WO2012137602A1 - 記録装置、記録方法および光記録媒体 - Google Patents
記録装置、記録方法および光記録媒体 Download PDFInfo
- Publication number
- WO2012137602A1 WO2012137602A1 PCT/JP2012/057138 JP2012057138W WO2012137602A1 WO 2012137602 A1 WO2012137602 A1 WO 2012137602A1 JP 2012057138 W JP2012057138 W JP 2012057138W WO 2012137602 A1 WO2012137602 A1 WO 2012137602A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- recording
- mark
- interface
- servo
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0045—Recording
- G11B7/00452—Recording involving bubble or bump forming
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B2007/0003—Recording, reproducing or erasing systems characterised by the structure or type of the carrier
- G11B2007/0009—Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24047—Substrates
- G11B7/2405—Substrates being also used as track layers of pre-formatted layers
Definitions
- the present disclosure relates to a recording apparatus, a recording method, and an optical recording medium that perform recording on an optical recording medium in which a signal is recorded / reproduced by light irradiation.
- optical discs such as CD (Compact Disc), DVD (Digital Versatile Disc), and BD (Blu-ray Disc: registered trademark) are widely used. .
- Patent Document 1 A bulk recording type optical recording medium has been proposed.
- the bulk recording refers to, for example, as shown in FIG. 17, an optical recording medium having at least a cover layer 101 and a bulk layer (recording layer) 102 is irradiated with laser light while sequentially changing the focal position.
- This is a technique for increasing the recording capacity by performing multilayer recording in the layer 102.
- Patent Document 1 discloses a recording technique called a so-called micro-hologram method.
- a so-called hologram recording material is used as a recording material for the bulk layer 102.
- a hologram recording material for example, a photopolymerization type photopolymer or the like is widely known.
- the micro hologram method is roughly classified into a positive micro hologram method and a negative micro hologram method.
- the positive micro-hologram method is a method in which two opposing light beams are condensed at the same position to form fine interference fringes (holograms), which are used as recording marks.
- the negative type micro-hologram method is a method opposite to the positive type micro-hologram method, in which interference fringes formed in advance are erased by laser light irradiation, and the erased portion is used as a recording mark. In this negative microhologram method, a process of forming interference fringes in the bulk layer in advance is required as an initialization process.
- a recording method for forming voids (vacancy, holes) as recording marks as disclosed in Patent Document 2 Has also proposed.
- a recording signal is read (reproduced) by detecting a difference in reflectance between a void formed portion and a non-formed portion.
- the void formed portion has a high reflectance
- the void non-formed portion has a low reflectance (zero)
- a reproduction signal is obtained based on the result of detecting the difference in reflectance on the detector. .
- the reflectance is increased by increasing the size of the void, and the reproduction signal level (contrast between the mark formation portion and the formation portion) is increased.
- the void recording method does not form a hologram. Therefore, light irradiation from one side can be performed for recording. In other words, it is not necessary to form the recording mark by condensing the two light beams at the same position as in the case of the positive microhologram method described above. Further, in comparison with the negative type micro hologram method, there is an advantage that the initialization process can be made unnecessary.
- an example of performing pre-cure light irradiation before recording is shown in performing void recording. However, even if such pre-cure light irradiation is omitted, it is possible to record voids. is there.
- An object of the present technology is to provide a recording apparatus, a recording method, and an optical recording medium that can be easily adjusted to an appropriate S / N.
- the recording apparatus condenses laser light in the vicinity of an interface in an optical recording medium having a structure in which a plurality of interfaces between the first layer and the second layer are formed, A recording mark that does not reach the formation of a mark and is accompanied by modulation of the refractive index and / or shape change of the interface is formed.
- the recording method condenses laser light near an interface in an optical recording medium having a structure in which a plurality of interfaces between the first layer and the second layer are formed, A recording mark that does not reach the formation of a mark and is accompanied by modulation of the refractive index and / or shape change of the interface is formed.
- the optical recording medium according to the present technology has a structure in which a plurality of interfaces between the first layer and the second layer are formed, does not reach the formation of an empty mark near the interface, and has a refractive index. A recording mark accompanied by modulation and / or shape change of the interface is formed.
- a plurality of interfaces between the first layer and the second layer are formed, and a recording mark accompanied by refractive index modulation and / or shape change of the interface in the vicinity of the interface Form. Accordingly, it is possible to determine whether or not a mark is formed (reproduction of a recording signal) based on the optical path length difference (phase difference) of reflected light generated between the mark forming portion and the other portions. That is, signal reproduction by so-called phase difference detection becomes possible.
- the recording mark accompanied by the refractive index modulation and / or the shape change of the interface is formed in the vicinity of the interface between the first layer and the second layer.
- signal reproduction by phase difference detection becomes possible. Therefore, adjustment to an appropriate S / N can be easily performed.
- FIG. 1 is a cross-sectional structure diagram of an optical recording medium as a first embodiment. It is a figure for demonstrating the servo control technique about the optical recording medium of embodiment. It is the figure which illustrated mainly the internal structure of the optical system with which the recording device of embodiment is provided. It is the figure which illustrated the internal structure of the recording device of embodiment. It is a figure for demonstrating the recording / reproducing principle of the optical recording medium of 1st Embodiment.
- FIG. 5 is a cross-sectional structure diagram of an optical recording medium as a second embodiment. It is a figure for demonstrating the recording / reproducing principle of the optical recording medium of 2nd Embodiment. It is a cross-section figure of the optical recording medium as 3rd Embodiment.
- FIG. 10 is a cross-sectional structure diagram of an optical recording medium as a fifth embodiment. It is a figure for demonstrating the recording and reproducing principle of the optical recording medium of 5th Embodiment. It is sectional drawing of the optical recording medium as 6th Embodiment. It is a figure for demonstrating the recording and reproducing principle of the optical recording medium of 6th Embodiment. It is a figure for demonstrating the optical recording medium as a modification. It is a figure for demonstrating a bulk recording system. It is a figure for demonstrating the crosstalk of a depth direction.
- First Embodiment> [1-1. Optical Recording Medium of First Embodiment] [1-2. Servo control] [1-3. Configuration of recording device] [1-4. Specific recording medium configuration and recording / reproducing principle] [1-5. effect] ⁇ 2.
- Second Embodiment> ⁇ 3.
- Third Embodiment> ⁇ 4.
- Fourth Embodiment> ⁇ 5.
- Fifth embodiment> ⁇ 6.
- FIG. 1 shows a cross-sectional structure of an optical recording medium 1 as a first embodiment.
- the optical recording medium 1 of the present embodiment is a disc-shaped optical recording medium, and laser recording is performed on the optical recording medium 1 that is rotationally driven to perform mark recording (information recording). . Also, the reproduction of the recorded information is performed by irradiating the optical recording medium 1 that is rotationally driven with laser light.
- a cover layer 2 and a selective reflection film 3 are formed in order from the upper layer side, and an intermediate layer 4 and a recording layer are formed on the lower layer side thereof. 5 and 5 are alternately and repeatedly stacked.
- the “upper layer side” in this specification refers to the upper layer side when the surface on which a laser beam from the recording apparatus side described later is incident is the upper surface.
- the intermediate layer 4 formed at the bottom functions as a cover layer (protective layer).
- the number of repeated laminations of the intermediate layer 4 and the recording layer 5 is x (x is a natural number of 2 or more).
- the intermediate layer 4 and the recording layer 5 have different refractive indexes. That is, the optical recording medium 1 in this case has a structure in which first layers and second layers having different refractive indexes are alternately and repeatedly stacked. It has a structure in which a plurality of interfaces of the second layer are formed. In such a structure, the interface between the intermediate layer 4 and the recording layer 5, that is, the upper surface and the lower surface of the recording layer 5 are caused to function as reflecting surfaces due to the difference in refractive index.
- the reflectivity at the interface between the recording layer 5 and the intermediate layer 4 is set to about 0.5%, for example, and the transmittance at the interface is set to about 96% or more, for example. Specific materials for the intermediate layer 4 and the recording layer 5 will be described later.
- the recording laser beam is focused on the upper and lower surfaces of the recording layer 5 (that is, the interface between the recording layer 5 and the intermediate layer 4), and a recording mark is formed on the interface. It is one of the features of forming. If such interface recording is performed, for example, if the number of times of repeated lamination x is about 10 to 15 as described above, the number of interfaces that can be recorded can be doubled to about 20 to 30. As can be understood from this, according to the present embodiment in which interface recording is performed, in order to realize the same number of recording layers (and hence recording capacity), a conventional multi-layer recording of one mark per recording layer is performed. Compared to the optical recording medium, the number of intermediate layers / recording layers to be formed on the recording medium can be reduced to half.
- the area up to the lower surface of 5 can be regarded as an area where mark recording is possible.
- the area in the depth direction in which the optical recording medium 1 can perform mark recording is referred to as a recordable area 7.
- the cover layer 2 is made of, for example, a resin such as polycarbonate or acrylic, and a position guide for guiding the recording / reproducing position is formed on the lower surface side thereof.
- the position guide is formed by a groove (continuous groove) or a pit row. That is, a position guide as a guide groove is formed. For this reason, on the lower surface side of the cover layer 2, an uneven cross-sectional shape accompanying the formation of such guide grooves is given.
- position information (address information) can be recorded based on the meandering period information by forming the groove meandering periodically.
- the position information can be recorded by modulating the pit length.
- the cover layer 2 is generated by injection molding using a stamper in which such guide grooves (uneven shape) are formed.
- a selective reflection film 3 is formed on the lower surface side of the cover layer 2.
- the guide groove is the same as in the optical recording medium 1 shown in FIG. A reference surface Ref on which is formed is provided.
- the bulk layer is irradiated with recording light (recording laser light), and tracking and focus error signals are obtained based on the guide grooves as described above.
- the servo light (servo laser light) is separately irradiated on the guide groove.
- the reflective film to be formed on the reference surface Ref is a normal reflective film (a reflective film having no wavelength selectivity)
- the recording laser light is reflected by the reflective film, and the recording power is reduced. Attenuation occurs.
- the recording light and the servo light have different wavelengths, and the selective reflection film 3 is provided. That is, the selective reflection film 3 is provided with a reflection film having wavelength selectivity that reflects light in the same wavelength band as the servo light and transmits light having other wavelengths.
- FIG. 2 is a diagram for explaining a servo control method for the optical recording medium 1.
- the optical recording medium 1 is irradiated with a laser beam (servo laser beam) having a wavelength band different from the laser beam (recording laser beam) for forming a recording mark. It is supposed to be.
- the recording laser beam and the servo laser beam are applied to the optical recording medium 1 through a common objective lens.
- the optical recording medium 1 is also irradiated with a servo / playback laser beam.
- the servo / playback laser beam is a laser beam irradiated to control the focus position of the recording laser beam during recording, and to control the playback position during playback and to obtain mark reflected light
- a laser beam having the same wavelength as the recording laser beam is used.
- a so-called pulse laser is used as the light source of the recording laser light. Since the pulse laser is a laser that obtains high power in a very short time such as picoseconds, it is difficult to use it for the purpose of obtaining reflected light for servo and reproduction light for recording marks.
- a light source for servo and reproduction is provided separately from the recording light source as the pulse laser, and the optical recording medium uses the laser light from the light source as the servo / reproduction laser light. 1 is irradiated. This servo / reproducing laser beam is also irradiated onto the optical recording medium 1 through the objective lens.
- tracking servo using servo / playback laser light cannot be performed at the time of recording in which a mark is not yet formed.
- tracking servo at the time of recording is performed using servo laser light. That is, a tracking error signal based on the reflected light of the servo laser beam condensed (focused) on the selective reflection film 3 is generated, and the position of the objective lens in the tracking direction is controlled based on the tracking error signal.
- the spot position of the recording laser light irradiated through the same objective lens can be controlled to an appropriate position in conjunction with the spot position of the servo laser light.
- focus servo is performed using servo / playback laser light. That is, there is a difference in the detection intensity of the reflected light of the servo / reproducing laser beam between the state where the servo / reproducing laser beam is focused on the interface and the other state. -Focus servo control using reflected light of the reproduction laser beam is performed.
- the tracking servo can be performed using the reflected light of the servo / reproducing laser beam. From this point, servo control during reproduction is performed by using reflected light of servo / reproduction laser light for both tracking servo and focus servo.
- the focus position of the servo / reproducing laser beam and the focus position of the servo laser beam need to be different from each other. That is, as can be understood with reference to FIG. 2, as the servo laser light, the in-focus position is the reference position so that the tracking error signal is properly generated based on the reference surface Ref on which the position guide is formed. It should match the surface Ref. On the other hand, as the servo / reproducing laser beam (recording laser beam), the in-focus position should coincide with the interface to be recorded. In consideration of such points, the control of the focus direction must be performed independently for the servo / reproducing laser beam and the servo laser beam.
- the focus control of the servo laser light is performed by controlling the common objective lens.
- a mechanism that controls the focusing position of these servo / reproducing laser beam and recording laser beam independently is provided to drive the mechanism. (See the lens driving unit 19 in FIG. 3).
- a focus control mechanism is referred to as a “recording / reproducing light focus mechanism”.
- the servo control in this example is performed as follows.
- ⁇ Servo / reproducing laser beam (and recording laser beam) Focus servo is performed by driving the recording / playback focusing mechanism using the reflected light of servo / reproducing laser beam (About tracking servo) Is automatically performed by driving the objective lens using the reflected light of the servo laser light)
- Both focus servo and tracking servo are performed by driving the objective lens using the reflected light of the servo / reproducing laser beam.
- Servo laser beam side Focus servo is performed by driving the objective lens using the reflected laser beam, and tracking servo is driven using the servo laser beam reflected. Do it.
- servo control based on the servo laser beam can be dispensed with.
- focus servo and tracking servo of the servo laser light are performed by controlling the objective lens based on the reflected light of the servo laser light.
- FIG. 3 mainly shows an internal configuration example of the optical system provided in the recording apparatus 10 as the embodiment. Specifically, the internal configuration of the optical pickup OP provided in the recording apparatus 10 is mainly shown.
- the optical recording medium 1 loaded in the recording apparatus 10 is set so that its center hole is clamped at a predetermined position in the recording apparatus 10, and can be rotated by a spindle motor (not shown). Retained.
- the optical pickup OP is provided for irradiating the optical recording medium 1 rotated by the spindle motor with a recording laser beam, a servo / playback laser beam, and a servo laser beam.
- a recording laser 11 which is a light source of a recording laser beam for recording information by a mark, and a servo / reproduction for reproducing information recorded by the mark and controlling a recording / reproducing position.
- a servo / reproducing laser 14 which is a light source of the laser light for use.
- a servo laser 27 that is a light source of servo laser light that is light for performing position control using a position guide formed on the reference surface Ref is provided.
- the recording laser beam and the servo / reproducing laser beam are laser beams having the same wavelength, and the servo laser beam is different in wavelength band from these laser beams.
- the wavelength of the recording laser beam and the servo / reproducing laser beam is about 405 nm (so-called blue-violet laser beam), and the wavelength of the servo laser beam is about 650 nm (red laser beam).
- an objective lens 23 serving as an output end of the recording laser beam, the servo / reproducing laser beam, and the servo laser beam to the optical recording medium 1 is provided.
- a servo / reproducing light receiving unit 26 for receiving reflected light of the servo / reproducing laser beam from the optical recording medium 1 is provided.
- the following optical system is formed in the optical pickup OP. This optical system guides the recording laser light emitted from the recording laser 11 and the servo / reproducing laser light emitted from the servo / reproducing laser 14 to the objective lens 23 and the light incident on the objective lens 23.
- the reflected light of the servo / reproducing laser beam from the recording medium 1 is guided to the servo / reproducing light receiving unit 26.
- the recording laser light emitted from the recording laser 11 is made parallel light via the collimation lens 12, Incident on the half mirror 13. Further, the servo / reproducing laser beam emitted from the servo / reproducing laser 14 is made to be parallel light through the collimation lens 15 and then enters the half mirror 13 in the same manner.
- the half mirror 13 causes the recording laser light incident from the recording laser 11 side and the servo / reproducing laser light incident from the servo / reproducing laser 14 side to coincide with each other as described above. Output.
- the recording laser beam and servo / reproducing laser beam output from the half mirror 13 enter the polarization beam splitter 16.
- the polarization beam splitter 16 is configured to transmit the recording laser light and the servo / reproducing laser light thus incident.
- the recording laser light and servo / reproducing laser light transmitted through the polarization beam splitter 16 are incident on a recording / reproducing light focusing mechanism including a fixed lens 17, a movable lens 18, and a lens driving unit 19.
- a recording / playback light focusing mechanism the side closer to the light source (recording laser 11, servo / playback laser 14) is the fixed lens 17, and the movable lens 18 is disposed on the side farther from the light source.
- the movable lens 18 is driven in a direction parallel to the optical axis. Thereby, independent focus control is performed for the recording laser beam and the servo / reproducing laser beam.
- the lens driving unit 19 in the recording / playback light focusing mechanism is driven based on the reflected light of the servo / playback laser light, and the recording laser light and the servo / playback It is responsible for focus servo control for laser light.
- the recording laser light and servo / reproducing laser light through the fixed lens 17 and the movable lens 18 in the upper recording / relighting focus mechanism are reflected by the mirror 20 as shown in the figure, and then the quarter-wave plate 21. Then, the light enters the dichroic prism 22.
- the selective reflection surface of the dichroic prism 22 is configured to reflect light in the same wavelength band as that of the recording laser light and servo / playback laser light, and to transmit light having other wavelengths. Therefore, the recording laser light and servo / reproducing laser light incident as described above are reflected by the dichroic prism 22.
- the recording laser light reflected by the dichroic prism 22 is applied to the optical recording medium 1 through the objective lens 23 as shown in the figure.
- the objective lens 23 With respect to the objective lens 23, the objective lens 23 is moved in the focus direction (the direction in which the objective lens 23 is moved toward and away from the optical recording medium 1) and the tracking direction (the direction orthogonal to the focus direction: parallel to the radial direction of the optical recording medium 1
- a biaxial actuator 24 that is displaceably held in a desired direction).
- the biaxial actuator 24 is provided with a focus coil and a tracking coil, and a drive signal (a drive signal FD-sv, TD-sv, or TD-sp, which will be described later) is given to each of the two-axis actuators 24 so that the objective lens 23 is moved in the focus direction. Displace each in the tracking direction.
- the servo / reproducing laser beam when the servo / reproducing laser beam is irradiated to the optical recording medium 1 as described above, reflected light is obtained from the optical recording medium 1 (interface to be reproduced).
- the reflected light of the servo / reproducing laser beam thus obtained is guided to the dichroic prism 22 through the objective lens 23 and reflected by the dichroic prism 22.
- the reflected light of the servo / reproducing laser beam reflected by the dichroic prism 22 passes through the quarter-wave plate 21 ⁇ mirror 20 ⁇ recording / reproducing light focus mechanism (movable lens 18 ⁇ fixed lens 17), and then is a polarized beam. The light enters the splitter 16.
- the reflected light (return light) of the servo / playback laser light incident on the polarization beam splitter 16 is generated from the light source side by the action of the quarter-wave plate 21 and the action at the time of reflection on the optical recording medium 1.
- the direction of polarization is different from that of forward light incident on the polarization beam splitter 16 by 90 degrees.
- the reflected light of the servo / reproducing laser beam incident as described above is reflected by the polarization beam splitter 16.
- the reflected light of the servo / reproducing laser beam reflected by the polarizing beam splitter 16 is condensed on the light receiving surface of the servo / reproducing light receiving unit 26 via the condenser lens 25.
- the light receiving signal obtained by the servo / reproducing light receiving unit 26 receiving the servo / reproducing laser light is expressed as a light receiving signal DT-sp as shown in the figure.
- the servo laser beam emitted from the servo laser 27 is supplied to the objective lens 23. And an optical system for guiding the reflected light of the servo laser light from the optical recording medium 1 incident on the objective lens 23 to the light receiving portion 32 for servo light is formed. As shown in the figure, the servo laser light emitted from the servo laser 27 is converted into parallel light through the collimation lens 28 and then enters the polarization beam splitter 29.
- the polarization beam splitter 29 is configured to transmit the servo laser light (outgoing light) incident from the servo laser 27 side in this way.
- the servo laser light transmitted through the polarization beam splitter 29 is incident on the dichroic prism 22 via the quarter-wave plate 30.
- the dichroic prism 22 is configured to reflect light in the same wavelength band as that of the recording laser light and the servo / playback laser light and transmit light of other wavelengths. Therefore, the servo laser light passes through the dichroic prism 22 and is irradiated onto the optical recording medium 1 through the objective lens 23.
- the reflected light of the servo laser light is obtained from the optical recording medium 1 (reference surface Ref).
- the reflected light of the servo laser light passes through the objective lens 23 and then passes through the dichroic prism 22 and enters the polarization beam splitter 29 via the quarter-wave plate 30.
- the reflected light (return light) of the servo laser beam incident from the optical recording medium 1 side in this way is the action of the quarter wavelength plate 30 and the optical recording medium. 1
- the direction of polarization differs from that of the forward light by 90 degrees. Therefore, the reflected light of the servo laser light as the return light is reflected by the polarization beam splitter 29.
- the reflected light of the servo laser light reflected by the polarization beam splitter 29 is condensed on the light receiving surface of the servo light receiving unit 32 via the condenser lens 31.
- the light receiving signal obtained by the servo light receiving unit 32 receiving the reflected light of the servo laser light is represented as a light receiving signal DT-sv.
- the internal configuration of the optical pickup OP is shown by extracting only the recording laser 11, the servo / reproducing laser 14, the lens driving unit 19, and the biaxial actuator 24 from the configuration shown in FIG. ing.
- the entire optical pickup OP is slidable in the tracking direction by a slide mechanism. Control of the slide mechanism is performed by a servo / reproducing light servo circuit 40 or a servo light servo circuit 42 described later. Specifically, when tracking servo control of the objective lens 23 is executed by the servo light servo circuit 42 corresponding to the time of recording, the servo light servo circuit 42 performs control. Further, when tracking servo control of the objective lens 23 is executed by the servo / reproducing light servo circuit 40 corresponding to the reproduction, the servo / reproducing light servo circuit 40 controls the objective lens 23.
- the recording apparatus 10 includes an objective based on recording / reproduction for the recordable area 7 in the optical recording medium 1 and reflected light from an interface (and a recording mark) formed in the recordable area 7.
- the following is provided as a configuration for performing focus / tracking control of the lens 23. That is, a light emission drive unit 35, a recording processing unit 36, a light emission drive unit 37, a servo / reproduction light matrix circuit 38, a reproduction processing unit 39, and a servo / reproduction light servo circuit 40 are provided.
- the light emission drive unit 35 drives the servo / reproducing laser 14 to emit light by a laser drive signal D-sp based on an instruction from the controller 43.
- the recording processing unit 36 generates a recording modulation code corresponding to the input recording data. Specifically, the recording processing unit 36 adds an error correction code to the input recording data or performs a predetermined recording modulation encoding process, for example, “0” actually recorded on the optical recording medium 1. "A recording modulation code string that is a binary data string of" 1 "is obtained. The recording processing unit 36 gives a recording signal based on the recording modulation code string generated in this way to the light emission driving unit 37.
- the light emission drive unit 37 generates a laser drive signal Dr based on the recording signal input from the recording processing unit 36, and drives the recording laser 11 to emit light based on the drive signal Dr.
- the light emission drive unit 37 also adjusts the laser power based on an instruction from the controller 43.
- the servo / reproducing light matrix circuit 38 corresponds to the light reception signal DT-sp (output current) from the plurality of light receiving elements as the servo / reproducing light receiving unit 26 shown in FIG.
- An arithmetic / amplification circuit and the like are provided, and necessary signals are generated by matrix arithmetic processing. Specifically, a high frequency signal (hereinafter referred to as a reproduction signal RF) corresponding to a reproduction signal obtained by reproducing the above-described recording modulation code string is generated.
- a reproduction signal RF a high frequency signal
- a tracking error signal TE-sp is generated that represents a deviation amount (tracking error) in the radial direction of the irradiation spot of the servo / playback laser beam with respect to the track as the recording mark row.
- a focus error signal FE-sp representing a focus error of the servo / reproducing laser beam with respect to the target interface is generated.
- the reproduction signal RF generated by the servo / reproduction light matrix circuit 38 is supplied to the reproduction processing unit 39.
- the focus error signal FE-sp and the tracking error signal TE-sp are supplied to the servo / reproducing light servo circuit 40.
- the reproduction processing unit 39 performs reproduction processing for restoring the above-described recording data such as binarization processing, recording modulation code decoding / error correction processing on the reproduction signal RF, and reproduction data obtained by reproducing the recording data Get.
- the servo / reproducing light servo circuit 40 includes a focus servo signal FS-sp and a tracking servo signal TS-sp based on the focus error signal FE-sp and tracking error signal TE-sp supplied from the servo / reproducing light matrix circuit 38. Are generated respectively.
- the focus drive signal FD-sp and the tracking drive signal TD-sp for driving the focus coil and tracking coil of the biaxial actuator 24 are generated. To do.
- the focus drive signal FD-sp is supplied to the lens drive unit 19 as shown.
- the tracking drive signal TD-sp is supplied to the switch SW.
- the servo / reproducing light servo circuit 40 turns off the tracking servo loop based on an instruction from the controller 43 and gives a jump pulse to the tracking coil of the biaxial actuator 24 via the switch SW. As a result, a track jump operation for the servo / reproducing laser beam is executed. Also, based on an instruction from the controller 43, a focus servo pull-in process for the servo / playback laser beam targeting the interface of the predetermined recording layer 5 and a focus jump operation for the servo / playback laser beam are executed.
- the recording apparatus 10 is provided with a servo light matrix circuit 41 and a servo light servo circuit 42 as a signal processing system for the reflected light of the servo laser light.
- the servo light matrix circuit 41 corresponds to a light reception signal DT-sv (output current) from a plurality of light receiving elements as the servo light receiving unit 32 shown in FIG. Etc., and necessary signals are generated by matrix calculation processing. Specifically, as a signal for performing tracking servo control, a tracking error indicating a deviation amount (tracking error) in the radial direction of the irradiation spot of the servo laser beam with respect to the position guide (track) formed on the reference surface Ref. A signal TE-sv is generated.
- a focus error signal FE-sv representing a focus error of servo laser light with respect to the reference surface Ref (selective reflection film 3) is generated as a signal for performing the focus servo control.
- These focus error signal FE-sv and tracking error signal TE-sv are supplied to the servo circuit 42 for servo light.
- Servo light servo circuit 42 generates focus servo signal FS-sv and tracking servo signal TS-sv based on focus error signal FE-sv and tracking error signal TE-sv, respectively. Based on the focus servo signal FS-sv and the tracking servo signal TS-sv, a focus drive signal FD-sv and a tracking drive signal TD-sv for driving the focus coil and tracking coil of the biaxial actuator 24 are generated. To do. In the case of this example, the focus drive signal FD-sv is supplied to the biaxial actuator 24 (focus coil). On the other hand, the tracking drive signal TD-sv is supplied to the switch SW.
- the servo light servo circuit 42 turns off the tracking servo loop based on an instruction from the controller 43 and gives a jump pulse to the tracking coil of the biaxial actuator 24 via the switch SW. As a result, a track jump operation for the servo laser beam is executed, or a focus servo pull-in process for the servo laser beam targeted for the reference surface Ref is performed based on an instruction from the controller 43.
- the switch SW selectively outputs one of the tracking drive signal TD-sp and the tracking drive signal TD-sp to the biaxial actuator 24 (tracking coil) based on an instruction from the controller 43. That is, it is possible to switch between tracking servo control based on the reflected light of the servo / reproducing laser beam and tracking servo control based on the reflected light of the servo laser.
- the controller 43 is composed of a microcomputer including a memory (storage device) such as a CPU (Central Processing Unit), ROM (Read Only Memory), and RAM (Random Access Memory).
- the controller 43 performs overall control of the recording apparatus 10 by executing control and processing according to a program stored in the ROM or the like, for example.
- the controller 43 realizes switching of servo control corresponding to each of the above-described recording / reproducing by giving instructions to the servo / reproducing light servo circuit 40, the servo light servo circuit 42, and the switch SW. .
- the tracking drive signal TD-sv is generated by the servo light servo circuit 42 and the tracking drive signal TD-sv is selected by the switch SW.
- the tracking servo control of the objective lens 23 based on the reflected light of the servo laser beam (that is, the tracking servo control based on the track of the reference surface Ref) is executed.
- the tracking drive signal TD-sp is generated by the servo / reproduction light servo circuit 40 and then the tracking drive signal TD-sp is selected by the switch SW.
- the tracking servo control of the objective lens 23 based on the reflected light of the servo / reproducing laser beam (that is, the tracking servo control based on the recording mark row) is executed.
- the former control that is, tracking servo control of the objective lens 23 based on the reflected light of the servo laser beam is executed so that the position information of the reference plane can be read. To do.
- controller 43 instructs the servo / reproduction light servo circuit 40 on the interface to be recorded / reproduced, and executes a focus servo pull-in process for the servo / reproduction laser light targeted at the interface. Let That is, selection control of the interface to be recorded / reproduced is performed.
- the recording layer 5 and the intermediate layer 4 are specifically those having the following properties. That is, the recording layer 5 has a property of causing expansion (thermal expansion) near the condensing point in response to irradiation (condensing) of the recording laser light. Further, as the intermediate layer 4, a material having a lower Young's modulus than the recording layer 5 is used.
- thermoplastic resins those having a non-linear light-sensitive structure in the skeleton Example 1) Multiphoton absorbing material such as amorphous polyarylate resin as described in the following Reference 1 Example 2) described in the following Reference 2 2) Photon-absorbing material comprising a resin as a main component 5) In the above 1) to 4), those containing an acid generator-added material may be mentioned.
- Multiphoton absorbing material such as amorphous polyarylate resin as described in the following Reference 1 Example 2) described in the following Reference 2
- Photon-absorbing material comprising a resin as a main component 5
- those containing an acid generator-added material may be mentioned.
- HP-4032D represented by [Chemical Formula 1] is an example of the thermosetting resin
- 4-EthynyPA (Phthalic Anhydride) represented by [Chemical Formula 2] is an example of the nonlinear photosensitive additive. : Phthalic anhydride).
- the above-listed materials are used as the recording layer 5, the deformation that occurs near the condensing point of the laser beam is caused by the temperature rise due to nonlinear light absorption.
- the above-mentioned material listings 1) to 5) are intended for various combinations that produce an effect by nonlinear light absorption (particularly, an effect that marks having a smaller size than a recording beam spot can be formed).
- thermoplastic resin for example, a thermoplastic resin can be exemplified. More specifically, for example, a polycarbonate resin can be mentioned.
- FIG. 5 is a diagram for explaining the recording / reproducing principle of the optical recording medium 1 as the first embodiment having the laminated structure of the recording layer 5 and the intermediate layer 4 as described above.
- 5A is a cross-sectional view showing a part of the layer structure in the recordable area 7 of the optical recording medium 1
- FIG. 5B is a recording mark formed on the upper surface side of the recording layer 5.
- FIG. 5C is an enlarged view of a recording mark formed on the lower surface side of the recording layer 5.
- the recording layer 5 expands near the condensing point of the laser beam, and the intermediate layer 4 has a lower Young's modulus than the recording layer 5. For this reason, by appropriately collecting and irradiating the recording laser beam on the upper surface and the lower surface (that is, the interface) of the recording layer 5, the laser beam irradiated portions on the upper surface and the lower surface of the recording layer 5 are recorded. Deformation due to the convex shape toward the outside of the layer 5 occurs. Such a convex surface deformation portion functions as a recording mark.
- the refractive index of the intermediate layer 4 and the recording layer 5 are different from each other as described above, their interface functions as a reflecting surface. Therefore, when the servo / reproducing laser beam is irradiated so as to be focused on the interface corresponding to the time of reproduction, the portion where the convex deformation as described above has occurred in the interface and the other portions An optical path length difference (phase difference) occurs in the reflected light. Due to the phase difference of the reflected light, on the detector (servo / reproducing light receiving unit 26), the level of the mark formation portion and the non-formation portion in the reproduction signal RF due to the interference of the light wave having the phase difference. There will be a difference. That is, as a result, it is possible to determine the mark formation part / non-formation part, and it is possible to determine the recording code “0” / “1”.
- the mark forming portion and the non-forming portion on the upper surface side of the recording layer 5 are used.
- the optical path length difference Do at Do n ⁇ ds ⁇ 2 It can be expressed as.
- the optical optical path length difference Do between the mark forming portion and the non-forming portion on the lower surface side of the recording layer 5 is as shown in FIG. 5C.
- Do N ⁇ ds ⁇ 2 It is expressed.
- the pit depth is about 50 nm
- the optical optical path length difference Do between the land and the pit is about 80 ⁇ 2 nm.
- the optical path length difference Do that can secure a sufficient reproduction signal level is about 100 ⁇ 2 nm
- n and N are about 1.2 each.
- the required mark height ds can be estimated to be about 65 nm to 80 nm.
- the power of the recording laser beam in order to form a convex recording mark as described above, the power of the recording laser beam must not be too high. This is because if the power of the recording laser beam is excessive, a void mark is formed. Therefore, the power of the recording laser beam in the present embodiment is set to a level that does not lead to the formation of the hole mark according to the characteristics of the recording layer 5.
- the hole mark means that one empty package functions as one recording mark.
- the thickness of the recording layer 5 and the intermediate layer 4 that is, the distance in the depth direction between the marks, must be ensured to some extent in order to suppress crosstalk (and crosswrite) between adjacent interfaces. I must. Specifically, it is desirable that the thickness of the recording layer 5 and the intermediate layer 4 is at least 5 ⁇ m or more. For the point that it is desirable to set the separation distance of each layer to 5 ⁇ m or more in order to suppress crosstalk between adjacent layers as described above, see Reference Document 3 below. ⁇ Reference 3 ⁇ ⁇ ⁇ K.Saitoand S.Kobayashi: “Analysis of Micro-Reflector 3-D optical disc recording” Proc.of SPIE, Vol.6282,2007.
- the thickness of the intermediate layer 4 formed at the uppermost and lowermost portions is set in consideration of the above-described suppression of crosstalk in the sense that marks are recorded only on one side. Can be excluded from the target.
- the recording apparatus 10 may be configured such that a predetermined amount of offset is given to the focus servo loop based on the focus error signal FE-sp.
- an adder is inserted in the line of the focus error signal FE-sp supplied to the servo / reproducing light servo circuit 40, and the adder adds a predetermined offset to the focus error signal FE-sp. What is necessary is just to add a value.
- the transmittance at the interface between the recording layer 5 and the intermediate layer 4 is large in order to prevent absorption and scattering by the recording mark.
- the recording signal is read (reproduced) by detecting the difference in reflectance between the void formation portion and the formation portion.
- this void recording method irradiates the bulk layer 102 (FIG. 17) made of a recording material such as a photopolymerization type photopolymer with a relatively high power, for example.
- This is a technique for recording empty packages.
- the vacant portion formed in this way is a portion having a refractive index different from that of the other portion in the bulk layer 102, and the light reflectance is increased at the boundary portion. become. Therefore, the empty packet portion functions as a recording mark, thereby realizing information recording by forming an empty packet mark.
- FIG. 18 is an explanatory diagram of crosstalk in the depth direction.
- a layer position recording position in the layer direction; hereinafter also referred to as a layer position
- reflected light from voids at other layer positions is detected by the detector.
- the S / N is deteriorated.
- the void size is increased with the intention of increasing the signal level, the crosstalk in the depth direction becomes large, and the S / N deteriorates in return. On the contrary, if the void size is made small and crosstalk is to be suppressed, the signal level is lowered and the S / N is promoted.
- the void recording method has a problem that it is very difficult to adjust to an appropriate S / N.
- the void recording method forms a hole mark as a recording mark
- a very high laser power is required to form the mark.
- a light source for a recording laser requires a relatively large light source capable of realizing a high output.
- an optical recording medium having a plurality of interfaces is provided by alternately laminating the first layer and the second layer, and this is used.
- the said interface can be functioned as a reflective surface by varying the refractive index of a said 1st layer and a said 2nd layer.
- the recording mark is formed by modulation of the refractive index or deformation of the interface as described above in the vicinity of each of the interfaces functioning as the reflection surface, the reflection generated between the mark forming portion and the other portions.
- the optical path length difference (phase difference) of light it is possible to determine the presence or absence of mark formation (reproduction of a recorded signal).
- phase difference detection since the phase difference is detected, the phase difference (optical path length difference) of the reflected light between the mark forming portion and the non-forming portion may be set appropriately in order to improve the reproduction signal level. Specifically, it is ideal that the phase difference of the reflected light is a half wavelength of the reproduction light wavelength. In the case of phase difference detection, in order to improve the reproduction signal level, it is only necessary to optimize the occupied area of the mark formation portion and the non-formation portion in the reproduction light spot.
- a situation in which the amount of transmitted light on the lower layer side of the multi-layer recording is reduced in exchange for the improvement of the reproduction signal level as in the case of the system can be effectively avoided. That is, also in this respect, it is possible to adjust to an appropriate S / N more easily.
- a structure having a plurality of interfaces between the first layer and the second layer (specifically, the first layer and the second layer).
- a structure in which layers are alternately and repeatedly stacked), and a deformation that does not lead to the formation of an empty mark is given to the interface between them, and this is used as a recording mark.
- phase difference detection becomes possible. Therefore, it is possible to avoid the trade-off relationship between the improvement of the reproduction signal level and the suppression of the crosstalk in the depth direction, and an appropriate S / N adjustment can be achieved as compared with the conventional void recording method. Can be easy.
- the recording laser power may be at least power that promotes deformation or alteration (refractive index modulation) in the vicinity of the interface, and does not require high power to form a void mark. Therefore, the recording laser 11 can be made smaller than in the case of the void recording method. As a result, the recording apparatus 10 can be reduced in size, and power consumption can be reduced.
- FIG. 6 is a cross-sectional structure diagram of an optical recording medium 45 as the second embodiment.
- the optical recording medium 45 of the second embodiment is the same as the optical recording medium 1 of the first embodiment except that a recording layer 46 is provided instead of the recording layer 5.
- the recording layer 46 has a property of causing a refractive index change near the condensing point of the laser beam. Specifically, the recording layer 46 in this case has a property that a refractive index change occurs due to the formation of “po” near the condensing point of the laser beam.
- “po” refers to a state in which a large number of extremely small bubbles are formed.
- one hole mark forms one recording mark as described above, whereas “po” is a collection of extremely small bubbles (empty packets). It is a body, and one bubble is contained in a large number in one mark.
- the material of 5) exemplified in the first embodiment a resin having nonlinear photosensitivity and an acid generator added
- those containing materials a resin having nonlinear photosensitivity and an acid generator added
- the intermediate layer 4 has a lower Young's modulus than the recording layer 46.
- Specific examples of the material include the same thermoplastic resins as those described in the first embodiment.
- the refractive index of the intermediate layer 4 and that of the recording layer 46 are different from each other. In this case as well, their interface functions as a reflecting surface.
- FIG. 7 is a diagram for explaining the recording / reproducing principle of the optical recording medium 45 according to the second embodiment.
- 7A is a cross-sectional view showing a part of the layer structure in the recordable area 7 of the optical recording medium 45, as in the case of FIG. 5, and FIG. It is an enlarged view of the recording mark formed in this way.
- FIG. 7C shows an enlarged view of a recording mark formed on the lower surface side of the recording layer 46.
- the optical recording medium 45 of the above-described second embodiment when a recording operation is performed by appropriately condensing recording laser light on the upper and lower surfaces of the recording layer 46, these recording layers 46 are used. In the vicinity of the laser beam irradiated portions on the upper surface and the lower surface, a shape change that protrudes toward the outside of the recording layer 46 occurs due to thermal expansion. Further, a refractive index modulation portion as “po” is formed in the recording layer 46 near the condensing point of the laser beam. That is, a convex deformation mark accompanied by “po” is formed.
- the recording layer 46 is made of the material 5
- the recording layer 46 when the laser beam with a certain power or more is condensed, the recording layer 46 is separated from the additive by a chemical reaction near the laser beam condensing point in the recording layer 46. Cation (acid) is generated. Along with this, gas is generated by inducing the decomposition of the surrounding molecular structure. Due to the generation of the gas, the “porosity” is formed. At this time, if the base material is relatively hard, it is considered that the gas is moderately suppressed from forming one large empty package, and a collection of extremely small bubbles (that is, “po”) is formed. It is done. In this respect, the material 5) is suitable for forming a “pode”.
- the recording layer composed of the material 5 is configured to have a property that only deformation occurs when irradiated with a relatively low power laser beam and refractive index modulation occurs when irradiated with a higher power laser beam. In such a case, recording is performed with the above-described relatively low power recording laser beam.
- a recording mark can be formed only by the deformation of the interface, and if recording with a high-power recording laser beam is performed, the “void” as in the second embodiment is used. Can be formed.
- the height of the convex deformation portion at the interface is ds
- the refractive index of the intermediate layer 4 is n
- the refractive index of the recording layer 46 is N
- the height and the refractive index of the refractive index modulation portion as the formation portion are denoted by dm and N ′, respectively.
- the optical optical path length difference Do between the mark formation portion and the non-formation portion on the upper surface side of the recording layer 46 is as shown in FIG. 7B.
- Do n ⁇ ds ⁇ 2 It can be expressed as.
- the optical optical path length difference Do between the mark forming portion and the non-forming portion on the lower surface side of the recording layer 46 is as shown in FIG. 7C.
- Do ⁇ (N′ ⁇ N) ⁇ dm ⁇ N ⁇ ds ⁇ ⁇ 2 It is expressed.
- the refractive index modulation portion due to “po” is a portion where the refractive index is lower than other portions in the recording layer 46. That is, the refractive index modulation portion by the “po” is composed of a set of extremely small bubbles (that is, the refractive index is approximately 1.0), and thus functions as a portion having a reduced refractive index as a whole.
- the power of the recording laser beam is set to a level that does not lead to the formation of hole marks according to the characteristics of the recording layer 46.
- the thickness of the intermediate layer 4 and the recording layer 46 be at least 5 ⁇ m or more, as in the case of the first embodiment.
- the condensing point of the recording laser beam is not made coincident with the interface, and the recording layer 46 side from the interface.
- a certain offset is preferable for obtaining good recording characteristics (reproduction characteristics).
- the case where “po” is formed as the refractive index modulation portion that is, the case where the refractive index modulation portion showing a decrease in the refractive index is formed is exemplified. It may indicate an increase in rate. This is relatively easy to occur as a general deformation of the resin.
- a material in which coloring occurs near the laser light condensing point can be given. Specific examples thereof include the materials 1) to 4) listed above.
- the above-mentioned enumerations 1) to 4) are mainly intended for various combinations that cause nonlinear light absorption. Even when these materials 1) to 4) are used, as in the case of using the material 5) above, by adopting the following configuration, only the deformation of the interface or the modulation of the refractive index and the deformation of the interface can be achieved. A recording mark with both can be formed. That is, the recording layer is configured to have a property that only deformation occurs in response to irradiation with a relatively low power laser beam and refractive index modulation occurs in response to irradiation with a higher power laser beam.
- FIG. 8 shows a cross-sectional configuration of an optical recording medium 50 according to the third embodiment.
- the optical recording medium 50 of the third embodiment is different from the optical recording medium 45 of the second embodiment in that an intermediate layer 51 is provided instead of the intermediate layer 4.
- the intermediate layer 51 has a higher Young's modulus than the recording layer 46.
- As the recording layer 46 as in the second embodiment, a recording layer having a property in which a refractive index change occurs near the condensing point of the laser beam is used.
- the intermediate layer 51 and the recording layer 46 have different refractive indexes, and in this case also, their interface functions as a reflecting surface.
- FIG. 9 is a diagram for explaining the recording / reproducing principle of the optical recording medium 50 according to the third embodiment.
- the recording operation is performed by appropriately condensing the laser beam on the upper and lower surfaces of the recording layer 46, the upper and lower surfaces of the recording layer 46 are hardly deformed as shown in FIG. 9A.
- a refractive index modulation portion is formed in the vicinity of the upper surface and the lower surface in the recording layer 46 and in the vicinity of the condensing point of the laser beam.
- the Young's modulus of the intermediate layer 51 since the Young's modulus of the intermediate layer 51 is high, the deformation of the interface of the recording layer 46 is suppressed, and depending on the setting of the Young's modulus of the intermediate layer 51, the deformation of the interface can be suppressed to almost zero.
- a refractive index modulation portion is formed near the condensing point of the laser light in the recording layer 46. .
- FIG. 9B shows an enlarged view of the mark formed on the upper surface side of the recording layer 46.
- the lower edge surface of the mark indicated by R in the drawing is the reflecting surface. Will function as. That is, since the refractive index is different between the upper and lower sides of the edge surface R, the edge surface R functions as a reflecting surface.
- the reflected light at the mark forming portion is guided to the detector by the component reflected by the reflecting surface as the upper surface of the recording layer 46 and the component reflected by the edge surface R.
- a phase difference corresponding to the mark height dm is generated between the reflected light from the mark non-formation portion on the upper surface of the recording layer 46 and the reflected light from the edge surface R.
- a difference in detection intensity of reflected light that is, a difference in level of the reproduction signal RF occurs between the mark forming portion and the non-forming portion, and the recording code can be determined. It becomes.
- FIG. 9C shows an enlarged view of the mark formed on the lower surface side of the recording layer 46.
- the refractive index of the recording layer 46 is N
- the mark (refractive index If the height of the modulation part) is dm
- the refractive index of the mark is N ′
- the recording code can be determined based on the reflected light phase difference between the mark forming portion and the non-forming portion generated in this way.
- edge surface of the mark in this case, the upper edge surface
- the mark forming portion and the non-forming portion on the lower surface side Such a reflected light component from the edge surface also contributes to the reflected light detection intensity difference.
- the fact that the reflected light from the edge surface of the refractive index modulation part contributes to the reflected light detection intensity difference between the mark formation part and the non-formation part in this way is the second embodiment (FIG. 7B, The same applies to the case of FIG. 7C).
- the material of the recording layer 46 in this case may be any of a material that shows a decrease in refractive index due to the formation of “po” and a material that shows an increase in refractive index due to coloring or the like.
- a detected intensity difference caused by the reflected light phase difference is obtained between the mark forming portion and the non-forming portion. That is, the recording code can be determined.
- the power of the recording laser beam is set to a level that does not lead to the formation of the hole mark according to the characteristics of the recording layer.
- the thickness of the intermediate layer 51 and the recording layer 46 is at least 5 ⁇ m or more as in the previous embodiments.
- FIG. 10 illustrates a cross-sectional configuration of the optical recording medium 55 according to the fourth embodiment.
- an adhesive layer (intermediate layer) 56 is disposed below the selective reflection film 3, and a recording layer 57 serving as a recordable area 7 is provided below the adhesive layer 56.
- a recording layer 46 are repeatedly formed (adhered).
- the adhesive layer 56 can be made of a thermoplastic resin such as an ultraviolet curable resin.
- the number of repeated laminations of the recording layer 57 and the recording layer 46 in the recordable area 7 is x as in the previous embodiments.
- the recording layer 57 is made of a material that causes refractive index modulation in the vicinity of the condensing point of the laser light, like the recording layer 46, but the refractive index of the recording layer 57 is made different from that of the recording layer 46. That is, the interface between the recording layer 57 and the recording layer 46 functions as a reflecting surface.
- the Young's modulus of the recording layer 57 is set lower than that of the recording layer 46.
- FIG. 11 is a diagram for explaining the recording / reproducing principle of the optical recording medium 55 according to the fourth embodiment.
- the recording operation is performed by appropriately condensing the laser beam on the upper and lower surfaces of the recording layer 46 (or the recording layer 57), as shown in FIG. 11A, the recording layer 46 and the recording layer 57 are displayed.
- a refractive index modulation portion is formed on both sides of the. That is, a refractive index modulation portion is formed in a portion in the vicinity of the upper surface and the lower surface of the recording layer 46 and straddling the recording layer 46 and the recording layer 57.
- a refractive index modulation portion is formed with respect to each of the vicinity portions of the recording layer 57 (in other words, the lower surface and the upper surface of the recording layer 57) and the vicinity of the laser light condensing point.
- the Young's modulus of the recording layer 57 is set lower than that of the recording layer 46, the recording layer 57 protrudes outside the recording layer 46 in the vicinity of the condensing point of the laser beam as shown in the figure. Further, the upper and lower surfaces of the recording layer 46 are also deformed.
- the refractive index of the recording layer 46 is N
- the refractive index of the recording layer 57 is n
- the refractive index of the refractive index modulation portion formed on the recording layer 46 side is N ′
- the refractive index of the refractive index modulation portion formed on the recording layer 57 side is n ′.
- dm be the height of the portion above the vertex of the convex surface deformation portion of the refractive index modulation portion.
- the optical optical path length difference Do between the mark forming portion and the non-forming portion on the upper surface side of the recording layer 46 is as shown in FIG. 11B.
- the edge surface of the refractive index modulation portion functions as a reflecting surface as in the case of FIG. 9B. Therefore, strictly speaking, in this case also, the reflected light component from such an edge surface contributes to the signal level difference between the mark forming portion and the non-forming portion on both the upper surface and the lower surface of the recording layer 46. .
- the power of the recording laser beam is set to a level that does not lead to the formation of hole marks according to the characteristics of the recording layers 46 and 57.
- the thickness of the intermediate layer 51 and the recording layer 46 be at least 5 ⁇ m or more, as in the previous embodiments.
- the number of recordable interfaces can be set to 2x with respect to the number x of repeated laminations as the optical recording medium 55 of the fourth embodiment. That is, in the fourth embodiment as well, in the same manner as in the previous embodiments, the number of repetitions x required for realizing the same recording capacity is recorded, and one conventional recording layer is recorded. Compared with the multilayer optical recording medium to be performed, it can be halved.
- the conventional multilayer optical recording medium is one in which an intermediate layer / recording layer / intermediate layer ... are repeatedly laminated.
- FIG. 12 is a cross-sectional view of an optical recording medium 60 according to the fifth embodiment.
- the optical recording medium 60 of the fifth embodiment is different from the optical recording medium 55 of the fourth embodiment in that a recording layer 61 is substituted for the recording layer 46 and a recording layer 57 is substituted for the recording layer 57.
- the difference is that 62 is provided.
- the recording layer 61 and the recording layer 62 are configured to have a property that refractive index modulation occurs in a relatively low temperature state before the deformation of the interface accompanying thermal expansion in response to laser light irradiation occurs. Further, the recording layer 61 and the recording layer 62 have different refractive indexes.
- FIG. 13 is a diagram for explaining the recording / reproducing principle of the optical recording medium 60 according to the fifth embodiment.
- the recording operation is performed by appropriately condensing the laser beam on the upper and lower surfaces of the recording layer 61 (or the recording layer 62). In this case, as shown in FIG.
- a portion in the recording layer 61 that is in the vicinity of the upper surface and the lower surface of the recording layer 61 and in the vicinity of the condensing point of the laser beam, and the recording layer A refractive index modulation portion is formed with respect to a portion in the vicinity of the upper surface and the lower surface of the recording layer 61 in 62 (that is, the vicinity of the lower surface and the upper surface of the recording layer 62) and the vicinity of the condensing point of the laser beam. Is done.
- the recording layer 61 and the recording layer 62 are made of a material that undergoes refractive index modulation at a relatively low temperature before the interface deformation occurs, the interface deformation occurs as shown in the figure.
- the optical optical path length difference Do of the reflected light between the mark formation portion and the non-formation portion on the upper surface side of the recording layer 61 is n.
- the height of the refractive index modulation portion formed on the recording layer 62 side and its refractive index are dm and n ′, respectively.
- Do (n′ ⁇ n) ⁇ dm ⁇ 2 It is expressed.
- the optical path length difference Do of the reflected light between the mark forming portion and the non-forming portion on the lower surface side of the recording layer 61 (that is, the upper surface side of the recording layer 62) is N.
- the height of the refractive index modulation portion formed on the layer 61 side and its refractive index are dm and N ′, respectively.
- Do (N′ ⁇ N) ⁇ dm ⁇ 2 It is expressed.
- the edge surface of the mark functions as a reflection surface. Strictly speaking, the reflected light component from such an edge surface also contributes to the signal level difference between the mark forming portion and the non-forming portion. This is the same as in the case of the second to fourth embodiments.
- the points that it is desirable that the thickness of the recording layers 61 and 62 be at least 5 ⁇ m or more are the same as those in the previous embodiments.
- the recording layers 61 and 62 made of a material that causes refractive index modulation at a relatively low temperature before the interface deformation occurs are stacked.
- the method was illustrated.
- a technique for preventing the deformation of the interface for example, a technique of forming the recording layer laminated structure in a state of being pressed from above and below can be adopted. In this case, in the molded optical recording medium, a force that presses each other between the recording layers in the stacking direction is generated, and accordingly, deformation of the interface can be suppressed accordingly.
- FIG. 14 illustrates a cross-sectional configuration of an optical recording medium 65 according to the sixth embodiment.
- This optical recording medium 65 is different from the optical recording medium 10 of the first embodiment in that an intermediate layer 66 is provided instead of the intermediate layer 4 and a recording layer 67 is provided instead of the recording layer 5.
- the recording layer 67 is of a property that causes melting in response to heating near the condensing point in response to irradiation of the recording laser beam. This corresponds to a recording material based on a general thermoplastic resin having a glass transition temperature as described in the material 3) above.
- the intermediate layer 66 has a property that has a Young's modulus higher than that of the recording layer 67. At this time, the intermediate layer 66 and the recording layer 67 have different refractive indexes.
- the optical recording medium 65 is formed in a state where a laminated structure of the intermediate layer 66 and the recording layer 67 is pressed from above and below. That is, in the molded optical recording medium 65, a force is generated between the intermediate layer 66 and the recording layer 67 that presses each other in the stacking direction.
- FIG. 15 is a diagram for explaining the recording / reproducing principle of the optical recording medium 60 according to the sixth embodiment.
- a recording mark is formed by performing a recording operation by appropriately condensing laser light with respect to the upper and lower surfaces of the recording layer 67.
- marks hereinafter referred to as concave shapes
- the intermediate layer 66 is made of a hard material and is pressed in the stacking direction.
- the optical optical path length difference Do of the reflected light between the mark forming portion and the non-forming portion on the upper surface side of the recording layer 67 is such that the refractive index of the intermediate layer 66 is n and the recording layer 67 as shown in FIG.
- N the refractive index
- ds the height of the concave deformation mark.
- Do n ⁇ ds ⁇ 2 It can be expressed as.
- the recording code can be determined based on the reflected light phase difference between the mark forming portion and the non-forming portion.
- the power of the recording laser beam is set to a level that does not lead to the formation of hole marks according to the characteristics of the recording layer 67.
- the thickness of the intermediate layer 66 and the recording layer 67 be at least 5 ⁇ m or more as in the previous embodiments.
- the recording laser light when the recording mark is formed by the temperature rising deformation due to nonlinear light absorption, the recording laser light The condensing point does not coincide with the interface, but is offset from the interface to the recording layer 67 side to some extent. This is preferable for obtaining good recording characteristics (reproduction characteristics).
- the refractive indexes are mutually different.
- the structure having such an interface can also be exemplified by the structure shown in FIG. 16A. That is, with respect to the laminated structure (FIG. 16B) in which the layers 71 having the same refractive index are repeatedly laminated, the refractive index modulation processing is performed on each of the upper part and the lower part of the interface, so that FIG. As shown, a refractive index modulation layer 71A and a refractive index modulation layer 71B are formed.
- the refractive index modulation process is performed so as to give a refractive index difference between the refractive index modulation layer 71A and the refractive index modulation layer 71B.
- the interface between the refractive index modulation layer 71A and the refractive index modulation layer 71B corresponds to the “interface between the first layer and the second layer having different refractive indexes”.
- the layer 71 having the same refractive index is a combination of the recording layer and the intermediate layer as described in the first to sixth embodiments, or the recording layer. Only a combination of these may be used.
- At least one of the refractive index modulation layer 71A or the refractive index modulation layer 71B is formed as the refractive index modulation process. It is enough to go. That is, for example, if only the refractive index modulation layer 71A side is formed by the refractive index modulation processing, the upper surface of the refractive index modulation layer 71A functions as an “interface”. If only the refractive index modulation layer 71B side is formed, its lower surface functions as an “interface”.
- the modification described with reference to FIG. 16 is suitable when there is a situation where it is desirable that the material of each layer handled in the lamination process is the same (in the sense that the refractive index is not different) in the manufacturing process of the optical recording medium. is there.
- the first layer and the second layer do not necessarily have to have different refractive indexes. Even when the refractive index of the first layer and the second layer is the same, for example, when forming a mark by refractive index modulation such as void or coloring as in the third to fifth embodiments, The relationship between the reflectance and transmittance of the mark portion can be made different from the case of performing conventional void recording. That is, as a result, it is possible to ensure that the reflectance of the mark portion is as high as necessary for reproduction, and that the transmittance of the mark portion is higher than when void recording is performed.
- the reference surface Ref is provided above the recordable area 7.
- the reference surface Ref can also be provided below the recordable area 7.
- the reflective film provided for the reference surface Ref has a characteristic opposite to that of the selective reflection film 3, that is, selectively reflects only the servo laser beam. It is desirable to provide a material having such characteristics. This is because if a selective reflection film having such characteristics is provided, stray light during reproduction (due to reflected light from layer positions other than the layer position to be reproduced) can be effectively suppressed.
- the tracking servo control for the recording laser beam can be performed based on the reflected light of the servo / playback laser beam, so that the upper surface and the lower surface of the first layer (or the second layer) can be controlled. It can also be said that a guide groove as a groove is formed in each.
- the recording mark can be formed on a groove (concave portion), a land (convex portion), or both. In this way, a groove is formed at the interface, and tracking servo control for the recording laser beam is performed based on the groove (track).
- the tracking servo control for the recording laser light is performed using the reflected light of the servo laser light from the reference surface Ref.
- the reliability of the tracking servo with respect to the laser beam can be improved.
- the configuration is such that the tracking servo control for the recording laser light is performed using the reflected light of the servo laser light from the reference surface Ref as described in FIGS. Therefore, the manufacturing process of the optical recording medium can be simplified in that it is not necessary to form grooves. Accordingly, the manufacturing cost of the optical recording medium can be reduced.
- focus servo control for servo laser light is performed by controlling the objective lens 23 (biaxial actuator 24), and focus servo for servo / reproducing laser light is performed.
- the control is illustrated by controlling the recording / reproducing light focus mechanism inserted in the optical path of the servo / reproducing laser beam, the present invention is not limited to this.
- focus servo control for each laser beam can be realized by the following method. That is, the focus servo control for the servo / reproducing laser beam is performed by the biaxial actuator 24 based on the focus error signal FE-sp.
- a separate focus mechanism (for example, having the same configuration as the upper recording re-light focus mechanism) is inserted in the optical path of the servo laser light, and the focus mechanism is used as a focus error signal. This is based on FE-sv.
- a guide groove such as a groove or a pit is formed as the position guide formed on the reference surface Ref is illustrated.
- a position guide for example, a phase change It may be formed by recording marks on a film or the like.
- the optical recording medium of the present invention is a disc-shaped recording medium.
- other shapes such as a rectangular shape may be used.
- the present technology can be configured as shown in the following (1) to (15).
- (1) In the optical recording medium having a structure in which a plurality of interfaces between the first layer and the second layer are formed, the laser beam is focused in the vicinity of the interface until the empty mark is formed in the vicinity of the interface. And a recording mark which forms a recording mark accompanied by modulation of refractive index and / or shape change of the interface.
- (2) The recording apparatus according to (1), wherein the first layer and the second layer have different refractive indexes.
- the first layer is configured to expand near the condensing point of the laser beam
- the second layer is set to have a lower Young's modulus than the first layer, A recording mark that does not reach the formation of the empty envelope mark on the interface and that has a change in shape of the interface according to an aspect that protrudes toward the second layer side.
- the first layer is configured such that the expansion and the modulation of the refractive index occur according to the power of the laser beam, A recording mark that does not reach the formation of the empty mark in the vicinity of the interface, and both the modulation of the refractive index and the shape change of the interface due to a convex shape on the second layer side
- the recording apparatus according to (3) wherein a recording mark is formed.
- the first layer is configured such that modulation of the refractive index occurs near a condensing point of the laser beam
- the second layer is set to have a higher Young's modulus than the first layer
- the recording apparatus according to (1) or (2) wherein a recording mark that does not reach the formation of the empty mark and is formed by modulation of a refractive index is formed in the vicinity of the interface.
- Both the first layer and the second layer are configured such that a refractive index modulation occurs in the vicinity of the condensing point of the laser beam, A recording mark that is in the vicinity of the interface and straddles the first layer and the second layer and does not lead to formation of the empty mark, and the modulation of the refractive index
- the recording apparatus according to (1) or (2) is configured such that modulation of the refractive index occurs near a condensing point of the laser beam
- the second layer is set to have a higher Young's modulus than the first layer
- the second layer is set to have a lower Young's modulus than the first layer,
- a recording mark that does not reach the formation of the empty envelope mark in the vicinity of the interface is accompanied by a shape change of the interface according to an aspect that protrudes toward the second layer side, and the first layer and the The recording apparatus according to (6), wherein a recording mark with the refractive index modulation portion is formed in a portion straddling the second layer.
- the first layer is configured so that the refractive index is modulated at a relatively low temperature before deformation of the interface due to thermal expansion in response to the laser light irradiation occurs, or the first layer
- the first layer is configured to cause melting in response to heating in the vicinity of a condensing point in response to the laser light irradiation
- the second layer is set to have a higher Young's modulus than the first layer
- the laminated structure of the first layer and the second layer is molded in a state of being pressed from above and below, A recording mark that does not reach the formation of the empty mark at the interface and that has a shape change of the interface according to an aspect that protrudes toward the first layer is formed.
- the recording apparatus according to (1), (2), or (4) to (8), wherein the refractive index is modulated by coloring.
- the laser beam is focused in the vicinity of the interface until the empty mark is formed in the vicinity of the interface. And a recording mark that is accompanied by modulation of the refractive index and / or shape change of the interface.
Landscapes
- Optical Recording Or Reproduction (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
適切なS/Nへ容易に調製することが可能な記録装置、記録方法および光記録媒体を提供する。本開示の記録装置は、第1の層と第2の層との界面が複数形成された構造を有する光記録媒体における前記界面の近傍にレーザ光を集光して、前記界面の近傍に、空包マークの形成までには至らず、且つ、屈折率の変調および/又は前記界面の形状変化を伴う記録マークを形成する。
Description
本開示は、光の照射により信号の記録/再生が行われる光記録媒体についての記録を行う記録装置および記録方法ならびに光記録媒体に関する。
光の照射により信号の記録/再生が行われる光記録媒体として、例えばCD(Compact Disc)、DVD(Digital Versatile Disc)、BD(Blu-ray Disc:登録商標)などのいわゆる光ディスクが普及している。
これらCD、DVD、BDなど現状において普及している光記録媒体の次世代を担うべき光記録媒体に関して、先に本出願人は、上記特許文献1や上記特許文献2に記載されるようないわゆるバルク記録型の光記録媒体を提案している。
ここで、バルク記録とは、例えば図17に示すようにして少なくともカバー層101とバルク層(記録層)102とを有する光記録媒体に対し、逐次焦点位置を変えてレーザ光照射を行ってバルク層102内に多層記録を行うことで、大記録容量化を図る技術である。
このようなバルク記録に関して、上記特許文献1には、いわゆるマイクロホログラム方式と呼ばれる記録技術が開示されている。マイクロホログラム方式では、バルク層102の記録材料として、いわゆるホログラム記録材料が用いられる。ホログラム記録材料としては、例えば光重合型フォトポリマ等が広く知られている。
マイクロホログラム方式は、ポジ型マイクロホログラム方式と、ネガ型マイクロホログラム方式とに大別される。ポジ型マイクロホログラム方式は、対向する2つの光束を同位置に集光して微細な干渉縞(ホログラム)を形成し、これを記録マークとする手法である。また、ネガ型マイクロホログラム方式は、ポジ型マイクロホログラム方式とは逆の発想で、予め形成しておいた干渉縞をレーザ光照射により消去して、当該消去部分を記録マークとする手法である。このネガ型マイクロホログラム方式では、初期化処理として、予めバルク層に干渉縞を形成しておく処理が必要となる。
また、本出願人は、マイクロホログラム方式とは異なるバルク記録の手法として、例えば特許文献2に開示されるようなボイド(空包、空孔)を記録マークとして形成する記録手法(ボイド記録方式)も提案している。ボイド記録方式は、ボイドの形成部分と非形成部分との反射率の差を検出することで、記録信号の読出(再生)を行うものである。具体的には、ボイドの形成部分は反射率が大、ボイドの非形成部分は反射率が小(ゼロ)であり、ディテクタ上でこれらの反射率差を検出した結果に基づき、再生信号を得る。この再生信号のレベル(マーク形成部分と非形成部分とのコントラスト)を上昇させるためには、ボイドのサイズを大とすることが有効であり、これにより反射率が大きくなる。即ち、ボイド記録方式では、ボイドのサイズを大とすることによって反射率が大きくなり、再生信号レベル(マーク形成部分と被形成部分とのコントラスト)が上昇する。
ボイド記録方式は、上述したマイクロホログラム方式とは異なり、ホログラムを形成するものではないので、記録にあたっては片側からの光照射を行えば済むものとできる。即ち、上述のポジ型マイクロホログラム方式の場合のように2つの光束を同位置に集光して記録マークを形成する必要は無いものとできる。また、ネガ型マイクロホログラム方式との比較では、初期化処理を不要にできるというメリットがある。なお、前述の特許文献1には、ボイド記録を行うにあたり記録前のプリキュア光の照射を行う例が示されているが、このようなプリキュア光の照射は省略してもボイドの記録は可能である。
しかしながら、このボイド記録方式を用いて多層記録として例えば十数層や数十層程度の記録を行う場合には、深さ方向のクロストークを考慮する必要がある。ボイドに集光して再生を行っている場合には、他の層位置のボイドからの反射光がディテクタ上に漏れ込む虞があり、これによって、S/Nが悪化するという問題があった。
本技術の目的は、適切なS/Nへ容易に調整することが可能な記録装置、記録方法および光記録媒体を提供することにある。
本技術による記録装置は、第1の層と第2の層との界面が複数形成された構造を有する光記録媒体における界面の近傍にレーザ光を集光して、界面の近傍に、空包マークの形成までには至らず、且つ、屈折率の変調および/又は界面の形状変化を伴う記録マークを形成するものである。
本技術による記録方法は、第1の層と第2の層との界面が複数形成された構造を有する光記録媒体における界面の近傍にレーザ光を集光して、界面の近傍に、空包マークの形成までには至らず、且つ、屈折率の変調および/又は界面の形状変化を伴う記録マークを形成するものである。
本技術による光記録媒体は、第1の層と第2の層との界面が複数形成された構造を有すると共に、界面の近傍に、空包マークの形成までには至らず、且つ、屈折率の変調および/又は界面の形状変化を伴う記録マークが形成されるものである。
本技術の記録装置、記録方法および光記録媒体では、第1の層と第2の層との界面を複数形成し、この界面近傍に屈折率の変調および/または界面の形状変化を伴う記録マークを形成する。これにより、マーク形成部分とそれ以外の部分とで生じる反射光の光路長差(位相差)によってマークの形成有無の判定(記録信号の再生)が可能となる。即ち、所謂位相差検出による信号再生が可能となる。
本技術の記録装置、記録方法および光記録媒体によれば、第1の層と第2の層との界面近傍に屈折率の変調および/または界面の形状変化を伴う記録マークを形成するようにしたので、位相差検出による信号再生が可能となる。よって、適切なS/Nへの調整を容易に行うことができる。
以下、本技術に係る実施の形態について説明していく。
なお、説明は以下の順序で行う。
<1.第1の実施の形態>
[1-1.第1の実施の形態の光記録媒体]
[1-2.サーボ制御について]
[1-3.記録装置の構成]
[1-4.具体的な記録媒体構成と記録再生原理]
[1-5.効果]
<2.第2の実施の形態>
<3.第3の実施の形態>
<4.第4の実施の形態>
<5.第5の実施の形態>
<6.第6の実施の形態>
<7.変形例>
なお、説明は以下の順序で行う。
<1.第1の実施の形態>
[1-1.第1の実施の形態の光記録媒体]
[1-2.サーボ制御について]
[1-3.記録装置の構成]
[1-4.具体的な記録媒体構成と記録再生原理]
[1-5.効果]
<2.第2の実施の形態>
<3.第3の実施の形態>
<4.第4の実施の形態>
<5.第5の実施の形態>
<6.第6の実施の形態>
<7.変形例>
<1.第1の実施の形態>
[1-1.第1の実施の形態の光記録媒体]
図1は、第1の実施の形態としての光記録媒体1の断面構造を表したものである。先ず、前提として、本実施の形態の光記録媒体1は、ディスク状の光記録媒体とされ、回転駆動される光記録媒体1に対するレーザ光照射が行われてマーク記録(情報記録)が行われる。また、記録情報の再生としても、回転駆動される光記録媒体1に対してレーザ光を照射して行われる。
[1-1.第1の実施の形態の光記録媒体]
図1は、第1の実施の形態としての光記録媒体1の断面構造を表したものである。先ず、前提として、本実施の形態の光記録媒体1は、ディスク状の光記録媒体とされ、回転駆動される光記録媒体1に対するレーザ光照射が行われてマーク記録(情報記録)が行われる。また、記録情報の再生としても、回転駆動される光記録媒体1に対してレーザ光を照射して行われる。
図1に示されるように、本実施の形態の光記録媒体1には、上層側から順にカバー層2、選択反射膜3が形成されると共に、その下層側には、中間層4と記録層5とが交互に繰り返し積層されている。ここで、本明細書において「上層側」とは、後述する記録装置側からのレーザ光が入射する面を上面としたときの上層側を指すものである。なお、最下部に形成される中間層4は、カバー層(保護層)として機能する。
中間層4と記録層5との繰り返し積層回数はx(xは2以上の自然数)である。ここで、繰り返し積層回数xについては、同じ層の積層に戻ったところで1回とカウントする。即ち、「中間層4/記録層5/中間層4」の積層でx=1である。繰り返し積層回数は、多層記録として少なくとも3層分以上の記録を行うのであればx≧2とすればよい。本例の場合、例えばx=10~15程度であるとする。
中間層4および記録層5は、互いに屈折率が異なるようにされる。即ち、この場合の光記録媒体1は、互いに屈折率の異なる第1の層と第2の層が交互に繰り返し積層された構造を有し、これにより、互いに屈折率の異なる第1の層と第2の層の界面が複数形成された構造を有している。このような構造において、中間層4と記録層5との界面、即ち記録層5の上面および下面は、屈折率差に起因し、反射面として機能するようにされる。
具体的な屈折率については、例えば中間層4=1.45、記録層5=1.65などとすればよい。記録層5と中間層4との界面の反射率は、例えば0.5%程度に設定し、また該界面の透過率については例えば96%程度以上に設定する。なお、中間層4および記録層5の具体的な材料については後述する。
本実施の形態の光記録媒体は、記録層5の上面および下面(つまり記録層5と中間層4との界面)を対象として記録用レーザ光を集光し、当該界面に対して記録マークを形成することを1つの特徴とするものである。このような界面記録を行うものとすれば、例えば前述のように繰り返し積層回数x=10~15程度であれば、記録可能な界面の数は20~30程度と倍増させることができる。このことからも理解されるように、界面記録を行う本実施の形態によれば、同じ記録層数(ひいては記録容量)の実現にあたり、従来の1記録層につき1層分のマーク記録を行う多層光記録媒体と比較して、記録媒体に形成すべき中間層/記録層の繰り返し積層数を半分に抑えることができる。
ここで、上記のように各記録層5の界面を対象として記録を行うことを考慮すると、光記録媒体1においては、最上部に位置する記録層5の上面から、最下層に位置する記録層5の下面までの領域が、マーク記録が可能な領域であると捉えることができる。以下、このように光記録媒体1が有する、マーク記録が可能な深さ方向の領域のことを、記録可能領域7と称する。
カバー層2は、例えばポリカーボネートやアクリルなどの樹脂で構成され、その下面側には、記録/再生位置を案内するための位置案内子が形成されている。本例の場合、位置案内子としてはグルーブ(連続溝)又はピット列によるものを形成する。即ち、案内溝としての位置案内子を形成するものとしている。このため、カバー層2の下面側には、このような案内溝の形成に伴う凹凸の断面形状が与えられている。例えば案内溝がグルーブとされる場合には、当該グルーブを周期的に蛇行させて形成することで、該蛇行の周期情報により位置情報(アドレス情報)の記録を行うことができる。また案内溝がピット列とされる場合は、ピットの長さの変調により位置情報を記録できる。カバー層2は、このような案内溝(凹凸形状)が形成されたスタンパを用いた射出成形などにより生成されている。
また、カバー層2の下面側には、選択反射膜3が成膜されている。ここで、先の図17では特に言及しなかったが、従来のバルク記録方式においても、記録層としてのバルク層に対しマーク記録を行うにあたり、図1に示す光記録媒体1と同様に案内溝が形成された基準面Refを設けるようにされている。従来より、バルク層に対してマーク記録を行うにあたっては、当該バルク層に対し記録光(記録用レーザ光)を照射すると共に、上記のような案内溝に基づきトラッキングやフォーカスのエラー信号を得るためのサーボ光(サーボ用レーザ光)を、上記案内溝を対象として別途に照射するものとされている。
このとき、仮に、基準面Refに形成すべき反射膜が通常の反射膜(波長選択性を有しない反射膜)であると、当該反射膜において記録用レーザ光が反射してしまい、記録パワーの減衰が生じてしまう。このため、記録光とサーボ光とはそれぞれ波長の異なるものを用いるものとした上で、上記の選択反射膜3を設けるものとしている。つまり当該選択反射膜3として、サーボ光と同波長帯の光は反射し、それ以外の波長による光は透過するという、波長選択性を有する反射膜を設けるものである。
[1-2.サーボ制御について]
図2は、光記録媒体1についてのサーボ制御手法について説明するための図である。上述のように光記録媒体1に対しては、記録マークを形成するためのレーザ光(記録用レーザ光)と共に、これとは波長帯の異なるサーボ用のレーザ光(サーボ用レーザ光)を照射するものとされている。後述もするが、これら記録用レーザ光とサーボレーザ光は、共通の対物レンズを介して光記録媒体1に照射されることになる。
図2は、光記録媒体1についてのサーボ制御手法について説明するための図である。上述のように光記録媒体1に対しては、記録マークを形成するためのレーザ光(記録用レーザ光)と共に、これとは波長帯の異なるサーボ用のレーザ光(サーボ用レーザ光)を照射するものとされている。後述もするが、これら記録用レーザ光とサーボレーザ光は、共通の対物レンズを介して光記録媒体1に照射されることになる。
また、本例の場合、光記録媒体1に対しては、サーボ・再生用レーザ光も照射するようにされる。ここで、当該サーボ・再生用レーザ光は、記録時における記録用レーザ光の合焦位置の制御、および再生時における再生位置の制御およびマーク反射光を得るために照射されるレーザ光であり、記録用レーザ光と同波長のレーザ光が用いられる。本例の場合、記録用レーザ光の光源としては、いわゆるパルスレーザを用いるものとしている。パルスレーザは、例えばピコ秒などといった非常に短時間に高パワーを得るレーザであるため、サーボ用の反射光や記録マークについての再生光を得る用途に用いることは困難である。このため本例では、上記パルスレーザとしての記録用光源とは別途に、サーボや再生を行うための光源を設けるものとし、当該光源からのレーザ光を上記サーボ・再生用レーザ光として光記録媒体1に照射するものとしている。このサーボ・再生用レーザ光としても、上記対物レンズを介して光記録媒体1に照射される。
ここで、光記録媒体1において、マークの記録対象位置である界面には、例えばピットやグルーブなどによる位置案内子は形成されていない。このため、未だマークの形成されていない記録時においては、サーボ・再生用レーザ光を用いたトラッキングサーボを行うことはできない。この点より、記録時におけるトラッキングサーボに関しては、サーボ用レーザ光を用いて行う。即ち、選択反射膜3に集光(合焦)させたサーボ用レーザ光の反射光に基づくトラッキングエラー信号を生成し、当該トラッキングエラー信号に基づき、上記対物レンズのトラッキング方向の位置制御を行う。このことで、同じ対物レンズを介して照射される記録用レーザ光のスポット位置を、サーボ用レーザ光のスポット位置と連動させて適切な位置に制御できる。
一方、記録時において、フォーカスサーボに関しては、サーボ・再生用レーザ光を用いて行う。即ち、サーボ・再生用レーザ光が界面に合焦した状態とそれ以外の状態とでは、当該サーボ・再生用レーザ光の反射光の検出強度に差が生じるので、この点を利用し、当該サーボ・再生用レーザ光の反射光を用いたフォーカスサーボ制御を行うものである。
また、既にマーク記録が行われた光記録媒体1についての再生時には、トラッキングサーボは、サーボ・再生用レーザ光の反射光を用いて行うことができる。この点より、再生時におけるサーボ制御については、トラッキングサーボおよびフォーカスサーボの双方について、サーボ・再生用レーザ光の反射光を用いて行う。
ここで、注意すべきは、フォーカスサーボ制御に関しては、サーボ・再生用レーザ光の合焦位置と、サーボ用レーザ光の合焦位置とをそれぞれ異なる位置とする必要があるという点である。つまり図2を参照して理解されるように、サーボ用レーザ光としては、位置案内子が形成された基準面Refに基づくトラッキングエラー信号の生成が適正に行われるべく、その合焦位置は基準面Refに一致させるべきものである。一方で、サーボ・再生用レーザ光(記録用レーザ光)としては、その合焦位置は記録対象とする界面に対して一致させるべきものとなる。このような点を考慮すると、フォーカス方向の制御については、サーボ・再生用レーザ光とサーボ用レーザ光とで、それぞれ独立した制御を行わなければならないことになる。
本例の場合、サーボ用レーザ光のフォーカス制御については、上記共通の対物レンズを制御して行うものとする。サーボ・再生用レーザ光および記録用レーザ光のフォーカス制御については、別途、これらサーボ・再生用レーザ光および記録用レーザ光の合焦位置を独立して制御する機構を設けて、該機構を駆動することで行う(図3におけるレンズ駆動部19を参照)。以下、このようなフォーカス制御機構については、「録再光用フォーカス機構」と称する。
以上をまとめるに、本例の場合のサーボ制御は、以下のようにして行われる。
・サーボ・再生用レーザ光(および記録用レーザ光)側
記録時・・・フォーカスサーボはサーボ・再生用レーザ光の反射光を用いて録再光用フォーカス機構を駆動して行う(トラッキングサーボについてはサーボ用レーザ光の反射光を用いた対物レンズの駆動が行われることで自動的に行われる)
再生時・・・フォーカスサーボ、トラッキングサーボ共に、サーボ・再生用レーザ光の反射光を用いて対物レンズを駆動して行う。
・サーボ用レーザ光側
記録時・・・フォーカスサーボはサーボ用レーザ光の反射光を用いて対物レンズを駆動して行い、トラッキングサーボはサーボ用レーザ光の反射光を用いて対物レンズを駆動して行う。
再生時・・・記録マークの再生中は、サーボ用レーザ光に基づくサーボ制御は不要とできる。
但し、再生や記録を開始するにあたってのシーク時には、基準面Refに記録された位置情報を読み出すことを要する。この場合におけるサーボ用レーザ光のフォーカスサーボ、トラッキングサーボは、当該サーボ用レーザ光の反射光に基づき、対物レンズを制御することで行う。
・サーボ・再生用レーザ光(および記録用レーザ光)側
記録時・・・フォーカスサーボはサーボ・再生用レーザ光の反射光を用いて録再光用フォーカス機構を駆動して行う(トラッキングサーボについてはサーボ用レーザ光の反射光を用いた対物レンズの駆動が行われることで自動的に行われる)
再生時・・・フォーカスサーボ、トラッキングサーボ共に、サーボ・再生用レーザ光の反射光を用いて対物レンズを駆動して行う。
・サーボ用レーザ光側
記録時・・・フォーカスサーボはサーボ用レーザ光の反射光を用いて対物レンズを駆動して行い、トラッキングサーボはサーボ用レーザ光の反射光を用いて対物レンズを駆動して行う。
再生時・・・記録マークの再生中は、サーボ用レーザ光に基づくサーボ制御は不要とできる。
但し、再生や記録を開始するにあたってのシーク時には、基準面Refに記録された位置情報を読み出すことを要する。この場合におけるサーボ用レーザ光のフォーカスサーボ、トラッキングサーボは、当該サーボ用レーザ光の反射光に基づき、対物レンズを制御することで行う。
[1-3.記録装置の構成]
図3は、実施の形態としての記録装置10が備える、主に光学系の内部構成例を示している。具体的には、記録装置10が備える主に光学ピックアップOPの内部構成を示している。
図3は、実施の形態としての記録装置10が備える、主に光学系の内部構成例を示している。具体的には、記録装置10が備える主に光学ピックアップOPの内部構成を示している。
図3において、記録装置10に装填された光記録媒体1は、記録装置10における所定位置においてそのセンターホールがクランプされるようにしてセットされ、図示は省略したスピンドルモータによる回転駆動が可能な状態に保持される。光学ピックアップOPは、上記スピンドルモータにより回転駆動される光記録媒体1に対して記録用レーザ光、サーボ・再生用レーザ光およびサーボ用レーザ光を照射するために設けられる。
光学ピックアップOP内には、マークによる情報記録を行うための記録用レーザ光の光源である記録用レーザ11と、マークにより記録された情報の再生および記録再生位置の制御を行うためのサーボ・再生用レーザ光の光源であるサーボ・再生用レーザ14とが設けられている。また、基準面Refに形成された位置案内子を利用した位置制御を行うための光であるサーボ用レーザ光の光源であるサーボ用レーザ27が設けられている。ここで、前述のように記録用レーザ光とサーボ・再生用レーザ光とは同波長のレーザ光とされ、サーボ用レーザ光はこれらのレーザ光とは波長帯が異なる。本例の場合、記録用レーザ光およびサーボ・再生用レーザ光の波長はおよそ405nm程度(いわゆる青紫色レーザ光)、サーボ用レーザ光の波長はおよそ650nm程度(赤色レーザ光)とする。
また、光学ピックアップOP内には、記録用レーザ光、サーボ・再生用レーザ光、およびサーボ用レーザ光の光記録媒体1への出力端となる対物レンズ23が設けられている。また、光学ピックアップOP内には、光記録媒体1からのサーボ・再生用レーザ光の反射光を受光するためのサーボ・再生光用受光部26が設けられている。そして、光学ピックアップOP内には、以下の光学系が形成されている。この光学系は、記録用レーザ11より出射された記録用レーザ光、およびサーボ・再生用レーザ14より出射されたサーボ・再生用レーザ光を対物レンズ23に導くと共に、対物レンズ23に入射した光記録媒体1からのサーボ・再生用レーザ光の反射光を上記サーボ・再生光用受光部26に導くものである。
このような記録用レーザ光およびサーボ・再生用レーザ光についての光学系において、記録用レーザ11より出射された記録用レーザ光は、コリメーションレンズ12を介して平行光となるようにされた後、ハーフミラー13に入射する。また、サーボ・再生用レーザ14から出射されたサーボ・再生用レーザ光は、コリメーションレンズ15を介して平行光となるようにされた後、同様にハーフミラー13に入射する。ハーフミラー13は、上記のように記録用レーザ11側から入射した記録用レーザ光とサーボ・再生用レーザ14側から入射したサーボ・再生用ラーレーザ光とを、それぞれの光軸を一致させるようにして出力する。
ハーフミラー13より出力された記録用レーザ光およびサーボ・再生用レーザ光は、偏光ビームスプリッタ16に入射する。偏光ビームスプリッタ16は、このように入射した記録用レーザ光、サーボ・再生用レーザ光を透過するように構成されている。
偏光ビームスプリッタ16を透過した記録用レーザ光およびサーボ・再生用レーザ光は、固定レンズ17、可動レンズ18、およびレンズ駆動部19を備えて構成される録再光用フォーカス機構に入射する。この録再光用フォーカス機構は、光源(記録用レーザ11、サーボ・再生用レーザ14)に近い側が固定レンズ17とされ、光源に遠い側に可動レンズ18が配置され、レンズ駆動部19によって上記可動レンズ18が光軸に平行な方向に駆動される。これにより、記録用レーザ光、およびサーボ・再生用レーザ光について独立したフォーカス制御を行う。先の説明からも理解されるように、当該録再光用フォーカス機構におけるレンズ駆動部19は、サーボ・再生用レーザ光の反射光に基づき駆動されて、記録用レーザ光、およびサーボ・再生用レーザ光についてのフォーカスサーボ制御を担うものとなる。
上記録再光用フォーカス機構における固定レンズ17および可動レンズ18を介した記録用レーザ光およびサーボ・再生用レーザ光は、図のようにミラー20にて反射された後、1/4波長板21を介してダイクロイックプリズム22に入射する。ダイクロイックプリズム22は、その選択反射面が、記録用レーザ光およびサーボ・再生用レーザ光と同波長帯の光は反射し、それ以外の波長による光は透過するように構成されている。従って上記のように入射した記録用レーザ光およびサーボ・再生用レーザ光は、ダイクロイックプリズム22にて反射される。
ダイクロイックプリズム22で反射された記録用レーザ光は、図示するように対物レンズ23を介して光記録媒体1に対して照射される。対物レンズ23に対しては、当該対物レンズ23をフォーカス方向(光記録媒体1に対して接離する方向)、およびトラッキング方向(上記フォーカス方向に直交する方向:光記録媒体1の半径方向に平行な方向)に変位可能に保持する2軸アクチュエータ24が設けられる。2軸アクチュエータ24には、フォーカスコイル、トラッキングコイルが備えられ、それぞれに駆動信号(後述する駆動信号FD-sv,TD-sv又はTD-sp)が与えられることで、対物レンズ23をフォーカス方向、トラッキング方向にそれぞれ変位させる。
ここで、上記のように光記録媒体1に対してサーボ・再生用レーザ光が照射される場合には、光記録媒体1(再生対象とする界面)より反射光が得られる。このように得られたサーボ・再生用レーザ光の反射光は、対物レンズ23を介してダイクロイックプリズム22に導かれ、当該ダイクロイックプリズム22にて反射される。ダイクロイックプリズム22で反射されたサーボ・再生用レーザ光の反射光は、1/4波長板21→ミラー20→録再光用フォーカス機構(可動レンズ18→固定レンズ17)を介した後、偏光ビームスプリッタ16に入射する。
このように偏光ビームスプリッタ16に入射するサーボ・再生用レーザ光の反射光(復路光)は、1/4波長板21による作用と光記録媒体1での反射時の作用とにより、光源側から偏光ビームスプリッタ16に入射した往路光とはその偏光方向が90度異なるようにされる。この結果、上記のように入射したサーボ・再生用レーザ光の反射光は、偏光ビームスプリッタ16にて反射される。
偏光ビームスプリッタ16にて反射されたサーボ・再生用レーザ光の反射光は、集光レンズ25を介してサーボ・再生光用受光部26の受光面上に集光する。当該サーボ・再生光用受光部26がサーボ・再生用レーザ光を受光して得られる受光信号については、図のように受光信号DT-spと表記する。
また、光学ピックアップOP内には、上記により説明した記録用レーザ光およびサーボ・再生用レーザ光についての光学系の構成に加えて、サーボ用レーザ27より出射されたサーボ用レーザ光を対物レンズ23に導き且つ、対物レンズ23に入射した光記録媒体1からのサーボ用レーザ光の反射光をサーボ光用受光部32に導くための光学系が形成される。
図示するように、サーボ用レーザ27より出射されたサーボ用レーザ光は、コリメーションレンズ28を介して平行光となるようにされた後、偏光ビームスプリッタ29に入射する。偏光ビームスプリッタ29は、このようにサーボ用レーザ27側から入射したサーボ用レーザ光(往路光)は透過するように構成されている。
図示するように、サーボ用レーザ27より出射されたサーボ用レーザ光は、コリメーションレンズ28を介して平行光となるようにされた後、偏光ビームスプリッタ29に入射する。偏光ビームスプリッタ29は、このようにサーボ用レーザ27側から入射したサーボ用レーザ光(往路光)は透過するように構成されている。
偏光ビームスプリッタ29を透過したサーボ用レーザ光は、1/4波長板30を介してダイクロイックプリズム22に入射する。先に述べたようにダイクロイックプリズム22は、記録用レーザ光およびサーボ・再生用レーザ光と同波長帯の光は反射し、それ以外の波長による光は透過するように構成されている。このため、上記サーボ用レーザ光は、ダイクロイックプリズム22を透過し、対物レンズ23を介して光記録媒体1に照射される。
このように光記録媒体1にサーボ用レーザ光が照射されたことに応じては、光記録媒体1(基準面Ref)より当該サーボ用レーザ光の反射光が得られる。この、サーボ用レーザ光の反射光は、対物レンズ23を介した後ダイクロイックプリズム22を透過し、1/4波長板30を介して偏光ビームスプリッタ29に入射する。先のサーボ・再生用レーザ光の場合と同様に、このように光記録媒体1側から入射したサーボ用レーザ光の反射光(復路光)は、1/4波長板30の作用と光記録媒体1での反射時の作用とにより、往路光とはその偏光方向が90度異なるものとされる。従って、復路光としてのサーボ用レーザ光の反射光は偏光ビームスプリッタ29にて反射される。
偏光ビームスプリッタ29にて反射されたサーボ用レーザ光の反射光は、集光レンズ31を介してサーボ光用受光部32の受光面上に集光する。サーボ光用受光部32がサーボ用レーザ光の反射光を受光して得られる受光信号については、受光信号DT-svと表記する。
続いて、図4により、記録装置10の全体的な内部構成例について説明する。なお図4において、光学ピックアップOPの内部構成については、図3に示した構成のうち記録用レーザ11、サーボ・再生用レーザ14、レンズ駆動部19、および2軸アクチュエータ24のみを抽出して示している。また、図示は省略したが、記録装置10において、光学ピックアップOPは、スライド機構によりその全体がトラッキング方向にスライド駆動可能とされている。スライド機構の制御は後述するサーボ・再生光用サーボ回路40、又はサーボ光用サーボ回路42により行われる。具体的には、記録時に対応してサーボ光用サーボ回路42により対物レンズ23のトラッキングサーボ制御が実行される場合には、当該サーボ光用サーボ回路42により制御される。また、再生時に対応してサーボ・再生光用サーボ回路40により対物レンズ23のトラッキングサーボ制御が実行される場合には、当該サーボ・再生光用サーボ回路40により制御されることになる。
図4において、記録装置10には、光記録媒体1における記録可能領域7を対象とした記録/再生や、記録可能領域7内に形成される界面(および記録マーク)からの反射光に基づく対物レンズ23のフォーカス/トラッキング制御を行うための構成として以下のものが設けられている。即ち、発光駆動部35、記録処理部36、発光駆動部37、サーボ・再生光用マトリクス回路38、再生処理部39、およびサーボ・再生光用サーボ回路40が設けられている。
発光駆動部35は、コントローラ43からの指示に基づき、レーザ駆動信号D-spによりサーボ・再生用レーザ14を発光駆動する。
記録処理部36は、入力される記録データに応じた記録変調符号を生成する。具体的には記録処理部36は、入力される記録データに対してエラー訂正符号の付加や所定の記録変調符号化処理を施すなどして、光記録媒体1に実際に記録される例えば「0」「1」の2値データ列である記録変調符号列を得る。記録処理部36は、このように生成した記録変調符号列に基づく記録信号を発光駆動部37に与える。
発光駆動部37は、記録処理部36より入力される記録信号に基づきレーザ駆動信号D-rを生成し、当該駆動信号D-rに基づき記録用レーザ11を発光駆動する。また発光駆動部37は、コントローラ43からの指示に基づきレーザパワーの調整も行う。
サーボ・再生光用マトリクス回路38は、図3に示したサーボ・再生光用受光部26としての複数の受光素子からの受光信号DT-sp(出力電流)に対応して電流電圧変換回路、マトリクス演算/増幅回路等を備え、マトリクス演算処理により必要な信号を生成する。具体的には、上述した記録変調符号列を再生した再生信号に相当する高周波信号(以降、再生信号RFと称する)を生成する。また、トラッキングサーボ制御を行うための信号として、記録マーク列としてのトラックに対するサーボ・再生用レーザ光の照射スポットの半径方向におけるずれ量(トラッキング誤差)を表すトラッキングエラー信号TE-spを生成する。また、フォーカスサーボ制御を行うための信号として、対象とする界面に対するサーボ・再生用レーザ光のフォーカス誤差を表すフォーカスエラー信号FE-spを生成する。
サーボ・再生光用マトリクス回路38にて生成された再生信号RFは、再生処理部39に供給される。また、フォーカスエラー信号FE-sp、トラッキングエラー信号TE-spは、サーボ・再生光用サーボ回路40に供給される。
再生処理部39は、再生信号RFについて、2値化処理や記録変調符号の復号化・エラー訂正処理など、上述した記録データを復元するための再生処理を行い、上記記録データを再生した再生データを得る。
サーボ・再生光用サーボ回路40は、サーボ・再生光用マトリクス回路38から供給されるフォーカスエラー信号FE-sp、トラッキングエラー信号TE-spに基づきフォーカスサーボ信号FS-sp、トラッキングサーボ信号TS-spをそれぞれ生成する。そして、これらフォーカスサーボ信号FS-sp、トラッキングサーボ信号TS-spに基づき、2軸アクチュエータ24のフォーカスコイル、トラッキングコイルを駆動するためのフォーカス駆動信号FD-sp、トラッキング駆動信号TD-spをそれぞれ生成する。本例の場合、フォーカス駆動信号FD-spは、図示するようにレンズ駆動部19に供給される。また、トラッキング駆動信号TD-spは、スイッチSWに供給される。
また、サーボ・再生光用サーボ回路40は、コントローラ43からの指示に基づき、トラッキングサーボループをオフとしてスイッチSWを介して2軸アクチュエータ24のトラッキングコイルにジャンプパルスを与える。これにより、サーボ・再生用レーザ光についてのトラックジャンプ動作を実行させる。また、コントローラ43からの指示に基づき、所定の記録層5の界面を対象としたサーボ・再生用レーザ光についてのフォーカスサーボの引き込み処理や、またサーボ・再生用レーザ光についてのフォーカスジャンプ動作を実行させる。
また、記録装置10には、サーボ用レーザ光の反射光についての信号処理系として、サーボ光用マトリクス回路41、サーボ光用サーボ回路42が設けられる。
サーボ光用マトリクス回路41は、図3に示したサーボ光用受光部32としての複数の受光素子からの受光信号DT-sv(出力電流)に対応して電流電圧変換回路、マトリクス演算/増幅回路等を備え、マトリクス演算処理により必要な信号を生成する。具体的には、トラッキングサーボ制御を行うための信号として、基準面Refに形成された位置案内子(トラック)に対するサーボ用レーザ光の照射スポットの半径方向におけるずれ量(トラッキング誤差)を表すトラッキングエラー信号TE-svを生成する。また、フォーカスサーボ制御を行うための信号として、基準面Ref(選択反射膜3)に対するサーボ用レーザ光のフォーカス誤差を表すフォーカスエラー信号FE-svを生成する。これらフォーカスエラー信号FE-sv、トラッキングエラー信号TE-svは、サーボ光用サーボ回路42に対して供給される。
サーボ光用サーボ回路42は、フォーカスエラー信号FE-sv、トラッキングエラー信号TE-svに基づきフォーカスサーボ信号FS-sv、トラッキングサーボ信号TS-svをそれぞれ生成する。そして、これらフォーカスサーボ信号FS-sv、トラッキングサーボ信号TS-svに基づき、2軸アクチュエータ24のフォーカスコイル、トラッキングコイルを駆動するためのフォーカス駆動信号FD-sv、トラッキング駆動信号TD-svをそれぞれ生成する。本例の場合、フォーカス駆動信号FD-svは2軸アクチュエータ24(フォーカスコイル)に供給される。一方、トラッキング駆動信号TD-svはスイッチSWに供給される。
また、サーボ光用サーボ回路42は、コントローラ43からの指示に基づき、トラッキングサーボループをオフとしてスイッチSWを介して2軸アクチュエータ24のトラッキングコイルにジャンプパルスを与える。これにより、サーボ用レーザ光についてのトラックジャンプ動作を実行させたり、またコントローラ43からの指示に基づき、基準面Refを対象としたサーボ用レーザ光についてのフォーカスサーボの引き込み処理などを行う。
スイッチSWは、コントローラ43からの指示に基づき、トラッキング駆動信号TD-spとトラッキング駆動信号TD-spのうち一方を2軸アクチュエータ24(トラッキングコイル)に選択出力する。つまりこれにより、サーボ・再生レーザ光の反射光に基づくトラッキングサーボ制御と、サーボ用レーザの反射光に基づくトラッキングサーボ制御とが切り替え可能とされている。
コントローラ43は、例えばCPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)などのメモリ(記憶装置)を備えたマイクロコンピュータで構成されている。このコントローラ43では、例えば上記ROM等に記憶されたプログラムに従った制御・処理を実行することで、記録装置10の全体制御を行う。例えばコントローラ43は、サーボ・再生光用サーボ回路40、サーボ光用サーボ回路42、およびスイッチSWに対する指示を行うことで、前述した記録時/再生時のそれぞれに対応したサーボ制御の切り替えを実現する。具体的に、記録時に対応しては、サーボ光用サーボ回路42によるトラッキング駆動信号TD-svの生成を実行させた上で、スイッチSWによりトラッキング駆動信号TD-svを選択させる。これにより、サーボ用レーザ光の反射光に基づく対物レンズ23のトラッキングサーボ制御(つまり基準面Refのトラックに基づくトラッキングサーボ制御)が実行されるようにする。また、再生時に対応しては、サーボ・再生光用サーボ回路40によるトラッキング駆動信号TD-spの生成を実行させた上で、スイッチSWによりトラッキング駆動信号TD-spを選択させる。これにより、サーボ・再生用レーザ光の反射光に基づく対物レンズ23のトラッキングサーボ制御(つまり記録マーク列に基づくトラッキングサーボ制御)が実行されるようにする。なお、前述のように、シーク時には、基準面の位置情報の読み出しを可能とすべく、前者の制御、即ちサーボ用レーザ光の反射光に基づく対物レンズ23のトラッキングサーボ制御が実行されるようにする。
また、コントローラ43は、サーボ・再生光用サーボ回路40に対し、記録/再生対象とする界面を指示して、当該界面をターゲットとしたサーボ・再生用レーザ光についてのフォーカスサーボの引き込み処理を実行させる。即ち、記録/再生対象とする界面の選択制御を行うものである。
[1-4.具体的な記録媒体構成と記録再生原理]
ここで、第1の実施の形態の光記録媒体1において、記録層5と中間層4とについては、具体的に以下のような性質を有するものを用いる。即ち、記録層5としては、記録用レーザ光の照射(集光)に応じて、集光点付近で膨張(熱膨張)が生じる性質のものを用いる。また、中間層4としては、記録層5よりもヤング率の低い性質のものを用いる。
ここで、第1の実施の形態の光記録媒体1において、記録層5と中間層4とについては、具体的に以下のような性質を有するものを用いる。即ち、記録層5としては、記録用レーザ光の照射(集光)に応じて、集光点付近で膨張(熱膨張)が生じる性質のものを用いる。また、中間層4としては、記録層5よりもヤング率の低い性質のものを用いる。
上記性質を有する記録層5の具体的な材料としては、例えば樹脂を主成分とする材料を挙げることができる。より具体的な例を挙げるとすれば、
1)熱硬化性樹脂(エポキシ系樹脂など)+非線形光感受添加剤
2)熱硬化性樹脂のうち非線形光感受構造を骨格に有するもの
3)熱可塑性樹脂(ポリカーボネートなど)+非線形光感受添加剤
4)熱可塑性樹脂のうち非線形光感受構造を骨格に有するもの
例1)下記参考文献1に記載されるような非晶ポリアリレート樹脂等の多光子吸収材
料
例2)下記参考文献2に記載されるような樹脂を主成分とする2光子吸収材料
5)上記1)~4)において酸発生剤添加材料を含有するものが挙げられる。
・参考文献1・・・特開2010-162846号公報
・参考文献2・・・特開2009-274225号公報
1)熱硬化性樹脂(エポキシ系樹脂など)+非線形光感受添加剤
2)熱硬化性樹脂のうち非線形光感受構造を骨格に有するもの
3)熱可塑性樹脂(ポリカーボネートなど)+非線形光感受添加剤
4)熱可塑性樹脂のうち非線形光感受構造を骨格に有するもの
例1)下記参考文献1に記載されるような非晶ポリアリレート樹脂等の多光子吸収材
料
例2)下記参考文献2に記載されるような樹脂を主成分とする2光子吸収材料
5)上記1)~4)において酸発生剤添加材料を含有するものが挙げられる。
・参考文献1・・・特開2010-162846号公報
・参考文献2・・・特開2009-274225号公報
なお、上記2)に関して、上記熱硬化性樹脂の一例としては[化1]で示すHP-4032Dを、また上記非線形光感受添加剤の一例としては[化2]で示す4-EthynylPA(Phthalic Anhydride:無水フタル酸)を挙げることができる。
記録層5として上記列挙の材料を用いた場合は、レーザ光の集光点付近で生じる変形は、非線形光吸収による昇温に伴い生じるものとなる。なお、上記1)~5)の材料列挙は、非線形光吸収による効果(特に記録ビームスポットよりも小サイズのマーク形成が可能であるという効果)を生じさせる種々の組み合わせを意図したものである。
また、中間層4の具体的な材料としては、例えば熱可塑性樹脂を挙げることができる。より具体的には、例えばポリカーボネート樹脂を挙げることができる。
図5は、上記のような記録層5と中間層4との積層構造を有する第1の実施の形態としての光記録媒体1の記録再生原理について説明するための図である。図5において、図5Aは、光記録媒体1の記録可能領域7における一部の層構造を抜き出して示した断面図であり、図5Bは記録層5の上面側に対して形成された記録マークの拡大図、図5Cは記録層5の下面側に対して形成された記録マークの拡大図である。
上述のように本実施の形態では、記録層5がレーザ光の集光点付近で膨張が生じ、中間層4が記録層5より低ヤング率とされる。このため、記録層5の上面および下面(つまり界面)を対象として適宜記録用レーザ光を集光させて照射することによっては、これら記録層5の上面および下面におけるレーザ光照射部分には、記録層5の外側に向けて凸となる形状による変形が生じる。このような凸状の面変形部分が、記録マークとして機能することとなる。
ここで、前述のように中間層4と記録層5とは互いに屈折率が異なるため、それらの界面は反射面として機能する。よって、再生時に対応してサーボ・再生用レーザ光が界面に合焦するように照射された場合、当該界面における上記のような凸状の変形が生じた部分とそれ以外の部分とでは、それらの反射光に光路長差(位相差)が生じるものとなる。このような反射光の位相差に起因して、ディテクタ(サーボ・再生光用受光部26)上では、位相差を有する光波の干渉により、再生信号RFにマーク形成部分と非形成部分とのレベル差が生じるものとなる。つまりこの結果、マーク形成部分/非形成部分の判定が可能となり、記録符号”0”/”1”の判定が可能となる。
このとき、上記のような凸状マークの高さをds、中間層4の屈折率をn、記録層5の屈折率をNとすると、記録層5の上面側におけるマーク形成部分と非形成部分とでの光学的な光路長差Doは、図5Bにも示すように
Do=n・ds×2
と表すことができる。また、記録層5の下面側におけるマーク形成部分と非形成部分とでの光学的な光路長差Doは、図5Cに示す通り
Do=N・ds×2
と表される。
Do=n・ds×2
と表すことができる。また、記録層5の下面側におけるマーク形成部分と非形成部分とでの光学的な光路長差Doは、図5Cに示す通り
Do=N・ds×2
と表される。
なお、BD-ROM(BD=Blu-rayDisc:登録商標)の場合、ピット深さは50nm程度であって、ランドとピットとの光学的な光路長差Doは80×2nm程度である。この点を考慮し、十分な再生信号レベル(マーク形成部分と非形成部分とのコントラスト)を確保できる光学的な光路長差Doを100×2nm程度とすると、n、Nがそれぞれ1.2程度~1.5程度の範囲内と仮定したとき、必要なマーク高さdsは、65nm~80nm程度と見積もることができる。
ここで、上記のような凸状の記録マークを形成するためには、記録用レーザ光のパワーは高過ぎてはならない。記録用レーザ光のパワーが過大であると、空包(ボイド)マークが形成されてしまうからである。従って、本実施の形態における記録用レーザ光のパワーは、記録層5の特性に応じて、空孔マークの形成には至らない程度のパワーに設定する。
なお確認のため述べておくと、空孔マークとは、空包の1つが1つの記録マークとして機能するものを意味する。
また、記録層5と中間層4の厚さ、即ちマーク間の深さ方向の離間距離は、隣接する界面間でのクロストーク(およびクロスライト)の抑制の意味で、或る程度確保しなければならない。具体的には、記録層5と中間層4の厚さは、最低でも5μm以上とすることが望ましい。なお、このように隣接層間でのクロストークの抑制のため各層の離間距離を5μm以上とすることが望ましい点については、下記の参考文献3を参照されたい。
・参考文献3・・・K.Saitoand S.Kobayashi:”Analysis of Micro-Reflector 3-D optical disc recording”Proc.of SPIE,Vol.6282,2007.
・参考文献3・・・K.Saitoand S.Kobayashi:”Analysis of Micro-Reflector 3-D optical disc recording”Proc.of SPIE,Vol.6282,2007.
なお、最上部および最下部に形成された中間層4の厚さについては、その片面側のみにマークが記録されるという意味で、上記のようなクロストークの抑制を考慮した厚さの設定の対象から除外することができる。
また、上記のように非線形光吸収による昇温変形によって記録マークを形成する場合、つまり記録層5が光を吸収して発生した熱に起因して変形が生じる場合には、記録用レーザ光の集光点を界面に一致させず、界面から記録層5の内側方向に或る程度オフセットさせることが、より良好な記録特性(再生特性)を得る上で好ましい。その場合、記録装置10は、フォーカスエラー信号FE-spに基づくフォーカスサーボループに対して所定量のオフセットが与えられるように構成すればよい。具体的な構成例としては、サーボ・再生光用サーボ回路40に供給されるフォーカスエラー信号FE-spのラインに加算器を挿入し、該加算器により、フォーカスエラー信号FE-spに所定のオフセット値を加算するものとすればよい。
また、記録層5と中間層4との界面の透過率は、記録マークによる吸収や散乱を防止する意味で、大であることが望ましい。
[1-5.効果]
従来用いられているボイド記録方式では、前述したように、記録信号の読出(再生)はボイドの形成部分と被形成部分との反射率の差を検出することによって行われる。このボイド記録方式は、詳しくは、例えば光重合型フォトポリマ等の記録材料で構成されたバルク層102(図17)に対して、比較的高パワーでレーザ光照射を行い、上記バルク層102内に空包を記録する手法である。特許文献2に記載されるように、このように形成された空包部分は、バルク層102内における他の部分と屈折率が異なる部分となり、それらの境界部分で光の反射率が高められることになる。従って上記空包部分は記録マークとして機能し、これによって空包マークの形成による情報記録が実現される。
従来用いられているボイド記録方式では、前述したように、記録信号の読出(再生)はボイドの形成部分と被形成部分との反射率の差を検出することによって行われる。このボイド記録方式は、詳しくは、例えば光重合型フォトポリマ等の記録材料で構成されたバルク層102(図17)に対して、比較的高パワーでレーザ光照射を行い、上記バルク層102内に空包を記録する手法である。特許文献2に記載されるように、このように形成された空包部分は、バルク層102内における他の部分と屈折率が異なる部分となり、それらの境界部分で光の反射率が高められることになる。従って上記空包部分は記録マークとして機能し、これによって空包マークの形成による情報記録が実現される。
ボイド記録方式では、ボイドのサイズを大とすることによって反射率が大きくなり、再生信号レベルを上昇させることができる。但し、この信号レベルの上昇は、多層記録として、例えば十数層や数十層程度の記録を行うことを考慮した場合には、深さ方向のクロストークの抑制とトレードオフの関係にあった。
図18は、深さ方向のクロストークについての説明図である。図示するように或る記録位置(層方向における記録位置。以下、層位置とも称する)のボイドに集光して再生を行っている場合には、他の層位置のボイドからの反射光がディテクタ上に漏れ込むことで、S/Nの悪化を招くものとなってしまう。このような深さ方向のクロストークの防止を図る意味では、各記録位置におけるボイドの反射率は小であることが望ましく、ボイドサイズは小とすべきことになる。
即ち、ボイド記録方式では、信号レベルの上昇を意図してボイドサイズを大とすると、深さ方向のクロストークが大となり、返ってS/Nの悪化を招くものとなる。逆に、ボイドサイズを小としてクロストークの抑制を図ろうとすると、信号レベルの低下を招き、S/Nの悪化を助長することとなる。
また、ボイドサイズを大とした場合、その分ボイドの透過率は低下するものとなるので、下層側の記録位置ほど信号再生が不利となるという問題があった。以上のことから、ボイド記録方式では、適切なS/Nに調整することが非常に難しいという問題があった。
また、他の問題として、ボイド記録方式は、記録マークとして空孔マークを形成するものであるため、マークの形成にあたり非常に高いレーザパワーを要することとなる。具体的に、空孔マークを形成するためには、短時間に非常に高いパワーを集中させることを要し、従って記録レーザの光源としては、高出力を実現可能な比較的大型のものを要するという問題もあった。
これに対して、本実施の形態の記録装置では、第1の層と第2の層とを交互に積層することで複数の界面を有する光記録媒体を設け、これを用いるようにした。ここで、上記の構成によれば、上記第1の層と上記第2の層の屈折率を異ならせることで、上記界面を反射面として機能させることができる。このように反射面として機能する界面のそれぞれの近傍において、上記のように屈折率の変調や界面の変形による記録マークを形成するものとすれば、マーク形成部分とそれ以外の部分とで生じる反射光の光路長差(位相差)を利用して、マークの形成有無の判定(記録信号の再生)ができる。即ち、いわゆる位相差検出による信号再生が可能となるものである。なお、位相差検出であるため、再生信号レベルの向上にあたっては、マーク形成部分と非形成部分とでの反射光の位相差(光路長差)を適切に設定すればよい。具体的には、反射光の位相差が再生光波長の半波長分となるのが理想である。また位相差検出の場合、再生信号レベルの向上にあたっては、再生光スポット内におけるマーク形成部分と非形成部分との占有領域の適正化を図ればよい。
このように位相差検出の場合には、ボイド記録方式のようにマーク部分の反射率を大としたりマークサイズを大とする必要はないものとできる。つまり、再生信号レベルの向上と深さ方向のクロストークの抑制とがトレードオフの関係となることを回避することが可能となり、適正なS/Nへの調整を従来のボイド記録方式の場合より容易とすることができる。また、上記のように再生信号レベルの向上にあたりマーク反射率(第1の層と第2の層の屈折率差による反射率も同様)やマークサイズを大とする必要がないことから、ボイド記録方式の場合のように再生信号レベルの向上と引き換えに多層記録の下層側における透過光量が減少するような事態も効果的に回避できる。つまりこの点においても、より容易に適正なS/Nへの調整を行うことが可能となる。
以上のように本実施の形態では、多層記録再生を実現するための手法として、第1の層と第2の層との界面を複数有する構造(具体的には第1の層と第2の層とを交互に繰り返し積層した構造)とし、それらの界面に空包マークの形成までには至らない変形を与えてこれを記録マークとする。これにより、いわゆる位相差検出による信号再生を可能となる。よって、再生信号レベルの向上と深さ方向のクロストークの抑制とがトレードオフの関係となることを回避することが可能となり、適正なS/Nへの調整を従来のボイド記録方式の場合より容易とすることができる。
また、上記のように再生信号レベルの向上にあたりマーク反射率(第1の層と第2の層の屈折率差による反射率も同様)やマークサイズを大とする必要がないことから、ボイド記録方式の場合のように再生信号レベルの向上と引き換えに多層記録の下層側における透過光量が減少するような事態も効果的に回避できる。つまりこの点においても、適正なS/Nへの調整をより容易とできる。
更に、記録レーザパワーは、少なくとも界面近傍の変形や変質(屈折率変調)を促す程度のパワーであれば良く、空包(ボイド)マークを形成するほどの高いパワーは不要である。従って、記録用レーザ11としてはボイド記録方式の場合よりも小型なものとすることができ、結果、記録装置10の小型を図ることができ、また、消費電力の削減も図られる。
また、界面を対象として記録を行うものであるため、現状の多層記録媒体のように1つの記録層につき1層分の記録を行う場合と比較して、同じ記録容量の実現にあたり必要な中間層/記録層の繰り返し積層回数を半分に抑えることができる。これによれば、光記録媒体1の製造に要する手間を低減でき、光記録媒体1の製造コストの削減が図られる。
<2.第2の実施の形態>
図6は、第2の実施の形態としての光記録媒体45の断面構造図である。なお、以下の説明において、既に説明済みとなった部分については同一符号を付してその説明は省略する。第2の実施の形態の光記録媒体45は、記録層5に代えて記録層46が設けられる点以外は、第1の実施の形態の光記録媒体1と同様となる。
図6は、第2の実施の形態としての光記録媒体45の断面構造図である。なお、以下の説明において、既に説明済みとなった部分については同一符号を付してその説明は省略する。第2の実施の形態の光記録媒体45は、記録層5に代えて記録層46が設けられる点以外は、第1の実施の形態の光記録媒体1と同様となる。
記録層46は、レーザ光の集光点付近で、屈折率変化が生じる性質を有するものとされる。具体的にこの場合の記録層46は、レーザ光の集光点付近で「鬆」の形成による(鬆が入ったことによる)屈折率変化の生じる性質を有する。ここで「鬆」とは、極小の気泡が多数形成された状態を指すものである。
なお確認のため述べておくと、前述のように空孔マークは空包の1つが1つの記録マークを形成するものであるのに対し、「鬆」は、極小の気泡(空包)の集合体であり、1つの気泡は1つのマーク内に多数含まれるものである。
このような「鬆」としての極小の気泡の集合体が形成される材料の例としては、第1の実施の形態で例示した5)の材料(非線形光感受性を有する樹脂であり酸発生剤添加材料を含有するもの)を挙げることができる。
中間層4は、記録層46よりもヤング率に低いものを用いる。具体的な材料としては、第1の実施の形態で挙げたものと同様の熱可塑性樹脂等を挙げることができる。
中間層4と記録層46とは互いに屈折率が異なり、この場合もそれらの界面は反射面として機能するようにされている。
図7は、第2の実施の形態の光記録媒体45の記録再生原理について説明するための図である。先の図5の場合と同様に、図7Aは、光記録媒体45の記録可能領域7における一部の層構造を抜き出して示した断面図であり、図7Bは記録層46の上面側に対して形成された記録マークの拡大図である。図7Cは記録層46の下面側に対して形成された記録マークの拡大図を表す。
上述した第2の実施の形態の光記録媒体45によれば、記録層46の上面および下面を対象として適宜記録用レーザ光を集光させて記録動作を行った場合には、これら記録層46の上面および下面におけるレーザ光照射部分付近には、熱膨張により、記録層46の外側に向けて凸となる形状変化が生じる。更に、記録層46内におけるレーザ光の集光点付近に、「鬆」としての屈折率変調部分が形成されることになる。即ち、「鬆」を伴う凸状変形マークが形成されるものである。
記録層46が前記5)の材料で構成された場合には、或る一定以上のパワーによるレーザ光が集光したときに、記録層46におけるレーザ光集光点付近で化学反応により添加剤からカチオン(酸)が生じる。これに伴い周辺分子構造の分解を誘発するなどしてガスが発生する。当該ガスの発生に起因して、上記「鬆」が形成される。このとき、母材が比較的硬質であれば、上記ガスが1つの大きな空包となることが適度に抑制されて、極小の気泡の集合体(つまり「鬆」)が形成されるものと考えられる。この点で、上記5)の材料は、「鬆」の形成に適している。
上記5)の材料を用いた場合において、第1の実施の形態のように界面の変形のみのマークとなるか、第2の実施の形態のように「鬆」を伴う変形マークとなるかは、記録用レーザ光のパワーの設定による。即ち、上記5)の材料で構成される記録層が、比較的低いパワーのレーザ光照射では変形のみが生じ、より高パワーなレーザ光の照射では屈折率変調が生じる性質を有するように構成されている場合には、上記比較的低いパワーの記録用レーザ光による記録を行うものとする。これにより、第1の実施の形態のように界面の変形のみによる記録マークを形成でき、さらに高パワーな記録用レーザ光による記録を行うものとすれば第2の実施の形態のような「鬆」入りの変形マークを形成できる。
上記のような屈折率変調部分を伴う変形マークについて、界面における凸状の変形部の高さをds、中間層4の屈折率をn、記録層46の屈折率をN、さらに上記「鬆」の形成部分としての屈折率変調部分の高さおよび屈折率をそれぞれdm、N’とする。この場合、記録層46の上面側におけるマーク形成部分と非形成部分とでの光学的な光路長差Doは、図7Bに示されるように
Do=n・ds×2
と表すことができる。また、記録層46の下面側におけるマーク形成部分と非形成部分とでの光学的な光路長差Doは、図7Cに示す通り
Do={(N’-N)・dm-N・ds}×2
と表される。
Do=n・ds×2
と表すことができる。また、記録層46の下面側におけるマーク形成部分と非形成部分とでの光学的な光路長差Doは、図7Cに示す通り
Do={(N’-N)・dm-N・ds}×2
と表される。
ここで、「鬆」による屈折率変調部分は、記録層46における他の部分と比較して屈折率が低下した部分となる。即ち、当該「鬆」による屈折率変調部分は、極小気泡(つまり屈折率が略1.0)の集合で成ることから、全体として見れば、屈折率が低下した部分として機能するものである。
この点より、上記2式のうち下側の式においては、N’<Nの関係となる。即ち、「(N’-N)・dm」は負の値となるものである。
なお、第2の実施の形態においても、記録用レーザ光のパワーは、記録層46の特性に応じて空孔マークの形成には至らない程度のパワーを設定する。
また、第2の実施の形態においても、中間層4と記録層46の厚さを最低でも5μm以上とすることが望ましい点は第1の実施の形態の場合と同様である。
さらに、第2の実施の形態においても、非線形光吸収による昇温変形によって記録マークを形成する場合には、記録用レーザ光の集光点を界面に一致させず、界面から記録層46側に或る程度オフセットさせることが、良好な記録特性(再生特性)を得る上で好ましいものとなる。
また、上記による説明では、屈折率変調部分として「鬆」が形成される場合、即ち屈折率の低下を示す屈折率変調部分が形成される場合を例示したが、屈折率変調部分としては、屈折率の上昇を示すものであってもよい。これは、樹脂一般の形態変形として比較的生じやすいものである。レーザ光の集光点付近で屈折率の上昇が生じる材料の例としては、レーザ光の集光点付近で着色が生じる材料を挙げることができる。その具体例としては、先に掲げた1)~4)の材料を挙げることができる。
なお、前述のように上記1)~4)の列挙は主に非線形光吸収を生じさせる種々の組み合わせを意図したものである。これら1)~4)の材料を用いた場合も、先の5)の材料を用いる場合と同様に、以下の構成とすることにより、界面の変形のみ、または屈折率の変調および界面の変形の双方を伴う記録マークが形成されるようにできる。つまり、記録層が、比較的低いパワーのレーザ光照射に応じて変形のみが生じ、より高パワーのレーザ光の照射に応じて屈折率変調が生じる性質を有するように構成する。これにより、上記比較的低いパワーの記録用レーザ光による記録を行うものとすることで、第1の実施の形態のように界面の変形のみによる記録マークを形成できる。更に、高パワーな記録用レーザ光による記録を行うものとすれば第2の実施の形態のような屈折率変調部分と界面変形との双方を伴う記録マークが形成されるようにできる。
<3.第3の実施の形態>
図8は、第3の実施の形態としての光記録媒体50の断面構成を表したものである。第3の実施の形態の光記録媒体50は、第2の実施の形態の光記録媒体45との比較で、中間層4に代えて中間層51が設けられる点が異なる。この中間層51は、記録層46よりもヤング率が高いものとされる。記録層46としては、第2の実施の形態と同様に、レーザ光の集光点付近で屈折率変化が生じる性質のものを用いる。中間層51と記録層46とは互いに屈折率が異なり、この場合もそれらの界面は反射面として機能する。
図8は、第3の実施の形態としての光記録媒体50の断面構成を表したものである。第3の実施の形態の光記録媒体50は、第2の実施の形態の光記録媒体45との比較で、中間層4に代えて中間層51が設けられる点が異なる。この中間層51は、記録層46よりもヤング率が高いものとされる。記録層46としては、第2の実施の形態と同様に、レーザ光の集光点付近で屈折率変化が生じる性質のものを用いる。中間層51と記録層46とは互いに屈折率が異なり、この場合もそれらの界面は反射面として機能する。
図9は、第3の実施の形態の光記録媒体50の記録再生原理について説明するための図である。記録層46の上面および下面を対象として適宜レーザ光を集光して記録動作を行う場合には、図9Aに示されるように、記録層46の上面および下面の変形はほぼ生じない。記録層46内における上面および下面のそれぞれの近傍であってレーザ光の集光点付近となる部分に対して、屈折率変調部分が形成されるものとなる。本実施の形態では中間層51のヤング率が高いため、記録層46の界面の変形は抑制され、当該中間層51のヤング率の設定によっては界面の変形はほぼゼロに抑えることができる。そしてこの場合は、第2の実施の形態の場合と同様の記録層46が用いられているので、記録層46におけるレーザ光の集光点付近に、屈折率変調部分が形成されることになる。
このように第3の実施の形態によっては、記録層46の上面および下面に対して面変形を伴わない(ほぼゼロに近い)屈折率変調マークの形成が可能となる。
ここで、図9Bは、記録層46の上面側に形成されたマークの拡大図を示しているが、当該上面側のマークにおいては、図中にRと示すマークの下側縁面が反射面として機能することになる。つまり、当該縁面Rを境にその上下では屈折率が異なるため、当該縁面Rは反射面として機能する。この場合、マーク形成部分での反射光は、記録層46の上面としての反射面で反射された成分と、上記縁面Rで反射された成分とがディテクタに導かれることになる。このとき、記録層46の上面におけるマーク非形成部分からの反射光と上記縁面Rからの反射光とには、マーク高さdmに応じた位相差が生じる。このことからも理解されるように、この場合としても、マーク形成部分と非形成部分とで、反射光の検出強度差、即ち再生信号RFのレベル差が生じるものとなり、記録符号の判定が可能となる。
一方、図9Cは、記録層46の下面側に形成されたマークの拡大図を示しているが、図のように下面側のマークについては、記録層46の屈折率をN、マーク(屈折率変調部分)の高さをdm、マークの屈折率をN’とすると、下面側におけるマーク形成部分と非形成部分とでの光学的な光路長差Doは、
Do=(N’-N)・dm×2
と表すことができる。下面側については、このように生じるマーク形成部分と非形成部分との反射光位相差に基づいて、記録符号の判定を行うことが可能となる。
Do=(N’-N)・dm×2
と表すことができる。下面側については、このように生じるマーク形成部分と非形成部分との反射光位相差に基づいて、記録符号の判定を行うことが可能となる。
なお、このような下面側のマーク部分についても、マークの縁面(この場合は上側縁面)は反射面として機能するので、厳密には、当該下面側におけるマーク形成部分と非形成部分とでの反射光検出強度差には、このような縁面からの反射光成分も寄与することになる。なお、このように屈折率変調部分の縁面からの反射光がマーク形成部分と非形成部分とでの反射光検出強度差に寄与することは、先の第2の実施の形態(図7B,図7C)の場合も同様となる。
ここで、この場合の記録層46の材料としては、「鬆」の形成により屈折率の低下を示す材料および着色等により屈折率の上昇を示す材料の何れであってもよい。上記説明からも理解されるように、何れの場合にも、マーク形成部分と非形成部分とで反射光位相差に起因した検出強度差が得られることに変わりはない。即ち、記録符号の判定が可能であることに変わりはない。
なお、第3の実施の形態においても、記録用レーザ光のパワーは、記録層の特性に応じて、空孔マークの形成には至らない程度のパワーを設定する。
また、第3の実施の形態においても、中間層51と記録層46の厚さを最低でも5μm以上とすることが望ましい点は先の各実施の形態と同様である。
<4.第4の実施の形態>
図10は、第4の実施の形態の光記録媒体55の断面構成を表したものである。第4の実施の形態の光記録媒体55においては、選択反射膜3の下層に接着層(中間層)56が配され、当該接着層56の下層に対して記録可能領域7としての記録層57と記録層46との繰り返し積層構造体が形成(接着)される。この場合、接着層56は、例えば紫外線硬化樹脂等の熱可塑性樹脂で構成することができる。また、この場合、記録可能領域7における記録層57と記録層46の繰り返し積層回数は先の各実施の形態と同様x回である。記録層57は、記録層46と同様にレーザ光の集光点付近で屈折率変調が生じる材料で構成されるが、当該記録層57の屈折率は、記録層46と異なるようにされる。即ち、記録層57と記録層46の界面は反射面として機能する。また、記録層57のヤング率は、記録層46よりも低く設定される。
図10は、第4の実施の形態の光記録媒体55の断面構成を表したものである。第4の実施の形態の光記録媒体55においては、選択反射膜3の下層に接着層(中間層)56が配され、当該接着層56の下層に対して記録可能領域7としての記録層57と記録層46との繰り返し積層構造体が形成(接着)される。この場合、接着層56は、例えば紫外線硬化樹脂等の熱可塑性樹脂で構成することができる。また、この場合、記録可能領域7における記録層57と記録層46の繰り返し積層回数は先の各実施の形態と同様x回である。記録層57は、記録層46と同様にレーザ光の集光点付近で屈折率変調が生じる材料で構成されるが、当該記録層57の屈折率は、記録層46と異なるようにされる。即ち、記録層57と記録層46の界面は反射面として機能する。また、記録層57のヤング率は、記録層46よりも低く設定される。
図11は、第4の実施の形態の光記録媒体55の記録再生原理について説明するための図である。この場合、記録層46(或いは記録層57)の上面および下面を対象として適宜レーザ光を集光して記録動作を行う場合には、図11Aに示されるように、記録層46と記録層57との双方の側に、屈折率変調部分が形成されることになる。つまり、記録層46の上面および下面の近傍であって記録層46と記録層57とに跨がる部分に、屈折率変調部分が形成される。具体的には、記録層46内における当該記録層46の上面および下面のそれぞれの近傍部分であってレーザ光の集光点付近となる部分と、記録層57内における記録層46の上面および下面(換言すれば記録層57の下面、上面)のそれぞれの近傍部分であってレーザ光の集光点付近となる部分とに対し、屈折率変調部分が形成されるものである。また、この場合、記録層57のヤング率が記録層46と比較して低く設定されているので、図のようにレーザ光の集光点付近では、記録層46の外側に凸となる態様で、当該記録層46の上面および下面の変形も生じることとなる。
ここで、図11Bおよび図11Cにそれぞれ示すように、記録層46の屈折率をN、記録層57の屈折率をn、記録層46側に形成される屈折率変調部分の屈折率をN’、記録層57側に形成される屈折率変調部分の屈折率をn’とする。更に、屈折率変調部分のうち凸状の面変形部分の頂点よりも上側となる部分の高さをdmとする。この場合、記録層46の上面側のマーク形成部分と非形成部分とでの光学的な光路長差Doは、図11Bに示すように
Do={(n’-n)・dm+n・ds}×2
と表される。また、記録層46の下面側のマーク形成部分と非形成部分とでの光学的な光路長差Doは、図11Cに示すように
Do={(N’-N)・dm-N・ds}×2
と表される。
Do={(n’-n)・dm+n・ds}×2
と表される。また、記録層46の下面側のマーク形成部分と非形成部分とでの光学的な光路長差Doは、図11Cに示すように
Do={(N’-N)・dm-N・ds}×2
と表される。
なお、この場合も屈折率変調部分の縁面は、先の図9Bの場合と同様に反射面として機能する。従ってこの場合も、厳密には、記録層46の上面および下面の双方でのマーク形成部分と非形成部分との信号レベル差に、このような縁面からの反射光成分も寄与するものである。
なお、第4の実施の形態においても、記録用レーザ光のパワーは、記録層46,57の特性に応じて空孔マークの形成には至らない程度のパワーを設定する。
また、第4の実施の形態においても、中間層51と記録層46の厚さを最低でも5μm以上とすることが望ましい点は先の各実施の形態と同様である。
ここで、第4の実施の形態の光記録媒体55としても、繰り返し積層回数xに対して、記録可能な界面の数を2xとできることが分かる。即ち、第4の実施の形態としても、先の各実施の形態の場合と同様に、同じ記録容量の実現にあたり必要な繰り返し積層回数xを、従来の1つの記録層につき1層分の記録を行う多層光記録媒体との比較で半分にできることに変わりはない。なお、確認のため述べておくと、従来の多層光記録媒体は、中間層/記録層/中間層・・・の繰り返し積層を行うものである。
<5.第5の実施の形態>
図12は、第5の実施の形態の光記録媒体60の断面構造図である。第5の実施の形態の光記録媒体60は、第4の実施の形態の光記録媒体55と比較して、記録層46に代えて記録層61が、また、記録層57に代えて記録層62が設けられた点が異なる。記録層61および記録層62は、レーザ光照射に応じた熱膨張に伴う界面の変形が発生する前の比較的低温な状態で、屈折率変調が生じる性質を有するように構成されている。更に、記録層61と記録層62は、互いにその屈折率が異なるものとされる。
図12は、第5の実施の形態の光記録媒体60の断面構造図である。第5の実施の形態の光記録媒体60は、第4の実施の形態の光記録媒体55と比較して、記録層46に代えて記録層61が、また、記録層57に代えて記録層62が設けられた点が異なる。記録層61および記録層62は、レーザ光照射に応じた熱膨張に伴う界面の変形が発生する前の比較的低温な状態で、屈折率変調が生じる性質を有するように構成されている。更に、記録層61と記録層62は、互いにその屈折率が異なるものとされる。
図13は、第5の実施の形態の光記録媒体60の記録再生原理について説明するための図である。第5の実施の形態の光記録媒体60について、記録層61(或いは記録層62)の上面および下面を対象として適宜レーザ光を集光して記録動作を行う。この場合には、図13Aに示されるように、記録層61内における当該記録層61の上面および下面のそれぞれの近傍となる部分であってレーザ光の集光点近傍となる部分と、記録層62内における記録層61の上面および下面(つまり記録層62の下面、上面)のそれぞれの近傍となる部分であってレーザ光の集光点近傍となる部分とに対し、屈折率変調部分が形成される。このとき、前述のように記録層61および記録層62は界面変形が発生する前の比較的低温な状態で屈折率変調が生じる材料で構成されているので、図のように界面の変形は生じない(ほぼゼロとなる)ようにできる。換言すれば、記録用レーザ光のパワーを、界面変形が生じない程度のパワーに設定することで、図のような界面変形を伴わない(界面変形がほぼゼロの)屈折率変調マークを形成することができる。なお、記録層の材料として例えばDVD(DigitalVersatile Disc)の追記型ディスクで用いられる色素系記録材料を用いた場合には、レーザ光のパワーを上昇させていったときに、界面の変形が生じる前に屈折率変調が生じることが確認されている。即ち、界面変形が発生する前の比較的低温な状態で屈折率変調が生じるものである。
この場合、記録層61の上面側(つまり記録層62の下面側)でのマーク形成部分と非形成部分とでの反射光の光学的光路長差Doは、記録層62の屈折率をn、記録層62側に形成される屈折率変調部分の高さとその屈折率をそれぞれdm,n’とすると、図13Bに示すように
Do=(n’-n)・dm×2
と表される。また、記録層61の下面側(つまり記録層62の上面側)でのマーク形成部分と非形成部分とでの反射光の光学的光路長差Doは、記録層61の屈折率をN、記録層61側に形成される屈折率変調部分の高さとその屈折率をそれぞれdm,N’とすると、図13Cに示すように
Do=(N’-N)・dm×2
と表される。
Do=(n’-n)・dm×2
と表される。また、記録層61の下面側(つまり記録層62の上面側)でのマーク形成部分と非形成部分とでの反射光の光学的光路長差Doは、記録層61の屈折率をN、記録層61側に形成される屈折率変調部分の高さとその屈折率をそれぞれdm,N’とすると、図13Cに示すように
Do=(N’-N)・dm×2
と表される。
この場合も、マークの縁面は反射面として機能するものとなり、厳密には、マーク形成部分と非形成部分とでの信号レベル差にこのような縁面からの反射光成分も寄与することとなるのは先の第2~第4の実施の形態の場合と同様である。
なお、第5の実施の形態においても、記録層61,62の厚さを最低でも5μm以上とすることが望ましい点は先の各実施の形態と同様である。
ここで、上記による説明では、界面の変形を防止するための具体的な手法として、界面変形が発生する前の比較的低温な状態で屈折率変調が生じる材料による記録層61,62を積層する手法を例示した。界面の変形を防止するための手法としては、例えば記録層の積層構造体を上下方向から加圧した状態で成形するという手法を採ることもできる。この場合、成形後の光記録媒体では、各記録層間で積層方向に互いに押し合う力が生じるものとなるので、その分、界面の変形が抑制されるようにできる。
<6.第6の実施の形態>
図14は、第6の実施の形態の光記録媒体65の断面構成を表したものである。この光記録媒体65は、第1の実施の形態の光記録媒体10と比較して、中間層4に代えて中間層66が、また記録層5に代えて記録層67が設けられる点が異なる。記録層67は、記録用レーザ光の照射に応じて、集光点付近で加熱に応じた溶融が生じる性質のものを用いる。これは、先の3)の材料として記載したようなガラス転移温度を有する一般的な熱可塑性樹脂をベースとした記録材料に相当するものである。また、中間層66は、記録層67よりもヤング率が高い性質のものを用いる。このとき、中間層66と記録層67は互いに屈折率が異なるようにされる。
図14は、第6の実施の形態の光記録媒体65の断面構成を表したものである。この光記録媒体65は、第1の実施の形態の光記録媒体10と比較して、中間層4に代えて中間層66が、また記録層5に代えて記録層67が設けられる点が異なる。記録層67は、記録用レーザ光の照射に応じて、集光点付近で加熱に応じた溶融が生じる性質のものを用いる。これは、先の3)の材料として記載したようなガラス転移温度を有する一般的な熱可塑性樹脂をベースとした記録材料に相当するものである。また、中間層66は、記録層67よりもヤング率が高い性質のものを用いる。このとき、中間層66と記録層67は互いに屈折率が異なるようにされる。
そして、この場合の光記録媒体65は、中間層66と記録層67とによる積層構造体が、上下方向から加圧した状態で成形されている。即ち、成形後の光記録媒体65では、中間層66と記録層67との間で積層方向に互いに押し合う力が生じている。
図15は、第6の実施の形態の光記録媒体60の記録再生原理について説明するための図である。上記構成による光記録媒体60では、記録層67の上面および下面を対象として適宜レーザ光を集光して記録動作を行ことによって記録マークが形成される。具体的には、図15Aに示されるように、記録層67の上面および下面には、これら上面および下面の形状が記録層67の内側に凸となるように変形したことによるマーク(以下、凹状変形マークと称する)が形成されることになる。先の図14による説明からも理解されるように、この場合、中間層66は硬質な材料で構成され且つ積層方向に加圧された状態にある。このことから、記録層67の上面および下面を対象としてレーザ光を集光した場合には、記録層67における当該集光点付近の加熱(溶融)が生じることを契機に、上記加圧状態に対する中間層66の応力によって、中間層66の当該レーザ光集光点付近の部分が記録層67側に対して凸状に膨らむこととなる。この結果、図のような凹状変形マークが形成される。なお、当該凹状変形マークの形成には、中間層66のレーザ光集光点付近で生じる加熱膨張も一部寄与するものと考えられる。
この場合、記録層67の上面側でのマーク形成部分と非形成部分とでの反射光の光学的光路長差Doは、図15Bに示すように中間層66の屈折率をn、記録層67の屈折率をN、凹状変形マークの高さをdsとすると
Do=n・ds×2
と表すことができる。また、記録層67の下面側でのマーク形成部分と非形成部分とでの反射光の光学的光路長差Doは
Do=N・ds×2
と表すことができる。これらの式を参照して分かるように、この場合もマーク形成部分と非形成部分とでの反射光位相差に基づく記録符号の判定が可能となる。
Do=n・ds×2
と表すことができる。また、記録層67の下面側でのマーク形成部分と非形成部分とでの反射光の光学的光路長差Doは
Do=N・ds×2
と表すことができる。これらの式を参照して分かるように、この場合もマーク形成部分と非形成部分とでの反射光位相差に基づく記録符号の判定が可能となる。
なお、第6の実施の形態においても、記録用レーザ光のパワーは、記録層67の特性に応じて空孔マークの形成には至らない程度のパワーを設定する。
また、第6の実施の形態においても、中間層66と記録層67の厚さを最低でも5μm以上とすることが望ましい点は先の各実施の形態の場合と同様である。
さらに、第6の実施の形態においても、先の第1,2の実施の形態の場合と同様に、非線形光吸収による昇温変形によって記録マークが形成される場合には、記録用レーザ光の集光点を界面に一致させず、界面から記録層67側に或る程度オフセットさせる。これにより、良好な記録特性(再生特性)を得る上で好ましいものとなる。
<7.変形例>
以上、本技術に係る実施の形態について説明したが、本技術はこれまでで説明した具体例に限定されるべきものではない。例えば、記録層の界面が反射面として有効に機能するように(つまり界面における屈折率差が効果的に得られるように)、記録層の界面に例えばプラズマやイオンビームを用いた表面処理(改質処理)を施すものとしてもよい。
以上、本技術に係る実施の形態について説明したが、本技術はこれまでで説明した具体例に限定されるべきものではない。例えば、記録層の界面が反射面として有効に機能するように(つまり界面における屈折率差が効果的に得られるように)、記録層の界面に例えばプラズマやイオンビームを用いた表面処理(改質処理)を施すものとしてもよい。
また、上記第1~第6の実施の形態では、光記録媒体が有する、互いに屈折率が異なる第1の層と第2の層との界面が複数形成された構造の例として、互いに屈折率が異なる層を交互に繰り返し積層した構造を例示したが、このような界面を有する構造については、例えば図16Aに示されるような構造も挙げることができる。即ち、それぞれ屈折率が同じとされる層71を繰り返し積層した積層構造体(図16B)について、それらの界面の上側一部分、下側一部分のそれぞれに屈折率変調処理を施すことで、図16Aに示すような屈折率変調層71A、屈折率変調層71Bを形成した構造である。この場合、上記屈折率変調処理は、屈折率変調層71Aと屈折率変調層71Bとに屈折率差を与えるようにして行う。例えばこのような構成により、これら屈折率変調層71Aと屈折率変調層71Bとの界面が「互いに屈折率が異なる第1の層と第2の層との界面」に該当するものである。なお確認のために述べておくと、それぞれ屈折率が同じとなる層71については、先の第1~第6の実施の形態で説明したような記録層と中間層との組み合わせ、或いは記録層のみの組み合わせとすればよいものである。
また、互いに屈折率の異なる層の界面を複数形成する、という意味では、上記屈折率変調処理としては、少なくとも屈折率変調層71A又は屈折率変調層71Bの何れか一方のみを形成するようにして行えば足る。即ち、上記屈折率変調処理により例えば屈折率変調層71A側のみを形成するのであれば、当該屈折率変調層71Aの上面が「界面」として機能するものである。また屈折率変調層71B側のみを形成するのであればその下面が「界面」として機能する。
上記図16により説明した変形例は、光記録媒体の製造プロセス上、積層工程で扱う各層材料が同質(屈折率が異ならないという意味で)であることが望ましい等の事情がある場合に好適である。
また、本技術において、第1の層と第2の層とは、それらの屈折率が必ずしも異なることを要しない。第1の層と第2の層の屈折率が同じ場合であっても、例えば第3~第5の実施の形態のように鬆や着色などの屈折率変調によるマークを形成する場合には、マーク部分の反射率と透過率との関係を、従来のボイド記録を行う場合とは異なるものとできる。つまり、この結果として、マーク部分の反射率を再生に必要な程度に確保しつつ、マーク部分の透過率についてはボイド記録を行う場合よりも高くするということを可能にできる。これによれば、ボイド記録の場合との比較で、再生信号レベルの向上と深さ方向のクロストークの抑制とがトレードオフの関係となる事態の緩和が図られ、結果、適正なS/Nへの調整もより容易となる傾向にできる。
更に、上記第1~第6の実施の形態では、基準面Refは記録可能領域7の上側に設けられる例を挙げたが、基準面Refは記録可能領域7の下側に設けることもできる。基準面Refを記録可能領域7の下側に設けた場合、当該基準面Refに対して設ける反射膜としては、選択反射膜3とは逆の特性、即ちサーボ用レーザ光のみを選択的に反射する特性を有するものを設けることが望ましい。当該特性による選択反射膜を設ければ、再生時における迷光(再生対象とする層位置以外の層位置からの反射光に起因)を効果的に抑制できるからである。
また、例えば記録用レーザ光についてのトラッキングサーボ制御をサーボ・再生用レーザ光の反射光に基づき行うことを可能とするという意味で、第1の層(又は第2の層)の上面、下面のそれぞれに、グルーブとしての案内溝を形成するということもできる。この場合、記録マークは、グルーブ(凹部)、ランド(凸部)、又はこれらの双方に形成することができる。このように界面にグルーブを形成し、当該グルーブ(トラック)に基づいて記録用レーザ光についてのトラッキングサーボ制御を行うものとする。これにより、先の図2,図3で説明したように基準面Refからのサーボ用レーザ光の反射光を利用して記録用レーザ光についてのトラッキングサーボ制御を行う場合と比較して、記録用レーザ光についてのトラッキングサーボの信頼性を向上できる。但し、先の図2,図3で説明したような基準面Refからのサーボ用レーザ光の反射光を利用して記録用レーザ光についてのトラッキングサーボ制御を行う構成とした場合には、各界面にグルーブを形成せずに済むという面で、光記録媒体の製造プロセスの簡略化が図られる。その分、光記録媒体の製造コストの削減を図ることができる。
更にまた、上記第1~第6の実施の形態では、サーボ用レーザ光についてのフォーカスサーボ制御は対物レンズ23(2軸アクチュエータ24)を制御することで行い、サーボ・再生用レーザ光のフォーカスサーボ制御は当該サーボ・再生用レーザ光の光路中に挿入した録再光用フォーカス機構を制御することで行う場合を例示したがこれに限らない。例えば、各レーザ光についてのフォーカスサーボ制御は以下のような手法で実現することもできる。即ち、サーボ・再生用レーザ光についてのフォーカスサーボ制御は、2軸アクチュエータ24をフォーカスエラー信号FE-spに基づいて行うものである。また、サーボ用レーザ光のフォーカスサーボ制御は、サーボ用レーザ光の光路中に別途フォーカス機構(例えば上記録再光用フォーカス機構と同様の構成によるもの)を挿入し、当該フォーカス機構をフォーカスエラー信号FE-svに基づいて行うものである。
また、上記第1~第6の実施の形態では、基準面Refに形成する位置案内子として、グルーブやピット等の案内溝を形成する場合を例示したが、位置案内子としては、例えば相変化膜などにマークを記録して形成したものであってもよい。
更に、上記第1~第6の実施の形態では、本発明の光記録媒体がディスク状の記録媒体とされる場合を例示したが、例えば矩形状など他の形状とすることもできる。
その他、本技術については、以下の(1)~(15)に示すような構成とすることができる。
(1)
第1の層と第2の層との界面が複数形成された構造を有する光記録媒体における前記界面の近傍にレーザ光を集光して、前記界面の近傍に、空包マークの形成までには至らず、且つ、屈折率の変調および/又は前記界面の形状変化を伴う記録マークを形成する
記録装置。
(2)
前記第1の層と前記第2の層との屈折率が異なる前記(1)に記載の記録装置。
(3)
前記第1の層は前記レーザ光の集光点付近で膨張が生じるように構成され、
前記第2の層は前記第1の層よりもヤング率が低く設定されており、
前記界面に、前記空包マークの形成までには至らない記録マークであって、前記第2の層側に凸となる態様による前記界面の形状変化を伴う記録マークを形成する
前記(1)又は(2)に記載の記録装置。
(4)
前記第1の層は前記レーザ光のパワーに応じて前記膨張と前記屈折率の変調とが生じるように構成されており、
前記界面の近傍に、前記空包マークの形成までには至らない記録マークであって、前記屈折率の変調と、前記第2の層側に凸となる態様による前記界面の形状変化との双方を伴う記録マークを形成する
前記(3)に記載の記録装置。
(5)
前記第1の層は前記レーザ光の集光点付近で前記屈折率の変調が生じるように構成され、
前記第2の層は前記第1の層よりもヤング率が高く設定されており、
前記界面の近傍に、前記空包マークの形成までには至らない記録マークであって屈折率の変調による記録マークを形成する
前記(1)又は(2)に記載の記録装置。
(6)
前記第1の層と前記第2の層との双方が、前記レーザ光の集光点付近で屈折率の変調が生じるように構成されており、
前記界面の近傍であって、前記第1の層と前記第2の層とに跨がる部分に対して、前記空包マークの形成までには至らない記録マークであって前記屈折率の変調を伴う記録マークを形成する
前記(1)又は(2)に記載の記録装置。
(7)
前記第2の層は前記第1の層よりもヤング率が低く設定されており、
前記界面の近傍に、前記空包マークの形成までには至らない記録マークであって、前記第2の層側に凸となる態様による前記界面の形状変化を伴い且つ前記第1の層と前記第2の層とに跨がる部分に前記屈折率の変調部分を伴う記録マークを形成する
前記(6)に記載の記録装置。
(8)
前記第1の層が、前記レーザ光の照射に応じた熱膨張に伴う界面の変形が発生する前の比較的低温な状態で前記屈折率の変調が生じるように構成されるか、又は前記第1の層と前記第2の層との積層構造体が上下方向から加圧した状態で成形されており、
前記界面の近傍であって、前記第1の層と前記第2の層とに跨がる部分に対して、前記空包マークの形成までには至らない記録マークであって前記屈折率の変調による記録マークを形成する
前記(6)に記載の記録装置。
(9)
前記第1の層が前記レーザ光の照射に応じて集光点付近で加熱に応じた溶融が生じるように構成され、
前記第2の層が前記第1の層よりもヤング率が高く設定されていると共に、
前記第1の層と前記第2の層との積層構造体が上下方向から加圧された状態で成形されており、
前記界面に、前記空包マークの形成までには至らない記録マークであって前記第1の層側に凸となる態様による前記界面の形状変化を伴う記録マークを形成する
前記(1)又は(2)に記載の記録装置。
(10)
鬆の形成により前記屈折率の変調を与える前記(1)又は(2)又は(4)~(8)に記載の記録装置。
(11)
着色により前記屈折率の変調を与える前記(1)又は(2)又は(4)~(8)に記載の記録装置。
(12)
前記界面からの反射光を検出した結果に基づき前記レーザ光についてのフォーカスサーボ制御を行うフォーカスサーボ制御部を備える
前記(2)~(11)に記載の記録装置。
(13)
第1の層と第2の層との界面が複数形成された構造を有する光記録媒体における前記界面の近傍にレーザ光を集光して、前記界面の近傍に、空包マークの形成までには至らず、且つ、屈折率の変調および/又は前記界面の形状変化を伴う記録マークを形成する
記録方法。
(14)
第1の層と第2の層との界面が複数形成された構造を有すると共に、
前記界面の近傍に、空包マークの形成までには至らず、且つ、屈折率の変調および/又は前記界面の形状変化を伴う記録マークが形成される
光記録媒体。
(15)
前記界面間の間隔が5μm以上とされる前記(14)に記載の光記録媒体。
(1)
第1の層と第2の層との界面が複数形成された構造を有する光記録媒体における前記界面の近傍にレーザ光を集光して、前記界面の近傍に、空包マークの形成までには至らず、且つ、屈折率の変調および/又は前記界面の形状変化を伴う記録マークを形成する
記録装置。
(2)
前記第1の層と前記第2の層との屈折率が異なる前記(1)に記載の記録装置。
(3)
前記第1の層は前記レーザ光の集光点付近で膨張が生じるように構成され、
前記第2の層は前記第1の層よりもヤング率が低く設定されており、
前記界面に、前記空包マークの形成までには至らない記録マークであって、前記第2の層側に凸となる態様による前記界面の形状変化を伴う記録マークを形成する
前記(1)又は(2)に記載の記録装置。
(4)
前記第1の層は前記レーザ光のパワーに応じて前記膨張と前記屈折率の変調とが生じるように構成されており、
前記界面の近傍に、前記空包マークの形成までには至らない記録マークであって、前記屈折率の変調と、前記第2の層側に凸となる態様による前記界面の形状変化との双方を伴う記録マークを形成する
前記(3)に記載の記録装置。
(5)
前記第1の層は前記レーザ光の集光点付近で前記屈折率の変調が生じるように構成され、
前記第2の層は前記第1の層よりもヤング率が高く設定されており、
前記界面の近傍に、前記空包マークの形成までには至らない記録マークであって屈折率の変調による記録マークを形成する
前記(1)又は(2)に記載の記録装置。
(6)
前記第1の層と前記第2の層との双方が、前記レーザ光の集光点付近で屈折率の変調が生じるように構成されており、
前記界面の近傍であって、前記第1の層と前記第2の層とに跨がる部分に対して、前記空包マークの形成までには至らない記録マークであって前記屈折率の変調を伴う記録マークを形成する
前記(1)又は(2)に記載の記録装置。
(7)
前記第2の層は前記第1の層よりもヤング率が低く設定されており、
前記界面の近傍に、前記空包マークの形成までには至らない記録マークであって、前記第2の層側に凸となる態様による前記界面の形状変化を伴い且つ前記第1の層と前記第2の層とに跨がる部分に前記屈折率の変調部分を伴う記録マークを形成する
前記(6)に記載の記録装置。
(8)
前記第1の層が、前記レーザ光の照射に応じた熱膨張に伴う界面の変形が発生する前の比較的低温な状態で前記屈折率の変調が生じるように構成されるか、又は前記第1の層と前記第2の層との積層構造体が上下方向から加圧した状態で成形されており、
前記界面の近傍であって、前記第1の層と前記第2の層とに跨がる部分に対して、前記空包マークの形成までには至らない記録マークであって前記屈折率の変調による記録マークを形成する
前記(6)に記載の記録装置。
(9)
前記第1の層が前記レーザ光の照射に応じて集光点付近で加熱に応じた溶融が生じるように構成され、
前記第2の層が前記第1の層よりもヤング率が高く設定されていると共に、
前記第1の層と前記第2の層との積層構造体が上下方向から加圧された状態で成形されており、
前記界面に、前記空包マークの形成までには至らない記録マークであって前記第1の層側に凸となる態様による前記界面の形状変化を伴う記録マークを形成する
前記(1)又は(2)に記載の記録装置。
(10)
鬆の形成により前記屈折率の変調を与える前記(1)又は(2)又は(4)~(8)に記載の記録装置。
(11)
着色により前記屈折率の変調を与える前記(1)又は(2)又は(4)~(8)に記載の記録装置。
(12)
前記界面からの反射光を検出した結果に基づき前記レーザ光についてのフォーカスサーボ制御を行うフォーカスサーボ制御部を備える
前記(2)~(11)に記載の記録装置。
(13)
第1の層と第2の層との界面が複数形成された構造を有する光記録媒体における前記界面の近傍にレーザ光を集光して、前記界面の近傍に、空包マークの形成までには至らず、且つ、屈折率の変調および/又は前記界面の形状変化を伴う記録マークを形成する
記録方法。
(14)
第1の層と第2の層との界面が複数形成された構造を有すると共に、
前記界面の近傍に、空包マークの形成までには至らず、且つ、屈折率の変調および/又は前記界面の形状変化を伴う記録マークが形成される
光記録媒体。
(15)
前記界面間の間隔が5μm以上とされる前記(14)に記載の光記録媒体。
本出願は、日本国特許庁において2011年4月1日に出願された日本特許出願番号2011-081634号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
Claims (15)
- 第1の層と第2の層との界面が複数形成された構造を有する光記録媒体における前記界面の近傍にレーザ光を集光して、前記界面の近傍に、空包マークの形成までには至らず、且つ、屈折率の変調および/又は前記界面の形状変化を伴う記録マークを形成する
記録装置。 - 前記第1の層と前記第2の層との屈折率が異なる請求項1に記載の記録装置。
- 前記第1の層は前記レーザ光の集光点付近で膨張が生じるように構成され、
前記第2の層は前記第1の層よりもヤング率が低く設定されており、
前記界面に、前記空包マークの形成までには至らない記録マークであって、前記第2の層側に凸となる態様による前記界面の形状変化を伴う記録マークを形成する
請求項2に記載の記録装置。 - 前記第1の層は前記レーザ光のパワーに応じて前記膨張と前記屈折率の変調とが生じるように構成されており、
前記界面の近傍に、前記空包マークの形成までには至らない記録マークであって、前記屈折率の変調と、前記第2の層側に凸となる態様による前記界面の形状変化との双方を伴う記録マークを形成する
請求項3に記載の記録装置。 - 前記第1の層は前記レーザ光の集光点付近で前記屈折率の変調が生じるように構成され、
前記第2の層は前記第1の層よりもヤング率が高く設定されており、
前記界面の近傍に、前記空包マークの形成までには至らない記録マークであって屈折率の変調による記録マークを形成する
請求項2に記載の記録装置。 - 前記第1の層と前記第2の層との双方が、前記レーザ光の集光点付近で屈折率の変調が生じるように構成されており、
前記界面の近傍であって、前記第1の層と前記第2の層とに跨がる部分に対して、前記空包マークの形成までには至らない記録マークであって前記屈折率の変調を伴う記録マークを形成する
請求項2に記載の記録装置。 - 前記第2の層は前記第1の層よりもヤング率が低く設定されており、
前記界面の近傍に、前記空包マークの形成までには至らない記録マークであって、前記第2の層側に凸となる態様による前記界面の形状変化を伴い且つ前記第1の層と前記第2の層とに跨がる部分に前記屈折率の変調部分を伴う記録マークを形成する
請求項6に記載の記録装置。 - 前記第1の層が、前記レーザ光の照射に応じた熱膨張に伴う界面の変形が発生する前の比較的低温な状態で前記屈折率の変調が生じるように構成されるか、又は前記第1の層と前記第2の層との積層構造体が上下方向から加圧した状態で成形されており、
前記界面の近傍であって、前記第1の層と前記第2の層とに跨がる部分に対して、前記空包マークの形成までには至らない記録マークであって前記屈折率の変調による記録マークを形成する
請求項6に記載の記録装置。 - 前記第1の層が前記レーザ光の照射に応じて集光点付近で加熱に応じた溶融が生じるように構成され、
前記第2の層が前記第1の層よりもヤング率が高く設定されていると共に、
前記第1の層と前記第2の層との積層構造体が上下方向から加圧された状態で成形されており、
前記界面に、前記空包マークの形成までには至らない記録マークであって前記第1の層側に凸となる態様による前記界面の形状変化を伴う記録マークを形成する
請求項2に記載の記録装置。 - 鬆の形成により前記屈折率の変調を与える請求項1に記載の記録装置。
- 着色により前記屈折率の変調を与える請求項1に記載の記録装置。
- 前記界面からの反射光を検出した結果に基づき前記レーザ光についてのフォーカスサーボ制御を行うフォーカスサーボ制御部を備える
請求項2に記載の記録装置。 - 第1の層と第2の層との界面が複数形成された構造を有する光記録媒体における前記界面の近傍にレーザ光を集光して、前記界面の近傍に、空包マークの形成までには至らず、且つ、屈折率の変調および/又は前記界面の形状変化を伴う記録マークを形成する
記録方法。 - 第1の層と第2の層との界面が複数形成された構造を有すると共に、
前記界面の近傍に、空包マークの形成までには至らず、且つ、屈折率の変調および/又は前記界面の形状変化を伴う記録マークが形成される
光記録媒体。 - 前記界面間の間隔が5μm以上とされる請求項14に記載の光記録媒体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011081634A JP2012216267A (ja) | 2011-04-01 | 2011-04-01 | 記録装置、記録方法、光記録媒体 |
JP2011-081634 | 2011-04-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012137602A1 true WO2012137602A1 (ja) | 2012-10-11 |
Family
ID=46969005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/057138 WO2012137602A1 (ja) | 2011-04-01 | 2012-03-21 | 記録装置、記録方法および光記録媒体 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2012216267A (ja) |
TW (1) | TW201243841A (ja) |
WO (1) | WO2012137602A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10444626B2 (en) | 2015-04-27 | 2019-10-15 | Sony Corporation | Hologram recording composition, hologram recording medium, and method of producing hologram recording medium |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014128847A1 (ja) * | 2013-02-20 | 2014-08-28 | 日立コンシューマエレクトロニクス株式会社 | 光情報記録媒体及びそれを用いた記録または再生方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02139733A (ja) * | 1988-08-26 | 1990-05-29 | Taiyo Yuden Co Ltd | 光情報記録媒体およびその光情報記録方法 |
JPH056570A (ja) * | 1991-12-06 | 1993-01-14 | Sony Corp | 情報記録媒体 |
JP2007026541A (ja) * | 2004-07-16 | 2007-02-01 | Mitsubishi Kagaku Media Co Ltd | 光記録媒体及び光記録媒体の光記録方法 |
JP2008140472A (ja) * | 2006-12-01 | 2008-06-19 | Fuji Xerox Co Ltd | 光記録装置、光記録方法、記録媒体及び再生方法 |
JP2009277271A (ja) * | 2008-05-13 | 2009-11-26 | Fujifilm Corp | 光記録媒体の記録方法、光記録媒体、情報が記録された記録媒体の製造方法および光記録媒体の記録装置 |
-
2011
- 2011-04-01 JP JP2011081634A patent/JP2012216267A/ja not_active Withdrawn
-
2012
- 2012-03-15 TW TW101108925A patent/TW201243841A/zh unknown
- 2012-03-21 WO PCT/JP2012/057138 patent/WO2012137602A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02139733A (ja) * | 1988-08-26 | 1990-05-29 | Taiyo Yuden Co Ltd | 光情報記録媒体およびその光情報記録方法 |
JPH056570A (ja) * | 1991-12-06 | 1993-01-14 | Sony Corp | 情報記録媒体 |
JP2007026541A (ja) * | 2004-07-16 | 2007-02-01 | Mitsubishi Kagaku Media Co Ltd | 光記録媒体及び光記録媒体の光記録方法 |
JP2008140472A (ja) * | 2006-12-01 | 2008-06-19 | Fuji Xerox Co Ltd | 光記録装置、光記録方法、記録媒体及び再生方法 |
JP2009277271A (ja) * | 2008-05-13 | 2009-11-26 | Fujifilm Corp | 光記録媒体の記録方法、光記録媒体、情報が記録された記録媒体の製造方法および光記録媒体の記録装置 |
Non-Patent Citations (1)
Title |
---|
MASAKAZU OGASAWARA ET AL.: "16 layers Write Once Disc with a Separated Guide Layer", TECHNICAL REPORT OF IEICE, 2011.03, MR2010-57, vol. MR2010, no. 57, March 2011 (2011-03-01), pages 1 - 6 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10444626B2 (en) | 2015-04-27 | 2019-10-15 | Sony Corporation | Hologram recording composition, hologram recording medium, and method of producing hologram recording medium |
Also Published As
Publication number | Publication date |
---|---|
JP2012216267A (ja) | 2012-11-08 |
TW201243841A (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8477580B2 (en) | Objective lens, optical pickup, and optical drive device | |
US20100309759A1 (en) | Recording and reproducing method, recording and reproducing device and record carrier | |
JP2008021348A (ja) | 光情報記録媒体、光情報記録再生光学系、及び光情報記録再生装置 | |
WO2011045903A1 (ja) | 光記録媒体、光記録媒体の製造方法 | |
US20130010583A1 (en) | Optical pick up, optical drive device, and light irradiation method | |
JP2009104717A (ja) | 記録再生装置及び記録再生方法 | |
JP2011170935A (ja) | 光記録再生方法、光記録媒体 | |
JP2011060349A (ja) | 光記録媒体、光記録媒体の製造方法、記録方法、再生方法 | |
US8427932B2 (en) | Optical recording medium and optical recording-reading method | |
WO2011039968A1 (ja) | 記録装置、記録方法、光記録媒体 | |
JP2011216171A (ja) | 光学ピックアップ、光学ドライブ装置、光照射方法 | |
JP5381795B2 (ja) | 光記録媒体、光記録再生方法 | |
JP2011090749A (ja) | 光学ドライブ装置、チルト検出方法 | |
WO2012137602A1 (ja) | 記録装置、記録方法および光記録媒体 | |
JP2012099198A (ja) | 記録装置、記録方法 | |
JP2012089197A (ja) | 光記録媒体とその製造方法、記録装置 | |
JP2011118995A (ja) | 光記録媒体、光記録媒体駆動装置、光記録媒体駆動方法 | |
JP4165287B2 (ja) | 光記録媒体および光記録再生装置、光記録再生方法 | |
JP2009238284A (ja) | フォーカスサーボ方法、光再生方法および光再生装置 | |
JP2012243347A (ja) | 記録装置、サーボ制御方法 | |
JP2012164380A (ja) | 光記録再生方法 | |
US20090003155A1 (en) | Optical information recording device, optical pickup, optical information recording method and optical information recording medium | |
JP2013065363A (ja) | 光記録媒体、記録装置、記録方法 | |
US20120300601A1 (en) | Optical recording medium, recording device, and recording method | |
JP2012208987A (ja) | 光記録媒体、光記録媒体の製造方法、光記録方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12768176 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12768176 Country of ref document: EP Kind code of ref document: A1 |