantenfilter eingesetzt: 305 nm und 385 nm.
Die Konzentrationsänderung des Isopropanols wurde mittels eines FTIR Detektors verfolgt. Nachdem 5% des Isopropanols abgebaut waren, wurde aus der negativen Steigung
I (Abbaugerade) zwischen 95% und 85% der Abbau des Isopropanols in ppm/m2 *min
berechnet.
Testergebnisse
Die gemessenen photokatalytischen Aktivitäten der erfindungsgemäßen Photokatalysatoren 0 Beispiel 1 und Beispiel 2 sowie des Vergleichsbeispiels sind in Tabelle 1 zusammengefasst.
Photokatalytische Aktivität [ppm/m2*min]
Kantenfilter 305 nm Kantenfilter 385
Beispiel 1 2603 207
Beispiel 2 2771 272
Vergleichsbeispiel 1707 87
Die Ergebnisse zeigen, dass die photokatalytische Aktivität des erfindungsgemäßen
Photokatalysators im Sichtbaren (Kantenfilter 385 nm) etwa 10% der Gesamt-Aktivität (Kantenfilter 305 nm) ausmacht. Der Fe-freie Photokatalysator gemäß Vergleichsbeispiel5 weist dagegen nur eine geringe photokatalytische Aktivität im Spektralbereich >385 nm auf (Kantenfilter 385 nm), die in erster Linie daher rührt, dass aufgrund der Waschprozesse im Photokatalysator noch Eisenspuren bis zu 50 ppm vorliegen können.

Claims

PATENTANSPRÜCHE
Verfahren zur Herstellung eines Photokatalysators auf Basis Titandioxid umfassend die Schritte:
- Bereitstellung einer wässrigen Suspension enthaltend Titanoxidhydrat- Nanopartikel
- Zugabe von Eisen(lll)-lonen
- Fällen von Eisen(lll)hydrat
- Abtrennen einer Mischung, die Titanoxidhydrat und Eisen(lll)hydrät umfasst
- Wärmebehandlung der Mischung bei Temperaturen von mindestens 100°C.
Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass
die Wärmebehandlung der Mischung bei 100°C bis 900°C stattfindet.
Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass
die Wärmebehandlung der Mischung bei 100°C bis 400°C stattfindet.
Verfahren nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass die Eisen(lll)-lonen durch vorherige Oxidation von Eisen(ll)-lonen erzeugt wurden.
Verfahren nach Anspruch 4 dadurch gekennzeichnet, dass
die Eisen(lll)-lonen dadurch erzeugt werden, dass Eisen(ll)sulfat-Heptahydrat mit
H202 oxidiert wird.
Verfahren nach einem oder mehreren der Ansprüche 1 bis 5 dadurch
gekennzeichnet, dass
0,05 bis 5 Gew.-% Eisen(lll)-lonen, bevorzugt 0,05 bis 3 Gew.-% und
insbesondere 0,05 bis 1 Gew.-% bezogen auf Ti02 zugegeben werden.
Photokatalysator auf Basis Titandioxid hergestellt nach einem Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 6.
8. Verwendung des Photokatalysators nach einem der Ansprüche 1 bis 7 zum Schadstoffabbau in Flüssigkeiten und Gasen und für selbstreinigende Oberflächen. 9. Verwendung des Photokatalysators nach einem der Ansprüche 1 bis 7 in Photovoltaikzellen und in der Photolyse.
PCT/EP2012/001490 2011-04-14 2012-04-04 Verfahren zur herstellung eines photokatalysators auf basis von titandioxid WO2012139726A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280018076.6A CN103501897A (zh) 2011-04-14 2012-04-04 制造以二氧化钛为基础的光催化剂的方法
KR1020137030051A KR20140027261A (ko) 2011-04-14 2012-04-04 이산화티타늄 기반 광 촉매의 제조 방법
EP12714578.7A EP2696975A1 (de) 2011-04-14 2012-04-04 Verfahren zur herstellung eines photokatalysators auf basis von titandioxid
JP2014504200A JP2014516766A (ja) 2011-04-14 2012-04-04 二酸化チタンベースの光触媒の製造方法
BR112013026008A BR112013026008A2 (pt) 2011-04-14 2012-04-04 processo para produção de um fotocatalisador à base de dióxido de titânio

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011017090A DE102011017090B3 (de) 2011-04-14 2011-04-14 Verfahren zur Herstellung eines Photokatalysators auf Basis von Titandioxid
DE102011017090.1 2011-04-14

Publications (1)

Publication Number Publication Date
WO2012139726A1 true WO2012139726A1 (de) 2012-10-18

Family

ID=45974243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/001490 WO2012139726A1 (de) 2011-04-14 2012-04-04 Verfahren zur herstellung eines photokatalysators auf basis von titandioxid

Country Status (7)

Country Link
EP (1) EP2696975A1 (de)
JP (1) JP2014516766A (de)
KR (1) KR20140027261A (de)
CN (1) CN103501897A (de)
BR (1) BR112013026008A2 (de)
DE (1) DE102011017090B3 (de)
WO (1) WO2012139726A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2837296A1 (de) 2013-08-12 2015-02-18 Solvay Acetow GmbH Katalytisch abbaubarer Kunststoff sowie dessen Verwendung
CN104445575A (zh) * 2014-12-09 2015-03-25 江南大学 一种甾体激素药物废水的深度氧化处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0514177A1 (de) * 1991-05-14 1992-11-19 Nippon Shokubai Co., Ltd. Katalysator zur Reinigung von Abwässern, Verfahren zur Herstellung derselben, und Verfahren zur Reinigung von Abwässern mit dem Katalysator
EP1036593A1 (de) 1999-03-16 2000-09-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mit Fe3+-Ionen dotierter Titandioxid-Photokatalysator
EP0666107B1 (de) 1994-02-07 2006-09-20 Ishihara Sangyo Kaisha, Ltd. Titandioxyd-Photokatalysator
US20070193875A1 (en) 2006-02-17 2007-08-23 Samsung Electronics Co., Ltd. Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU676299B2 (en) * 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same
JP2909403B2 (ja) * 1994-02-07 1999-06-23 石原産業株式会社 光触媒用酸化チタンおよびその製造方法
JP4539936B2 (ja) * 2000-06-23 2010-09-08 住化エンビロサイエンス株式会社 脱臭組成物
DE10044986A1 (de) * 2000-09-11 2002-03-21 Kerr Mcgee Pigments Gmbh & Co Nanokristallines Metalloxidpulver, Verfahren zu seiner Herstellung und Verwendung
JP2003190811A (ja) * 2001-12-27 2003-07-08 Sumitomo Chem Co Ltd 光触媒体、その製造方法およびそれを用いてなる光触媒体コーティング剤
JP4099697B2 (ja) * 2002-03-25 2008-06-11 テイカ株式会社 チタン酸鉄の硫酸蒸解溶液の精製方法
CN1472004A (zh) * 2002-08-01 2004-02-04 中国科学院广州能源研究所 铁沉积二氧化钛复合光催化剂及其制备方法
DE102004027549A1 (de) * 2004-04-07 2005-10-27 Kronos International, Inc. Kohlenstoffhaltiger Titandioxid-Photokatalysator und Verfahren zu seiner Herstellung
SI1753831T1 (sl) * 2004-06-04 2009-06-30 Sto Ag Sestava za prekrivanje
JP5055271B2 (ja) * 2006-04-28 2012-10-24 石原産業株式会社 光触媒及びその製造方法並びにそれを用いた光触媒コート剤、光触媒分散体、光触媒体
DE102007019040A1 (de) * 2007-04-20 2008-10-23 Kronos International, Inc. Verbesserte Photokatalysatoren auf Basis Titandioxid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0514177A1 (de) * 1991-05-14 1992-11-19 Nippon Shokubai Co., Ltd. Katalysator zur Reinigung von Abwässern, Verfahren zur Herstellung derselben, und Verfahren zur Reinigung von Abwässern mit dem Katalysator
EP0666107B1 (de) 1994-02-07 2006-09-20 Ishihara Sangyo Kaisha, Ltd. Titandioxyd-Photokatalysator
DE69535226T2 (de) * 1994-02-07 2007-09-13 Ishihara Sangyo Kaisha Ltd. Titandioxyd-Photokatalysator
EP1036593A1 (de) 1999-03-16 2000-09-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mit Fe3+-Ionen dotierter Titandioxid-Photokatalysator
US20070193875A1 (en) 2006-02-17 2007-08-23 Samsung Electronics Co., Ltd. Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
AMBRUS Z ET AL: "Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3", APPLIED CATALYSIS B: ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 81, no. 1-2, 30 May 2008 (2008-05-30), pages 27 - 37, XP022649201, ISSN: 0926-3373, [retrieved on 20071208], DOI: 10.1016/J.APCATB.2007.11.041 *
CHUAN-YI WANG ET AL: "A comparative study of nanometer sized Fe(iii)-doped TiO2 photocatalysts: synthesis, characterization and activity", JOURNAL OF MATERIALS CHEMISTRY, vol. 13, no. 9, 1 January 2003 (2003-01-01), pages 2322, XP055028780, ISSN: 0959-9428, DOI: 10.1039/b303716a *
HUOGEN YU ET AL: "An Efficient Visible-Light-Sensitive Fe(III)-Grafted TiO 2 Photocatalyst", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 114, no. 39, 7 October 2010 (2010-10-07), pages 16481 - 16487, XP055028779, ISSN: 1932-7447, DOI: 10.1021/jp1071956 *
J.R. SEARLE: "Titanium dioxide pigment photocatalysed degradation of PVC and plasticised PVD coatings", PHDTHESIS, UNIVERSITY OF SWANSEA, WALES, 2002
QIANGQIANG WANG ET AL: "Preparation and characterization of TiOphotocatalysts co-doped with iron (III) and lanthanum for the degradation of organic pollutants", APPLIED SURFACE SCIENCE, ELSEVIER, AMSTERDAM, NL, vol. 257, no. 17, 31 March 2011 (2011-03-31), pages 7671 - 7677, XP028215737, ISSN: 0169-4332, [retrieved on 20110408], DOI: 10.1016/J.APSUSC.2011.03.157 *
R. NOTHHELFER-RICHTER ET AL.: "New methodology for the determination of the photocatalytic stability and activity of pigments and organic coatings", CONGRESS PROCEEDINGS NÜRNBERG CONGRESS, VINCENTZ NETWORK, HANNOVER, 2007
Y. CONG ET AL: "Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (III)", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 111, no. 28, 19 July 2007 (2007-07-19), pages 10618 - 10623, XP055028781, ISSN: 1932-7447, DOI: 10.1021/jp0727493 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2837296A1 (de) 2013-08-12 2015-02-18 Solvay Acetow GmbH Katalytisch abbaubarer Kunststoff sowie dessen Verwendung
US20160192700A1 (en) * 2013-08-12 2016-07-07 Solvay Acetow Gmbh Catalytically degradable plastic and use of same
CN104445575A (zh) * 2014-12-09 2015-03-25 江南大学 一种甾体激素药物废水的深度氧化处理方法

Also Published As

Publication number Publication date
BR112013026008A2 (pt) 2016-12-20
KR20140027261A (ko) 2014-03-06
EP2696975A1 (de) 2014-02-19
DE102011017090B3 (de) 2012-08-30
CN103501897A (zh) 2014-01-08
JP2014516766A (ja) 2014-07-17

Similar Documents

Publication Publication Date Title
EP2100927B1 (de) Kohlenstoffhaltiger Titandioxid-Photokatalysator und Verfahren zu seiner Herstellung
DE60107991T2 (de) Verfahren zur Herstellung von Titanoxid
KR100430405B1 (ko) 광촉매용 미립 이산화티타늄 분말의 제조방법
DE60122630T2 (de) Titanoxid sowie Photokatalysator und Photokatalysatorbeschichtungszusammensetzung, die diese verwenden
DE112005001602T5 (de) Katalytisches Material sowie Verfahren zu seiner Herstellung
EP0579062B1 (de) Subpigmentäres Titandioxid mit verbesserter Photostabilität
EP0774443A1 (de) Nanodisperses Titandioxid, Verfahren zu dessen Herstellung und seine Verwendung
EP3294449B1 (de) Pulverförmiges titanoxid, verfahren zu dessen herstellung und dessen verwendung
WO2008128642A1 (de) Verbesserte photokatalysatoren auf basis titandioxid
DE102006020993B4 (de) Photokatalysator und seine Verwendung
DE102007054848B4 (de) Keramischer Formkörper mit einer photokatalytisch aktiven, luftreinigenden, transparenten Oberflächenbeschichtung, Verfahren zur Herstellung desselben und dessen Verwendung
EP1036593A1 (de) Mit Fe3+-Ionen dotierter Titandioxid-Photokatalysator
JP4436910B2 (ja) 酸化チタンを含有する光触媒、その製造方法及び使用
DE102005010320A1 (de) Oberflächenmodifizierte Zinkoxidpartikel
DE102010020820A1 (de) Adsorptionsmittel enthaltend Titan- und Eisenverbindungen
EP0233975B1 (de) Verfahren zur Verbesserung von Titandioxid-Pigmenten durch eine Nachbehandlung
DE102011017090B3 (de) Verfahren zur Herstellung eines Photokatalysators auf Basis von Titandioxid
DE4434969A1 (de) Hochtransparente, gelbe Eisenoxidpigmente, Verfahren zu ihrer Herstellung sowie deren Verwendung
DE4434968A1 (de) Hochtransparente, rote Eisenoxidpigmente, Verfahren zu ihrer Herstellung sowie deren Verwendung
DE2009135A1 (de) Titandioxid mit verbesserter Beständigkeit
DE102005057770A1 (de) Beschichtungszusammensetzung (I)
EP1138632A1 (de) Dotiertes Titandioxid
KR20180012525A (ko) 침전 방법을 이용한 TiO2/환원된 그래핀 옥사이드 복합체의 제조방법
EP2276704A1 (de) Photokatalytisch aktive tio2-formkörper
WO2012052551A1 (de) Verwendung von aufschlussrückstand aus der titandioxidherstellung als phokatalytisch aktive substanz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12714578

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012714578

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012714578

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014504200

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201309802

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 20137030051

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013026008

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013026008

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131009