WO2012139340A1 - 气相色谱-反气相色谱联用分析装置 - Google Patents

气相色谱-反气相色谱联用分析装置 Download PDF

Info

Publication number
WO2012139340A1
WO2012139340A1 PCT/CN2011/077205 CN2011077205W WO2012139340A1 WO 2012139340 A1 WO2012139340 A1 WO 2012139340A1 CN 2011077205 W CN2011077205 W CN 2011077205W WO 2012139340 A1 WO2012139340 A1 WO 2012139340A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas chromatography
column
inverse
chromatography column
detector
Prior art date
Application number
PCT/CN2011/077205
Other languages
English (en)
French (fr)
Inventor
刘百战
王雯娟
郑赛晶
吴达
Original Assignee
上海烟草集团有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海烟草集团有限责任公司 filed Critical 上海烟草集团有限责任公司
Priority to JP2013509443A priority Critical patent/JP5250164B2/ja
Priority to US13/809,586 priority patent/US8943872B2/en
Publication of WO2012139340A1 publication Critical patent/WO2012139340A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/461Flow patterns using more than one column with serial coupling of separation columns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Definitions

  • the present invention relates to an apparatus for testing the surface properties of solid materials, and more particularly to a gas chromatography-inverse gas chromatography combined analysis apparatus. Background technique
  • the problem to be solved by the present invention is to provide a gas chromatography-inverse gas chromatography combined analysis apparatus which overcomes the above problems in the prior art.
  • the gas chromatography-inverse gas chromatography combined analysis device of the present invention comprises a gas chromatography column and an inverse gas chromatography column, wherein the input end of the gas chromatography column is connected to an injector, and the output end of the gas chromatography column is The input end of the reverse gas chromatography column is connected, the output end of the gas chromatography column is also connected to the first detector, and the input end of the inverse gas chromatography column is also connected with a carrier gas tube, and the output end of the reverse gas chromatography column Connected to the second detector, the first detector and the second detector are both connected to a signal collector.
  • the output end of the gas chromatography column of the present invention is connected to the input end of the reverse gas chromatography column through an insulated pipe.
  • the gas chromatography column of the present invention is a capillary column.
  • the inverse gas chromatography column of the present invention is a packed column.
  • a flow regulating valve is disposed on the carrier gas pipe of the present invention.
  • the output end of the gas chromatography column of the present invention, the first detector, the input end of the reverse gas chromatography column and the carrier gas tube are connected by a four-way valve.
  • the gas chromatography-inverse gas chromatography combined analysis device of the present invention uses the inverse gas chromatography principle to measure the interaction of different probe molecules on the measured solid surface at a set temperature, such as surface adsorption enthalpy, surface acid and alkali.
  • a set temperature such as surface adsorption enthalpy, surface acid and alkali.
  • Properties, surface compatibility, diffusion coefficient of probe molecules in adsorbents, various crystallization parameters, detection of differences in surface chemistry of different batches of samples, determination of surface heterogeneity of single-component or multi-component mixtures The distribution of the surface energy position), the glass transition temperature of the bulk object, and the like.
  • the device can not only observe the adsorption performance of the measured solid adsorbent on different single probes, but also simultaneously investigate the adsorption performance of different solid adsorbent materials on different components of the mixed probe, and realize the simultaneous surface and different probes of the tested materials.
  • the interaction between molecules is analyzed, which will greatly increase the flexibility of the system method and promote and optimize the original analysis method.
  • Fig. 1 is a structural view showing a gas chromatography-inverse gas chromatography combined analysis device of the present invention.
  • the injector 2----flow regulating valve; 3----gas column; 4----four-way valve; 5----insulation pipeline; 6--inverse gas chromatography column 7----first detector; 8----second detector; 9----signal collector.
  • the gas chromatography-inverse gas chromatography combined analysis device of the present invention comprises a gas chromatography column 3 and an inverse gas chromatography column 6, and an input end of the gas chromatography column 3 is connected to a sampler 1,
  • the output end of the gas chromatography column 3 is connected to the input end of the reverse gas chromatography column 6, the output end of the gas chromatography column 3 is also connected to the first detector 7, and the input end of the reverse gas chromatography column 6 is also connected to a carrier gas pipe.
  • the output of the reverse gas chromatography column 6 is connected to the second detector 8, and the first detector 7 and the second detector 8 are both connected to a signal collector 9.
  • the output of the GC column is connected to the input of the GC column via a holding line 5 to ensure the temperature between the probes.
  • the output end of the gas chromatography column 3, the first detector 7, the input end of the inverse gas chromatography column 6, and the carrier gas pipe are connected by a four-way valve 4, and a flow regulating valve 2 is disposed on the carrier gas pipe, and the carrier gas pipe can be adjusted.
  • the first detector 7 and the second detector 8 may be a thermal conductivity cell detector (TCD) or a hydrogen flame ionization detector (FID).
  • the device can be used for direct gas injection or micro-liquid injection, for example, by headspace injection or by vaporizing the liquid probe molecules to be tested.
  • the gas chromatographic column 3 uses a capillary column
  • the reverse gas chromatography column 4 uses a packed column. Being vaporized
  • the latter probe molecules are first passed through a capillary column (the appropriate capillary column can be selected according to actual needs) and then separated after being programmed. After the separation, the sample flowing out of the capillary column is branched and then partially enters the first detector 7 for detection, and the other portion passes through the packed column and enters the second detector 8 for detection.
  • the input end of the reverse gas chromatography column 3 is also connected to a carrier gas tube, so that one carrier gas passes through the packed column together with the sample flowing out of the capillary, thereby avoiding the passage of the capillary column carrier gas flow when it is restricted.
  • the carrier gas flow rate of the packed column is affected. Adding a carrier gas outside the capillary column through the packed column will reduce the internal diameter of the capillary column and rationally design the carrier gas flow through the packed column, making the test more scientific and flexible.
  • the device uses dual detectors for simultaneous detection. By examining the difference in peak times of the probe molecules on the two detectors, the relative retention time of the probe molecules through the materials in the packed column is determined, and then between the different probe molecules and the measured materials. The interaction and the surface properties of the material being tested were tested.
  • the device can first separate the mixed probe through the gas chromatographic column before testing the mixing probe to interact with the surface of the measured material, so that the mixed gas phase probe can be effectively prevented from passing directly through the reverse gas chromatography column, and the gas chromatography exists.
  • the problem that the peak is difficult to separate. This will greatly improve the problem that traditional reverse gas chromatography systems can only be measured for a single probe, simplifying operation.
  • the device realizes the combination of gas chromatography and reverse gas chromatography, and maximizes the function of separating the probe molecules by gas chromatography, making the system method more scientific and reasonable, and the detection is more convenient, especially the different components and solids in the mixed probe. Simultaneous testing of material surface interactions is possible, which will greatly simplify the determination of other surface properties of solid materials.
  • the different components of the mixed probe molecules are well separated by the gas chromatography column 3, which is effective to avoid the difficulty in the peak of the mixed gas phase probe in the conventional reverse gas chromatography device test directly after passing through the packed column of the strong adsorption performance material. Separate questions. Then, by comparing the different retention times of the different adsorbed materials in the mixed probe, the surface properties of the adsorbed materials are compared to compare the interaction of the same probe molecules with different solid materials or different probe molecules and the same solid. The interaction of the surface of the material and the further determination of other surface properties of the material being tested by these tests.
  • the embodiment of the present invention is: the above-mentioned sampler adopts a rotary type autosampler, Agi lent 6890N gas chromatograph, a capillary column type CP-Poraplot-Q, a length of 27.5 m, an inner diameter of 0. 53 mm;
  • the column is packed with a packed column with an inner diameter of about 2 mm, an outer diameter of about 6 mm, and a length of about 8 cm.
  • the column temperature is 200 ° C
  • the carrier gas flow rate is 26.5 mL / min
  • the injection volume is 0. 2 ⁇ 1
  • the inlet split ratio is 30: 1
  • the inlet temperature is 250 °C
  • the detector is FID detector and TCD
  • the detector has a temperature of 250 °C.
  • the packed column was filled with 16 mg of the tested sample, and acetaldehyde, acetone, butyraldehyde, benzene, carbon tetrachloride, tetrahydrofuran and ethyl acetate were selected as probe molecules to test their adsorption on the solids. Adsorption properties of the surface of the material.
  • the reverse gas chromatography column is carried out by a gas flow method, that is, the inlet end of the reverse gas chromatography column is connected to the outlet of the vaporization chamber of the gas chromatograph, and the outlet end is vented. Pass the carrier gas (flow rate of 10. 5mL / min) for half an hour, drive off the air in the system. Raise the column temperature and control to age at 200 °C for 2 hours. After aging, connect the detector to obtain a smooth baseline.
  • AG is the standard adsorption free energy (J/mol); R is the universal gas constant 8. 3145 J / (mol-K) ; T is the absolute temperature (K); The K value is related to the amount of the polymer, the surface area, and the state of adsorption, so K is a constant (J/mol) in the same column.
  • F is the carrier gas flow rate (mL/s) at the outlet of the GC column;
  • m is fixed The mass of the phase (g);
  • T is the ambient temperature (K);
  • P ⁇ PP Q is the pressure at the inlet and outlet of the GC column, respectively;
  • Vg is the specific retention volume (mL/g).
  • Examples 1-7 are the adsorption properties of different probes for the tested A materials. The results are obtained according to the above formulas (1) and (2) as follows:
  • Table 1 A solid material adsorption performance of different gas phase probes at 200 ° C
  • Vg is the specific retention volume (mL/g)
  • R is the universal gas constant 8.3145 J/(mol-K)
  • T is the ambient temperature (K).
  • Example 8-12 is a solid material which is tested for surface adsorption of different vapor phase components such as acetone, ethanol, tetrahydrofuran, carbon tetrachloride, ethyl acetate, etc. According to the above formula (4), the results are as follows:
  • DN and AN are the electron donor constants and electron acceptor constants of the polar probe molecules defined by Gutmann, respectively.
  • Ka and Kb are the acidity of the adsorbent surface, respectively. Constant and basic constant.
  • Examples 13-15 are the results of acid-base test on the surface of A solid material. The results are as follows according to the above formula (5): Table 3. A. Acid-alkaline test results on the surface of solid materials
  • the acid-base constant ratio of the A material is greater than 1, so that it is more acidic.

Description

气相色谱 -反气相色谱联用分析装置
技术领域
本发明涉及一种测试固体材料表面性质的装置, 特别涉及一种气相色谱-反气相色谱联用 分析装置。 背景技术
在以往对固体材料表面性能评价过程中, 往往使用扫描电子显微镜、 X-射线能谱等技术 通过对吸附剂本身的比表面积和孔容等表面性质进行测定, 但是这些方法并不能反映固体材 料表面与其作用的探针之间的相互作用能力, 尤其很难考察固体材料对混合探针中不同组分 物质之间的相互作用。 传统的反气相色谱主要是通过将所测固体材料填入填充柱中, 将与其 作用的单探针分子汽化后使其通过该填充柱。 这样, 当该探针分子通过由不同种类材料的填 充柱时, 就会产生不同的相对保留时间, 根据相对保留时间值以及其它一些色谱参数可以考 察该探针分子与所测材料表面间的相互作用。 但是传统方法对于一些吸附材料的测试, 往往 会导致探针分子通过吸附材料表面相对保留时间的不易计算, 特别是对于混合探针, 传统的 反气相色谱很难将其分离, 从而导致出峰后会出现各个成份分不开的问题, 这样就需要在测 试时有标准样品而加大了测试的难度, 不利于针对混合探针中不同成份的测试。 发明内容
本发明所要解决的问题是提供一种气相色谱-反气相色谱联用分析装置, 克服现有技术中 存在的上述问题。
本发明气相色谱-反气相色谱联用分析装置, 包括一个气相色谱柱和一个反气相色谱柱, 所述气相色谱柱的输入端与一进样器相连接, 气相色谱柱的输出端与所述反气相色谱柱的输 入端相连接, 气相色谱柱的输出端还与第一检测器相连接, 所述反气相色谱柱的输入端还与 一根载气管相连接, 反气相色谱柱的输出端与第二检测器相连接, 所述第一检测器、 第二检 测器均与一信号收集器相连接。
本发明所述气相色谱柱的输出端与所述反气相色谱柱的输入端之间通过保温管路相连 接。
本发明所述气相色谱柱为毛细管柱。
本发明所述反气相色谱柱为填充柱。
本发明所述载气管上设有流量调节阀。 本发明所述气相色谱柱的输出端、 第一检测器、 反气相色谱柱的输入端和载气管之间通 过一个四通阀相连接。
通过以上技术方案, 本发明的气相色谱-反气相色谱联用分析装置, 采用反气相色谱原理 测量设定温度下不同探针分子在所测固体表面的相互作用, 如表面吸附焓、 表面酸碱性、 表 面相容性、 探针分子在吸附剂中的扩散系数、 各类结晶参数、 检测不同批次样品表面化学性 质的差异性、 测定单成分或者多成分混合物的表面异质性 (通过测表面能位置的分布)、 测量 块状物体的玻璃化转变温度等。 该装置既可以考察所测固体吸附材料对不同单一探针的吸附 性能, 又可以同时考察不同固体吸附材料对混合探针中不同成份的吸附性能, 实现了同时对 所测材料表面与不同探针分子之间的相互作用力进行分析, 这将很大地增加系统方法的灵活 性, 对原有分析方法有促进和优化的作用。 附图说明
图 1为本发明气相色谱-反气相色谱联用分析装置的结构图。
图中, 进样器; 2----流量调节阀; 3----气相色谱柱; 4----四通阀; 5----保温管路; 6-— 反气相色谱柱; 7----第一检测器; 8----第二检测器; 9----信号收集器。
具体实施方式
如图 1所示, 本发明的气相色谱-反气相色谱联用分析装置, 包括一个气相色谱柱 3和一 个反气相色谱柱 6, 气相色谱柱 3的输入端与一进样器 1相连接, 气相色谱柱 3的输出端与反 气相色谱柱 6的输入端相连接, 气相色谱柱 3的输出端还与第一检测器 7相连接, 反气相色 谱柱 6的输入端还与一根载气管相连接, 反气相色谱柱 6的输出端与第二检测器 8相连接, 第一检测器 7、 第二检测器 8均与一信号收集器 9相连接。
气相色谱柱的输出端与反气相色谱柱的输入端之间通过保温管路 5相连接, 确保探针运 行间的温度。
气相色谱柱 3的输出端、第一检测器 7、反气相色谱柱 6的输入端和载气管之间通过四通 阀 4相连接, 并载气管上设有流量调节阀 2, 可以调节载气管的载气输入量。第一检测器 7和 第二检测器 8可以为热导池检测器 (TCD), 也可以为氢焰离子化检测器 (FID)。
本装置可采用气体直接进样或者微量液体进样, 例如采用顶空进样或将所要测试的液体 探针分子进行汽化后进样。 气相色谱柱 3采用毛细管柱, 反气相色谱柱 4采用填充柱。 被汽化 后的探针分子首先通过毛细管柱 (可以根据实际需求选择合适的毛细管柱) 程序升温后将其 进行分离。 分离后从毛细管柱流出的样品分流后一部分进入第一检测器 7进行检测, 另一部分 通过填充柱后进入第二检测器 8进行检测。
本装置设置了反气相色谱柱 3的输入端还与一根载气管相连接,使一路载气与毛细管流出 的样品一起通过填充柱, 因此避免了当毛细管柱载气流量受到限制时, 而通过填充柱的载气 流量受到影响。 从毛细管柱以外附加一路载气通过填充柱将降低对气相色谱毛细管柱内径的 要求, 合理设计通过填充柱的载气流量, 从而使得测试更加科学、 更加灵活。
本装置采用双检测器同时检测, 通过考察探针分子在两个检测器上出峰时间不同来确定 探针分子通过填充柱内材料的相对保留时间, 进而对不同探针分子与所测材料间的相互作用 以及所测材料的表面性质进行测试。
本装置可以实现在测试混合探针与所测材料表面相互作用之前,首先使混合探针通过气相 色谱柱得到分离, 这样就可以有效避免混合气相探针直接通过反气相色谱柱后, 气相色谱存 在出峰难以分开的问题。 这将很大程度上改进了传统反气相色谱系统只能针对单个探针进行 测定的问题, 简化了操作。 本装置实现了气相色谱与反气相色谱的联用, 最大程度地发挥了 气相色谱分离探针分子的功能, 使系统方法更加科学合理, 检测更加便捷, 尤其是使混合探 针中不同成份与固体材料表面相互作用同时测试成为可能, 这也将大大简化固体材料其它表 面性质的测定过程。
测定时, 首先通过气相色谱柱 3将混合探针分子不同成份进行较好地分离, 这样将有效避 免传统反气相色谱装置测试中混合气相探针直接通过强吸附性能材料的填充柱后出峰难以分 开的问题。 而后, 通过混合探针中不同成份通过所测吸附材料的比保留时间的不同对其表面 性质进行考察, 从而比较同种探针分子与不同固体材料表面的相互作用或者不同探针分子与 同一固体材料表面的相互作用以及通过这些测试进一步确定所测材料的其它表面性质。
本发明的一具体实施例为: 上述进样器采用转盘型自动进样器, Agi lent 6890N气相色 谱仪, 毛细管柱型号为 CP-Poraplot-Q, 长 27. 5m, 内径 0. 53mm; 反气相色谱柱采用填充柱, 填充柱内径约 2mm, 外径约 6mm, 长约 8cm。 柱温 200°C、 载气流量 26. 5 mL/min、 进样量为 0. 2μ1、 进样口分流比为 30 : 1、 进样口温度 250 °C、 检测器为 FID检测器及 TCD检测器, 温度 均为 250°C。 下面做如下实验, 填充柱内均填充 16mg所测样品, 并且选用了乙醛、 丙酮、 丁 醛、 苯、 四氯化碳、 四氢呋喃、 乙酸乙酯作为探针分子, 测试它们在所测固体吸附材料表面 的吸附性能。
实验时, 首先把准备好的填充柱安装到调整好的气相色谱仪上并确保气密性, 调整载气 流量。 用气体流动法进行反气相色谱柱的老化, 即将反气相色谱柱入口端与气相色谱仪气化 室出口相连, 出口端放空。 通入载气 (流速为 10. 5mL/min ) 半小时, 将系统中空气赶走。 升 高色谱柱温度, 控制在 200°C左右老化 2 小时。老化好后, 接上检测器检查, 获得平稳的基线。
固体材料对探针分子的吸附自由能 AG的计算方法如下所示:
AG 二 — RTInVg + K ( 1 ) 上式中, AG为标准吸附自由能 (J/mol) ; R为普适气体常数 8. 3145 J/ (mol-K) ; T为绝对温 度 (K) ; K值与聚合物的量、 表面积以及吸附状态有关, 故在同一色谱柱中 K为常数 (J/mol)。 比保留体积
Figure imgf000006_0001
式中, At=VtQ, tr tQ分别是探针分子的保留时间 (s)和死时间 (s); F为反气相色谱柱出口 的载气流速 (mL/s); m为固定相的质量 (g); T为环境温度 (K); P^PPQ分别是反气相色谱柱进口 和出口处压力 (Pa); Vg为比保留体积 (mL/g) 。
实施例 1-7是所测 A材料对不同探针吸附性能进行考察, 根据上式 (1 ) 和 (2 ) 得出结果 如下:
表 1 A固体材料 200°C时对不同气相探针吸附性能考察
Figure imgf000006_0002
从以上实施例结果可以看出, A固体吸附材料对不同气相探针吸附性能有一定差别, 故而 该方法可以较好地将吸附材料对不同探针分子的吸附性能进行评价。
A固体材料表面对不同探针吸附焓 ΔΗ及熵 AS的计算方法如下: 根据热力学公式 AG = A^-^s 和上述公式 (1 ) 可以得出: -RTInVg = AH -TAS (3) 从而得出:
Figure imgf000007_0001
式中: Vg为比保留体积 (mL/g), R为普适气体常数 8.3145 J/(mol-K), T为环境温度 (K)。 通过 InVg对 1/T作图, 从所得的直线的斜率和截距可获得所测样品对不同探针的吸附焓 以及熵值。
实施例 8— 12是 A固体材料对丙酮、 乙醇、 四氢呋喃、 四氯化碳、 乙酸乙酯等不同气相成 份表面吸附焓进行检测, 根据上式 (4) 得出结果如下:
表 2. A固体材料对不同气相成份表面吸附焓
Figure imgf000007_0002
根据 Gutmann的酸碱理论, 结合上述方法测得的探针分子 A材料表面吸附焓 ΔΗ, 可用如下 方法计算其表面的酸性常数和碱性常数:
— H=KaxDN + KbxAN (5) 式中, DN、 AN分别为 Gutmann定义的极性探针分子的电子给体常数和电子受体常数, Ka、 Kb 分别为吸附剂表面的酸性常数和碱性常数。 通过多种极性探针的 -ΔΗ/ΑΝ对 DN/AN作图, 从 所得的直线的斜率和截距可获得吸附剂表面酸碱性质的半定量的 Ka常数和 Kb常数。
实施例 13— 15是 A固体材料表面酸碱性测试结果, 根据上式 (5) 得出结果如下所示: 表 3. A 固体材料表面酸碱性测试结果
Figure imgf000007_0003
从实施例 13— 15可以看出, A材料的酸碱常数比值大于 1, 故而显示较强酸性。

Claims

权 利 要 求 书
1 一种气相色谱-反气相色谱联用分析装置, 包括一个气相色谱柱和一个反气相色谱柱, 其 特征在于, 所述气相色谱柱的输入端与一进样器相连接, 气相色谱柱的输出端与所述反气 相色谱柱的输入端相连接, 气相色谱柱的输出端还与第一检测器相连接, 所述反气相色谱 柱的输入端还与一根载气管相连接, 反气相色谱柱的输出端与第二检测器相连接, 所述第 一检测器、 第二检测器均与一信号收集器相连接。
2 根据权利要求 1所述的气相色谱-反气相色谱联用分析装置, 其特征在于, 所述气相色谱 柱的输出端与所述反气相色谱柱的输入端之间通过保温管路相连接。
3 根据权利要求 1所述的气相色谱-反气相色谱联用分析装置, 其特征在于, 所述气相色谱 柱为毛细管柱。
4. 根据权利要求 1所述的气相色谱-反气相色谱联用分析装置, 其特征在于, 所述反气相色 谱柱为填充柱。
5. 根据权利要求 1所述的气相色谱-反气相色谱联用分析装置, 其特征在于, 所述载气管上 设有流量调节阀。
6. 根据权利要求 1所述的气相色谱-反气相色谱联用分析装置, 其特征在于, 所述气相色谱 柱的输出端、 第一检测器、 反气相色谱柱的输入端和载气管之间通过一个四通阀相连接
PCT/CN2011/077205 2011-04-11 2011-07-15 气相色谱-反气相色谱联用分析装置 WO2012139340A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013509443A JP5250164B2 (ja) 2011-04-11 2011-07-15 ガスクロマトグラフィーとインバースガスクロマトグラフィーを併用した分析装置
US13/809,586 US8943872B2 (en) 2011-04-11 2011-07-15 Gas chromatography—inverse gas chromatography combined analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110089316.9A CN102230917B (zh) 2011-04-11 2011-04-11 气相色谱-反气相色谱联用分析装置
CN201110089316.9 2011-04-11

Publications (1)

Publication Number Publication Date
WO2012139340A1 true WO2012139340A1 (zh) 2012-10-18

Family

ID=44843504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077205 WO2012139340A1 (zh) 2011-04-11 2011-07-15 气相色谱-反气相色谱联用分析装置

Country Status (4)

Country Link
US (1) US8943872B2 (zh)
JP (1) JP5250164B2 (zh)
CN (1) CN102230917B (zh)
WO (1) WO2012139340A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204027852U (zh) * 2011-01-18 2014-12-17 魄金莱默保健科学有限公司 取样系统、蒸汽取样系统、取样装置、气相色谱系统及套件
CN102590389B (zh) * 2012-02-27 2013-11-20 上海烟草集团有限责任公司 双检测器气相色谱仪
CN102735776A (zh) * 2012-07-03 2012-10-17 中昊晨光化工研究院 气相色谱分离系统、用途及四氟乙烯中微量杂质的检测方法
CN103471958B (zh) * 2013-09-25 2015-11-18 上海烟草集团有限责任公司 全自动烟草动态水分分析气候箱
TWI679274B (zh) * 2014-12-05 2019-12-11 德商格雷氏公司 用以評估多孔固體的催化性能之方法
JP7275948B2 (ja) * 2019-07-11 2023-05-18 株式会社島津製作所 分析装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962042A (en) * 1988-05-25 1990-10-09 The Dow Chemical Company Method for on-column injection gas chromatography
US6134945A (en) * 1997-12-18 2000-10-24 Gerstel Gmbh Method for applying samples to be analyzed by gas chromatography and sampling tube
CN101206206A (zh) * 2006-12-19 2008-06-25 中国药品生物制品检定所 药品中残留溶剂的检测方法
CN201637726U (zh) * 2009-12-08 2010-11-17 中国科学院生态环境研究中心 一种手提式气相色谱仪
CN102043027A (zh) * 2010-10-26 2011-05-04 上海烟草(集团)公司 评价卷烟滤嘴吸附剂吸附性能的方法及测试系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643566A (en) * 1979-09-17 1981-04-22 Mitsubishi Electric Corp Insulation life estimating method of electrical machinery
GB2342870A (en) * 1998-10-23 2000-04-26 Surface Measurement Systems Lt Inverse chromatography
US6702989B2 (en) * 2001-12-10 2004-03-09 The Regents Of The University Of Michigan Pulsed carrier gas flow modulation for selectivity enhancements with gas chromatography using series-coupled column ensembles
US7803635B1 (en) * 2008-02-27 2010-09-28 EST Analytical, Inc Purge and trap concentrator with sparge vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962042A (en) * 1988-05-25 1990-10-09 The Dow Chemical Company Method for on-column injection gas chromatography
US6134945A (en) * 1997-12-18 2000-10-24 Gerstel Gmbh Method for applying samples to be analyzed by gas chromatography and sampling tube
CN101206206A (zh) * 2006-12-19 2008-06-25 中国药品生物制品检定所 药品中残留溶剂的检测方法
CN201637726U (zh) * 2009-12-08 2010-11-17 中国科学院生态环境研究中心 一种手提式气相色谱仪
CN102043027A (zh) * 2010-10-26 2011-05-04 上海烟草(集团)公司 评价卷烟滤嘴吸附剂吸附性能的方法及测试系统

Also Published As

Publication number Publication date
CN102230917A (zh) 2011-11-02
JP2013521514A (ja) 2013-06-10
US8943872B2 (en) 2015-02-03
CN102230917B (zh) 2013-04-10
US20130192340A1 (en) 2013-08-01
JP5250164B2 (ja) 2013-07-31

Similar Documents

Publication Publication Date Title
WO2012139340A1 (zh) 气相色谱-反气相色谱联用分析装置
US11067548B2 (en) Multi-capillary column pre-concentration system for enhanced sensitivity in gas chromatography (GC) and gas chromatography-mass spectrometry (GCMS)
CN103575630B (zh) 一种同时测定混合气各组成气体的膜渗透性的测定方法
US20200400622A1 (en) Online measuring system, method and application for semi-volatile organic compound in gas phase
Hopkins et al. A two-column method for long-term monitoring of non-methane hydrocarbons (NMHCs) and oxygenated volatile organic compounds (o-VOCs)
JP2010112761A5 (zh)
CN113155988A (zh) 基于单阀的非甲烷总烃检测系统及方法
CN102043027B (zh) 评价卷烟滤嘴吸附剂吸附性能的方法
Lichtenfels et al. Gas-liquid partition chromatography
CN111398495A (zh) 一种新型痕量和超痕量杂质组分在线色谱富集与分析装置
Meng et al. A highly sensitive and fast responsive semiconductor metal oxide detector based on In2O3 nanoparticle film for portable gas chromatograph
CN102998408B (zh) 一种水中挥发性有机物的检测装置及其检测方法
CN102520082B (zh) 用全蒸发顶空气相色谱法测定聚乙烯醇中的挥发性组分的方法
CN101261255A (zh) 汽油中苯、氧含量的快速检测方法
Wang et al. Validation of a laboratory-constructed automated gas chromatograph for the measurement of ozone precursors through comparison with a commercial analogy
Eom et al. Simple sample transfer technique by internally expanded desorptive flow for needle trap devices
CN202041512U (zh) 一种分析装置
CN109799302A (zh) 中等挥发性有机化合物近在线检测方法
CN110412190A (zh) 甲烷和非甲烷总烃的分析系统及其分析方法
Murphy et al. The use of Sephadex LH-20 column chromatography to separate unconjugated steroids
CN219399540U (zh) 吸附部件、高低温构件及前处理装置
CN113791133B (zh) 一种非甲烷总烃的直接测量方法及其检测系统
Whiting et al. Evaluation of split/splitless operation and rapid heating of a multi‐bed sorption trap used for gas chromatography analysis of large‐volume air samples
CN109580805A (zh) 吸附平衡特性分析装置及其分析方法
CN1900711A (zh) 一种低沸点烃类中微量含氧化合物的测定方法及设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013509443

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863341

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13809586

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863341

Country of ref document: EP

Kind code of ref document: A1