KR20140027261A - 이산화티타늄 기반 광 촉매의 제조 방법 - Google Patents

이산화티타늄 기반 광 촉매의 제조 방법 Download PDF

Info

Publication number
KR20140027261A
KR20140027261A KR1020137030051A KR20137030051A KR20140027261A KR 20140027261 A KR20140027261 A KR 20140027261A KR 1020137030051 A KR1020137030051 A KR 1020137030051A KR 20137030051 A KR20137030051 A KR 20137030051A KR 20140027261 A KR20140027261 A KR 20140027261A
Authority
KR
South Korea
Prior art keywords
iron
iii
photocatalyst
titanium dioxide
hydrate
Prior art date
Application number
KR1020137030051A
Other languages
English (en)
Inventor
카트야 샤르프
미하엘 슈미트
Original Assignee
크로노스 인터내셔널, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 크로노스 인터내셔널, 인코포레이티드 filed Critical 크로노스 인터내셔널, 인코포레이티드
Publication of KR20140027261A publication Critical patent/KR20140027261A/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 이산화티타늄 기반 철 함유 광 촉매의 제조 방법에 관한 것이다. 광 촉매는 산화티타늄 하이드레이트 나노 입자의 수성 현탁액 내로 철(Ⅲ)이온의 도입 및 후속해서 철(Ⅲ) 하이드레이트의 침전, 산화티타늄 하이드레이트 및 철(Ⅲ) 하이드레이트의 혼합물의 분리, 및 적어도 100℃의 온도에서 열처리에 의해 제조된다: 본 발명에 따른 방법에 의해 제조된 광 촉매는 UV 범위 및 가시 스펙트럼 범위에서 광 활성이다.

Description

이산화티타늄 기반 광 촉매의 제조 방법{PROCESS FOR PRODUCING A PHOTOCATALYST BASED ON TITANIUM DIOXIDE}
본 발명은 가시 광에서도 활성인 이산화티타늄 기반 철 함유 광 촉매의 제조 방법 및 그 용도에 관한 것이다.
광 촉매 물질들은 물질 표면에 고-반응성 프리 라디칼을 형성하는 전자-정공 쌍이 광 작용 하에 생기는 반도체이다. 이산화티타늄은 이런 반도체이다. 이산화티타늄이 공기 중의 그리고 수중의 천연 및 인공 불순물을 UV-광의 조사에 의해, 공기 중 산소가 환원되고 불순물이 친환경 최종 생성물로 산화되는(무기물화되는) 방식으로, 제거할 수 있다는 것은 공지되어 있다. 추가로 이산화티타늄의 표면이 UV-광의 흡수에 의해 슈퍼 친수성으로 된다. 이로 인해, 거울 및 창의 이산화티타늄 박막의 김 서림 방지 효과가 나타난다.
이산화티타늄의 부각되는 단점은 이산화티타늄이 태양 광의 UV-성분만을, 즉 광선의 3 내지 4%만을 이용할 수 있고 확산 주광에서는 촉매로 활성이지 않거나 촉매로 활성이기 매우 어렵다는 것이다.
그 때문에 오래전부터 광 화학적으로 작용하는 태양 광의 주성분을 즉, 400 내지 약 700 nm의 가시 스펙트럼 범위를 상기 현상을 발생시키는데 이용할 수 있도록 이산화티타늄을 변형하려고 했다.
주광에 대해 TiO2를 광 촉매로 활성화하는 하나의 방법은 Ti4 + 의 환원에 의해 TiO2-결정 격자 내에 산소-빈자리를 형성하는 것이다. 다른 가능성은 질소, 탄소 또는 황과 같은 비금속으로 도핑하는 것이다. 바나듐, 크롬, 백금 등과 같은 금속으로 도핑하는 것도 공지되어 있다. 그러나, 이러한 개발은 이온 주입 또는 플라즈마 처리와 같은 부분적으로 복잡한 제조 기술을 필요로 한다.
또한, 철 성분을 포함하는 이산화티타늄 입자가 가시 광에서도 개선된 광 촉매 활성도를 갖는 것이 공지되어 있다. 철 함유 이산화티타늄-광 촉매의 제조를 위해, 다양한 방법이 공개되었다.
EP 0 666 107 B1은 5 ppm 내지 10 중량% 철을 포함하는 이산화티타늄-광 촉매를 개시한다. 광 촉매는 티타늄 화합물 및 철 화합물을 용해된 형태로 포함하는 수용액의 가수분해에 의해 제조된다.
EP 1 036 593 A1은 3가 철 및 같은 몰 량의 5가 이온으로 도핑된 광 촉매를 개시하고, 상기 광 촉매는 용매 중에 용해된 개별 성분의 가수 분해 및 후속하는 건조 및 소결에 의해 제조된다.
US 2007/0193875 A1은 철 이온으로 도핑된 이산화티타늄-광 촉매의 제조 방법을 개시하고, 상기 방법에서 각각의 전구체 화합물(예컨대, 각각의 염화물)의 혼합물을 투석함으로써, 염소 이온을 제거한 다음, 생성물을 건조하고 하소한다.
본 발명의 과제는 가시 스펙트럼 범위에서 활성인, 이산화티타늄 기반 철 함유 광 촉매의 경제적인 제조 방법을 제공하는 것이다.
상기 과제는
- 산화티타늄 하이드레이트 나노입자를 포함하는 수성 현탁액을 제공하는 단계,
- 철(Ⅲ)-이온의 첨가 단계,
- 철(Ⅲ)하이드레이트의 침전 단계.
- 산화티타늄 하이드레이트 및 철(Ⅲ)하이드레이트를 포함하는 혼합물의 분리 단계,
- 적어도 100℃의 온도에서 혼합물의 열처리 단계
를 포함하는 이산화티타늄 기반 광 촉매의 제조 방법에 의해 달성된다.
본 발명의 다른 바람직한 실시예는 종속 청구항들에 제시된다.
본 발명의 대상은 가시 스펙트럼 범위에서 중요한 활성도를 갖는 이산화티타늄 기반 철 함유 광 촉매의 간단하고 경제적인 제조 방법, 및 액체 중의, 기체 중의, 표면 상의 그리고 광전지 내의 불순물 및 유해 물질을 제거하기 위한 그리고 물 분리를 위한 광 촉매의 용도이다.
본 발명에 의해, 가시 스펙트럼 범위에서 활성인, 이산화티타늄 기반 철 함유 광 촉매의 경제적인 제조 방법이 제공된다.
하기에 나타난 pH-값, 온도, 중량%의 농도 등에 대한 모든 표시는 당업자에게 공지된 각각의 측정 정확도의 범위에 있는 모든 값이 포함되는 것으로 이해되어야 한다.
본 발명에 따른 방법의 제 1 단계는 산화티타늄 하이드레이트 나노 입자를 포함하는 수성 현탁액의 제공을 포함한다. 이하에서, 산화티타늄 하이드레이트는 메타티탄산, 티타늄옥시하이드레이트, 티타늄하이드레이트, 티타늄하이드록사이드, 비정질 이산화티타늄 또는 산화티타늄, 물 함유 이산화티타늄 또는 물 함유 산화티타늄을 말한다. 나노입자는 1차 입자 크기 < 100 nm를 가진 입자를 말한다.
산화티타늄 하이드레이트는 예컨대 이산화티타늄 제조시 황산염 방법에 따라 또는 염화물 방법에 따라 형성될 수 있고, 이 경우 산화티타늄 하이드레이트는 티타닐설페이트 또는 티타닐클로라이드의 가수분해에 의해 침전된다. 산화티타늄 하이드레이트는 바람직하게 비정질 내지 미정질이다. 특히 1차 입자 크기는 10 nm(전자현미경 촬영으로부터 측정) 미만이다. 산화티타늄 하이드레이트가 황산염 방법으로부터 얻어지면, 이는 바람직하게는 현탁액의 제조 전에 세척된다.
현탁액은 바람직하게 최대 10 중량%, 바람직하게는 4 내지 7 중량%의 SO3-함량을 갖는다. 현탁액의 철 함량은 바람직하게 100 ppm 미만, 특히 50 ppm 미만이고, 특히 바람직하게는 20 ppm 미만이다. 본 발명의 다른 실시예에서, 현탁액의 pH 값은 최대 약 7이다.
본 발명에 따른 방법의 제 2 단계는 현탁액에 3가의 철 이온의 첨가를 포함한다. 철 이온은 수용성 무기 또는 단쇄의 유기 철 화합물의 형태로, 예컨대 철(Ⅲ)황산염 또는 철옥살레이트의 용액으로서 첨가된다.
본 발명의 일 실시예에서 2가의 철을 가진 수용성 염이 사용될 수 있으며, 이 경우 용해된 형태의 염(예컨대, 철(Ⅱ)황산염)이 먼저 예컨대 H2O2와 같은 산화제에 의해 양적으로 산화되어 철(Ⅲ)황산염을 형성한 다음, 현탁액에 첨가된다. 철(Ⅱ)황산염은 예컨대 철(Ⅱ)황산염-헵타하이드레이트일 수 있으며, 상기 하이드레이트는 소위 염기성 염으로서 이산화티타늄 제조를 위한 황산염 방법 동안 철 티타늄 광석의 분해시 생긴다.
첨가된 철(Ⅲ)-이온의 양은 TiO2에 대해 바람직하게는 0.05 내지 5 중량%, 특히 0.05 내지 3 중량%, 특히 바람직하게는 0.05 내지 1 중량% Fe이다.
본 발명에 따른 방법의 제 3 단계는 철(Ⅲ)하이드레이트의 침전을 포함한다. 바람직하게는 현탁액의 pH 값이 적합한 pH 조절 물질(예컨대 NaOH와 같은 알칼리 또는 H2SO4 와 같은 산)에 의해 6 내지 8로 조절되고 철(Ⅲ)하이드레이트는 양적으로 침전된다. 침전시 온도는 바람직하게 20 내지 80℃이다.
본 발명에 따른 방법의 제 4 단계는 산화티타늄 하이드레이트와 철(Ⅲ)하이드레이트의 혼합물의 분리를 포함한다. 분리는 바람직하게 여과에 의해 이루어진다. 적합한 방법들, 예컨대 진공 플레이트 여과 또는 진공 평면 필터 여과가 당업자에게 공지되어 있다. 필터 케이크는 바람직하게 세척된다. 끝으로, 필터 케이크는 바람직하게 하기 특징들 중 하나 또는 다수를 갖는다: SO3 의 함량이 최대 1.5 중량%, 바람직하게는 < 0.3 중량%이다. 나트륨 함량은 최대 0.1 중량%, 바람직하게는 < 0.05 중량%이다. 전도도는 최대 5 mS/㎝이다. 습기는 최대 70 중량%, 바람직하게는 < 65 중량%이다.
본 발명에 따른 방법의 제 5 단계는 100℃ 이상의 온도에서 산화티타늄 하이드레이트와 철(Ⅲ)하이드레이트 함유 혼합물의 열처리를 포함한다. 바람직하게 온도는 100℃ 내지 900℃, 특히 100℃ 내지 400℃이다. 열 처리는 유동층 시스템, 분무 건조기 또는 회전로와 같은 통상의 장치에서 이루어질 수 있다. 열 처리가 100℃ 내지 약 150℃에서 이루어지면, 바람직하게는 유동층 시스템 또는 분무 건조기에서 이루어진다.
방법의 일 실시예에서는, 먼저 건조가 약 100℃에서 이루어짐으로써, 열 처리가 2 단계로 실시될 수 있다.
필터 케이크의 잔류 습기는 건조 후 바람직하게 3 내지 10 중량%, 특히 5 내지 7 중량%이다.
본 발명에 따른 방법에 의해 형성된 광 촉매는 바람직하게 약 25 내지 300 ㎡/g 의 BET-표면을 갖는다. 생성물의 비표면이 열 처리의 온도에 의해 영향을 받을 수 있다는 것은 당업자에게 공지되어 있다. 상기 비 표면은 온도의 증가에 따라 줄어든다.
본 발명에 따른 방법에 의해 제조된 광 촉매는 UV-범위 및 가시 스펙트럼 범위에서 광 활성이며, 액체 및 기체 중의 유해 물질 제거에 특히 적합하고 내부 영역 및 외부 영역에서 자정 표면에 특히 적합하다. 광 촉매는 또한 광 전지 및 광 분해에 사용될 수 있다.
실시예
이하에서, 본 발명이 실시예를 참고로 설명되지만, 이것에 제한되는 것은 아니다.
실시예 1
이산화티타늄 생성물로부터 황산염 방법에 따라 얻어진 산화티타늄 하이드레이트를 90L의0 물로 온도 제어식 2 중 케이싱 용기 내에서(40℃) 페이스트화하여 300 g/L TiO2 를 가진 현탁액으로 만들었다. 별도의 용기 내에서, 17.8 중량%의 철(Ⅱ)-함량을 가진 1.33 kg 철(Ⅱ)설페이트헵타하이드레이트(염기성 염)를 5.2 L 물에 용해시켰고 교반 하에 274 g 30% H2O2-용액을 첨가하였다. 이로 인해, Fe(Ⅱ)가 양적으로 산화되어 Fe(Ⅲ)를 형성하였다. 6.8 kg 철(Ⅲ)-함유 용액을 교반 하에 산화티타늄 하이드레이트 현탁액에 첨가하였다. 그리고 나서, 현탁액의 pH 값을 NaOH의 첨가에 의해 약 7로 조절하였다.
현탁액을 진공 플레이트를 통해 여과하였고, 필터 케이크를 50℃ 내지 60℃의 따뜻한 물로 SO3-함량 < 1 중량%, Na-함량 < 0.02 중량% 및 여과액 내의 전도도 < 5 mS/㎝로 세척하였다.
그리고 나서 필터 케이크를 물 속에서 페이스트화하였고(고체 함량 25 내지 27%) 분무 건조기 내에서 약 120 ℃로 열 처리하였다.
건조된 생성물의 잔류 습기는 5 내지 7 중량% 였다. 생성물은 1.0 중량%의 Fe 함량, 0.11 중량%의 SO3 함량 및 310 ㎡/g의 비표면(BET)을 가졌다.
실시예 2
다음의 차이점을 갖고 실시예 1에서와 같이 처리하였다: 17 kg 철(Ⅲ) 함유 용액을 현탁액에 첨가하였다. 분무 건조기에서 120℃로 건조 후, 생성물을 2 시간 동안 510℃로 열 처리하였다: 건조된 생성물의 잔류 습기는 5 내지 7 중량%였다. 생성물은 2.5 중량% Fe 함량, 0.10 중량% SO3 함량 및 89 ㎡/g의 비표면(BET)을 가졌다.
비교 실시예
다음의 차이점을 갖고 실시예 1에서와 같이 처리하였다: 철 함유 용액을 현탁액에 첨가하지 않았다. 분무 건조기에서 120℃로 건조 후, 생성물을 2 시간 동안 300℃로 열 처리하였다: 건조된 생성물의 잔류 습기는 5 내지 7 중량%였다. 생성물은 0 중량% Fe 함량, 0.35 중량% SO3 함량 및 98 ㎡/g의 비표면(BET)을 가졌다.
테스트 방법
화학적 분석
Fe, SO3 및 Na 함량은 X-레이 형광 기술에 의해 측정되었다.
BET에 따른 비표면
BET-표면은 Micromeritics 사의 Tristar 3000에 의해 정적 부피 원리에 따라 측정되었다.
광촉매 활성도
광 촉매의 광촉매 활성도는 이소프로판올의 분해를 통해 측정되었다.
이소프로판올 분해의 측정은 R. Nothhelfer-Richter 등의 간행물("New methodology for the determination of the photocatalytic stability and activity of pigments and organic coatings", Congress Proceedings Nuernberg Congress, Vincentz Network, Hannover 2007))에 개시된 바와 같은 측정 장치에서 이루어졌다. 노광을 위해 450W XBO-램프가 사용되었다.
측정 장치 및 측정 방법은 J.R. Searle에 의해 개발되었다("Titanium dioxide pigment photocatalysed degradation of PVC and plasticised PVD coatings", PhD-thesis, University of Swansea, Wales, 2002).
실제 측정 전에 분말형 시편이 UV 필터 없이 4일 동안 노광되는 방식으로 컨디셔닝되었다. 흡착된 유기 화합물이 분해되어 CO2 및 H2O를 형성하였다. 그리고 나서, 테스트 챔버가 새로운 테스트 가스(이소프로판올)로 채워졌고 새로운 평형 상태가 대기되었다.
그리고 나서, 유리 노즐에 의해 5 μl 이소프로판올이 측정 챔버 내로 도입되었다. 시편에서 어둠 흡착이 이루어졌다. 흡착은 이소프로판올의 측정값이 10분 내에 2 ppm 보다 적게 변화되면 종료되었다.
그리고 나서, 노광 되었다. 다음 에지 필터가 사용되었다: 305 nm 내지 385 nm.
이소프로판올의 농도 변화가 FTIR 검출기에 의해 추적되었다. 이소프로판올의 5%가 분해된 후에, 95% 내지 85%의 네거티브 기울기(분해 라인)로부터 이소프로판올의 분해가 ppm/㎡*min 으로 계산되었다.
테스트 결과
실시예 1, 실시예 2 및 비교 실시예에 따른 광 촉매의 측정된 광 촉매 활성도가 표 1에 제시된다.
Figure pct00001
결과는 본 발명에 따른 광 촉매의 광 촉매 활성도가 가시 범위(에지 필터 385 nm)에서 전체 활성도(에지 필터 305 nm)의 약 10%가 되는 것을 나타낸다. 이에 반해, 비교 실시예에 따른 Fe-없는 광 촉매는 스펙트럼 범위 > 385 nm에서 적은 광 촉매 활성도만을 갖는데(에지 필터 385 nm), 이 낮은 광 촉매 활성도는 세척 프로세스로 인해 광 촉매 중에 50 ppm까지의 철 흔적량이 주어질 수 있는 것에 기인한다.

Claims (9)

  1. 이산화티타늄 기반 광 촉매의 제조 방법으로서,
    - 산화티타늄 하이드레이트 나노입자를 포함하는 수성 현탁액을 제공하는 단계,
    - 철(Ⅲ)-이온의 첨가 단계,
    - 철(Ⅲ)하이드레이트의 침전 단계.
    - 산화티타늄 하이드레이트 및 철(Ⅲ)하이드레이트를 포함하는 혼합물의 분리 단계,
    - 적어도 100℃의 온도에서 혼합물의 열처리 단계
    를 포함하는 광 촉매의 제조 방법.
  2. 제 1 항에 있어서,
    상기 혼합물의 열 처리는 100℃ 내지 900℃에서 이루어지는 것을 특징으로 하는 광 촉매의 제조 방법.
  3. 제 1 항에 있어서,
    상기 혼합물의 열 처리는 100℃ 내지 400℃에서 이루어지는 것을 특징으로 하는 광 촉매의 제조 방법.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 철(Ⅲ)-이온은 철(Ⅱ)-이온의 이전 산화에 의해 발생되는 것을 특징으로 하는 광 촉매의 제조 방법.
  5. 제 4 항에 있어서,
    상기 철(Ⅲ)-이온은 철(Ⅱ)황산염-헵타하이드레이트가 H2O2 로 산화됨으로써 형성되는 것을 특징으로 하는 광 촉매의 제조 방법.
  6. 제 1 항 내지 제 5 항 중 어느 한 항 또는 다수 항에 있어서,
    TiO2 에 대해 0.05 내지 5 중량%, 바람직하게는 0.05 내지 3 중량%, 특히 0.05 내지 1 중량% 철(Ⅲ)-이온이 첨가되는 것을 특징으로 하는 광 촉매의 제조 방법.
  7. 제 1 항 내지 제 6 항 중 어느 한 항 또는 다수 항에 따른 방법에 따라 제조된 이산화티타늄 기반 광 촉매.
  8. 액체 및 기체 중의 유해 물질 제거를 위한 그리고 자정 표면을 위한 제 1 항 내지 제 7 항 중 어느 한 항에 따른 광 촉매의 용도.
  9. 광전지 및 광분해에 제 1 항 내지 제 7 항 중 어느 한 항에 따른 광 촉매의 용도.
KR1020137030051A 2011-04-14 2012-04-04 이산화티타늄 기반 광 촉매의 제조 방법 KR20140027261A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011017090A DE102011017090B3 (de) 2011-04-14 2011-04-14 Verfahren zur Herstellung eines Photokatalysators auf Basis von Titandioxid
DE102011017090.1 2011-04-14
PCT/EP2012/001490 WO2012139726A1 (de) 2011-04-14 2012-04-04 Verfahren zur herstellung eines photokatalysators auf basis von titandioxid

Publications (1)

Publication Number Publication Date
KR20140027261A true KR20140027261A (ko) 2014-03-06

Family

ID=45974243

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137030051A KR20140027261A (ko) 2011-04-14 2012-04-04 이산화티타늄 기반 광 촉매의 제조 방법

Country Status (7)

Country Link
EP (1) EP2696975A1 (ko)
JP (1) JP2014516766A (ko)
KR (1) KR20140027261A (ko)
CN (1) CN103501897A (ko)
BR (1) BR112013026008A2 (ko)
DE (1) DE102011017090B3 (ko)
WO (1) WO2012139726A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2837296A1 (de) * 2013-08-12 2015-02-18 Solvay Acetow GmbH Katalytisch abbaubarer Kunststoff sowie dessen Verwendung
CN104445575B (zh) * 2014-12-09 2016-04-20 江南大学 一种甾体激素药物废水的深度氧化处理方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399541A (en) * 1991-05-14 1995-03-21 Nippon Shokubai Co., Ltd. Catalyst for treating wastewater
AU676299B2 (en) * 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same
JP2909403B2 (ja) * 1994-02-07 1999-06-23 石原産業株式会社 光触媒用酸化チタンおよびその製造方法
TW431907B (en) 1994-02-07 2001-05-01 Ishihara Sangyo Kaisha Method of removing harmful materials
DE19911738A1 (de) 1999-03-16 2000-09-28 Fraunhofer Ges Forschung Mit Fe·3··+·-Ionen dotierter Titandioxid-Photokatalysator
JP4539936B2 (ja) * 2000-06-23 2010-09-08 住化エンビロサイエンス株式会社 脱臭組成物
DE10044986A1 (de) * 2000-09-11 2002-03-21 Kerr Mcgee Pigments Gmbh & Co Nanokristallines Metalloxidpulver, Verfahren zu seiner Herstellung und Verwendung
JP2003190811A (ja) * 2001-12-27 2003-07-08 Sumitomo Chem Co Ltd 光触媒体、その製造方法およびそれを用いてなる光触媒体コーティング剤
JP4099697B2 (ja) * 2002-03-25 2008-06-11 テイカ株式会社 チタン酸鉄の硫酸蒸解溶液の精製方法
CN1472004A (zh) * 2002-08-01 2004-02-04 中国科学院广州能源研究所 铁沉积二氧化钛复合光催化剂及其制备方法
DE102004027549A1 (de) * 2004-04-07 2005-10-27 Kronos International, Inc. Kohlenstoffhaltiger Titandioxid-Photokatalysator und Verfahren zu seiner Herstellung
DE502005006278D1 (de) * 2004-06-04 2009-01-29 Sto Ag Beschichtungszusammensetzung
KR100763226B1 (ko) 2006-02-17 2007-10-04 삼성전자주식회사 전이 금속 이온이 첨가된 평균 입경 10㎚ 이하 크기의 반도체성 금속 산화물로 이루어진 광촉매 물질 제조 방법과 이에 의해 제조된 물질 및 이 물질을 포함하는 필터, 팬 필터 유닛 및 클린룸 시스템
JP5055271B2 (ja) * 2006-04-28 2012-10-24 石原産業株式会社 光触媒及びその製造方法並びにそれを用いた光触媒コート剤、光触媒分散体、光触媒体
DE102007019040A1 (de) * 2007-04-20 2008-10-23 Kronos International, Inc. Verbesserte Photokatalysatoren auf Basis Titandioxid

Also Published As

Publication number Publication date
DE102011017090B3 (de) 2012-08-30
WO2012139726A1 (de) 2012-10-18
EP2696975A1 (de) 2014-02-19
JP2014516766A (ja) 2014-07-17
CN103501897A (zh) 2014-01-08
BR112013026008A2 (pt) 2016-12-20

Similar Documents

Publication Publication Date Title
Huy et al. SnO2/TiO2 nanotube heterojunction: The first investigation of NO degradation by visible light-driven photocatalysis
US8791044B2 (en) Doped titanium dioxide as a visible and sun light photo catalyst
Flores et al. Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures
Bagheri et al. Enhanced photocatalytic degradation of congo red by solvothermally synthesized CuInSe 2–ZnO nanocomposites
Hernandez-Uresti et al. Characterization and photocatalytic properties of hexagonal and monoclinic WO3 prepared via microwave-assisted hydrothermal synthesis
Ashebir et al. Structural, optical, and photocatalytic activities of Ag-doped and Mn-doped ZnO nanoparticles
Bagherzadeh et al. A new SnS2-BiFeO3/reduced graphene oxide photocatalyst with superior photocatalytic capability under visible light irradiation
JP5537858B2 (ja) 光触媒材料及びその製造方法
Ulyankina et al. Photocatalytic degradation of ciprofloxacin in water at nano-ZnO prepared by pulse alternating current electrochemical synthesis
Nassoko et al. Neodymium-doped with anatase and brookite two phases: mechanism for photocatalytic activity enhancement under visible light and the role of electron
Farhadi et al. Phosphotungstic acid supported on aminosilica functionalized perovskite-type LaFeO 3 nanoparticles: a novel recyclable and excellent visible-light photocatalyst
Rahman et al. Photocatalytic degradation of remazol brilliant orange 3R using wet-chemically prepared CdO-ZnO nanofibers for environmental remediation
Wang et al. Facet-dependent generation of superoxide radical anions by ZnO nanomaterials under simulated solar light
Li et al. Visible light active TiO2–ZnO composite films by cerium and fluorine codoping for photocatalytic decontamination
Xing et al. Fabrication of Bi 2 Sn 2 O 7-ZnO heterostructures with enhanced photocatalytic activity
Andronic et al. Photocatalytic activity of defective black-titanium oxide photocatalysts towards pesticide degradation under UV/VIS irradiation
Dou et al. Fabrication of 3D flower-like OVs-Bi2SiO5 hierarchical microstructures for visible light-driven removal of tetracycline
Fadillah et al. Hydrothermal assisted synthesis of titanium dioxide nanoparticles modified graphene with enhanced photocatalytic performance
Raza et al. In-situ synthesis of mesoporous TiO2-Cu2ZnSnS4 heterostructured nanocomposite for enhanced photocatalytic degradation
Meng et al. Fabrication of organic–inorganic hybrid membranes composed of poly (vinylidene fluoride) and silver cyanamide and their high photocatalytic activity under visible light irradiation
Channei et al. Adsorption and photocatalytic processes of mesoporous SiO2-coated monoclinic BiVO4
Vasilyeva et al. Ti/TiO2-CoWO4-Co3 (PO4) 2 composites: Plasma electrolytic synthesis, optoelectronic properties, and solar light-driven photocatalytic activity
Wang et al. Constructing flower-like TiO2/Bi2O3 pn heterojunction with enhanced visible-light photocatalytic performance
Štengl et al. TiO 2/ZnS/CdS nanocomposite for hydrogen evolution and orange II dye degradation
KR20140027261A (ko) 이산화티타늄 기반 광 촉매의 제조 방법

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid