WO2012137956A1 - 固形燃料成型方法 - Google Patents

固形燃料成型方法 Download PDF

Info

Publication number
WO2012137956A1
WO2012137956A1 PCT/JP2012/059598 JP2012059598W WO2012137956A1 WO 2012137956 A1 WO2012137956 A1 WO 2012137956A1 JP 2012059598 W JP2012059598 W JP 2012059598W WO 2012137956 A1 WO2012137956 A1 WO 2012137956A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
mass
pulverized coal
solid fuel
less
Prior art date
Application number
PCT/JP2012/059598
Other languages
English (en)
French (fr)
Inventor
鈴木 哲雄
西田 美佳
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2012137956A1 publication Critical patent/WO2012137956A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/361Briquettes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/08Methods of shaping, e.g. pelletizing or briquetting without the aid of extraneous binders

Definitions

  • the present invention relates to a solid fuel molding method using low-grade coal as a raw material, and particularly relates to a solid fuel molding method having high crushing strength.
  • low-grade coal contains a large amount of water (30% to 70% by mass), it generates little heat during combustion per unit mass and cannot be used as fuel as it is. Moreover, if such low-grade coal with a high water content is transported as it is, a large amount of moisture is transported and the transportation cost is also increased. On the other hand, low-grade coal has a desirable property as a fuel that the content of ash and sulfur is low. Therefore, if water can be removed efficiently, low-grade coal can be used as a useful solid fuel.
  • Patent Document 1 heats a pulverized product of low-grade coal containing moisture in a mixed oil containing heavy oil and solvent oil. Then, after dehydrating, a technique for solid-liquid separation to obtain a solid fuel is disclosed (see Patent Document 1 (Claim 4)).
  • Patent Document 1 the mixed oil after solid-liquid separation is repeatedly used.
  • pulverized coal having a particle size of about 50 ⁇ m or less is hardly separated into solid and liquid and remains in the mixed oil. .
  • Patent Document 2 a slurry is prepared by removing a fine powder portion having an average particle diameter of 0.5 mm or less to 0.05 mm or less from the pulverized lignite, thereby preventing a decrease in the fluidity of the slurry, and a stable process operation.
  • Patent Document 2 (Claim 5)).
  • Patent Document 3 proposes a technique for increasing the strength of briquettes without using a binder in particular by mixing low-grade coal containing moisture with dehydrated low-grade coal and optimizing residual moisture. (For example, see Patent Document 3 (Claim 1)).
  • Patent Document 4 proposes a method of adding a binder such as starch for the purpose of improving briquette strength during pressure molding of pulverized coal.
  • Patent Document 3 the particle size of the low-grade coal containing the added water is not sufficiently studied, and even when only the moisture content is adjusted, the strength of the briquette is not always sufficient. Further, in the method of Patent Document 4, the effect is not sufficiently exhibited unless at least 1 wt% or more of a binder component is added, and it is difficult to put it to practical use from the viewpoint of cost.
  • Patent Document 2 also describes that a solid fuel obtained by solid-liquid separation mixed with a fine powder portion is molded into a molded solid fuel (Patent Document 2 (paragraph [0040])). . However, there is no mention of the effect of adding finely pulverized coal to solid fuel on the strength of the briquette that is pressure-molded, and the particle diameter and the amount of addition suitable for improving the briquette strength are not studied.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for molding a solid fuel that can improve the crushing strength of the obtained solid fuel without adding a binder.
  • the solid fuel molding method of the present invention that has solved the above problems includes a pretreatment step of coarsely pulverizing low-grade coal, a moisture reduction step of removing moisture from the coarsely pulverized coal obtained in the pretreatment step, and , A solid fuel molding method having a pressure molding step of briquetting the coarsely pulverized charcoal from which moisture has been removed, wherein in the pressure molding step, coarsely pulverized charcoal from which moisture has been removed and fine particles having a particle diameter of 0.10 mm or less Is mixed with the finely pulverized coal containing 100% by mass of the coarsely pulverized coal and the finely pulverized coal so that the content of the fine particles is 5% by mass to 35% by mass, The obtained molding raw material is briquetted.
  • the moisture reduction step preferably includes a dehydration step in oil in which the coarsely pulverized charcoal is heated and dehydrated in heavy oil and solvent oil to perform solid-liquid separation.
  • a dehydration step in oil in which the coarsely pulverized charcoal is heated and dehydrated in heavy oil and solvent oil to perform solid-liquid separation.
  • the pretreatment step after the low-grade coal is pulverized, it is preferable to remove the pulverized component from the coarsely pulverized coal so that the content of the pulverized component having a particle size of 0.10 mm or less is 50% by mass or less.
  • the fine powder component removed from the coarsely pulverized charcoal is preferably used as the fine particles mixed with the finely pulverized charcoal.
  • the pressure molding step after briquetting coarsely pulverized charcoal, after separating and collecting the fine pieces and unmolded powder adhering to the briquettes, and adjusting the particle size of the fine pieces and unshaped powder to 0.5 mm or less, It is preferable that this adjusted product is mixed with the molding raw material to be briquetted again. Further, in the pressure molding step, after the coarsely pulverized charcoal is briquetted, the fine pieces and the unmolded powder adhering to the briquette are separated and recovered, and the fine pieces and the unmolded powder are reduced to a particle diameter of 0.05 mm to 0.7 mm.
  • the component having a particle size exceeding the threshold value is returned to the moisture reduction step together with the coarsely pulverized coal, and the component having a particle size equal to or smaller than the threshold value is classified as a particle. After adjusting the diameter to 0.5 mm or less, it is also preferable to reuse the adjusted product as the molding material.
  • the dehydrated coarsely-pulverized coal and low-grade coal containing fine particles having a particle diameter of 0.10 mm or less before briquetting. Since the finely pulverized coal is mixed, the crushing strength of the solid fuel can be increased without particularly adding a binder.
  • the present invention relates to a method for producing a solid fuel from a low-grade coal derived from a natural product containing a large amount of water as a raw material.
  • FIG. 1 is a flowchart showing an example of the solid fuel molding method of the present invention.
  • the solid fuel molding method of the present invention includes a pretreatment step for coarsely pulverizing raw coal (low-grade coal), and a moisture reduction step for removing moisture from the coarsely pulverized coal obtained in the pretreatment step.
  • the raw coal is slurried together with the mixed oil and subjected to a dehydration process in oil that is heated to a high temperature), and a pressure molding step that briquettes the coarsely pulverized coal from which moisture has been removed.
  • coarse pulverization is performed to coarsely pulverize the raw coal, and classification to remove the fine powder component after coarse pulverization and separate from the coarse pulverized coal.
  • the dehydration efficiency in the moisture reduction step can be increased.
  • the fine powder component is removed after pulverization, the fine powder component remaining in the mixed oil can be reduced when the mixed oil after solid-liquid separation is used repeatedly when dehydration in oil is adopted, and the raw material slurry An increase in the viscosity can be suppressed.
  • the moisture reduction step moisture contained in the coarsely pulverized coal is removed by a dehydration process in oil. Thereby, the emitted-heat amount at the time of combustion of solid fuel improves.
  • coarsely pulverized charcoal is mixed with heavy oil and solvent oil by an appropriate procedure to prepare a raw material slurry (in FIG. 1, heavy oil and solvent oil are mixed to prepare a mixed oil.
  • a raw material slurry is prepared by mixing the mixed oil and the coarsely pulverized coal), and the coarsely pulverized coal is dehydrated by heating the raw material slurry.
  • the slurry containing the coarsely pulverized charcoal heated and dehydrated in oil as described above is solid-liquid separated into a liquid component and a solid component to obtain coarsely pulverized coal from which moisture has been removed.
  • the solvent oil adheres to the coarsely pulverized charcoal after solid-liquid separation, it is preferable to remove and recover this solvent oil.
  • the liquid component (mixed oil) after solid-liquid separation and the solvent oil recovered from the coarsely pulverized charcoal after solid-liquid separation can both be reused as oil at the time of slurry preparation. preferable.
  • the coarsely pulverized coal from which moisture has been removed as described above is mixed with low-grade coal pulverized coal to prepare a molding material, and the obtained molding material is pressure-molded to obtain a solid fuel. Mold.
  • the finely pulverized coal mixed with the coarsely pulverized coal includes fine particles having a particle diameter of 0.10 mm or less.
  • finely pulverized coal those obtained by finely pulverizing raw coal and those obtained by finely pulverizing fine powder components separated from coarsely pulverized coal are used.
  • the space formed by coarse particles of the coarsely pulverized coal has a particle diameter of 0.1 mm contained in the finely pulverized coal. It is filled with the following fine particles and has excellent crushing strength.
  • the coarsely pulverized coal from which the solvent oil has been removed is in a high temperature state, and may ignite or explode.
  • finely pulverized coal containing water is used, the risk of ignition and the like is reduced by the action of the water.
  • the crushing strength of the obtained solid fuel can be improved without particularly adding a binder.
  • FIGS. 2 and 3 are flowcharts showing an example in which the process of reusing such a small piece is changed.
  • the same parts as those in FIG. 1 indicate the same contents as those in FIG. More specifically, FIGS. 2 and 3 share the same method for preparing coarsely pulverized coal from which moisture has been removed and the method for preparing finely pulverized coal, and different methods for reusing fine pieces and the like.
  • fine pieces etc. are returned to before the pulverization process and reused as raw material for pulverized coal. And it pulverizes with the fine powder component isolate
  • the particle size of the fine particles is the same as that of the finely pulverized coal (for example, the particle size is 0.5 mm or less) or smaller than that, or the particle size is adjusted (pulverized) to such a size. In this case, it is not always necessary to return the fine pieces or the like before the fine pulverization step.
  • the fine pieces may be returned after the fine pulverization step, or may be used together with the fine pulverized coal for the molding raw material preparation step.
  • fine pieces and the like are classified by a threshold value set within a particle diameter range of 0.05 mm to 0.7 mm.
  • the component in which a particle diameter exceeds the said threshold value is used for a moisture reduction process with coarsely pulverized coal.
  • Components having a particle size equal to or smaller than the threshold value are returned before the pulverization step and reused as a raw material for pulverized coal, as in the example of FIG.
  • FIG. 3 as in the example of FIG.
  • the particle size of the fine pieces or the like is equal to (for example, a particle size of 0.5 mm or less) or smaller than that of the finely pulverized coal, or
  • the particle size is adjusted (pulverized) to such a size, it is not always necessary to return the fine pieces before the fine pulverization step.
  • the fine pieces may be returned after the fine pulverization step. You may use for a process.
  • the fine pieces are classified in advance with a predetermined threshold value, coarse particles are removed from components below the threshold value, and the remaining small particles can be easily pulverized to a particle diameter of 0.1 mm or less. , Pulverization time can be shortened.
  • the present invention can be implemented with appropriate modifications within or outside the range of the above illustrated example.
  • the low-grade coal a naturally occurring coal containing 20% by mass or more of water can be used.
  • brown coal such as Victoria coal, North Dakota coal, and Belga coal
  • sub-bituminous coal such as West Banco coal, Vinungan coal, and Saramangau coal
  • bituminous coal such as West Banco coal, Vinungan coal, and Saramangau coal.
  • known pulverization means can be used as appropriate, for example, a hammer crusher, a disk mill, a ball mill, a bead mill and the like can be used.
  • the coarsely pulverized charcoal after coarse pulverization preferably has a particle size of 5 mm or less, more preferably 4 mm or less, and even more preferably 3 mm or less. The smaller the particle size of the coarsely pulverized coal, the higher the crushing strength of the resulting solid fuel.
  • the coarsely pulverized coal having a particle size of X mm or less in the present invention refers to the coarsely pulverized coal after coarse pulverization with a sieve having a mesh size of X mm or less (metal mesh sieve, standard number JIS Z 8801-1 ( It means the powder under sieving when sieved in 2006)).
  • dry classification For the classification in the pretreatment process, either dry classification or wet classification can be adopted.
  • dry classification include sieving using a sieve, classification using a gravity classifier, a centrifugal classifier (cyclone classifier), an inertia classifier, and the like.
  • wet classification include classification using a sedimentation classifier and a hydraulic classifier.
  • the content of fine powder components having a particle size of 0.10 mm or less in the coarsely pulverized coal is preferably 50% by mass or less, more preferably 40% by mass or less, and still more preferably 35% by mass. % Or less, particularly preferably 30% by mass or less. If the pulverized component is reduced, the amount of pulverized coal remaining in the separated liquid in the solid-liquid separation of the dehydrated slurry described later can be reduced, and the increase in viscosity of the raw material slurry can be suppressed. A method for measuring the content of the fine powder component having a particle diameter of 0.10 mm or less will be described later.
  • the fine powder component separated from the coarsely pulverized coal by the classification has a particle diameter of contained particles of, for example, 0.3 mm or less, preferably 0.15 mm or less, more preferably 0.1 mm or less.
  • the particle size of the fine powder component is equal to or smaller than the finely pulverized coal mixed in the pressure molding process, the fine powder component can be directly used as fine particles in the pressure molding process.
  • the particle size of the fine powder component is larger than the particle size of the finely pulverized coal mixed in the pressure molding step, the fine powder component is finely pulverized as in the examples of FIGS. In this fine pulverization, the method exemplified in the coarse pulverization in the pretreatment step can be adopted.
  • heavy oil includes oil having a boiling point of 300 ° C. or higher.
  • the heavy oil include asphalt and tar.
  • the solvent oil is not particularly limited as long as coarsely pulverized charcoal can be easily dispersed, but those having a boiling point of 300 ° C. or less are preferable.
  • the boiling point of the solvent oil is preferably 100 ° C. (more preferably 110 ° C., more preferably 120 ° C.) or more.
  • the solvent oil include kerosene, light oil, kerosene and the like.
  • the heavy oil and the solvent oil are preferably oils obtained by refining petroleum.
  • the heavy oil and the solvent oil may be mixed in advance and used as a mixed oil.
  • the content of the heavy oil component in the mixed oil is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.4% by mass or more, and 3% by mass or less. More preferably, it is 2 mass% or less, More preferably, it is 1 mass% or less.
  • the mass ratio of coarsely pulverized coal and mixed oil is preferably 0.5 or more, more preferably 1.0 or more, Preferably it is 1.5 or more, 3 or less is preferable, More preferably, it is 2.5 or less, More preferably, it is 2 or less.
  • the temperature for heating the raw slurry is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, further preferably 140 ° C. or higher, preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and still more preferably 160 ° C. or lower. It is.
  • the method for solid-liquid separation of the raw material slurry (dehydrated slurry) after heat dehydration is not particularly limited, and for example, a sedimentation method, a centrifugal separation method, a filtration method, a pressing method, etc. can be employed.
  • the method for recovering the solvent oil adhering to the coarsely pulverized charcoal after the solid-liquid separation is not particularly limited, but it is preferable to volatilize the solvent oil using a dryer or the like and collect it by cooling and concentrating.
  • the coarsely pulverized charcoal from which the moisture obtained in the moisture reduction step has been removed is dried using a solvent having a boiling point higher than that of water, and thus does not substantially contain moisture (moisture content is 0.5% by mass or less). Of) dry charcoal.
  • the finely pulverized coal mixed with the coarsely pulverized coal from which the moisture has been removed preferably has a content of fine particles having a particle diameter of 0.10 mm or less, preferably 40% by mass or more, more preferably 50% by mass or more, More preferably, it is 60 mass% or more, Most preferably, it is 80 mass% or more, Most preferably, it is 100 mass%.
  • a method for measuring the content of fine particles having a particle diameter of 0.10 mm or less in finely pulverized coal will be described later.
  • the finely pulverized charcoal may contain particles having a particle diameter of more than 0.1 mm, but the particles contained in the finely pulverized charcoal preferably have a particle diameter of 1.0 mm or less, more preferably 0.00. It is 5 mm or less, more preferably 0.3 mm or less.
  • the finely pulverized charcoal preferably contains moisture.
  • the water content of the finely pulverized coal is preferably 30% by mass to 70% by mass.
  • the water content of finely pulverized coal can be adjusted by humidification or drying. If a low-grade coal having a moisture content of 30% to 70% by mass is used as the raw material for the finely pulverized coal, the finely pulverized coal having a moisture content of 30% to 70% by mass is not required without special moisture adjustment. Is obtained.
  • Coarse pulverized coal and finely pulverized coal can be mixed using a known mixer, and for example, a mixer, a ball mill, a kneader, a V-type mixer, or the like can be used.
  • the addition amount of the finely pulverized coal is preferably 100% by mass of the coarsely pulverized coal and the finely pulverized coal, and the content of fine particles having a particle diameter of 0.1 mm or less in the pulverized coal is preferably 5% by mass or more.
  • a known apparatus can be used to press-mold the forming raw material.
  • a pressure forming apparatus such as a uniaxial press molding or a double roll press can be used.
  • the pressurizing pressure is preferably 98 N / mm 2 (1000 kgf / cm 2 ) or more, more preferably 147 N / mm 2 (1500 kgf / cm 2 ) or more, and even more preferably 196 N / mm 2 (2000 kgf / cm 2 ) or more.
  • the upper limit of the pressure is preferably about 490 N / mm 2 (5000 kgf / cm 2 ).
  • the moisture content of the solid fuel after pressure molding varies depending on the type of raw coal, but is generally preferably 3% by mass or more, more preferably 5% by mass or more, and preferably 15% by mass or less, more preferably 10%. It is below mass%. When the moisture content is within the above range, the crushing strength is further improved.
  • the moisture content of the solid fuel can be controlled by adjusting the blending amount of the finely pulverized coal.
  • the pulverizing means exemplified in the coarse pulverization method in the pretreatment step can be adopted.
  • the threshold value is 0.05 mm or more, preferably 0.10 mm or more, more preferably 0.3 mm or more, and 0.7 mm or less, preferably Can be set within a range of 0.6 mm or less, more preferably 0.5 mm or less.
  • the threshold value is within the above range, the fine powder component mixed in the coarsely pulverized coal can be reduced when the component exceeding the threshold value is subjected to the moisture reduction step.
  • components below the threshold can be easily pulverized to a particle size of 0.10 mm or less.
  • the fine pieces or the like may contain particles having a particle diameter of more than 0.1 mm, but the particles contained in the fine pieces or the like are particles
  • the diameter is preferably 1.0 mm or less, more preferably 0.5 mm or less, and still more preferably 0.3 mm or less.
  • the content of fine particles having a particle diameter of 0.10 mm or less is preferably 40% by mass or more, more preferably 50% by mass or more, further preferably 60% by mass or more, and particularly preferably 80% by mass or more. Most preferably, it is 100 mass%.
  • the content of particles having a particle size of 0.10 mm or less contained in fine pieces or the like can be measured in the same manner as the method for measuring the content of fine particles having a particle size of 0.10 mm or less in finely pulverized coal.
  • the addition amount of the said fine pulverized charcoal and a fine piece is fine pulverized charcoal or a fine piece in total 100 mass% of coarsely pulverized charcoal, finely pulverized charcoal, and a fine piece
  • the content of fine particles having a particle diameter of 0.1 mm or less is 5% by mass or more, more preferably 8% by mass or more, still more preferably 10% by mass or more, and 35% by mass or less. More preferably, it is 30 mass% or less, More preferably, it is 25 mass% or less, Most preferably, it is 23 mass% or less.
  • the water content is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 7% by mass or more, and 15% by mass or less. Is more preferable, and more preferably 10% by mass or less.
  • the initial strength was determined by a split tensile test. Specifically, as shown in FIG. 4, the solid fuel 1 is tilted and sandwiched between two compression plates 2, and is 1 mm / mm using a universal material testing machine (Instron, “type 4505”). Compression was performed in the direction of the arrow at a speed of min, and the load at which initial fracture occurred was determined as the maximum load. From the maximum load and the size of the solid fuel, the tensile strength (initial strength) was calculated according to Equation 1.
  • Production Example 1 Pretreatment process (preparation of coarsely pulverized coal) Indonesian satui coal was used as the raw low-grade coal, and this was coarsely pulverized to a particle size of 3 mm or less by a hammer crusher. The coarsely pulverized low-grade coal was subjected to separation treatment (classification) of fine powder with a cyclone to obtain coarsely pulverized coal. The finely pulverized charcoal after the classification had fine powder separated and removed, and the content of fine powder components having a particle size of 0.10 mm or less was 27% by mass. The amount of the fine powder separated and removed was about 10% by mass of the pulverized low-grade coal.
  • the coarsely pulverized charcoal was mixed with a mixed oil obtained by mixing kerosene and asphalt in a mixing tank to obtain a raw material slurry.
  • kerosene is a solvent oil component
  • asphalt is a heavy oil component.
  • the asphalt content in the mixed oil was 0.5% by mass.
  • the mass ratio of the mixed oil to the coarsely pulverized coal was set to 1.7 on a dry / anhydrous carbon basis. That is, the low-grade coal to be mixed contains moisture, but the amount of low-grade coal is the amount of coal (dry / anhydrous coal) when the low-grade coal is dried to be in an anhydrous carbon state.
  • the mass ratio of the amount of the mixed oil and the amount of the dry / anhydrous carbon was 1.7.
  • the raw material slurry thus obtained was heated to 140 ° C. with an evaporator to dehydrate the coarsely pulverized coal, thereby obtaining a dehydrated slurry.
  • mixed oil a mixture of kerosene and asphalt
  • coarsely pulverized coal low-grade coal
  • the dehydrated slurry was subjected to solid-liquid separation with a decanter type centrifuge at a centrifugal force of 2000 G.
  • a cake a mud containing oil
  • a separated liquid were obtained. Note that the separated liquid is returned to the step of obtaining the raw slurry and reused as the mixed oil.
  • the cake was heated at 210 degreeC for 30 minutes using the steam tube dryer, the remaining kerosene was removed, and the coarse ground charcoal (water content is substantially 0 mass%) which removed the water
  • the coarsely pulverized coal, 80 parts by mass, and finely pulverized coal No. 1, 20 parts by mass were mixed to prepare a molding raw material, which was compression molded and briquetted to obtain a solid fuel.
  • the compression molding uses a cylinder mold having an inner diameter of 20 mm and an inner cylinder mold having the same diameter as the cylinder mold, the amount of molding material is about 6 g, and the pressure is 196 MPa (2000 kgf / cm 2 ). did.
  • the water content of the obtained solid fuel was 7.8% by mass, and the crushing strength was 1.39 N / mm 2 .
  • Finely pulverized coal mixed with coarsely pulverized coal is designated as finely pulverized coal No.
  • a solid fuel was produced in the same manner as in Production Example 1 except that it was changed to 2-5.
  • Table 2 shows the moisture content and crushing strength of the obtained solid fuel.
  • Production Example 6 In the pressure molding process, finely pulverized coal No. A solid fuel was produced in the same manner as in Production Example 1 except that the addition amount of 1 was changed to 30% by mass. Table 2 shows the moisture content and crushing strength of the obtained solid fuel.
  • Production Example 7 A solid fuel was produced in the same manner as in Production Example 1 except that in the pressure molding step, the coarsely pulverized coal was humidified to a moisture content of 7% by mass in a steam atmosphere, and the finely pulverized coal was not mixed. . Table 2 shows the moisture content and crushing strength of the obtained solid fuel.
  • the solid fuel molding method of the present invention can produce a solid fuel with high crushing strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

 本発明の固形燃料成型方法は、低品位炭を粗粉砕する前処理工程、前記前処理工程で得られた粗粉砕炭から水分を除去する水分低減工程、及び、水分を除去した粗粉砕炭をブリケット化する加圧成型工程を有する固形燃料成型方法であって、前記加圧成型工程では、水分を除去した粗粉砕炭と、粒子径0.10mm以下の微粒子を含む低品位炭とを、前記粗粉砕炭と前記微粉砕炭との合計100質量%中、前記微粒子の含有量が5質量%~35質量%となるように混ぜて成型原料を調製し、得られた成型原料をブリケット化する。

Description

固形燃料成型方法
 本発明は、低品位炭を原料とする固形燃料の成型方法に関するものであり、特に圧壊強度が高い固形燃料の成型方法に関するものである。
 低品位炭は、水分を30質量%~70質量%と多量に含有するため、単位質量当たりの燃焼時の発熱量が少なく、そのままでは燃料として使用できない。また、このような含水率の高い低品位炭をそのまま輸送すると、多量の水分を運ぶことになり輸送コストも割高となる。一方、低品位炭は灰分や硫黄分の含有量が少ないという、燃料として好ましい性質も有している。従って、効率的に水分を除去できれば、低品位炭を有用な固形燃料として使用できる。
 低品位炭の水分を除去する技術が種々提案されており、例えば、特許文献1には、水分を含有する低品位炭の粉砕物を、重質油と溶媒油とを含む混合油中で加熱して脱水処理した後、固液分離して固形燃料とする技術が開示されている(特許文献1(請求項4)参照)。ここで、特許文献1の技術では、固液分離後の混合油を繰り返し使用しているが、粒子径が約50μm以下の微粉炭は固液分離されにくく、混合油中に残存することとなる。その結果、固形燃料の製造を連続して行うにつれて、混合油中に微粉成分が蓄積して、粉砕物と混合油を含むスラリーの流動性が低下するという問題が生じる。そこで、特許文献2では、褐炭の粉砕物から平均粒子径0.5mm以下から0.05mm以下の微粉部分を取り除きスラリーを調製することで、スラリーの流動性の低下を防ぎ、安定したプロセス運転が可能となる技術が開示されている(特許文献2(請求項5)参照)。この技術では、原料炭から除去された微粉部分を加熱脱水後の固形燃料に加えることで、原料を有効利用すると同時に脱水時に加熱された固形燃料を安定な温度まで冷却できることが記載されている(特許文献2(段落[0027])参照)。
 ところで、脱水処理した低品位炭を、貯蔵や輸送に適するようにするためには、ブリケット化することが好ましい。そのため、脱水処理した低品位炭は、公知の一軸加圧成型やダブルロールプレス成型によりブリケット化して使用されている。しかし、加圧により成型されたブリケットの強度は、必ずしも貯蔵、輸送などに際して十分でない場合が多い。そこで、特許文献3には、脱水した低品位炭に水分を含有する低品位炭を混合し、残留水分を適正化することで、バインダーを特に用いることなくブリケットの強度を高める技術が提案されている(例えば、特許文献3(請求項1)参照)。また、特許文献4には、微粉炭の加圧成型に際して、ブリケット強度を向上させる目的で、澱粉等のバインダーを添加する方法が提案されている。
日本国特許第2776278号公報 日本国特許第4045232号公報 日本国特許第4603620号公報 日本国特許第3935332号公報
 しかしながら、特許文献3では、添加される水分を含有する低品位炭の粒子径は十分に検討されておらず、含水率のみを調整した場合でも、ブリケットの強度は必ずしも十分でない。また、特許文献4の方法では、少なくとも1wt%以上のバインダー成分を添加しなくては効果が十分に発揮されず、コストの点から実用化には困難がある。また、特許文献2では、固液分離により得られた固形燃料に微粉部分を混合したものを、成型して成型固形燃料とすることも記載されている(特許文献2(段落[0040]))。しかしながら、微粉砕炭を固形燃料に加えることにより、加圧成型されるブリケット強度に与える影響については触れられておらず、ブリケット強度向上に適した粒子径や添加量については検討されていない。
 本発明は上記事情に鑑みてなされたものであり、特にバインダーを添加せずとも、得られる固体燃料の圧壊強度を向上させることができる固形燃料の成型方法を提供することを目的とする。
 上記課題を解決することができた本発明の固形燃料成型方法は、低品位炭を粗粉砕する前処理工程、前記前処理工程で得られた粗粉砕炭から水分を除去する水分低減工程、及び、水分を除去した粗粉砕炭をブリケット化する加圧成型工程を有する固形燃料成型方法であって、前記加圧成型工程では、水分を除去した粗粉砕炭と、粒子径0.10mm以下の微粒子を含む微粉砕炭とを、前記粗粉砕炭と前記微粉砕炭との合計100質量%中、前記微粒子の含有量が5質量%~35質量%となるように混ぜて成型原料を調製し、得られた成型原料をブリケット化することを特徴とする。
 前記水分低減工程は、前記粗粉砕炭を、重質油及び溶媒油中で加熱して脱水し、固液分離する油中脱水工程を含むことが好ましい。前記前処理工程では、低品位炭の粉砕後、粒子径0.10mm以下の微粉成分の含有量が50質量%以下となるように、前記粗粉砕炭から微粉成分を取り除くことが好ましい。前記加圧成型工程において、前記粗粉砕炭から取り除いた前記微粉成分を前記微粒子として、前記微粉砕炭と混ぜて使用することが好ましい。前記加圧成型工程において、粗粉砕炭のブリケット化後、ブリケットに付着した微小片及び未成型粉を分離回収し、該微小片及び未成型粉の粒子径を0.5mm以下に調整した後、この調整品を成型原料と混ぜて再びブリケット化することが好ましい。また、前記加圧成型工程において、粗粉砕炭のブリケット化後、ブリケットに付着した微小片及び未成型粉を分離回収し、該微小片及び未成型粉を粒子径0.05mm~0.7mmまでの範囲で設定されるしきい値で分級し、粒子径が前記しきい値を超える成分は、前記粗粉砕炭と共に前記水分低減工程に戻し、粒子径が前記しきい値以下の成分は、粒子径を0.5mm以下に調整した後、この調整品を前記成型原料に再使用することも好ましい。
 本発明によれば、低品位炭を粉砕後、脱水及びブリケット化して固形燃料を成型する場合でも、ブリケット化前に脱水粗粉砕炭と、粒子径0.10mm以下の微粒子を含む低品位炭の微粉砕炭とを混ぜているため、特にバインダーを添加せずとも、固形燃料の圧壊強度を高くできる。
本発明の固形燃料成型方法の一例を示すフロー図である。 本発明の固形燃料成型方法の他の例を示すフロー図である。 本発明の固形燃料成型方法の他の例を示すフロー図である。 圧壊試験における石炭成型体の設置状態を示す模式図である。
 本発明は、水分を多量に含有する天然物由来の低品位炭を原料とし、この原料炭から固形燃料を製造する方法に関する。以下、図面を参照しながら本発明を詳細に説明する。
 図1は本発明の固形燃料成型方法の一例を示すフロー図である。図1に示すように、本発明の固形燃料成型方法は、原料炭(低品位炭)を粗粉砕する前処理工程、前記前処理工程で得られた粗粉砕炭から水分を除去する水分低減工程(好ましくは、原料炭を混合油と共にスラリーにして、高温に加熱する油中脱水処理をする工程)、及び、水分を除去した粗粉砕炭をブリケット化する加圧成型工程を有している。これらの工程を得ることで、低品位炭から水分を除去して固形燃料を製造することができる。
 より詳細に説明すると、前記前処理工程では、原料炭を粗く砕く粗粉砕と、粗粉砕後に微粉成分を除去して粗粉砕炭と分離するための分級が行われる。粉砕することにより、水分低減工程における脱水効率を高めることができる。また、粉砕後に微粉成分を除去しておけば、油中脱水を採用した場合に、固液分離後の混合油を繰り返し使用する際に、混合油中に残存する微粉成分を低減でき、原料スラリーの粘度の上昇を抑制できる。
 前記水分低減工程では、粗粉砕炭に含まれる水分を油中脱水処理法によって除去する。これにより、固形燃料の燃焼時の発熱量が向上する。この油中脱水処理法では、粗粉砕炭を適当な手順で重質油及び溶媒油と混合して原料スラリーを調製し(図1では、重質油と溶媒油とを混合し混合油を調製した後、この混合油と粗粉砕炭とを混ぜることで原料スラリーを調製)、この原料スラリーを加熱することで粗粉砕炭を脱水する。油中脱水に使用する油に重質油を含ませることにより、含水率の高い低品位炭を溶媒油中に容易に安定分散させることができる。
 上記のようにして油中で加熱脱水した粗粉砕炭を含むスラリー(脱水スラリー)を、液体成分と固体成分とに固液分離することで、水分が除去された粗粉砕炭を得る。なお、固液分離後の粗粉砕炭には溶媒油が付着しているため、この溶媒油を除去回収することが好ましい。また、図1に示すように、固液分離後の液体成分(混合油)、固液分離後の粗粉砕炭から回収された溶媒油は、いずれもスラリー調製時の油として再利用することが好ましい。
 そして、本発明では、上記のようにして水分を除去した粗粉砕炭に、低品位炭の微粉砕炭を混ぜて成型原料を調製し、得られた成型原料を加圧成型して固形燃料を成型する。なお、粗粉砕炭と混ぜる微粉砕炭は、粒子径0.10mm以下の微粒子を含む。図1の例では、微粉砕炭として、原料炭を微粉砕したものや、粗粉砕炭から分離された微粉成分を微粉砕したものを使用している。
 以上の成型方法により得られた固形燃料は、粗粉砕炭に微粉砕炭が配合されているため、粗粉砕炭の粗粒子同士が形成する空間が、微粉砕炭に含まれる粒子径0.1mm以下の微粒子により埋められ、圧壊強度が優れたものとなる。また、粗粉砕炭から水分を除去する方法として油中脱水処理を採用した場合、溶媒油を除去した粗粉砕炭は高温状態にあるため発火や爆発を起こす危険性がある。しかし、微粉砕炭として水分を含むものを使用すれば、この水分の作用により発火等の危険が低減される。さらに、微粉砕炭が水分を含む場合には、得られる固形燃料の含水率が向上するため、固形燃料の圧壊強度が一層向上する。よって、本発明によれば、特にバインダーを添加しなくても、得られる固形燃料の圧壊強度を向上させることができる。
 なお、加圧成型後の固形燃料には、加圧成型時のバリに起因する微小片や、未成型炭が付着している。これらの微小片等は、固形燃料を貯蔵、輸送する際に、粉塵の原因となるため、分離除去することが好ましい。また、分離した微小片等は再度、原料炭等として使用することが好ましい。
 また、加圧成型後に分離除去した微小片等は、再使用する工程を適宜変更できる。図2及び図3は、このような微小片等を再使用する工程を変更した例を示すフロー図である。なお、図2及び図3中、図1と同じ部分は図1と同一内容であることを示す。より詳細には、図2及び図3は、水分を除去した粗粉砕炭の調製方法、微粉砕炭の調製方法は共通しており、微小片等を再使用する方法が異なっている。
 図2では、微小片等を微粉砕工程の前に戻し、微粉砕炭の原料に再使用している。そして、原料炭、粗粉砕炭から分離された微粉成分とともに微粉砕して、成型原料調製工程に供する。なお、図2において、微小片等の粒子径が前記微粉砕炭と同等(例えば、粒子径0.5mm以下)又は、それよりも小さい場合、或いはこのような大きさに粒度調整(粉砕)した場合、この微小片等は、必ずしも微粉砕工程の前に戻す必要はなく、例えば、微粉砕工程の後に戻してもよく、微粉砕炭と共に成型原料調製工程に供してもよい。 
 図3では、微小片等を、粒子径0.05mm~0.7mmの範囲で設定されるしきい値で分級している。そして、粒子径が前記しきい値を超える成分は、粗粉砕炭とともに水分低減工程に供する。粒子径が前記しきい値以下の成分は、図2の例と同様に微粉砕工程の前に戻し、微粉砕炭の原料に再使用している。なお、この図3の例では、図2の例と同様に、微小片等の粒子径が前記微粉砕炭と同等(例えば、粒子径0.5mm以下)又は、それよりも小さい場合、或いはこのような大きさに粒度調整(粉砕)した場合、この微小片等は、必ずしも微粉砕工程の前に戻す必要はなく、例えば、微粉砕工程の後に戻してもよく、微粉砕炭と共に成型原料調製工程に供してもよい。このように、微小片を所定のしきい値で予め分級すれば、しきい値以下の成分は粗粒子が除去されており、残りの小さな粒子は粒子径0.1mm以下に容易に粉砕できるため、粉砕時間を短縮できる。
 本発明は、上記図示例の範囲内又は範囲外で、適宜変更を加えて実施することができる。例えば、前記低品位炭としては、天然に存在し20質量%以上の水分を含有するものが使用できる。このような低品位炭としては、例えば、ビクトリア炭、ノースダコタ炭、ベルガ炭等の褐炭;西バンコ炭、ビヌンガン炭、サラマンガウ炭等の亜瀝青炭;瀝青炭等が挙げられる。
 前記前処理工程での粗粉砕では、公知の粉砕手段が適宜使用でき例えば、ハンマークラッシャー、ディスクミル、ボールミル、ビーズミル等が使用できる。粗粉砕後の粗粉砕炭は、含まれる粒子の粒子径が5mm以下であることが好ましく、より好ましくは4mm以下、さらに好ましくは3mm以下である。粗粉砕炭の粒子径が小さい程、得られる固形燃料の圧壊強度が高くなる。なお、本発明において、含まれる粒子の粒子径がXmm以下の粗粉砕炭とは、粗粉砕後の粗粉砕炭を目開きXmm以下の篩(金属製網ふるい、規格番号JIS Z 8801-1(2006))でふるった際の篩い下の粉末であることを意味する。
 前処理工程での分級では、乾式分級、湿式分級のいずれも採用できる。前記乾式分級としては、篩を用いた篩い分けや、重力分級機、遠心分級機(サイクロン式分級機)、慣性分級機等を用いた分級が挙げられる。前記湿式分級としては、沈降分級機、水力分級機等を用いた分級が挙げられる。
 この前処理工程での分級では、粗粉砕炭中の粒子径が0.10mm以下の微粉成分含有量を50質量%以下とすることが好ましく、より好ましくは40質量%以下、さらに好ましくは35質量%以下、特に好ましくは30質量%以下である。微粉成分を低減しておけば、後述する脱水スラリーの固液分離において分離液に残存する微粉炭量を低減することができ、原料スラリーの高粘度化を抑制できる。粒子径が0.10mm以下の微粉成分の含有量の測定方法は後述する。
 前記分級で粗粉砕炭から分離される微粉成分は、含まれる粒子の粒子径が、例えば0.3mm以下、好ましくは0.15mm以下、さらに好ましくは0.1mm以下である。加圧成型工程で混合する微粉砕炭に対して、この微粉成分の粒子径が等しい、あるいは小さい場合、この微粉成分を加圧成型工程で直接微粒子として使用できる。逆に、加圧成型工程で混合する微粉砕炭の粒子径に対して、前記微粉成分の粒子径が大きい場合、微粉成分は図1~3の例のように、微粉砕する。この微粉砕では、前処理工程の粗粉砕で例示した方法を採用できる。
 前記水分低減工程で使用する油(重質油、溶媒油)のうち、重質油としては、沸点が300℃以上の油が挙げられる。重質油の具体例としては、例えば、アスファルト、タール等が挙げられる。前記溶媒油としては、粗粉砕炭を容易に分散させることができるものであれば特に限定されないが、沸点が300℃以下のものが好ましい。なお、水分蒸発温度における安定性の観点から、溶媒油の沸点は100℃(より好ましくは110℃、さらに好ましくは120℃)以上が好ましい。溶媒油の具体例としては、例えば、灯油、軽油、ケロシン等が挙げられる。なお、前記重質油及び溶媒油は、いずれも、石油を精製することにより得られる油が好ましい。
 上述したように、重質油と溶媒油は、あらかじめ混合して混合油として使用してもよい。前記混合油中の重質油成分の含有量は、0.1質量%以上が好ましく、より好ましくは0.3質量%以上、さらに好ましくは0.4質量%以上であり、3質量%以下が好ましく、より好ましくは2質量%以下、さらに好ましくは1質量%以下である。
 粗粉砕炭と混合油で構成される原料スラリーにおいて、粗粉砕炭と混合油との質量比(粗粉砕炭/混合油)は、0.5以上が好ましく、より好ましくは1.0以上、さらに好ましくは1.5以上であり、3以下が好ましく、より好ましくは2.5以下、さらに好ましくは2以下である。
 前記原料スラリーを加熱する温度は、100℃以上が好ましく、より好ましくは120℃以上、さらに好ましくは140℃以上であり、200℃以下が好ましく、より好ましくは180℃以下、さらに好ましくは160℃以下である。
 加熱脱水後の原料スラリー(脱水スラリー)について、固液分離する方法は特に限定されず、例えば、沈降法、遠心分離法、ろ過法、圧搾法等を採用できる。なお、固液分離後の粗粉砕炭に付着した溶媒油の回収方法も特に限定されないが、乾燥機等を用いてこの溶媒油を揮発させて、冷却濃縮して回収することが好ましい。
 上記水分低減工程で得られた水分を除去した粗粉砕炭は、水よりも沸点の高い溶剤を用いて乾燥させているため、実質的に水分を含まない(含水率が0.5質量%以下の)乾燥炭である。
 成型原料調製工程で、上記水分を除去した粗粉砕炭と混合する微粉砕炭は、粒子径0.10mm以下の微粒子の含有量が、40質量%以上が好ましく、より好ましくは50質量%以上、さらに好ましくは60質量%以上、特に好ましくは80質量%以上、最も好ましくは100質量%である。微粉砕炭中の粒子径0.10mm以下の微粒子含有量の測定方法は後述する。
 また、微粉砕炭は、粒子径0.1mm超の粒子を含有していてもよいが、微粉砕炭に含まれる粒子は、粒子径1.0mm以下であることが好ましく、より好ましくは0.5mm以下、さらに好ましくは0.3mm以下である。
 前記微粉砕炭は水分を含んでいることが好ましい。微粉砕炭が水分を含む場合、得られる固形燃料の圧壊強度が一層向上する。微粉砕炭の含水率は30質量%~70質量%が好ましい。微粉砕炭の含水量は、加湿や乾燥を行って調整することができる。なお、微粉砕炭の原料に、含水率が30質量%~70質量%の低品位炭を使用すれば、特段の水分調整を行うことなく、含水率30質量%~70質量%の微粉砕炭が得られる。
 粗粉砕炭と微粉砕炭とは公知の混合機を用いて混合でき、例えば、ミキサー、ボールミル、ニーダー、V型混合機等を用いることができる。前記微粉砕炭の添加量は、粗粉砕炭と微粉砕炭との合計100質量%中、微粉砕炭中の粒子径0.1mm以下の微粒子の含有量が5質量%以上とすることが好ましく、より好ましくは8質量%以上、さらに好ましくは10質量%以上であり、35質量%以下とすることが好ましく、より好ましくは30質量%以下、さらに好ましくは25質量%以下、特に好ましくは23質量%以下である。微粉砕炭の含有量が上記範囲内であれば、得られる固形燃料の圧壊強度がさらに向上する。
 成型原料を加圧成型するには公知の装置が使用でき、例えば、一軸プレス成型やダブルロールプレス等の加圧成型装置を用いることができる。加圧圧力は、一軸プレス成型の場合、98N/mm(1000kgf/cm)以上が好ましく、より好ましくは147N/mm(1500kgf/cm)以上、さらに好ましくは196N/mm(2000kgf/cm)以上である。加圧圧力を上げると成型体の密度が上がり強度も向上するが、加圧圧力を過剰に高めてもその効果は飽和する。よって、加圧圧力の上限は、490N/mm(5000kgf/cm)程度とすることが好ましい。
 加圧成型後の固形燃料の含水率は、原料炭の種類により変わるが一般には、3質量%以上が好ましく、より好ましくは5質量%以上であり、15質量%以下が好ましく、より好ましくは10質量%以下である。含水率が上記範囲内であれば、圧壊強度がより向上する。なお、固形燃料の含水率は、上記微粉砕炭の配合量を調整することで、制御できる。
 加圧成型後には、固形燃料に付着した微小片や、未成型炭を分離除去することが好ましく、この微小片等は粒度調整(特に粉砕)することが好ましい。微小片等の粉砕では、前記前処理工程の粗粉砕方法で例示した粉砕手段を採用できる。
 微小片等をしきい値で分級する場合(図3)、そのしきい値は、0.05mm以上、好ましくは0.10mm以上、より好ましくは0.3mm以上であり、0.7mm以下、好ましくは0.6mm以下、より好ましくは0.5mm以下の範囲で設定できる。しきい値を上記範囲内とすれば、しきい値を超える成分を水分低減工程に供する際に、粗粉砕炭に混入する微粉成分を低減することができる。また、しきい値以下の成分を、粒子径0.10mm以下に容易に粉砕できる。
 なお、上述のように、微小片等を成型原料に配合する場合、微小片等は、粒子径0.1mm超の粒子を含有していてもよいが、微小片等に含まれる粒子は、粒子径1.0mm以下であることが好ましく、より好ましくは0.5mm以下、さらに好ましくは0.3mm以下である。
 また、微小片等は、粒子径0.10mm以下の微粒子の含有量が、40質量%以上が好ましく、より好ましくは50質量%以上、さらに好ましくは60質量%以上、特に好ましくは80質量%以上、最も好ましくは100質量%である。微小片等に含まれる粒子径0.10mm以下の粒子含有量は、微粉砕炭中の粒子径0.10mm以下の微粒子含有量の測定方法と同様にして、測定することができる。
 そして、微小片等を成型原料に配合する場合、前記微粉砕炭及び微小片等の添加量は、粗粉砕炭、微粉砕炭及び微小片等の合計100質量%中、微粉砕炭又は微小片等に含まれる粒子径0.1mm以下の微粒子の含有量が5質量%以上とすることが好ましく、より好ましくは8質量%以上、さらに好ましくは10質量%以上であり、35質量%以下とすることが好ましく、より好ましくは30質量%以下、さらに好ましくは25質量%以下、特に好ましくは23質量%以下である。
 また、微小片等と微粉砕炭との合計100質量%において、含水率は、3質量%以上が好ましく、より好ましくは5質量%以上、さらに好ましくは7質量%以上であり、15質量%以下が好ましく、より好ましくは10質量%以下である。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
評価方法
 <粒子径0.10mm以下の粒子の含有量>
 受器の上に目開き0.1mmの篩(金属製網ふるい、規格番号JIS Z 88011(2006))を重ね、この篩上に試料100.0gを入れて蓋をした。これらの受器、篩、蓋を重ねたものを、水平旋回ふるい(アズワン社製、型式「SKH-01」)に設置し、10分間ふるいを行った。
 ふるい終了後、篩を通過して受器に落下した微粒子を収集して、その質量Wをはかり、下記式にて、粒子径0.10mm以下の粒子含有量を求めた。
  粒子径0.10mm以下の粒子含有量(質量%)=100×(W/100)
 <含水率>
 ブリケット化後の固形燃料の質量(初期質量)を測定した。この固形燃料を、窒素雰囲気下、107℃で2時間加熱し、冷却後、質量(乾燥質量)を測定した。初期質量と乾燥質量との差から加熱による質量減少を求め、これを水分量とみなし、下記式より含水率を算出した。
  含水率(%)=100×(初期質量-乾燥質量)/初期質量
 <圧壊強度>
 割裂引張試験により初期強度を求めた。具体的には、図4に示すように、固形燃料1を倒して2枚の圧縮板2の間に挟み、万能材料試験機(インストロン社製、「4505型」)を用いて、1mm/minの速度で矢印の方向に圧縮していき、初期破壊の起こった荷重をもって最大荷重とした。最大荷重と固形燃料のサイズから、式1によって引張強度(初期強度)を算出した。
Figure JPOXMLDOC01-appb-M000001
[σt:引張強度(N/mm)、P:最大荷重(N)、d:固形燃料の直径(mm)、l:固形燃料の長さ(mm)] 
微粉砕炭の調製 
 原料の低品位炭として、インドネシアのSatui炭を用い、これをハンマークラッシャーにより粉砕した。粉砕後の低品位炭を、目開き0.5mm、0.3mm、0.1mmの金属製網ふるい(規格番号JIS Z 8801-1(2006))を用いて分級し、下記表1に示す微粉砕炭を調製した。
 分級は、受器の上に篩を積み重ね(微粉砕炭2、4では、目開きの小さい篩から順に積み重ねる)、篩(微粉砕炭2、4では、一番上の篩)の上に粉砕後の低品位炭を入れ、蓋をした。これらの受器、篩、蓋を積み重ねたものを、水平旋回ふるい(アズワン社製、型式「SKH-01」)に設置し、10分間ふるいを行った。
 なお、調製後の微粉砕炭の含水率は35質量%であった。 
Figure JPOXMLDOC01-appb-T000002
製造例1
1.前処理工程(粗粉砕炭の調製)
 原料の低品位炭として、インドネシアのSatui炭を用い、これをハンマークラッシャーにより粒子径:3mm以下に粗粉砕した。粗粉砕された低品位炭についてサイクロンによる微粉末の分離処理(分級)を行い、粗粉砕炭を得た。この分級後の粗粉砕炭は微粉末が分離され除去されており、粒子径が0.10mm以下の微粉成分の含有量が27質量%であった。この分離除去された微粉末の量は、上記粉砕された低品位炭の約10質量%の量であった。
2.水分低減工程 
 上記粗粉砕炭を、灯油とアスファルトとを混合した混合油と、混合槽において混合して原料スラリーを得た。ここで、灯油は溶媒油分であり、アスファルトは重質油分である。混合油中のアスファルト含有量は、0.5質量%とした。混合油と粗粉砕炭との質量比(粗粉砕炭/混合油)は、乾燥・無水炭基準で、1.7となるようにした。即ち、混合される低品位炭は水分を含有しているが、低品位炭の量としては、この低品位炭を乾燥し無水炭の状態としたときの石炭(乾燥・無水炭)の量を用い、混合油の量とこの乾燥・無水炭の量との質量比で1.7となるようにした。
 このようにして得られた原料スラリーを蒸発機で140℃に加熱して粗粉砕炭の脱水を行い、脱水スラリーを得た。なお、このとき、粗粉砕炭(低品位炭)の細孔内への混合油(灯油にアスファルトを混合したもの)の含有もなされる。上記脱水スラリーをデカンタ型遠心分離機で2000Gの遠心力で固液分離をした。この固液分離により、ケーキ(油を含んだ泥状のもの)と分離液を得た。なお、分離液は原料スラリーを得る工程へ戻し、混合油として再度利用される。そして、ケーキを、スチームチューブドライヤーを用いて、210℃で30分間加熱して残存する灯油を除去して、水分を除去した粗粉砕炭(含水率は実質的に0質量%)を得た。
3.加圧成型工程
 前記粗粉砕炭、80質量部と、微粉砕炭No.1、20質量部とを混合し、成型原料を調製し、これを圧縮成型しブリケット化して固形燃料を得た。圧縮成型は、内径20mmのシリンダー状金型と、該シリンダー状金型と略同一径の内筒金型を使用し、成型原料量は約6g、加圧圧力は196MPa(2000kgf/cm)とした。得られた固形燃料の含水率は7.8質量%であり、圧壊強度は1.39N/mmであった。
製造例2~5 
 加圧成型工程において、粗粉砕炭と混合する微粉砕炭を、微粉砕炭No.2~5に変更した以外は製造例1と同様にして固形燃料を製造した。得られた固形燃料の含水率、圧壊強度を表2に示した。 
製造例6
 加圧成型工程において、微粉砕炭No.1の添加量を30質量%とした以外は製造例1と同様にして固形燃料を作製した。得られた固形燃料の含水率、圧壊強度を表2に示した。
製造例7
 加圧成型工程において、粗粉砕炭を水蒸気雰囲気中にて水分量7質量%になるように加湿し、微粉砕炭を混合しなかったこと以外は製造例1と同様にして固形燃料を製造した。得られた固形燃料の含水率、圧壊強度を表2に示した。 
Figure JPOXMLDOC01-appb-T000003
 表2に示したように、固形燃料の含水率をほぼ一定に制御した場合、粒子径0.1mm以下の微粒子を含む微粉砕炭を併用した製造例1、3、5、6は、微粉末炭を用いていない製造例7に比べて、圧壊強度が著しく向上していることが分かる。特に、粒子径0.1mm以下の粒子のみを添加した製造例1、6では、圧壊強度の向上がより顕著であった。
 一方、粒子径0.3mm以下又は粒子径0.5mm以下、且つ、粒子径0.1mm超に調製した微粉砕炭を用いた製造例2及び製造例4では、固形燃料の圧壊強度は製造例7と同等であった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年4月6日出願の日本特許出願(特願2011-084631)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の固形燃料成型方法は、圧壊強度の高い固形燃料を製造できる。
1:石炭成型体、2:圧縮板

Claims (6)

  1.  低品位炭を粗粉砕する前処理工程、 
     前記前処理工程で得られた粗粉砕炭から水分を除去する水分低減工程、及び、 
     水分を除去した粗粉砕炭をブリケット化する加圧成型工程を有する固形燃料成型方法であって、
     前記加圧成型工程では、水分を除去した粗粉砕炭と、粒子径0.10mm以下の微粒子を含む微粉砕炭とを、前記粗粉砕炭と前記微粉砕炭との合計100質量%中、前記微粒子の含有量が5質量%~35質量%となるように混ぜて成型原料を調製し、得られた成型原料をブリケット化することを特徴とする固形燃料成型方法。
  2.  前記水分低減工程は、前記粗粉砕炭を、重質油及び溶媒油を含む油層中で加熱して脱水し、固液分離する油中脱水工程を含む請求項1に記載の固形燃料成型方法。
  3.  前記前処理工程では、低品位炭の粉砕後、粒子径0.10mm以下の微粉成分の含有量が50質量%以下となるように、前記粗粉砕炭から微粉成分を取り除く請求項1又は2記載の固形燃料成型方法。
  4.  前記加圧成型工程において、前記粗粉砕炭から取り除いた前記微粉成分を前記微粒子として、前記微粉砕炭と混ぜて使用する請求項3に記載の固形燃料成型方法。
  5.  前記加圧成型工程において、粗粉砕炭のブリケット化後、ブリケットに付着した微小片及び未成型粉を分離回収し、該微小片及び未成型粉の粒子径を0.5mm以下に調整した後、この調整品を成型原料と混ぜて再びブリケット化する請求項1~4のいずれか1項に記載の固形燃料成型方法。
  6.  前記加圧成型工程において、粗粉砕炭のブリケット化後、ブリケットに付着した微小片及び未成型粉を分離回収し、該微小片及び未成型粉を粒子径0.05mm~0.7mmまでの範囲で設定されるしきい値で分級し、
     粒子径が前記しきい値を超える成分は、前記粗粉砕炭と共に前記水分低減工程に戻し、
     粒子径が前記しきい値以下の成分は、粒子径を0.5mm以下に調整した後、この調整品を前記成型原料に再使用する請求項1~4のいずれか1項に記載の固形燃料成型方法。
PCT/JP2012/059598 2011-04-06 2012-04-06 固形燃料成型方法 WO2012137956A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-084631 2011-04-06
JP2011084631A JP2012219140A (ja) 2011-04-06 2011-04-06 固形燃料成型方法

Publications (1)

Publication Number Publication Date
WO2012137956A1 true WO2012137956A1 (ja) 2012-10-11

Family

ID=46969344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059598 WO2012137956A1 (ja) 2011-04-06 2012-04-06 固形燃料成型方法

Country Status (2)

Country Link
JP (1) JP2012219140A (ja)
WO (1) WO2012137956A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098329A1 (ja) * 2013-12-24 2015-07-02 三菱重工業株式会社 成形炭の製造方法
CN105800610A (zh) * 2016-03-31 2016-07-27 神华集团有限责任公司 一种无粘结剂煤基压块活性炭的制备方法
WO2018037809A1 (ja) * 2016-08-24 2018-03-01 株式会社神戸製鋼所 固形燃料の製造方法
JP2018030951A (ja) * 2016-08-24 2018-03-01 株式会社神戸製鋼所 固形燃料の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6062316B2 (ja) * 2013-04-24 2017-01-18 株式会社神戸製鋼所 成型固形燃料の製造方法
JP6133182B2 (ja) * 2013-09-24 2017-05-24 株式会社神戸製鋼所 改質石炭の製造方法
JP6262074B2 (ja) * 2014-05-19 2018-01-17 株式会社神戸製鋼所 改質石炭の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184293A (ja) * 1983-04-04 1984-10-19 Kawasaki Heavy Ind Ltd 低品位炭の処理方法
JPS59206493A (ja) * 1983-04-23 1984-11-22 アクゾ・エヌ・ヴエ− 燃料ブリケツトの製法
JPH0445232B2 (ja) * 1988-11-09 1992-07-24 Ebara Mfg
JP2000160175A (ja) * 1998-11-25 2000-06-13 Kansai Coke & Chem Co Ltd 粉炭の成型方法
JP2010235959A (ja) * 2010-07-26 2010-10-21 Kobe Steel Ltd 固形燃料の製造方法及び該製造方法により作製された固形燃料
JP2011037937A (ja) * 2009-08-07 2011-02-24 Mitsubishi Heavy Ind Ltd 改質石炭の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184293A (ja) * 1983-04-04 1984-10-19 Kawasaki Heavy Ind Ltd 低品位炭の処理方法
JPS59206493A (ja) * 1983-04-23 1984-11-22 アクゾ・エヌ・ヴエ− 燃料ブリケツトの製法
JPH0445232B2 (ja) * 1988-11-09 1992-07-24 Ebara Mfg
JP2000160175A (ja) * 1998-11-25 2000-06-13 Kansai Coke & Chem Co Ltd 粉炭の成型方法
JP2011037937A (ja) * 2009-08-07 2011-02-24 Mitsubishi Heavy Ind Ltd 改質石炭の製造方法
JP2010235959A (ja) * 2010-07-26 2010-10-21 Kobe Steel Ltd 固形燃料の製造方法及び該製造方法により作製された固形燃料

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098329A1 (ja) * 2013-12-24 2015-07-02 三菱重工業株式会社 成形炭の製造方法
CN105800610A (zh) * 2016-03-31 2016-07-27 神华集团有限责任公司 一种无粘结剂煤基压块活性炭的制备方法
WO2018037809A1 (ja) * 2016-08-24 2018-03-01 株式会社神戸製鋼所 固形燃料の製造方法
JP2018030950A (ja) * 2016-08-24 2018-03-01 株式会社神戸製鋼所 固形燃料の製造方法
JP2018030951A (ja) * 2016-08-24 2018-03-01 株式会社神戸製鋼所 固形燃料の製造方法
WO2018037808A1 (ja) * 2016-08-24 2018-03-01 株式会社神戸製鋼所 固形燃料の製造方法
AU2017315809B2 (en) * 2016-08-24 2020-08-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Solid fuel production method

Also Published As

Publication number Publication date
JP2012219140A (ja) 2012-11-12

Similar Documents

Publication Publication Date Title
WO2012137956A1 (ja) 固形燃料成型方法
AU2004224904B2 (en) Apparatus and method for manufacturing solid fuel with low-rank coal
USRE46052E1 (en) Briquetting process
JP5280072B2 (ja) コークスの製造方法
AU2009301710B2 (en) Solid fuel manufacturing method and solid fuel manufactured using the manufacturing method
JP4603620B2 (ja) 多孔質炭を原料とする成型固形燃料の製造方法
JP5241105B2 (ja) コークスの製造方法、及び銑鉄の製造方法
WO2013129607A1 (ja) 成形配合炭およびその製造方法、ならびにコークスおよびその製造方法
JP4950527B2 (ja) コークスの製造方法、及び、銑鉄の製造方法
JP5636356B2 (ja) 無灰炭成形物の製造方法
JP6062316B2 (ja) 成型固形燃料の製造方法
JP5390977B2 (ja) 鉄鉱石含有コークス、及び該鉄鉱石含有コークスの製造方法
WO2014083918A1 (ja) 改質石炭の貯蔵方法及び粒度調整石炭
JP2014019746A (ja) 副生炭成形物の製造方法
JP5739785B2 (ja) 残渣炭成形物の製造方法
JP2016166265A (ja) コークスの製造方法及びコークス
JP6262074B2 (ja) 改質石炭の製造方法
JP6026367B2 (ja) 改質石炭の製造方法
JP5635962B2 (ja) 残渣炭成形物の製造方法
JP2018131549A (ja) コークス製造方法
JP6133182B2 (ja) 改質石炭の製造方法
JP6151143B2 (ja) 改質石炭の製造方法
JP5719283B2 (ja) 副生炭成形物の製造方法
JP5491795B2 (ja) 製鉄原料用塊状成形体の製造方法および鉄鉱石含有コークス
JPS58206683A (ja) 装入炭の調整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768622

Country of ref document: EP

Kind code of ref document: A1