WO2012137586A1 - Imaging apparatus and imaging apparatus production method - Google Patents

Imaging apparatus and imaging apparatus production method Download PDF

Info

Publication number
WO2012137586A1
WO2012137586A1 PCT/JP2012/056912 JP2012056912W WO2012137586A1 WO 2012137586 A1 WO2012137586 A1 WO 2012137586A1 JP 2012056912 W JP2012056912 W JP 2012056912W WO 2012137586 A1 WO2012137586 A1 WO 2012137586A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
sensor substrate
imaging device
solid
signal processing
Prior art date
Application number
PCT/JP2012/056912
Other languages
French (fr)
Japanese (ja)
Inventor
勉 和田
崇弘 大黒
松永 裕樹
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to KR1020137017165A priority Critical patent/KR101413869B1/en
Publication of WO2012137586A1 publication Critical patent/WO2012137586A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2217/00Details of cameras or camera bodies; Accessories therefor
    • G03B2217/002Details of arrangement of components in or on camera body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a CCD image sensor (Charge Coupled Device Image).
  • the present invention relates to an imaging apparatus (camera) using a solid-state imaging device such as a sensor, and more particularly to an imaging apparatus such as a three-plate solid-state imaging camera or a single-plate solid-state imaging camera having a high-performance cooling mechanism, and a manufacturing method thereof.
  • the imaging device needs a cooling mechanism that suppresses the temperature rise of the solid-state imaging element within a certain range.
  • the cooling mechanism of the imaging device increases the mounting position accuracy of the solid-state imaging device of the imaging device to obtain a high-definition image, and always keeps the positional deviation much smaller than the pixel size. It is necessary. Therefore, the solid-state image sensor is mounted on the cooling mechanism to prevent the initial mechanical stress when mounting the solid-state image sensor, and to maintain the positioning accuracy for a long time after assembly. It is required to support the heat dissipation structure in a state where the load applied to the fixing portion for fixing the substrate is small.
  • solder creep is a phenomenon in which a solder joint is gradually deformed when a load is continuously applied to a soldered component or substrate.
  • the dimensional change of thermal deformation accompanying a temperature rise must be reduced. Therefore, in addition to the cooling performance, it is important for the cooling mechanism to increase the accuracy of the mechanism that reduces the mechanical deformation of the fixing portion that fixes the substrate on which the solid-state imaging device is mounted.
  • a fixing member having excellent thermal conductivity is bonded to the back surface of a solid-state imaging device, and this fixing member is formed by overlapping metal foils to provide a certain degree of flexibility.
  • a cooling mechanism for a solid-state imaging device that is connected to a camera casing through a heat conduction member that is provided and radiates heat from the fixing member to the camera casing.
  • FIGS. 9 shows a state in which the structure of a three-plate type solid-state imaging camera using three solid-state imaging elements is disassembled for each part.
  • FIG. 10 shows a central horizontal section in a state where the parts shown in FIG. 9 are assembled.
  • FIG. 10 is a side view of the assembled state of the components shown in FIG. 9.
  • reference numeral 1 denotes a front frame of the camera housing
  • 2 denotes a color separation prism.
  • the color separation prism 2 separates light incident from an imaging lens (not shown) into light of three primary colors (red R, green G, and blue B) for each predetermined color component.
  • Each decomposed light component is incident on each solid-state imaging device 3 and converted into an electrical signal.
  • a prism surface fixing bracket 4 is bonded to each prism end surface of the color separation prism 2 for each separated light component, and an imaging element fixing lower bracket 5 is fastened with screws (not shown) thereon.
  • an imaging element fixing upper metal fitting 6 is bonded to the back surface of each solid-state imaging element 3, and an imaging element heat conduction plate 7 for guiding the heat of the solid-state imaging element 3 to the outside is provided with screws (not shown). It has been stopped.
  • the solid-state image pickup device 3 is soldered to the sensor substrate 8 with connection terminals such that the image pickup device fixing upper metal fitting 6 and the image pickup device heat conduction plate 7 are sandwiched between the back surface of the solid-state image pickup device 3 and the sensor substrate 8.
  • the sensor substrate 8 is for taking out an electrical signal from the solid-state imaging device 3.
  • the solid-state image sensor 3 soldered to the sensor substrate 8 has three primary colors of light (red R, green G, blue, with the image sensor fixing upper metal fitting 6 and the image sensor heat conduction plate 7 sandwiched between the back surfaces.
  • Copper foil heat dissipating plates 11a and 11b are screwed to the image sensor heat conduction plate 7 for guiding the heat of the solid-state image sensor 3 to the outside and the semiconductor element heat conduction plate 10 for guiding the heat generated by the semiconductor element 9 to the outside.
  • the copper foil heat sinks 11a and 11b are laminated in layers by thinly bonding a plurality of copper foils, and are cut and bent by pressing to further increase the flexibility of the copper foil heat sinks 11a and 11b. Several slits are provided for each bent portion.
  • the copper foil heatsinks 11a and 11b guide the heat transferred to the front frame 1 of the camera housing, respectively, so that the copper support plates 12a and 12b installed on both side surfaces of the color separation prism 2 are respectively applied to the plate 13a. , 13b.
  • heat generated from the solid-state imaging device 3 passes through the imaging device fixing upper bracket 6, the imaging device heat conduction plate 7, the copper foil radiator plate 11a, the copper support plate 12a, etc. Guided to the front frame 1.
  • the heat generated from the signal processing semiconductor element 9 mounted on the rear surface of the sensor substrate 8 passes through the semiconductor element heat conduction plate 10, the copper foil heat radiating plate 11b, the copper support plate 12b, etc., and the front frame of the camera housing. Led to 1.
  • the above-described prior art has the following problems. That is, in the solid-state imaging device, the positional relationship with respect to the color separation prism is fixed after precise three-dimensional optical position adjustment with respect to the color separation prism, but the light of the three primary colors (red R, green G, blue The position of the solid-state imaging device with respect to B) is determined after absorbing all of the dimensional tolerance, mounting dimensional tolerance, etc.
  • the screw tightening torque is increased in order to reduce the contact thermal resistance of the screw fastening portion, the position of the screw fastening member is deviated, mechanical stress is applied to the solid-state imaging device, and registration deviation occurs. .
  • the tightening torque at the time of screw tightening described above must be specified to be small, which deteriorates assemblability and heat transfer performance. End up.
  • the present invention has been made to solve the problems associated with the prior art described above, and achieves at least one of the following objects.
  • the first object of the present invention is to apply a large mechanical stress to the solder joint for fixing the sensor substrate even when the solid-state imaging device is mounted on the front surface of the sensor substrate and the semiconductor element for signal processing is mounted on the rear surface. It is an object of the present invention to provide an imaging apparatus including a cooling mechanism that can efficiently dissipate heat generated from the heating element.
  • the second object of the present invention is to remove a large force, that is, a large mechanical stress from a heating element without applying a large mechanical stress to a solder joint for fixing a sensor substrate on which a heating element such as a solid-state imaging device or a signal processing semiconductor element is mounted.
  • An object of the present invention is to provide an imaging apparatus including a cooling mechanism that can efficiently dissipate generated heat.
  • a third object of the present invention is to generate heat generated from a heating element without applying a large mechanical stress to a solder joint for fixing a sensor substrate on which a heating element such as a solid-state imaging device or a signal processing semiconductor element is mounted.
  • An object of the present invention is to provide a manufacturing method for easily assembling an imaging device having a cooling mechanism capable of efficiently radiating heat in a short time with high accuracy.
  • a typical configuration of the present invention for achieving the first object is as follows.
  • Has a housing outside the device separates light incident from the front of the device into a plurality of color components by a color separation prism, converts each color component into an electrical signal by a solid-state image sensor, and processes the converted electrical signal
  • An image pickup apparatus that performs signal processing using a semiconductor element for image processing, comprising: a cooling mechanism that cools the solid-state image pickup element and the signal processing semiconductor element for each color component; and the solid-state image pickup element and the signal processing semiconductor element.
  • Each of the sensor substrates is fixed by soldering at a solder joint provided in the imaging device casing, the solid-state imaging device is mounted on the front surface of the sensor substrate, and the sensor substrate One or a plurality of the signal processing semiconductor elements are mounted on the rear surface, and each of the cooling mechanisms is connected to the solid-state imaging element.
  • a heat conductive sheet, and the first opening and the second opening And a filled thermal grease, the The first heat conductive sheet, the first heat conductive sheet, and the first heat radiator interposed between the sensor substrate, the first heat radiator, and the sensor substrate to generate heat from the solid-state imaging device.
  • An image pickup apparatus comprising: a heat conduction grease interposed between a heat radiator and the heat conduction plate; and the heat conduction plate and the heat conduction plate that transmits the heat to the image pickup apparatus casing.
  • the typical configuration of the present invention for achieving the second object is as follows.
  • An imaging apparatus having a casing on the outside of the apparatus, converting light incident from the front of the apparatus into an electrical signal by a solid-state imaging device, and processing the converted electrical signal by a signal processing semiconductor element, the solid-state imaging
  • the sensor substrate is provided with a solder joint provided in the imaging device casing.
  • the solid-state image sensor is mounted on the front surface thereof, and one or more signal processing semiconductor elements are mounted on the front surface or the rear surface thereof.
  • the cooling mechanism includes the solid-state image sensor.
  • a heat conduction plate disposed behind the image sensor and fixed to the housing of the imaging device, and disposed in a first opening of the heat conduction plate and capable of floating in all directions including the front-rear direction in the first opening.
  • Conductive grease is transmitted to the imaging device casing via the thermal conductive plate, and heat generated from the signal processing semiconductor element is interposed between the signal processing semiconductor element and the second heat radiator.
  • the second heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so as to be interposed between the sensor substrate, the second radiator and the sensor substrate, and the second heat conductive sheet Heat conduction grease interposed between the second heat radiator, the second heat radiator, the heat conduction grease interposed between the second heat radiator and the heat conduction plate, and the heat conduction plate.
  • the imaging device is transmitted to the imaging device casing.
  • a typical configuration of the present invention for achieving the third object is as follows.
  • the solid-state imaging device is mounted on the front surface, and the sensor substrate on which one or more of the signal processing semiconductor devices are mounted on the front surface or the rear surface is positioned, and the sensor substrate is fixed in the imaging device casing.
  • a heat conduction plate having a step, a first opening provided at a position facing the solid-state imaging device, and one or a plurality of second openings provided at a position facing the signal processing semiconductor element, Arranging behind the sensor substrate and fixing it to the imaging device casing, and floating in the first opening of the heat conducting plate in all directions including the front-rear direction in the first opening
  • Step through the first heat dissipating body and the first heat conductive sheet having heat insulation between the first heat dissipating body and the sensor substrate and the heat conductive grease, the sensor by the elastic body Pressing the substrate against the signal processing semiconductor element by means of an elastic body through thermal conductive grease, or between the second radiator and the sensor substrate. And a step of pressing against the sensor substrate by an elastic body via a second heat conductive sheet having electrical insulation and a heat conductive grease.
  • heat generated from a heating element can be efficiently dissipated without applying a large mechanical stress to a solder joint that fixes a sensor substrate on which a heating element such as a solid-state imaging device or a signal processing semiconductor element is mounted. can do.
  • 1 is an exploded perspective view of a part of an imaging apparatus according to a first embodiment of the present invention. It is a disassembled perspective view explaining the method to fix the sensor board
  • FIG. 1 is an exploded perspective view of a part of the imaging apparatus according to the first embodiment.
  • FIG. 2 is an exploded perspective view for explaining a method of fixing the sensor substrate of the imaging apparatus according to the first embodiment to the color separation prism.
  • FIG. 3 is a horizontal central cross-sectional view of the imaging apparatus according to the first embodiment.
  • FIG. 4 is a vertical sectional view of the imaging apparatus according to the first embodiment.
  • reference numeral 101 denotes a front frame (front part of a housing) of a camera housing (imaging device housing) made of, for example, aluminum, and 102 denotes a color separation prism.
  • a heat radiating fin is provided on the outer surface of the front frame 101.
  • the color separation prism 102 separates light incident from a front imaging lens (not shown) into light of three primary colors (red R, green G, and blue B).
  • the light components separated into the three primary colors are divided into three directions as shown in FIG. 1, and when viewed from the color separation prism 102, the R component is diagonally upward, the G component is horizontal, and the B component is diagonally downward.
  • the light enters the solid-state image sensor 103 for R, G, and B, and is converted into an electric signal.
  • the front means the direction in which light is incident, for example, the direction in which the front frame 101 is viewed from the color separation prism 102
  • the rear means the opposite direction.
  • the channel configuration for each light component that is, the fixing structure of the solid-state image sensor 103, the cooling mechanism for cooling the solid-state image sensor 103, and the like have the same configuration.
  • the fixing structure and cooling mechanism of the solid-state imaging device 103 which is the configuration for the G component of the central channel of the primary color light (red R, green G, blue B), will be described, and the configuration related to the R component and B component that are other channels Will not be described.
  • a prism surface fixing bracket 104 (for example, made by Permalloy) is bonded to the prism end face for each separated light component of the color separation prism 102, and an imaging element fixing lower bracket 105 (for example, made by Permalloy) is provided thereon. Is screwed.
  • the solid-state imaging device 103 that extracts an electrical signal from light of three primary colors (red R, green G, and blue B) is mounted on the front surface of the sensor substrate 108 (for example, made of glass epoxy), and is mounted on the rear surface of the sensor substrate 108.
  • the solid-state image sensor 103, the signal processing semiconductor element 109, and the signal connection connector 110 are soldered to the sensor substrate.
  • the video signal is connected to the signal connection connector 110, and the color separation prism 102 is connected to the color separation prism 102 so that there is no chromatic aberration or image misalignment while viewing the video signal for each of the three primary colors (red R, green G, and blue B).
  • the sensor substrate 108 on which the solid-state image sensor 103 is mounted is moved to perform positioning with a predetermined accuracy.
  • the soldering lead 105a of the imaging element fixing lower metal fitting 105 is inserted into the solder fixing hole 108a of the sensor substrate 108, the soldering lead 105a is soldered to the solder fixing hole 108a in a positioned state, and solid-state imaging is performed.
  • the position of the element 103 with respect to the color separation prism 102 is fixed.
  • a light shielding member 117 made of flexible plastic or the like for preventing light incident from the outside of the color separation prism 102 is sandwiched between the color separation prism 102 and the solid-state imaging element 103.
  • soldering lead 105a of the imaging element fixing lower metal fitting 105 is inserted into the solder fixing hole 108a of the sensor substrate 108 and soldered, the solder fixing is compared with the conventional soldering between flat surfaces shown in FIG. 9, for example. Solder creep at the solder joint between the hole 108a and the soldering lead 105a can be suppressed.
  • the horizontal fixed cooling plate (heat conduction plate) 112 is perpendicular to the color separation prism 102 and the sensor substrate 108 so as to cover the color separation prism 102 and the sensor substrate 108 with a gap.
  • the fixed cooling plates 122a and 122b and the front frame 101 are fixed to each other with screws.
  • the horizontal fixed cooling plate (heat conductive plate) 112 and the vertical fixed cooling plates 122a and 122b are made of a high heat conductive metal having high heat conductivity, such as aluminum or copper.
  • the horizontal fixed cooling plate 112 and the vertical fixed cooling plates 122a and 122b are used for the camera housing in which the color separation prism 102 is mounted to generate heat generated from the solid-state imaging device 103 and the signal processing semiconductor device 109 mounted on the sensor substrate 108. It is for guiding to the front frame 101.
  • the plate spring 115 which is an elastic body, is screwed and fixed to the support column 108b provided upright on the sensor substrate 108 with a predetermined gap between the sensor substrate 108 and the plate spring 115. At this time, the screw for fixing the leaf spring 115 passes through the horizontal fixed cooling plate 112.
  • the plate spring 115 may be fixed to the horizontal fixed cooling plate 112.
  • the material of the saddle leaf spring 115 is, for example, phosphor bronze, and the thickness is, for example, 0.2 mm.
  • the leaf spring 115 has a substantially rectangular frame shape (vertical 20 mm ⁇ horizontal 30 mm) when viewed from the front, a pressing portion 115 a that presses the radiator 113, which will be described later, and a pressing portion 115 b that presses the radiator 114 forward.
  • the frame, the pressing part 115a and the pressing part 115b are integrally formed. By being integrally formed in this way, the load pressed by the leaf spring 115 does not generate solder crepes at the solder joint where the sensor substrate 108 is joined to the outside of the sensor substrate 108, or is registered in the solid-state image sensor 103. It is easy to manufacture a small leaf spring 115 that is small enough not to cause the deviation.
  • the horizontal fixed cooling plate 112 is provided with a first opening 112a and a second opening 112b, each of which has, for example, an aluminum radiator 113 (one in the example of FIG. 1). And the radiator 114 (two in the example of FIG. 1) are accommodated so as to be movable in all directions including the front-rear direction.
  • the omni-direction includes a front-rear direction, a direction perpendicular to the front-rear direction (up and down, left-right, oblique vertical direction), and an oblique direction with respect to the front-rear direction.
  • the flange spring 115 urges the heat dissipating body 113 and the heat dissipating body 114 forward, and presses the signal processing semiconductor element 109 mounted on the rear surface of the sensor substrate 108 or the rear surface of the sensor substrate 108.
  • the spring load of the leaf spring 115 at this time is set to a small value that does not cause solder crepe at the solder joint where the sensor substrate 108 is joined, or does not cause registration misalignment in the solid-state image sensor 103. 50 g or less.
  • the horizontal fixed cooling plate 112 includes a first opening 112a for cooling the solid-state imaging device and a second opening 112b for cooling the semiconductor device, at positions facing the solid-state imaging device 103 and the signal processing semiconductor device 109, respectively. Is opened.
  • the first opening 112a is a rectangular opening when viewed from the front (the shape viewed from the front), and the second opening 112b is a circular opening when viewed from the front.
  • the first opening 112a and the second opening 112b are through holes of the same area that penetrate from the front surface to the rear surface of the horizontal fixed cooling plate 112, but are not limited to the through holes of the same area. .
  • a first radiator 113 that is smaller than the opening size of the first opening 112a and can move in all directions including the front-rear direction in the first opening 112a is inserted and disposed.
  • a signal connection connector 110 for taking out a video signal of the sensor substrate 108 is also inserted.
  • the first heat dissipating body 113 is U-shaped when viewed from the front, and the U-shaped shape is determined so that the first heat dissipating body 113 does not interfere with the signal connection connector 110.
  • the signal connector 110 is provided in the center of the sensor substrate 108 in order to take out the video signal at high speed.
  • the solid-state image sensor 103 is usually mounted on the front surface of the sensor substrate 108 because it needs to face the color separation prism 102 side (front side) in order to take in image light. Therefore, heat generated from the solid-state image sensor 103 is taken from the rear surface of the sensor substrate 108 via the sensor substrate 108. Therefore, a U-shaped sheet 111, which is a thermal conductive sheet having electrical insulation and high thermal conductivity, is attached to the rear surface of the sensor substrate 108 so as to face the solid-state imaging device 103, and the rear surface of the sensor substrate 108 A U-shaped sheet 111 is sandwiched between the heat radiator 113.
  • the U-shaped sheet 111 for example, a high thermal conductivity sheet (made of heat dissipation silicon rubber) having a thermal conductivity of 1 to 5 W / (m ⁇ K) can be used. Then, a small load is applied from the rear side of the first heat dissipating body 113 by the integrated leaf spring 115 so as to maintain a good contact of heat conduction between the U-shaped sheet 111 and the first heat dissipating body 113. I have to.
  • the U-shaped sheet 111 has a U-shape when viewed from the front, and the U-shaped shape is determined so that the U-shaped sheet 111 does not interfere with the signal connection connector 110.
  • the first heat dissipating body 113 can move in all directions including the front-rear direction, even if the U-shaped sheet 111 is attached with a slight inclination with respect to the rear surface of the sensor substrate 108, 1 heat radiator 113 can maintain a good thermal conductivity contact with the U-shaped sheet 111.
  • the U-shaped sheet 111 prevents the heat conductive grease described later from coming into contact with the sensor substrate 108, and the heat conductive grease penetrates the sensor substrate 108 to change the sensor substrate 108. Play a role in preventing.
  • the first opening 112a is filled with heat conductive grease that conducts heat efficiently and does not hinder the movement of the first radiator 113.
  • This thermal conductive grease also serves as a lubricant that enhances the ease of movement.
  • a high thermal conductive grease having a thermal conductivity of 1 to 5 W / (m ⁇ K) can be used.
  • the gap between the horizontally fixed cooling plate 112 and the first radiator 113 in the first opening 112a is filled with the thermal conductive grease, and the heat of the first radiator 113 is efficiently horizontally fixed. It can be transmitted to the cooling plate 112.
  • the thermal conductive grease is interposed between the U-shaped sheet 111 and the first heat radiator 113, the heat from the U-shaped sheet 111 can be efficiently transmitted to the first heat radiator 113. Can do. Therefore, the U-shaped sheet 111 having electrical insulation properties and high thermal conductivity efficiently derives the heat transferred from the solid-state imaging device 103 to the sensor substrate 108, and the derived heat is transmitted through the heat conduction grease. 1 to the heat radiator 113. Further, the heat from the first heat radiator 113 is efficiently transmitted to the horizontal fixed cooling plate 112 via the heat conductive grease.
  • the second radiators 114 smaller than the opening size of the second openings 112b and capable of floating in all directions including the front-rear direction are inserted in the second openings 112b.
  • the second heat radiator 114 has a circular columnar shape when viewed from the front.
  • the second heat radiator 114 is in direct contact with the surface of the signal processing semiconductor element 109 mounted on the rear surface of the sensor substrate 108 via heat conductive grease, and is integrally formed from the rear of the second heat radiator 114.
  • a small load by the plate spring 115 By applying a small load by the plate spring 115, a good heat conduction contact is maintained between the signal processing semiconductor element 109 and the second radiator 114.
  • each signal processing semiconductor element 109 has a sensor substrate. Even when mounted at different angles or mounted at different angles with respect to the rear surface of the 108, each second radiator 114 maintains good contact with the corresponding signal processing semiconductor element 109 in heat conduction. be able to.
  • the second opening 112b is filled with heat conductive grease having high heat conductivity that efficiently transfers heat and does not hinder the movement of the second heat radiator 114.
  • the gap between the horizontally fixed cooling plate 112 and the second radiator 114 in the second opening 112b is filled with the thermal conductive grease, and the heat of the second radiator 114 is efficiently horizontally fixed. It can be transmitted to the cooling plate 112.
  • the thermal conductive grease is interposed between the signal processing semiconductor element 109 and the second heat radiating body 114, heat from the signal processing semiconductor element 109 can be efficiently transmitted to the second heat radiating body 114. Can do. Therefore, the heat generated from the signal processing semiconductor element 109 is transmitted to the second heat radiating body 114 via the thermal conductive grease, and is transmitted from the second heat radiating body 114 to the horizontal fixed cooling plate 112 via the thermal conductive grease. Can do.
  • the cooling mechanism of the solid-state imaging device 103 includes a U-shaped sheet 111, a U-shaped sheet 111, and a first radiator 113.
  • the cooling mechanism of the signal processing semiconductor element 109 includes a thermal conductive grease between the signal processing semiconductor element 109 and the second radiator 114, a second radiator 114, a leaf spring 115, and a second radiator.
  • the heat generated from the solid-state image sensor 103 is the sensor substrate 108, the U-shaped sheet 111, the heat conduction grease between the U-shaped sheet 111 and the first heat radiator 113, and the first heat radiator 113.
  • the heat conduction grease between the first radiator 113 and the horizontal fixed cooling plate 112, the horizontal fixed cooling plate 112, the vertical fixed cooling plates 122a and 122b, etc., are efficiently transmitted to the front frame 101, and the solid-state image sensor 103 Can be cooled.
  • the heat generated from the signal processing semiconductor element 109 is in parallel with the heat conduction grease between the signal processing semiconductor element 109 and the second heat dissipation element 114, the second heat dissipation element 114, and the second heat dissipation element 114. Through the heat conduction grease between the fixed cooling plates 112, the horizontal fixed cooling plate 112, the vertical fixed cooling plates 122a and 122b, etc., it is efficiently transmitted to the front frame 101, and the signal processing semiconductor element 109 can be cooled.
  • the gap between the horizontal fixed cooling plate 112 and the first radiator 113 in the first opening 112a and the gap between the horizontal fixed cooling plate 112 and the second radiator 114 in the second opening 112b are as follows.
  • the solid-state imaging device 103 or each member is set to a value that absorbs all dimensional tolerances, mounting dimensional tolerances, and the like and satisfies the cooling performance.
  • the horizontal fixed cooling plate 112 is made of aluminum and has a thickness of 3 mm
  • the gap may be selected from 100 to 200 ⁇ m.
  • the solid-state imaging device 103 is mounted on the front surface side of the sensor substrate 108, and the signal processing semiconductor element 109 is mounted on the rear surface side of the sensor substrate 108.
  • the heat generated from the heating element can be efficiently radiated to the imaging device housing without applying a large force to the sensor substrate 108 or the solder joint portion that is a fixing portion of the sensor substrate 108.
  • the sensor substrate 108 is fixed by soldering, but the cooling mechanism of the first embodiment can be applied even when the sensor substrate 108 is fixed by an adhesive.
  • the first opening 112a and the second opening 112b are formed as through holes, and the first heat dissipating body 113 and the second heat dissipating body 114 are pressed by the leaf spring 115 from the rear of the through holes.
  • the first opening 112a and the second opening 112b can be formed as non-through holes (concave portions) whose rear surfaces are closed, and an elastic body such as a leaf spring or a coil spring can be provided on the rear surface in the holes.
  • the following effects (1) to (10) can be obtained.
  • the heat conduction grease between the first heat radiator 113, the heat conduction grease between the first heat radiator 113 and the horizontal fixed cooling plate 112, the horizontal fixed cooling plate 112, and the like can efficiently radiate heat.
  • the solid-state imaging device 103 is mounted on the front surface of the sensor substrate 108, the signal processing semiconductor device 109 is mounted on the rear surface, and the heat from the solid-state imaging device 103 is transferred to the first heat dissipating body 113 via the heat conductive sheet 111. Since the heat from the signal processing semiconductor element 109 is transmitted to the second radiator 114 without going through the heat conductive sheet, the solid-state imaging element and the signal processing semiconductor element are mounted on the front surface of the sensor substrate. Compared with the configuration in which heat from the solid-state imaging device and the signal processing semiconductor device is transmitted to the heat radiating body through the heat conductive sheet, the heat radiation effect can be enhanced.
  • the first heat dissipating body 113 can move in all directions including the front-rear direction, even if the U-shaped sheet 111 is attached with a slight inclination with respect to the rear surface of the sensor substrate 108, The heat dissipating body 113 can maintain good contact with the U-shaped sheet 111 in heat conduction.
  • the second heat dissipator 114 can move in all directions including the front-rear direction, even if the signal processing semiconductor element 109 is mounted with a slight inclination with respect to the rear surface of the sensor substrate 108, The radiator 114 can maintain a good thermal conductivity contact with the signal processing semiconductor element 109.
  • each of the signal processing semiconductor elements 109 is a sensor. Even when mounted in a different direction with respect to the rear surface of the substrate 108 or mounted at a different angle, each of the second radiators 114 has good contact with the corresponding signal processing semiconductor element 109 in heat conduction. Can keep.
  • one horizontal fixed cooling plate 112 heat conduction plate
  • a small cooling mechanism can be realized.
  • the U-shaped sheet 111 prevents the thermal conductive grease from coming into contact with the sensor substrate 108, it is possible to prevent the thermal conductive grease from penetrating into the sensor substrate 108 and altering the sensor substrate 108. . Furthermore, since the U-shaped sheet 111 has electrical insulation, the electrical insulation of the sensor substrate 108 is ensured when the first heat radiator 113 is in contact therewith.
  • the U-shaped sheet 111 has a U-shape when viewed from the front, it can be prevented from interfering with the signal connection connector 110, and a large contact area with the sensor substrate 108 can be realized.
  • the solder lead 105a of the imaging element fixing lower metal fitting 105 is inserted into the solder fixing hole 108a of the sensor substrate 108 and soldered, compared with the conventional soldering between the flat surfaces shown in FIG. It is possible to suppress solder creep.
  • the leaf spring 115 is integrally formed with a pressing portion 115a that presses the radiator 113 forward and a pressing portion 115b that presses the radiator 114 forward. Thus, it is easy to manufacture a small leaf spring 115 that is small enough not to generate solder crepe at the solder joint where the sensor substrate 108 is joined, or does not cause registration deviation in the solid-state image sensor 103.
  • FIG. 5 is an exploded perspective view of a part of the imaging apparatus according to the second embodiment. 5 that are the same as those described in the first embodiment in FIG. Also, since the structures for the three primary colors of light (red R, green G, and blue B) are the same, only the middle G channel is shown and described in detail here.
  • the solid-state imaging device 103 and the signal processing semiconductor device 209 are soldered to the front surface of the sensor substrate 208 that extracts an electrical signal.
  • the sensor board 208 is the same as the sensor board 108 of the first embodiment in other respects, and a signal connection connector (not shown) for taking out the video signal of the solid-state image sensor 103 is provided on the rear surface of the sensor board 208. It has been.
  • a horizontal fixed cooling plate 212 heat conduction plate
  • vertical fixed cooling plates 122a and 122b and a front surface so as to cover the color separation prism 102 and the sensor substrate 208 with a gap outside the color separation prism 102 and the sensor substrate 208.
  • the frame 101 is fixed to each other with screws.
  • the horizontal fixed cooling plate 212 and the vertical fixed cooling plates 122a and 122b are made of a high heat conductive metal having high heat conductivity, such as aluminum or copper.
  • the horizontal fixed cooling plate 212 and the vertical fixed cooling plates 122a and 122b are arranged in a camera housing in which the heat generated from the solid-state imaging device 103 and the signal processing semiconductor device 209 mounted on the sensor substrate 208 is mounted on the color separation prism 102. It is for guiding to the front frame 101.
  • a leaf spring 215 that is an elastic body is screwed and fixed to a support 208b that is erected on the sensor substrate 208 at a predetermined interval from the sensor substrate 208. At this time, the screw for fixing the leaf spring 215 passes through the horizontal fixed cooling plate 212.
  • the plate spring 215 may be fixed to the horizontal fixed cooling plate 212.
  • the shape, material, and thickness of the leaf spring 215 are the same as those of the leaf spring 115 of the first embodiment.
  • the horizontal fixed cooling plate 212 is provided with a third opening 212a, in which the radiator 213 is accommodated so as to be movable in all directions including the front-rear direction.
  • the radiator 213 is biased forward by the leaf spring 215 and presses the rear surface of the sensor substrate 208.
  • the load that pushes the leaf spring 215 at this time is the same as in the first embodiment, so that no solder crepe is generated at the solder joint where the sensor substrate 208 is joined to the outside, or the solid-state image sensor 103 is misaligned. It is set to be small enough not to generate and is 50 g or less.
  • a third opening 212 a for cooling the solid-state image sensor 103 and the signal processing semiconductor element 209 is opened at a position facing the solid-state image sensor 103 and the signal processing semiconductor element 209.
  • the third opening 212 a is a rectangular opening that is rectangular when viewed from the front, and is a through hole that penetrates from the front surface of the horizontal fixed cooling plate 212 to the rear surface.
  • a third radiator 213 that is smaller than the opening size of the third opening 212a and can freely move in all directions including the front-rear direction in the third opening 212a is inserted and disposed.
  • a signal connection connector (not shown) for taking out the video signal of the sensor substrate 208 is also inserted.
  • the third radiator 213 has a square shape when viewed from the front, and an opening 213a, which is a rectangular through hole, is formed at the center thereof.
  • the B-shaped shape of the third radiator 213 is determined so that the third radiator 213 does not interfere with the signal connection connector.
  • the signal connection connector is provided at the center of the sensor substrate 208 in order to take out the video signal at high speed.
  • the heat generated from the solid-state imaging device 103 and the signal processing semiconductor device 209 is taken from the rear surface of the sensor substrate 208 via the sensor substrate 208. Therefore, a square-shaped sheet 211 having electrical insulation and high thermal conductivity is sandwiched between the rear surface of the sensor substrate 208 and the third radiator 213. Then, a small load is applied from behind the third radiator 213 by the integral leaf spring 215 so as to maintain a good heat conduction contact between the B-shaped sheet 211 and the third radiator 213. I have to.
  • the square-shaped sheet 211 has a square shape when viewed from the front, and a rectangular opening 211a is formed at the center thereof. The square shape of the square-shaped sheet 211 is determined so as not to interfere with the signal connection connector.
  • the U-shaped sheet 211 plays a role of preventing the heat conductive grease having high thermal conductivity from coming into contact with the sensor substrate 208, similarly to the U-shaped sheet 111 of the first embodiment.
  • the third opening 212a is filled with heat conductive grease having high heat conductivity that efficiently transfers heat and does not hinder the movement of the third radiator 213.
  • the gap between the third opening 212a and the third heat radiating body 213 is filled with the heat conductive grease, and the heat of the third heat radiating body 213 can be efficiently transmitted to the horizontal fixed cooling plate 212. it can.
  • the thermal conductive grease is interposed between the square-shaped sheet 211 and the third radiator 213, the heat from the square-shaped sheet 211 can be efficiently transmitted to the third radiator 213. Can do.
  • the B-shaped sheet 211 having electrical insulation and high thermal conductivity efficiently derives the heat transmitted from the solid-state imaging device 103 and the signal processing semiconductor element 209 to the sensor substrate 208, and the derived heat is It is transmitted to the third heat radiating body 213 through the thermal conductive grease. Further, the heat from the third radiator 213 is transmitted to the horizontal fixed cooling plate 212 via the heat conductive grease.
  • the material of the thermal conductive grease filled in the sensor substrate 208, the third heat radiator 213, the square-shaped sheet 211, and the third opening 212a is the sensor substrate 108 of the first embodiment, and the first The heat dissipating body 113, the U-shaped sheet 111, and the material of the heat conductive grease filled in the first opening 112a are the same.
  • the cooling mechanism of the solid-state imaging device 103 and the signal processing semiconductor element 209 includes a B-shaped sheet 211, a B-shaped sheet 211, a third radiator 213, and the like.
  • the solid-state imaging element 103 and the signal processing semiconductor element 209 can be cooled efficiently by being transmitted to the front frame 101.
  • the cooling performance is slightly lower than that in the first embodiment, but since there are few cooling parts and the assembly is easy, the imaging apparatus can be assembled at low cost. There are features.
  • FIG. 6 is an exploded perspective view illustrating a method for fixing the sensor substrate of the imaging apparatus according to the third embodiment to the color separation prism.
  • the same configurations as those described in the first embodiment and the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • Solder connection portions 305 a are formed at the four corners of the imaging element fixing lower metal fitting 305 attached to the eyelid prism 102.
  • an image sensor fixing bracket 306 is fixed to the back surface of the solid-state image sensor 103 with an adhesive.
  • Solder connection portions 306 a are also formed at the four corners of the image sensor fixing bracket 306.
  • the solid-state image sensor 103 is mounted on the front surface of the sensor substrate 308, and the connection terminals of the solid-state image sensor 103 are soldered on the rear surface of the sensor substrate 308.
  • each solid-state image sensor 103 is moved to perform positioning with a predetermined accuracy, and the solder connection portions 305a at the four corners of the imaging device fixing lower bracket 305 and the solder connection portions 306a at the four corners of the imaging device fixing bracket 306 are soldered and fixed. .
  • the heat generated from the solid-state image sensor 103 is not released from the horizontal fixed cooling plate or the like to the front frame 301 via the sensor substrate 308 as in the first and second embodiments described above.
  • the prism 102 can also escape from the prism 102 side through the imaging device fixing lower metal fitting 305.
  • FIG. 7 is a horizontal central cross-sectional view of the imaging apparatus according to the fourth embodiment.
  • FIG. 8 is a vertical sectional view of the imaging apparatus according to the fourth embodiment.
  • the imaging element fixing lower metal fitting 405 is screwed to a front frame (front part of the casing) 401 of a camera casing (imaging apparatus casing) made of, for example, aluminum.
  • the solid-state image sensor 403 is mounted on the front surface of the sensor substrate 408, and the connection terminal of the solid-state image sensor 403 is soldered on the rear surface of the sensor substrate 408.
  • a signal processing semiconductor element 409 that processes a video signal of the solid-state imaging element 403 and a signal connection connector (not shown) that extracts a signal from the signal processing semiconductor element 409 are provided.
  • the positioning of the solid-state image sensor 403 is performed as follows. That is, a video signal is connected to a signal connection connector (not shown), and the solid-state image sensor 403 is moved to perform positioning with a predetermined accuracy so that there is no image shift while viewing the video signal. At this time, since the soldering lead 405a of the imaging device fixing lower metal fitting 405 is inserted into the solder fixing hole (not shown) of the sensor substrate 408, the soldering lead 405a is inserted into the solder fixing hole (not shown) in this positioned state. Solder to). Thereby, the solid-state image sensor 403 is fixed to the front frame 401.
  • the horizontal fixed cooling plate 412 heat conduction plate
  • the vertical fixed cooling plates 422a and 422b and the front frame so as to cover the sensor substrate 408 with a gap outside the sensor substrate 408.
  • 401 are fixed to each other by screws.
  • the horizontal fixed cooling plate 412 (heat conductive plate) and the vertical fixed cooling plates 422a and 422b are made of a high heat conductive metal having high thermal conductivity, such as aluminum or copper.
  • the horizontal fixed cooling plate 412 and the vertical fixed cooling plates 422a and 422b guide heat generated from the solid-state imaging device 403 and the signal processing semiconductor device 409 mounted on the sensor substrate 408 to the front frame 401 of the camera housing. belongs to.
  • a plate spring 415 that is an elastic body is fixed to the horizontal fixed cooling plate 412 with screws.
  • the shape, material, and thickness of the leaf spring 415 are the same as those of the leaf spring 115 of the first embodiment.
  • the horizontal fixed cooling plate 412 is provided with a fourth opening 412a and a fifth opening 412b, in which the heat radiating body 413 and the heat radiating body 414 move in all directions including the front-rear direction. Accomodated as possible.
  • the heat radiating body 413 and the heat radiating body 414 are urged forward by a leaf spring 415 and press the signal processing semiconductor element 409 mounted on the rear surface of the sensor substrate 408 or the rear surface of the sensor substrate 408.
  • the spring load of the leaf spring 415 at this time does not cause a solder crepe to occur at the solder joint where the sensor substrate 408 is joined, or does not cause a registration shift in the solid-state image sensor 403, as in the first embodiment. It is set to a small one and is 50 g or less.
  • the horizontal fixed cooling plate 412 has a fourth opening 412a for cooling the solid-state imaging element and a fifth opening 412b for cooling the semiconductor element at positions facing the solid-state imaging element 403 and the signal processing semiconductor element 409, respectively. And are opened.
  • the fourth opening 412a is a rectangular opening that is rectangular when viewed from the front
  • the fifth opening 412b is a circular opening that is circular when viewed from the front, both of which penetrate from the front surface to the rear surface of the horizontal fixed cooling plate 412. It is a through hole.
  • a fourth heat radiating body 413 that is smaller than the opening size of the fourth opening 412a and can freely move in all directions including the front-rear direction in the fourth opening 412a is inserted and disposed.
  • a signal connection connector (not shown) for taking out the video signal of the sensor substrate 408 is also inserted.
  • the fourth radiator 413 is U-shaped when viewed from the front, like the first radiator 113 of the first embodiment, and this U-shaped configuration is such that the fourth radiator 413 is connected to the signal. It is determined not to interfere with the connector. Note that the signal connector is provided at the center of the sensor substrate 408 in order to take out the video signal at high speed.
  • the fourth heat radiating body 413 can move in all directions including the front-rear direction, so that the U-shaped sheet 411 is attached with a slight inclination with respect to the rear surface of the sensor substrate 408.
  • the fourth heat radiating body 413 can maintain good contact with the U-shaped sheet 411 in heat conduction.
  • the U-shaped sheet 411 plays the role of preventing the thermal conductive grease from coming into contact with the sensor substrate 408, as in the first embodiment.
  • the reason for the U-shape is that it does not interfere with the signal connection connector as in the first embodiment.
  • the fourth opening 412a is filled with heat conductive grease having high heat conductivity that efficiently transfers heat and does not hinder the movement of the fourth heat radiating body 413.
  • the gap between the horizontal fixed cooling plate 412 and the fourth radiator 413 in the fourth opening 412a is filled with the thermal grease, and the heat of the fourth radiator 413 is horizontally fixed efficiently. It can be transmitted to the cooling plate 412.
  • the thermal conductive grease is interposed between the U-shaped sheet 411 and the fourth radiator 413, the heat from the U-shaped sheet 411 is efficiently transmitted to the fourth radiator 413. Can do.
  • the U-shaped sheet 411 having electrical insulation and high thermal conductivity efficiently derives the heat transmitted from the solid-state imaging device 403 to the sensor substrate 408, and the derived heat is transmitted through the heat conduction grease. 4 radiating body 413. Furthermore, the heat from the fourth radiator 413 is efficiently transmitted to the horizontal fixed cooling plate 412 via the heat conductive grease.
  • a fifth heat radiating body 414 that is smaller than the opening size of the fifth opening 412b and can move in all directions including the front-rear direction in the fifth opening 412b is inserted and disposed.
  • the fifth radiator 414 has a circular columnar shape when viewed from the front.
  • the fifth heat radiating body 414 is in direct contact with the surface of the signal processing semiconductor element 409 mounted on the rear surface of the sensor substrate 408 via heat conductive grease, and is integrally formed from the rear of the fifth heat radiating body 414. By applying a small load by the plate spring 415, a good heat conduction contact is maintained between the signal processing semiconductor element 409 and the fifth radiator 414.
  • the fifth heat radiating body 414 can move in all directions including the front-rear direction, even if the signal processing semiconductor element 409 is mounted with a slight inclination with respect to the rear surface of the sensor substrate 408, The fifth radiator 414 can maintain good contact with the signal processing semiconductor element 409 in heat conduction.
  • the fifth opening 412b is filled with high thermal conductive grease that efficiently transfers heat and does not hinder the movement of the fifth radiator 414.
  • the gap between the horizontal fixed cooling plate 412 and the fifth radiator 414 in the fifth opening 412b is filled with the heat conductive grease, and the heat of the fifth radiator 414 is horizontally fixed efficiently. It can be transmitted to the cooling plate 412.
  • the thermal conductive grease is interposed between the signal processing semiconductor element 409 and the fifth heat radiating body 414, the heat from the signal processing semiconductor element 409 is efficiently transmitted to the fifth heat radiating body 414. Can do.
  • the heat generated from the signal processing semiconductor element 409 is transmitted to the fifth heat radiating body 414 via the thermal conductive grease, and is transmitted from the fifth heat radiating body 414 to the horizontal fixed cooling plate 412 via the thermal conductive grease.
  • the material of the thermal conductive grease filled in the sensor substrate 408, the fourth radiator 413 and the fifth radiator 414, and the fourth opening 412a and the fifth opening 412b is the same as that of the first embodiment.
  • the material of the thermal conductive grease filled in the sensor substrate 108, the first heat radiator 113, and the first opening 112a is the same.
  • the cooling mechanism of the solid-state imaging device 403 includes a U-shaped sheet 411, a U-shaped sheet 411, and a fourth radiator 413.
  • the cooling mechanism of the signal processing semiconductor element 409 includes a thermal conductive grease between the signal processing semiconductor element 409 and the fifth radiator 414, a fifth radiator 414, a leaf spring 415, and a fifth radiator 414.
  • the heat generated from the solid-state image sensor 403 includes the sensor substrate 408, the U-shaped sheet 411 having thermal conductivity, the thermal conductive grease between the U-shaped sheet 411 and the fourth radiator 413, 4, heat conduction grease between the fourth heat radiating body 413 and the horizontal fixed cooling plate 412, the horizontal fixed cooling plate 412, the vertical fixed cooling plates 422 a and 422 b, and the like, and efficiently transmitted to the front frame 401. Therefore, the solid-state image sensor 403 can be cooled. Further, the heat generated from the signal processing semiconductor element 409 is fixed horizontally to the heat conductive grease between the signal processing semiconductor element 409 and the fifth heat radiating body 414, the fifth heat radiating body 414, and the fifth heat radiating body 414. The signal processing semiconductor element 409 can be cooled because it is efficiently transmitted to the front frame 401 via the heat conduction grease between the cooling plates 412, the horizontal fixed cooling plate 412, the vertical fixed cooling plates 422a and 422b, and the like.
  • the gap between the horizontal fixed cooling plate 412 and the fourth radiator 413 in the fourth opening 412a and the gap between the horizontal fixed cooling plate 412 and the fifth radiator 414 in the fifth opening 412b are as follows.
  • the solid-state imaging device 403 or each member is set to a value that absorbs all the dimensional tolerances, mounting dimensional tolerances, etc., and satisfies the cooling performance.
  • the horizontal fixed cooling plate 412 is made of aluminum and has a thickness of 3 mm
  • the gap may be selected from 100 to 200 ⁇ m.
  • the solid-state imaging device 403 is mounted on the front surface side of the sensor substrate 408, and the signal processing semiconductor element 409 is mounted on the rear surface side of the sensor substrate 408. Also in the fourth embodiment, the heat generated from the heating element can be efficiently radiated to the imaging device housing without applying a large force to the solder joint for fixing the sensor substrate 408.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
  • the solid-state imaging device is mounted on the front surface of the sensor substrate and the signal processing semiconductor device is mounted on the rear surface.
  • the solid-state imaging device signal processing semiconductor device is mounted on the sensor substrate. It can also be mounted on the front.
  • the first invention relates to the imaging apparatus according to the first embodiment, has a housing on the outside of the apparatus, separates light incident from the front of the apparatus into a plurality of color components by a color separation prism, and An image pickup apparatus that converts each component into an electric signal by a solid-state image sensor, and performs signal processing on the converted electric signal by a signal processing semiconductor element, wherein the solid-state image sensor and the signal processing unit are each for each color component
  • Each of the sensor substrates is soldered at a solder joint provided in the imaging device casing.
  • the solid-state imaging device is mounted on the front surface of the sensor substrate, and one or more of the signal processing semiconductor elements are mounted on the rear surface of the sensor substrate.
  • each of the cooling mechanisms includes a first opening provided at a position facing the solid-state imaging element and one or a plurality of first openings provided at a position facing the signal processing semiconductor element.
  • a heat conduction plate having two openings, disposed behind the sensor substrate and fixed to the imaging device housing, and disposed in the first opening of the heat conduction plate.
  • a first heat dissipating member that can move in all directions including the front-rear direction, and a second heat dissipating member arranged in the second opening of the heat conducting plate and movable in all directions including the front-rear direction in the second opening.
  • a heat dissipating body an elastic body that presses the first heat dissipating element against the sensor substrate from the rear, and a second heat dissipating element from the rear against the signal processing semiconductor element, and the solid-state imaging element.
  • a first heat conductive sheet having edge properties, and a heat conductive grease filled in the first opening and the second opening, The first heat conductive sheet, the first heat conductive sheet, and the first heat radiator interposed between the sensor substrate, the first heat radiator, and the sensor substrate to generate heat from the solid-state imaging device.
  • a thermal conductive grease interposed between the first thermal radiator, the thermal conductive grease interposed between the first thermal radiator and the thermal conductive plate, and the thermal conductive plate through the thermal conductive plate.
  • An image pickup apparatus comprising: a heat conduction grease interposed between a heat radiator and the heat conduction plate; and the heat conduction plate and the heat conduction plate that transmits the heat to the image pickup apparatus casing.
  • a second invention relates to the imaging apparatus according to the second embodiment, has a housing on the outside of the apparatus, separates light incident from the front of the apparatus into a plurality of color components by a color separation prism, and converts each color component into An imaging device that converts an electrical signal by a solid-state image sensor and processes the converted electrical signal by a signal processing semiconductor element, the solid-state image sensor and the signal processing semiconductor element for each color component And a sensor board on which the solid-state imaging device and the signal processing semiconductor element are mounted. Each sensor board is fixed by soldering at a solder joint provided in the imaging device casing.
  • the solid-state image sensor and one or more signal processing semiconductor elements are mounted on the front surface of the sensor substrate, and the respective cooling mechanisms are A first opening provided at a position facing the solid-state imaging element and one or a plurality of second openings provided at a position facing the signal processing semiconductor element; A heat conduction plate disposed and fixed to the imaging device casing; and a first heat conduction plate disposed in a first opening of the heat conduction plate and capable of floating in all directions including the front-rear direction in the first opening.
  • a second radiator that is disposed in the second opening of the heat conducting plate and is movable in all directions including the front-rear direction in the second opening, and the first and second radiators
  • An elastic body that presses the body against the sensor substrate from behind;
  • a first heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so as to face the solid-state imaging device;
  • a second heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so as to face the signal processing semiconductor element; and heat filled in the first opening and the second opening With conductive grease, The first heat conductive sheet, the first heat conductive sheet, and the first heat radiator interposed between the sensor substrate, the first heat radiator, and the sensor substrate to generate heat from the solid-state imaging device.
  • the imaging device housing Imaging device for. Note that the first heat conductive sheet and the second heat conductive sheet may be integrally formed.
  • a third invention relates to the imaging device of the first embodiment to the fourth embodiment, has a housing on the outside of the device, converts light incident from the front of the device into an electrical signal by a solid-state imaging device, An imaging apparatus that performs signal processing on the converted electrical signal using a signal processing semiconductor element, the cooling mechanism for cooling the solid-state imaging element and the signal processing semiconductor element, the solid-state imaging element, and the signal processing semiconductor element
  • the sensor substrate is fixed by soldering to a solder joint provided in the imaging device casing, the solid-state imaging device is mounted on the front surface, and one is mounted on the front or rear surface.
  • the cooling mechanism includes a first opening provided at a position facing the solid-state imaging element and the signal processing semiconductor elements.
  • a heat conduction plate having one or a plurality of second openings provided at positions opposed to the sensor substrate, disposed behind the sensor substrate, and fixed to the imaging device housing; and A first radiator disposed in the first opening and capable of floating in the first opening in all directions including the front-rear direction; and the second opening disposed in the second opening of the heat conducting plate.
  • a second heat radiating body capable of floating in all directions including the front-rear direction, and an elastic body that presses the first and second heat radiating bodies from the rear to the front
  • a first heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so that heat generated from the solid-state imaging device is interposed between the sensor substrate and the first heat radiator and the sensor substrate.
  • Heat conductive grease interposed between the first heat conductive sheet and the first heat radiator, the first heat radiator, heat interposed between the first heat radiator and the heat conductive plate. Conductive grease is transmitted to the imaging device casing via the thermal conductive plate, and heat generated from the signal processing semiconductor element is interposed between the signal processing semiconductor element and the second heat radiator.
  • the second heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so as to be interposed between the sensor substrate, the second radiator and the sensor substrate, and the second heat conductive sheet Heat conduction grease interposed between the second heat radiator, the second heat radiator, the heat conduction grease interposed between the second heat radiator and the heat conduction plate, and the heat conduction plate.
  • the imaging device is transmitted to the imaging device casing.
  • a fourth invention is the imaging device according to the first to third inventions, wherein a signal connection connector is mounted on the rear surface of the sensor board, and the shape of the first opening viewed from the front is rectangular.
  • the shape of the first heat radiating body as viewed from the front is a U shape or a B shape, and the U shape or the B shape does not interfere with the signal connection connector.
  • 5th invention is an imaging device of 1st invention thru
  • a sixth invention is the imaging device according to the first to fifth inventions, wherein soldering at the solder joint portion of the sensor substrate is performed in a solder fixing hole provided in the sensor substrate.
  • An image pickup apparatus wherein soldering is performed by inserting a soldering lead protruding from a joint.
  • the 7th invention is an imaging device of 1st invention thru
  • the said elastic body is a press part which presses the said 2nd heat radiator and the press part which presses the said 1st heat radiator. Is a leaf spring integrally formed.
  • An eighth invention is the imaging device according to the first to seventh inventions, wherein a plurality of the signal processing semiconductor elements are mounted on the sensor substrate so as to respectively correspond to the plurality of signal processing semiconductor elements.
  • An image pickup apparatus comprising: a plurality of the second openings and a plurality of the second radiators.
  • a ninth invention relates to the imaging device of the first to fourth embodiments, has a housing on the outside of the device, converts light incident from the front of the device into an electrical signal by a solid-state imaging device, An image pickup apparatus that performs signal processing of the converted electrical signal using a signal processing semiconductor element, wherein a cooling mechanism that cools the heating element including the solid-state imaging element and the signal processing semiconductor element, and a plurality of the heating elements are mounted.
  • a sensor substrate fixed in the imaging device housing wherein the cooling mechanism has a plurality of openings respectively provided at positions facing the plurality of heating elements, and is disposed behind the sensor substrate and A heat conduction plate fixed to the imaging device casing; a heat dissipating body that is disposed in each opening of the heat conduction plate and is movable in the opening; An elastic body that presses the heat dissipating body from the rear to the front, and heat conduction grease interposed between the heat generating body and the heat dissipating member for generating heat from the heat generating body, the heat dissipating body, the heat dissipating body, and the Heat conduction grease interposed between the heat conduction plate, the heat conduction plate, and the heat conduction plate to transmit to the imaging device casing, or the heat generation from the heat generation body, the sensor substrate, the heat dissipation body, and the sensor An electrically insulating heat conductive sheet provided on the rear surface of the sensor substrate so as to be interposed between the substrates, a heat
  • an image pickup apparatus having a housing on the outside of the saddle device, converting light incident from the front of the device into an electric signal by a solid-state image pickup device, and processing the converted electric signal by a signal processing semiconductor element.
  • the solid-state imaging device is mounted on a front surface thereof, and one or a plurality of the signal processing semiconductor devices are mounted on the front surface or the rear surface of the sensor substrate, and the sensor substrate is positioned in the housing of the imaging device.
  • heat generated from a heating element can be efficiently dissipated without applying a large mechanical stress to a solder joint that fixes a sensor substrate on which a heating element such as a solid-state imaging device or a signal processing semiconductor element is mounted. Therefore, it can be used for cooling a general electronic device or the like having a sealed housing.

Abstract

Provided is an imaging apparatus capable of efficiently dissipating heat generated from a heat-generating element such as a solid image-pickup device without applying significant mechanical stress on solder joints that fix the sensor substrate on which the heat-generating element is mounted. The imaging apparatus is configured from: a sensor substrate, which is fixed inside the imaging apparatus casing and on which the heat-generating element is mounted; a heat-conducting plate that is fixed behind the sensor substrate and in which multiple openings are provided; radiators that are disposed in the openings in the heat-conducting plate and are able to move freely in all directions in said openings; heat-conducting grease filled between the heat-conducting plate and the radiators, between the radiators and the heat-generating element, etc.; a heat-conducting sheet provided between the sensor substrate and the radiators; an elastic body that presses the radiators onto the sensor substrate from behind; etc. The imaging apparatus is configured so that heat from the heat-generating element is transmitted to the imaging apparatus casing via the radiators, heat-conducting sheet, heat-conducting grease and/or heat-conducting plate.

Description

撮像装置及び撮像装置の製造方法Imaging apparatus and manufacturing method of imaging apparatus
  本発明は、CCDイメージセンサ(Charge Coupled Device Image
Sensor)等の固体撮像素子を用いた撮像装置(カメラ)に関し、特に、高性能冷却機構を備える3板式固体撮像カメラや単板式固体撮像カメラ等の撮像装置、及びその製造方法に関するものである。
The present invention relates to a CCD image sensor (Charge Coupled Device Image).
The present invention relates to an imaging apparatus (camera) using a solid-state imaging device such as a sensor, and more particularly to an imaging apparatus such as a three-plate solid-state imaging camera or a single-plate solid-state imaging camera having a high-performance cooling mechanism, and a manufacturing method thereof.
  例えば、テレビジョン放送用カメラ等の撮像装置に使用されるCCD等の固体撮像素子は、通電すると発熱によって温度上昇が生じる。温度上昇が大きくなり過ぎると、固体撮像素子内の暗電流が増加し、画像の画質が劣化する。そのため、撮像装置には、固体撮像素子の温度上昇をある範囲内に抑える冷却機構が必要である。 For example, when a solid-state imaging device such as a CCD used in an imaging device such as a television broadcast camera is energized, the temperature rises due to heat generation. If the temperature rise becomes too large, the dark current in the solid-state image sensor increases and the image quality of the image deteriorates. Therefore, the imaging device needs a cooling mechanism that suppresses the temperature rise of the solid-state imaging element within a certain range.
  一方、撮像装置の冷却機構には、単に冷却性能を高める以外に、高精細な画像を得るために撮像装置の固体撮像素子の取り付け位置精度を高め、位置ずれを常に画素サイズより非常に小さく保つことが必要である。そのため、固体撮像素子を取り付ける際の初期の機械的ストレスの発生を抑えたり、また、組み立てた後の固体撮像素子が長期間位置決め精度を保つように、冷却機構には、固体撮像素子を実装した基板を固定する固定部にかかる荷重が小さい状態で放熱構造を支持することが求められる。特に、固体撮像素子を実装した基板を取付金具に固定する半田接合部の半田クリープや、或いは固体撮像素子を実装した基板を接着固定する接着剤の変形などを抑えたりしなければならない。ここで半田クリープとは、半田付けした部品や基板に荷重を加え続けていると半田接合部が徐々に変形していく現象である。また、温度上昇に伴う熱変形の寸法変化も小さくしなければならない。従って、冷却機構には、冷却性能以外に、固体撮像素子を実装した基板を固定する固定部の機械的変形を小さくする機構精度を高めることが重要になっている。 On the other hand, in addition to simply improving the cooling performance, the cooling mechanism of the imaging device increases the mounting position accuracy of the solid-state imaging device of the imaging device to obtain a high-definition image, and always keeps the positional deviation much smaller than the pixel size. It is necessary. Therefore, the solid-state image sensor is mounted on the cooling mechanism to prevent the initial mechanical stress when mounting the solid-state image sensor, and to maintain the positioning accuracy for a long time after assembly. It is required to support the heat dissipation structure in a state where the load applied to the fixing portion for fixing the substrate is small. In particular, it is necessary to suppress solder creep of a solder joint that fixes a substrate mounted with a solid-state imaging device to a mounting bracket, or deformation of an adhesive that bonds and fixes the substrate mounted with a solid-state imaging device. Here, the solder creep is a phenomenon in which a solder joint is gradually deformed when a load is continuously applied to a soldered component or substrate. Moreover, the dimensional change of thermal deformation accompanying a temperature rise must be reduced. Therefore, in addition to the cooling performance, it is important for the cooling mechanism to increase the accuracy of the mechanism that reduces the mechanical deformation of the fixing portion that fixes the substrate on which the solid-state imaging device is mounted.
  そのため従来技術として、例えば、下記の特許文献1には、固体撮像素子の裏面に熱伝導性の優れた固定部材を接着し、この固定部材を、金属箔を重ね合わせ形成し可撓性をある程度持たせた熱伝導部材を介して、カメラ筐体に接続して、上記固定部材からカメラ筐体に放熱する固体撮像素子の冷却機構が開示されている。 Therefore, as a conventional technique, for example, in Patent Document 1 below, a fixing member having excellent thermal conductivity is bonded to the back surface of a solid-state imaging device, and this fixing member is formed by overlapping metal foils to provide a certain degree of flexibility. There is disclosed a cooling mechanism for a solid-state imaging device that is connected to a camera casing through a heat conduction member that is provided and radiates heat from the fixing member to the camera casing.
  以下、この従来技術による撮像装置の構造について、図9~図11を用いて詳しく説明する。図9は、固体撮像素子を3枚用いる3板式固体撮像カメラの構造を部品ごとに分解した状態を示し、図10は図9に示した部品を組み立てた状態の中央水平断面を示し、図11は図9に示した部品を組み立てた状態を側面から見た図である。 Hereinafter, the structure of the imaging device according to the conventional technique will be described in detail with reference to FIGS. 9 shows a state in which the structure of a three-plate type solid-state imaging camera using three solid-state imaging elements is disassembled for each part. FIG. 10 shows a central horizontal section in a state where the parts shown in FIG. 9 are assembled. FIG. 10 is a side view of the assembled state of the components shown in FIG. 9.
  図9~図11において、1はカメラ筐体のフロントフレーム、2は色分解プリズムである。色分解プリズム2は、撮像レンズ(図示せず)から入射した光を所定の色成分ごと、例えば、3原色の光(赤R,緑G,青B)に分解する。各分解光成分は、それぞれ各固体撮像素子3に入射し電気信号に変換される。色分解プリズム2の分解光成分毎のプリズム端面には、それぞれプリズム面固定金具4が接着され、その上に撮像素子固定下金具5がネジ(図示せず)止めされている。 9 to 11, reference numeral 1 denotes a front frame of the camera housing, and 2 denotes a color separation prism. The color separation prism 2 separates light incident from an imaging lens (not shown) into light of three primary colors (red R, green G, and blue B) for each predetermined color component. Each decomposed light component is incident on each solid-state imaging device 3 and converted into an electrical signal. A prism surface fixing bracket 4 is bonded to each prism end surface of the color separation prism 2 for each separated light component, and an imaging element fixing lower bracket 5 is fastened with screws (not shown) thereon.
  一方、各固体撮像素子3の裏面には撮像素子固定上金具6が接着され、その上には、固体撮像素子3の熱を外部に導く撮像素子用熱伝導板7がネジ(図示せず)止めされている。固体撮像素子3は、撮像素子固定上金具6と撮像素子用熱伝導板7を、固体撮像素子3の裏面とセンサー基板8で挟むようにして、接続端子をセンサー基板8に半田付けされている。センサー基板8は、固体撮像素子3から電気信号を取り出すためのものである。  そして、センサー基板8に半田付けされた固体撮像素子3は、撮像素子固定上金具6と撮像素子用熱伝導板7を裏面に挟んだ状態で、3原色の光(赤R,緑G,青B)に対して色収差や画像ずれがないように色分解プリズム2に対して所定精度の位置決めが行われた後、撮像素子固定下金具5の端子部と撮像素子固定上金具6の端子部の4箇所の間隙を、半田14によって半田付けされて固定される。  更に、センサー基板8の後面に実装された信号処理用半導体素子9の発生熱を外部に導くため、信号処理用半導体素子9の表面には、半導体素子用熱伝導板10が接着されている。 On the other hand, an imaging element fixing upper metal fitting 6 is bonded to the back surface of each solid-state imaging element 3, and an imaging element heat conduction plate 7 for guiding the heat of the solid-state imaging element 3 to the outside is provided with screws (not shown). It has been stopped. The solid-state image pickup device 3 is soldered to the sensor substrate 8 with connection terminals such that the image pickup device fixing upper metal fitting 6 and the image pickup device heat conduction plate 7 are sandwiched between the back surface of the solid-state image pickup device 3 and the sensor substrate 8. The sensor substrate 8 is for taking out an electrical signal from the solid-state imaging device 3. The solid-state image sensor 3 soldered to the sensor substrate 8 has three primary colors of light (red R, green G, blue, with the image sensor fixing upper metal fitting 6 and the image sensor heat conduction plate 7 sandwiched between the back surfaces. B) After positioning with a predetermined accuracy with respect to the color separation prism 2 so that there is no chromatic aberration or image displacement, the terminal portions of the imaging device fixing lower bracket 5 and the terminal portions of the imaging device fixing upper bracket 6 are arranged. The four gaps are fixed by soldering with the solder 14. Furthermore, in order to guide the heat generated by the signal processing semiconductor element 9 mounted on the rear surface of the sensor substrate 8 to the outside, a semiconductor element heat conduction plate 10 is bonded to the surface of the signal processing semiconductor element 9.
  固体撮像素子3の熱を外部に導く撮像素子用熱伝導板7、及び半導体素子9の発生熱を外に導く半導体素子用熱伝導板10には、各々銅箔放熱板11a、11bがネジ止めされている。銅箔放熱板11a、11bは、複数の銅箔を薄く接着して層状に積層され、プレス加工により切断、曲げ加工が施されて、銅箔放熱板11a、11bの可撓性を一段と高めるために各曲げ部毎にスリットが数本設けられている。銅箔放熱板11a、11bは、伝わった熱をカメラ筐体のフロントフレーム1に導くため、それぞれ、色分解プリズム2の両側面に設置された銅製支持板12a、12bに、それぞれ、あて板13a、13bを介してネジ止めされている。 Copper foil heat dissipating plates 11a and 11b are screwed to the image sensor heat conduction plate 7 for guiding the heat of the solid-state image sensor 3 to the outside and the semiconductor element heat conduction plate 10 for guiding the heat generated by the semiconductor element 9 to the outside. Has been. The copper foil heat sinks 11a and 11b are laminated in layers by thinly bonding a plurality of copper foils, and are cut and bent by pressing to further increase the flexibility of the copper foil heat sinks 11a and 11b. Several slits are provided for each bent portion. The copper foil heatsinks 11a and 11b guide the heat transferred to the front frame 1 of the camera housing, respectively, so that the copper support plates 12a and 12b installed on both side surfaces of the color separation prism 2 are respectively applied to the plate 13a. , 13b.
  以上のような構造によって、固体撮像素子3から発生した熱は、撮像素子固定上金具6、撮像素子用熱伝導板7、銅箔放熱板11a、銅製支持板12aなどを経て、カメラ筐体のフロントフレーム1に導かれる。一方、センサー基板8の後面に実装された信号処理半導体素子9から発生した熱は、半導体素子用熱伝導板10、銅箔放熱板11b、銅製支持板12bなどを経て、カメラ筐体のフロントフレーム1に導かれる。 With the structure as described above, heat generated from the solid-state imaging device 3 passes through the imaging device fixing upper bracket 6, the imaging device heat conduction plate 7, the copper foil radiator plate 11a, the copper support plate 12a, etc. Guided to the front frame 1. On the other hand, the heat generated from the signal processing semiconductor element 9 mounted on the rear surface of the sensor substrate 8 passes through the semiconductor element heat conduction plate 10, the copper foil heat radiating plate 11b, the copper support plate 12b, etc., and the front frame of the camera housing. Led to 1.
特開平9-65348公報JP-A-9-65348
  しかし、上述の従来技術には、次の問題点が存在する。すなわち、固体撮像素子は、色分解プリズムに対し光学的な三次元位置調整を精密に行った後に、色分解プリズムに対する位置関係が固定されるが、3原色の光(赤R,緑G,青B)に対する固体撮像素子の位置は、固体撮像素子、或は部材の寸法公差、実装寸法公差などを全て吸収したうえで決まるので、撮像素子固定上金具6、撮像素子用熱伝導板7、銅箔放熱板11a、銅製支持板12aなどを各々ネジ止めする位置関係、或は、半導体素子用熱伝導板10、銅箔放熱板11b、銅製支持板12bなどを各々ネジ止めする位置関係が相対的にずれてしまうことがある。  また、これらを互いにネジ締結する際に生ずる機械的ストレスを、可撓性を高めた銅箔放熱板11a、11bだけで全て吸収しなければならず、そのため、撮像素子固定下金具5の端子部と撮像素子固定上金具6の端子部の4箇所を接合する半田14に多大な機械的ストレスが加わり、長期間を経るうちに半田クリープが発生する心配がある。  また、ネジ締結部の接触熱抵抗を小さくするため、ネジ締め付けトルクを大きくすると、ネジ締結部材の位置が狂ってしまい、固体撮像素子に機械的ストレスが加わり、レジストレーションのズレが発生してしまう。なお、このネジ締結によるレジストレーションのズレ発生を防止するには、前述のネジ締結時の締め付けトルクを小さく規定しなければならず、そのことにより組立性が悪化したり、伝熱性能も低下してしまう。 However, the above-described prior art has the following problems. That is, in the solid-state imaging device, the positional relationship with respect to the color separation prism is fixed after precise three-dimensional optical position adjustment with respect to the color separation prism, but the light of the three primary colors (red R, green G, blue The position of the solid-state imaging device with respect to B) is determined after absorbing all of the dimensional tolerance, mounting dimensional tolerance, etc. of the solid-state imaging device or member, so that the imaging device fixing upper bracket 6, the imaging device heat conduction plate 7, copper Relative to the positional relationship of screwing the heat radiating plate 11a, the copper support plate 12a, etc., or the positional relationship of screwing the heat conducting plate 10, the copper foil radiating plate 11b, the copper support plate 12b, etc. It may shift to. Further, all of the mechanical stress generated when these are screwed together must be absorbed only by the copper foil heatsinks 11a and 11b with improved flexibility. A great amount of mechanical stress is applied to the solder 14 joining the four portions of the terminal portion of the imaging device fixing upper bracket 6, and solder creep may occur over a long period of time. Also, if the screw tightening torque is increased in order to reduce the contact thermal resistance of the screw fastening portion, the position of the screw fastening member is deviated, mechanical stress is applied to the solid-state imaging device, and registration deviation occurs. . In order to prevent registration misalignment due to screw tightening, the tightening torque at the time of screw tightening described above must be specified to be small, which deteriorates assemblability and heat transfer performance. End up.
  本発明は、上記の従来技術に係わる問題を解決すべくなされたものであり、少なくとも次の目的のいずれかを達成するものである。  本発明の第1の目的は、固体撮像素子がセンサー基板の前面に実装され、信号処理用半導体素子が後面に実装された場合でも、センサー基板を固定する半田接合部に大きな機械的ストレスを加えることなく、上記発熱体から発生した熱を効率よく放熱できる冷却機構を備える撮像装置を提供することである。 The present invention has been made to solve the problems associated with the prior art described above, and achieves at least one of the following objects. The first object of the present invention is to apply a large mechanical stress to the solder joint for fixing the sensor substrate even when the solid-state imaging device is mounted on the front surface of the sensor substrate and the semiconductor element for signal processing is mounted on the rear surface. It is an object of the present invention to provide an imaging apparatus including a cooling mechanism that can efficiently dissipate heat generated from the heating element.
  本発明の第2の目的は、固体撮像素子や信号処理用半導体素子等の発熱体を実装したセンサー基板を固定する半田接合部に大きな力、つまり大きな機械的ストレスを加えることなく、発熱体から発生した熱を効率よく放熱できる冷却機構を備える撮像装置を提供することである。 The second object of the present invention is to remove a large force, that is, a large mechanical stress from a heating element without applying a large mechanical stress to a solder joint for fixing a sensor substrate on which a heating element such as a solid-state imaging device or a signal processing semiconductor element is mounted. An object of the present invention is to provide an imaging apparatus including a cooling mechanism that can efficiently dissipate generated heat.
  本発明の第3の目的は、固体撮像素子や信号処理用半導体素子等の発熱体を実装したセンサー基板を固定する半田接合部に大きな機械的ストレスを加えることなく、発熱体から発生した熱を効率よく放熱できる冷却機構を備える撮像装置を、短時間で高精度に簡単に組み立てる製造方法を提供することである。 A third object of the present invention is to generate heat generated from a heating element without applying a large mechanical stress to a solder joint for fixing a sensor substrate on which a heating element such as a solid-state imaging device or a signal processing semiconductor element is mounted. An object of the present invention is to provide a manufacturing method for easily assembling an imaging device having a cooling mechanism capable of efficiently radiating heat in a short time with high accuracy.
  前記第1の目的を達成するための本発明の代表的な構成は、次のとおりである。  装置外側に筐体を有し、装置前方から入射する光を色分解プリズムにより複数の色成分に分解し、各色成分をそれぞれ固体撮像素子により電気信号に変換し、該変換した電気信号を信号処理用半導体素子により信号処理する撮像装置であって、  前記各色成分ごとにそれぞれ、前記固体撮像素子と前記信号処理用半導体素子を冷却する冷却機構と、前記固体撮像素子と前記信号処理用半導体素子を実装したセンサー基板を備え、  前記それぞれのセンサー基板は、前記撮像装置筐体内に設けられた半田接合部において半田付けにより固定され、前記センサー基板の前面に前記固体撮像素子が実装され、前記センサー基板の後面に1つ又は複数の前記信号処理用半導体素子が実装されており、  前記それぞれの冷却機構は、  前記固体撮像素子に対向する位置に設けられた第1の開口及び前記信号処理用半導体素子に対向する位置に設けられた1つ又は複数の第2の開口を有し、前記センサー基板の後方に配置されるとともに前記撮像装置筐体に固定された熱伝導板と、  前記熱伝導板の第1の開口内に配置され該第1の開口内を前後方向を含む全方向に遊動可能な第1の放熱体と、  前記熱伝導板の第2の開口内に配置され該第2の開口内を前後方向を含む全方向に遊動可能な第2の放熱体と、  前記第1の放熱体を後方から前記センサー基板に押圧し、前記第2の放熱体を後方から前記信号処理用半導体素子に押圧する弾性体と、  前記固体撮像素子に対向するように前記センサー基板の後面に設けられた電気絶縁性を有する第1の熱伝導シートと、  前記第1の開口内及び第2の開口内に充填された熱伝導グリースとを備え、 
前記固体撮像素子からの発熱を、前記センサー基板、前記第1の放熱体と前記センサー基板の間に介在する前記第1の熱伝導シート、前記第1の熱伝導シートと前記第1の放熱体との間に介在する熱伝導グリース、前記第1の放熱体、前記第1の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えるとともに、  前記信号処理用半導体素子からの発熱を、前記信号処理用半導体素子と前記第2の放熱体との間に介在する熱伝導グリース、前記第2の放熱体、前記第2の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えることを特徴とする撮像装置。
A typical configuration of the present invention for achieving the first object is as follows. Has a housing outside the device, separates light incident from the front of the device into a plurality of color components by a color separation prism, converts each color component into an electrical signal by a solid-state image sensor, and processes the converted electrical signal An image pickup apparatus that performs signal processing using a semiconductor element for image processing, comprising: a cooling mechanism that cools the solid-state image pickup element and the signal processing semiconductor element for each color component; and the solid-state image pickup element and the signal processing semiconductor element. Each of the sensor substrates is fixed by soldering at a solder joint provided in the imaging device casing, the solid-state imaging device is mounted on the front surface of the sensor substrate, and the sensor substrate One or a plurality of the signal processing semiconductor elements are mounted on the rear surface, and each of the cooling mechanisms is connected to the solid-state imaging element. A first opening provided at a facing position and one or a plurality of second openings provided at a position facing the signal processing semiconductor element, and disposed behind the sensor substrate and A heat conduction plate fixed to the imaging device housing; a first heat dissipating member disposed in the first opening of the heat conduction plate and capable of floating in all directions including the front-rear direction in the first opening; A second heat dissipating member disposed in the second opening of the heat conducting plate and capable of floating in the second opening in all directions including the front-rear direction; and the first heat dissipating member from the rear to the sensor substrate. An elastic body that presses and presses the second heat radiating body against the signal processing semiconductor element from behind, and an electric insulating first provided on the rear surface of the sensor substrate so as to face the solid-state imaging element. A heat conductive sheet, and the first opening and the second opening And a filled thermal grease, the
The first heat conductive sheet, the first heat conductive sheet, and the first heat radiator interposed between the sensor substrate, the first heat radiator, and the sensor substrate to generate heat from the solid-state imaging device. A thermal conductive grease interposed between the first thermal radiator, the thermal conductive grease interposed between the first thermal radiator and the thermal conductive plate, and the thermal conductive plate through the thermal conductive plate. A heat conduction grease interposed between the signal processing semiconductor element and the second heat dissipating member, the second heat dissipating member, and the second heat dissipating member. An image pickup apparatus comprising: a heat conduction grease interposed between a heat radiator and the heat conduction plate; and the heat conduction plate and the heat conduction plate that transmits the heat to the image pickup apparatus casing.
  また、前記第2の目的を達成するための本発明の代表的な構成は、次のとおりである。  装置外側に筐体を有し、装置前方から入射する光を固体撮像素子により電気信号に変換し、該変換した電気信号を信号処理用半導体素子により信号処理する撮像装置であって、  前記固体撮像素子と前記信号処理用半導体素子を冷却する冷却機構と、前記固体撮像素子と前記信号処理用半導体素子を実装したセンサー基板を備え、  前記センサー基板は、前記撮像装置筐体内に設けられた半田接合部に半田付けにより固定され、その前面に前記固体撮像素子が実装され、その前面又は後面に1つ又は複数の前記信号処理用半導体素子が実装されており、  前記冷却機構は、  前記固体撮像素子に対向する位置に設けられた第1の開口及び前記信号処理用半導体素子に対向する位置に設けられた1つ又は複数の第2の開口を有し、前記センサー基板の後方に配置されるとともに前記撮像装置筐体に固定された熱伝導板と、  前記熱伝導板の第1の開口内に配置され該第1の開口内を前後方向を含む全方向に遊動可能な第1の放熱体と、  前記熱伝導板の第2の開口内に配置され該第2の開口内を前後方向を含む全方向に遊動可能な第2の放熱体と、  前記第1、第2の放熱体を後方から前方へ押圧する弾性体とを備え、 
前記固体撮像素子からの発熱を、前記センサー基板、前記第1の放熱体と前記センサー基板の間に介在するように前記センサー基板の後面に設けられた電気絶縁性を有する第1の熱伝導シート、前記第1の熱伝導シートと前記第1の放熱体との間に介在する熱伝導グリース、前記第1の放熱体、前記第1の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えるとともに、  前記信号処理用半導体素子からの発熱を、前記信号処理用半導体素子と前記第2の放熱体との間に介在する熱伝導グリース、前記第2の放熱体、前記第2の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えるか、又は、前記信号処理用半導体素子からの発熱を、前記センサー基板、前記第2の放熱体と前記センサー基板の間に介在するように前記センサー基板の後面に設けられた電気絶縁性を有する第2の熱伝導シート、前記第2の熱伝導シートと前記第2の放熱体との間に介在する熱伝導グリース、前記第2の放熱体、前記第2の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えることを特徴とする撮像装置。
The typical configuration of the present invention for achieving the second object is as follows. An imaging apparatus having a casing on the outside of the apparatus, converting light incident from the front of the apparatus into an electrical signal by a solid-state imaging device, and processing the converted electrical signal by a signal processing semiconductor element, the solid-state imaging A cooling mechanism for cooling the element and the signal processing semiconductor element, and a sensor substrate on which the solid-state imaging element and the signal processing semiconductor element are mounted. The sensor substrate is provided with a solder joint provided in the imaging device casing. The solid-state image sensor is mounted on the front surface thereof, and one or more signal processing semiconductor elements are mounted on the front surface or the rear surface thereof. The cooling mechanism includes the solid-state image sensor. A first opening provided at a position facing the semiconductor element, and one or a plurality of second openings provided at a position facing the signal processing semiconductor element. A heat conduction plate disposed behind the image sensor and fixed to the housing of the imaging device, and disposed in a first opening of the heat conduction plate and capable of floating in all directions including the front-rear direction in the first opening. A first heat dissipating member, a second heat dissipating member disposed in the second opening of the heat conducting plate and capable of floating in the second opening in all directions including the front-rear direction, the first, second An elastic body that presses the heat radiator of 2 from the rear to the front,
A first heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so that heat generated from the solid-state imaging device is interposed between the sensor substrate and the first heat radiator and the sensor substrate. , Heat conductive grease interposed between the first heat conductive sheet and the first heat radiator, the first heat radiator, heat interposed between the first heat radiator and the heat conductive plate. Conductive grease is transmitted to the imaging device casing via the thermal conductive plate, and heat generated from the signal processing semiconductor element is interposed between the signal processing semiconductor element and the second heat radiator. Heat conduction grease, the second heat radiating body, the heat conduction grease interposed between the second heat radiating body and the heat conducting plate, via the heat conducting plate, transmitted to the imaging device casing, or , Heat generation from the signal processing semiconductor element The second heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so as to be interposed between the sensor substrate, the second radiator and the sensor substrate, and the second heat conductive sheet Heat conduction grease interposed between the second heat radiator, the second heat radiator, the heat conduction grease interposed between the second heat radiator and the heat conduction plate, and the heat conduction plate. The imaging device is transmitted to the imaging device casing.
  また、前記第3の目的を達成するための本発明の代表的な構成は、次のとおりである。  装置外側に筐体を有し、装置前方から入射する光を固体撮像素子により電気信号に変換し、該変換した電気信号を信号処理用半導体素子により信号処理する撮像装置の製造方法であって、  前記固体撮像素子がその前面に実装され、1つ又は複数の前記信号処理用半導体素子がその前面又は後面に実装されたセンサー基板の位置決めを行い、前記撮像装置筐体内に前記センサー基板を固定するステップと、  前記固体撮像素子に対向する位置に設けられた第1の開口及び前記信号処理用半導体素子に対向する位置に設けられた1つ又は複数の第2の開口を有する熱伝導板を、前記センサー基板の後方に配置して、前記撮像装置筐体に固定するステップと、  前記熱伝導板の第1の開口内に、該第1の開口内を前後方向を含む全方向に遊動可能な第1の放熱体を配置するステップと、  前記熱伝導板の第2の開口内に、該第2の開口内を前後方向を含む全方向に遊動可能な第2の放熱体を配置するステップと、  前記第1の放熱体を、前記第1の放熱体と前記センサー基板の間に介在し電気絶縁性を有する第1の熱伝導シートと熱伝導グリースを介して、弾性体により前記センサー基板に押圧するステップと、  前記第2の放熱体を、熱伝導グリースを介して弾性体により前記信号処理用半導体素子に押圧するか、又は、前記第2の放熱体と前記センサー基板の間に介在し電気絶縁性を有する第2の熱伝導シートと熱伝導グリースを介して、弾性体により前記センサー基板に押圧するステップと、を備えることを特徴とする撮像装置の製造方法。 In addition, a typical configuration of the present invention for achieving the third object is as follows. A manufacturing method of an imaging apparatus having a casing on the outside of the apparatus, converting light incident from the front of the apparatus into an electrical signal by a solid-state imaging device, and processing the converted electrical signal by a signal processing semiconductor element, The solid-state imaging device is mounted on the front surface, and the sensor substrate on which one or more of the signal processing semiconductor devices are mounted on the front surface or the rear surface is positioned, and the sensor substrate is fixed in the imaging device casing. A heat conduction plate having a step, a first opening provided at a position facing the solid-state imaging device, and one or a plurality of second openings provided at a position facing the signal processing semiconductor element, Arranging behind the sensor substrate and fixing it to the imaging device casing, and floating in the first opening of the heat conducting plate in all directions including the front-rear direction in the first opening A step of disposing a possible first heat dissipating member, and a second heat dissipating member capable of floating in all directions including the front-rear direction in the second opening in the second opening of the heat conducting plate. Step, through the first heat dissipating body and the first heat conductive sheet having heat insulation between the first heat dissipating body and the sensor substrate and the heat conductive grease, the sensor by the elastic body Pressing the substrate against the signal processing semiconductor element by means of an elastic body through thermal conductive grease, or between the second radiator and the sensor substrate. And a step of pressing against the sensor substrate by an elastic body via a second heat conductive sheet having electrical insulation and a heat conductive grease.
  本発明によれば、固体撮像素子や信号処理用半導体素子等の発熱体を実装したセンサー基板を固定する半田接合部に大きな機械的ストレスを加えることなく、発熱体から発生した熱を効率よく放熱することができる。 According to the present invention, heat generated from a heating element can be efficiently dissipated without applying a large mechanical stress to a solder joint that fixes a sensor substrate on which a heating element such as a solid-state imaging device or a signal processing semiconductor element is mounted. can do.
本発明の第1実施形態における撮像装置の一部分の分解斜視図である。1 is an exploded perspective view of a part of an imaging apparatus according to a first embodiment of the present invention. 本発明の第1実施形態における撮像装置のセンサー基板を色分解プリズムに固定する方法を説明する分解斜視図である。It is a disassembled perspective view explaining the method to fix the sensor board | substrate of the imaging device in 1st Embodiment of this invention to a color separation prism. 本発明の第1実施形態における撮像装置の水平中央断面図である。It is a horizontal center sectional view of the imaging device in a 1st embodiment of the present invention. 本発明の第1実施形態における撮像装置の垂直断面図である。1 is a vertical sectional view of an imaging apparatus according to a first embodiment of the present invention. 本発明の第2実施形態における撮像装置の一部分の分解斜視図である。It is a disassembled perspective view of a part of an imaging device in a second embodiment of the present invention. 本発明の第3実施形態における撮像装置のセンサー基板を色分解プリズムに固定する方法を説明する分解斜視図である。It is a disassembled perspective view explaining the method to fix the sensor board | substrate of the imaging device in 3rd Embodiment of this invention to a color separation prism. 本発明の第4実施形態における撮像装置の水平中央断面図である。It is a horizontal center sectional view of the imaging device in a 4th embodiment of the present invention. 本発明の第4実施形態における撮像装置の垂直断面図である。It is a vertical sectional view of the imaging device in a 4th embodiment of the present invention. 従来例における撮像装置の一部分の分解斜視図である。It is a disassembled perspective view of a part of an imaging device in a conventional example. 従来例における撮像装置の水平中央断面図である。It is horizontal center sectional drawing of the imaging device in a prior art example. 従来例における撮像装置の一部側面図である。It is a partial side view of the imaging device in a prior art example.
  以下、本発明の実施形態について、図を参照して説明する。(第1実施形態)  まず、本発明の第1実施形態について、図1~4を参照して詳細に説明する。図1は、第1実施形態における撮像装置の一部分の分解斜視図である。図2は、第1実施形態における撮像装置のセンサー基板を色分解プリズムに固定する方法を説明する分解斜視図である。図3は、第1実施形態における撮像装置の水平中央断面図である。図4は、第1実施形態における撮像装置の垂直断面図である。  図1~図4において、101は例えばアルミニュウム製のカメラ筐体(撮像装置筐体)のフロントフレーム(筐体前部)、102は色分解プリズムである。フロントフレーム101の外側表面には、放熱用のフィンが設けられている。色分解プリズム102は、前方にある撮像レンズ(図示せず)から入射した光を3原色の光(赤R,緑G,青B)に分解する。3原色に分解された光成分は、図1に示すように進路が3方向に分かれ、色分解プリズム102から見て、R成分は斜め上方向、G成分は水平方向、B成分は斜め下方向に進み、それぞれ、R,G,B用の固体撮像素子103に入射し電気信号に変換される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. (First Embodiment) First, a first embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 is an exploded perspective view of a part of the imaging apparatus according to the first embodiment. FIG. 2 is an exploded perspective view for explaining a method of fixing the sensor substrate of the imaging apparatus according to the first embodiment to the color separation prism. FIG. 3 is a horizontal central cross-sectional view of the imaging apparatus according to the first embodiment. FIG. 4 is a vertical sectional view of the imaging apparatus according to the first embodiment. 1 to 4, reference numeral 101 denotes a front frame (front part of a housing) of a camera housing (imaging device housing) made of, for example, aluminum, and 102 denotes a color separation prism. A heat radiating fin is provided on the outer surface of the front frame 101. The color separation prism 102 separates light incident from a front imaging lens (not shown) into light of three primary colors (red R, green G, and blue B). The light components separated into the three primary colors are divided into three directions as shown in FIG. 1, and when viewed from the color separation prism 102, the R component is diagonally upward, the G component is horizontal, and the B component is diagonally downward. , The light enters the solid-state image sensor 103 for R, G, and B, and is converted into an electric signal.
  なお、本明細書において、前方とは、光が入射してくる方向、例えば色分解プリズム102からフロントフレーム101を見た方向であり、後方とは、その逆の方向を意味する。前面、後面も同様である。  また第1実施形態において、各光成分に対するチャンネルの構成、つまり固体撮像素子103の固定構造や、固体撮像素子103等を冷却する冷却機構等は、いずれも同様の構成であるので、ここでは3原色の光(赤R,緑G,青B)の中央のチャンネルのG成分に対する構成である固体撮像素子103の固定構造や冷却機構を説明し、他のチャンネルであるR成分やB成分に関する構成は説明を省略する。 In the present specification, the front means the direction in which light is incident, for example, the direction in which the front frame 101 is viewed from the color separation prism 102, and the rear means the opposite direction. The same applies to the front and rear surfaces. In the first embodiment, the channel configuration for each light component, that is, the fixing structure of the solid-state image sensor 103, the cooling mechanism for cooling the solid-state image sensor 103, and the like have the same configuration. The fixing structure and cooling mechanism of the solid-state imaging device 103, which is the configuration for the G component of the central channel of the primary color light (red R, green G, blue B), will be described, and the configuration related to the R component and B component that are other channels Will not be described.
  図3に示すように、色分解プリズム102の分解光成分毎のプリズム端面には、プリズム面固定金具104(例えばパーマロイ製)が接着され、その上に撮像素子固定下金具105(例えばパーマロイ製)がネジ止めされている。  一方、3原色の光(赤R,緑G,青B)から電気信号を取り出す固体撮像素子103は、センサー基板108(例えばガラスエポキシ製)の前面に実装されており、センサー基板108の後面には、固体撮像素子103の映像信号を処理する信号処理用半導体素子109と、信号処理用半導体素子109から信号を取り出す信号接続コネクタ110が実装されている。固体撮像素子103と信号処理用半導体素子109と信号接続コネクタ110は、センサー基板108に半田付けされている。 As shown in FIG. 3, a prism surface fixing bracket 104 (for example, made by Permalloy) is bonded to the prism end face for each separated light component of the color separation prism 102, and an imaging element fixing lower bracket 105 (for example, made by Permalloy) is provided thereon. Is screwed. On the other hand, the solid-state imaging device 103 that extracts an electrical signal from light of three primary colors (red R, green G, and blue B) is mounted on the front surface of the sensor substrate 108 (for example, made of glass epoxy), and is mounted on the rear surface of the sensor substrate 108. Are mounted with a signal processing semiconductor element 109 for processing a video signal of the solid-state image sensor 103 and a signal connection connector 110 for extracting a signal from the signal processing semiconductor element 109. The solid-state image sensor 103, the signal processing semiconductor element 109, and the signal connection connector 110 are soldered to the sensor substrate.
  固体撮像素子103の位置決めは、次のように行われる。すなわち、信号接続コネクタ110に映像信号を接続し、各3原色の光(赤R,緑G,青B)毎の映像信号を見ながら、互いに色収差や画像ずれがないように色分解プリズム102に対して固体撮像素子103を実装したセンサー基板108を動かして所定精度の位置決めを行う。このとき、センサー基板108の半田固定穴108aに撮像素子固定下金具105の半田付けリード105aが挿入されるので、位置決めした状態で半田付けリード105aを半田固定穴108aに半田付けを行い、固体撮像素子103の色分解プリズム102に対する位置を固定する。このとき、色分解プリズム102と固体撮像素子103の間に、色分解プリズム102外から入射する光を防ぐための、柔軟性を有するプラスチック等から形成された遮光部材117を挟む。  このように、センサー基板108の半田固定穴108aに撮像素子固定下金具105の半田付けリード105aを挿入して半田付けするので、従来の例えば図9に示す平面同士の半田付けと比べ、半田固定穴108aと半田付けリード105aの半田接合部における半田クリープを抑制することができる。 位置 決 め Positioning of the solid-state image sensor 103 is performed as follows. That is, the video signal is connected to the signal connection connector 110, and the color separation prism 102 is connected to the color separation prism 102 so that there is no chromatic aberration or image misalignment while viewing the video signal for each of the three primary colors (red R, green G, and blue B). On the other hand, the sensor substrate 108 on which the solid-state image sensor 103 is mounted is moved to perform positioning with a predetermined accuracy. At this time, since the soldering lead 105a of the imaging element fixing lower metal fitting 105 is inserted into the solder fixing hole 108a of the sensor substrate 108, the soldering lead 105a is soldered to the solder fixing hole 108a in a positioned state, and solid-state imaging is performed. The position of the element 103 with respect to the color separation prism 102 is fixed. At this time, a light shielding member 117 made of flexible plastic or the like for preventing light incident from the outside of the color separation prism 102 is sandwiched between the color separation prism 102 and the solid-state imaging element 103. As described above, since the soldering lead 105a of the imaging element fixing lower metal fitting 105 is inserted into the solder fixing hole 108a of the sensor substrate 108 and soldered, the solder fixing is compared with the conventional soldering between flat surfaces shown in FIG. 9, for example. Solder creep at the solder joint between the hole 108a and the soldering lead 105a can be suppressed.
  その後、図3に示すように、色分解プリズム102とセンサー基板108の外側に、間隙を持って色分解プリズム102及びセンサー基板108を覆うように、水平固定冷却プレート(熱伝導板)112と垂直固定冷却プレート122a、122bと、フロントフレーム101とが互いにネジ止め固定される。水平固定冷却プレート(熱伝導板)112と垂直固定冷却プレート122a、122bは、熱伝導性の高い高熱伝導金属、例えばアルミニュウムや銅などで作られる。  これらの水平固定冷却プレート112と垂直固定冷却プレート122a、122bは、センサー基板108に実装した固体撮像素子103及び信号処理用半導体素子109から発生した熱を、色分解プリズム102を装着したカメラ筐体のフロントフレーム101に導くためのものである。 Thereafter, as shown in FIG. 3, the horizontal fixed cooling plate (heat conduction plate) 112 is perpendicular to the color separation prism 102 and the sensor substrate 108 so as to cover the color separation prism 102 and the sensor substrate 108 with a gap. The fixed cooling plates 122a and 122b and the front frame 101 are fixed to each other with screws. The horizontal fixed cooling plate (heat conductive plate) 112 and the vertical fixed cooling plates 122a and 122b are made of a high heat conductive metal having high heat conductivity, such as aluminum or copper. The horizontal fixed cooling plate 112 and the vertical fixed cooling plates 122a and 122b are used for the camera housing in which the color separation prism 102 is mounted to generate heat generated from the solid-state imaging device 103 and the signal processing semiconductor device 109 mounted on the sensor substrate 108. It is for guiding to the front frame 101.
  また、センサー基板108と板バネ115との間に所定の間隔を空けて、センサー基板108に立設された支柱108bに、弾性体である板バネ115がネジ止め固定される。このとき板バネ115を固定するネジは、水平固定冷却プレート112を貫通する。なお、板バネ115は水平固定冷却プレート112に固定するようにしてもよい。  板バネ115の材質は例えばリン青銅であり、厚さは例えば0.2mmである。板バネ115は、前面視が略長方形(縦20mm×横30mm)の枠形状であり、後述する放熱体113を前方へ押圧する押圧部115aと、放熱体114を前方へ押圧する押圧部115bとを有し、枠と押圧部115aと押圧部115bが一体的に形成されている。  このように一体形成することで、板バネ115が押圧する荷重が、センサー基板108をセンサー基板108の外部と接合する半田接合部に半田クレープを発生させない程度、あるいは、固体撮像素子103にレジストレーションのズレを発生させない程度の小さい、小型の板バネ115を製作することが容易となる。 In addition, the plate spring 115, which is an elastic body, is screwed and fixed to the support column 108b provided upright on the sensor substrate 108 with a predetermined gap between the sensor substrate 108 and the plate spring 115. At this time, the screw for fixing the leaf spring 115 passes through the horizontal fixed cooling plate 112. The plate spring 115 may be fixed to the horizontal fixed cooling plate 112. The material of the saddle leaf spring 115 is, for example, phosphor bronze, and the thickness is, for example, 0.2 mm. The leaf spring 115 has a substantially rectangular frame shape (vertical 20 mm × horizontal 30 mm) when viewed from the front, a pressing portion 115 a that presses the radiator 113, which will be described later, and a pressing portion 115 b that presses the radiator 114 forward. The frame, the pressing part 115a and the pressing part 115b are integrally formed. By being integrally formed in this way, the load pressed by the leaf spring 115 does not generate solder crepes at the solder joint where the sensor substrate 108 is joined to the outside of the sensor substrate 108, or is registered in the solid-state image sensor 103. It is easy to manufacture a small leaf spring 115 that is small enough not to cause the deviation.
  水平固定冷却プレート112には、後述するように、第1の開口112aと第2の開口112bとが設けられ、その中にそれぞれ、例えばアルミニュウム製の放熱体113(図1の例では1つ)と放熱体114(図1の例では2つ)が前後方向を含む全方向に遊動可能なように収容される。ここで全方向とは、前後方向と、前後方向に垂直な方向(上下、左右、斜めの垂直方向)、及び前後方向に対する斜め方向を含む。  板バネ115は、放熱体113と放熱体114を前方に付勢し、センサー基板108の後面又はセンサー基板108の後面に実装された信号処理用半導体素子109に押圧する。このときの板バネ115のバネ荷重は、センサー基板108を接合する半田接合部に半田クレープを発生させない程度、あるいは、固体撮像素子103にレジストレーションのズレを発生させない程度の小さいものに設定され、50g以下である。 As will be described later, the horizontal fixed cooling plate 112 is provided with a first opening 112a and a second opening 112b, each of which has, for example, an aluminum radiator 113 (one in the example of FIG. 1). And the radiator 114 (two in the example of FIG. 1) are accommodated so as to be movable in all directions including the front-rear direction. Here, the omni-direction includes a front-rear direction, a direction perpendicular to the front-rear direction (up and down, left-right, oblique vertical direction), and an oblique direction with respect to the front-rear direction. The flange spring 115 urges the heat dissipating body 113 and the heat dissipating body 114 forward, and presses the signal processing semiconductor element 109 mounted on the rear surface of the sensor substrate 108 or the rear surface of the sensor substrate 108. The spring load of the leaf spring 115 at this time is set to a small value that does not cause solder crepe at the solder joint where the sensor substrate 108 is joined, or does not cause registration misalignment in the solid-state image sensor 103. 50 g or less.
  水平固定冷却プレート112には、固体撮像素子103及び信号処理用半導体素子109と対向する位置に、それぞれ、固体撮像素子冷却用の第1の開口112aと半導体素子冷却用の第2の開口112bとが開けられている。第1の開口112aは前面視(前方から見た形状)が矩形の矩形開口であり、第2の開口112bは前面視が円形の円形開口である。本実施形態では、第1の開口112aと第2の開口112bは、水平固定冷却プレート112の前面から後面に貫通する同一面積の貫通穴であるが、同一面積の貫通穴に限られるものではない。  第1の開口112a内には、第1の開口112aの開口寸法より小さく第1の開口112a内を前後方向を含む全方向に遊動できる第1の放熱体113が挿入され配置されていると共に、センサー基板108の映像信号を取り出す信号接続コネクタ110も挿入される。第1の放熱体113は前面視がコの字状であり、このコの字状の形状は、第1の放熱体113が信号接続コネクタ110と干渉しないように定められている。なお、信号接続コネクタ110は映像信号を高速に取り出すため、センサー基板108の中央に設けられている。 The horizontal fixed cooling plate 112 includes a first opening 112a for cooling the solid-state imaging device and a second opening 112b for cooling the semiconductor device, at positions facing the solid-state imaging device 103 and the signal processing semiconductor device 109, respectively. Is opened. The first opening 112a is a rectangular opening when viewed from the front (the shape viewed from the front), and the second opening 112b is a circular opening when viewed from the front. In the present embodiment, the first opening 112a and the second opening 112b are through holes of the same area that penetrate from the front surface to the rear surface of the horizontal fixed cooling plate 112, but are not limited to the through holes of the same area. . In the first opening 112a, a first radiator 113 that is smaller than the opening size of the first opening 112a and can move in all directions including the front-rear direction in the first opening 112a is inserted and disposed. A signal connection connector 110 for taking out a video signal of the sensor substrate 108 is also inserted. The first heat dissipating body 113 is U-shaped when viewed from the front, and the U-shaped shape is determined so that the first heat dissipating body 113 does not interfere with the signal connection connector 110. The signal connector 110 is provided in the center of the sensor substrate 108 in order to take out the video signal at high speed.
  固体撮像素子103は、映像光を取り入れるため色分解プリズム102側(前側)に向いている必要性から、通常、センサー基板108の前面に実装される。そこで、固体撮像素子103から発生した熱はセンサー基板108を介して、センサー基板108の後面から取り込むことになる。そのため、固体撮像素子103と対向するように、センサー基板108の後面に、電気絶縁性と高熱伝導性とを有する熱伝導シートであるコの字状シート111を取り付け、センサー基板108の後面と第1の放熱体113との間に、コの字状シート111を挟む。コの字状シート111としては、例えば熱伝導率が1~5W/(m・K)の高熱伝導性シート(放熱シリコンゴム製)を用いることができる。そして、第1の放熱体113の後方から一体形状の板バネ115によって小さな荷重を与圧し、コの字状シート111と第1の放熱体113との間で熱伝導の良好な接触を保つようにしている。コの字状シート111は前面視がコの字状であり、このコの字状の形状は、コの字状シート111が信号接続コネクタ110と干渉しないように定められている。 The solid-state image sensor 103 is usually mounted on the front surface of the sensor substrate 108 because it needs to face the color separation prism 102 side (front side) in order to take in image light. Therefore, heat generated from the solid-state image sensor 103 is taken from the rear surface of the sensor substrate 108 via the sensor substrate 108. Therefore, a U-shaped sheet 111, which is a thermal conductive sheet having electrical insulation and high thermal conductivity, is attached to the rear surface of the sensor substrate 108 so as to face the solid-state imaging device 103, and the rear surface of the sensor substrate 108 A U-shaped sheet 111 is sandwiched between the heat radiator 113. As the U-shaped sheet 111, for example, a high thermal conductivity sheet (made of heat dissipation silicon rubber) having a thermal conductivity of 1 to 5 W / (m · K) can be used. Then, a small load is applied from the rear side of the first heat dissipating body 113 by the integrated leaf spring 115 so as to maintain a good contact of heat conduction between the U-shaped sheet 111 and the first heat dissipating body 113. I have to. The U-shaped sheet 111 has a U-shape when viewed from the front, and the U-shaped shape is determined so that the U-shaped sheet 111 does not interfere with the signal connection connector 110.
  上述したように、第1の放熱体113は前後方向を含む全方向に遊動できるので、コの字状シート111がセンサー基板108の後面に対して多少傾いた状態で取り付けられたとしても、第1の放熱体113は、コの字状シート111と熱伝導の良好な接触を保つことができる。  また、コの字状シート111は、後述する高熱伝導性の熱伝導グリースを、センサー基板108に接触させないようにしており、熱伝導グリースがセンサー基板108に浸透してセンサー基板108を変質させることを防止する役割を果たす。 As described above, since the first heat dissipating body 113 can move in all directions including the front-rear direction, even if the U-shaped sheet 111 is attached with a slight inclination with respect to the rear surface of the sensor substrate 108, 1 heat radiator 113 can maintain a good thermal conductivity contact with the U-shaped sheet 111. In addition, the U-shaped sheet 111 prevents the heat conductive grease described later from coming into contact with the sensor substrate 108, and the heat conductive grease penetrates the sensor substrate 108 to change the sensor substrate 108. Play a role in preventing.
  さらに、第1の開口112a内には、熱を効率よく伝え、第1の放熱体113の動きを妨げない高熱伝導性の熱伝導グリースを充填している。この熱伝導グリースは、動き易さを高める潤滑剤の役割も兼ね備えており、例えば熱伝導率が1~5W/(m・K)の高熱伝導性グリースを用いることができる。これにより、第1の開口112a内における水平固定冷却プレート112と第1の放熱体113との間隙には、熱伝導グリースが充満しており、第1の放熱体113の熱を効率よく水平固定冷却プレート112へ伝えることができる。  また、コの字状シート111と第1の放熱体113との間にも、熱伝導グリースが介在するので、コの字状シート111からの熱を第1の放熱体113へ効率よく伝えることができる。  したがって、電気絶縁性と高熱伝導性とを有するコの字状シート111は、固体撮像素子103からセンサー基板108に伝わった熱を効率よく導き出し、該導き出した熱は、熱伝導グリースを介して第1の放熱体113に伝えられる。さらに、第1の放熱体113からの熱は、熱伝導グリースを介して、効率よく水平固定冷却プレート112に伝えられる。 In addition, the first opening 112a is filled with heat conductive grease that conducts heat efficiently and does not hinder the movement of the first radiator 113. This thermal conductive grease also serves as a lubricant that enhances the ease of movement. For example, a high thermal conductive grease having a thermal conductivity of 1 to 5 W / (m · K) can be used. As a result, the gap between the horizontally fixed cooling plate 112 and the first radiator 113 in the first opening 112a is filled with the thermal conductive grease, and the heat of the first radiator 113 is efficiently horizontally fixed. It can be transmitted to the cooling plate 112. In addition, since the thermal conductive grease is interposed between the U-shaped sheet 111 and the first heat radiator 113, the heat from the U-shaped sheet 111 can be efficiently transmitted to the first heat radiator 113. Can do. Therefore, the U-shaped sheet 111 having electrical insulation properties and high thermal conductivity efficiently derives the heat transferred from the solid-state imaging device 103 to the sensor substrate 108, and the derived heat is transmitted through the heat conduction grease. 1 to the heat radiator 113. Further, the heat from the first heat radiator 113 is efficiently transmitted to the horizontal fixed cooling plate 112 via the heat conductive grease.
  一方、複数の第2の開口112b内には、第2の開口112bの開口寸法より小さく第2の開口112b内を前後方向を含む全方向に遊動できる第2の放熱体114が、それぞれ挿入され配置されている。第2の放熱体114は、前面視が円形の円柱状である。第2の放熱体114は、センサー基板108の後面に実装されている信号処理用半導体素子109の表面に熱伝導グリースを介して直接接触しており、第2の放熱体114の後方から一体形状の板バネ115によって小さな荷重を与圧することで、信号処理用半導体素子109と第2の放熱体114の間で、熱伝導の良好な接触を保つようにしている。  また、上述したように、第2の放熱体114は前後方向を含む全方向に遊動できるので、信号処理用半導体素子109がセンサー基板108の後面に対して多少傾いた状態で実装されたとしても、第2の放熱体114は信号処理用半導体素子109と、熱伝導の良好な接触を保つことができる。  また、第2の開口112bと第2の放熱体114を、複数の信号処理用半導体素子109に1対1で対応するよう複数設けているので、各信号処理用半導体素子109がそれぞれ、センサー基板108の後面に対して異なる方向に傾いて実装、又は異なる角度で実装されたとしても、各第2の放熱体114はそれぞれ、対応する信号処理用半導体素子109と熱伝導の良好な接触を保つことができる。 On the other hand, in each of the plurality of second openings 112b, the second radiators 114 smaller than the opening size of the second openings 112b and capable of floating in all directions including the front-rear direction are inserted in the second openings 112b. Has been placed. The second heat radiator 114 has a circular columnar shape when viewed from the front. The second heat radiator 114 is in direct contact with the surface of the signal processing semiconductor element 109 mounted on the rear surface of the sensor substrate 108 via heat conductive grease, and is integrally formed from the rear of the second heat radiator 114. By applying a small load by the plate spring 115, a good heat conduction contact is maintained between the signal processing semiconductor element 109 and the second radiator 114. Further, as described above, since the second heat radiator 114 can move in all directions including the front-rear direction, even if the signal processing semiconductor element 109 is mounted in a state slightly inclined with respect to the rear surface of the sensor substrate 108. The second heat radiating body 114 can maintain a good thermal conductivity contact with the signal processing semiconductor element 109. Further, since the plurality of second openings 112b and the second heat radiating bodies 114 are provided so as to correspond to the plurality of signal processing semiconductor elements 109 on a one-to-one basis, each signal processing semiconductor element 109 has a sensor substrate. Even when mounted at different angles or mounted at different angles with respect to the rear surface of the 108, each second radiator 114 maintains good contact with the corresponding signal processing semiconductor element 109 in heat conduction. be able to.
  さらに、第2の開口112b内には、熱を効率よく伝え、第2の放熱体114の動きを妨げない高熱伝導性の熱伝導グリースを充填している。これにより、第2の開口112b内における水平固定冷却プレート112と第2の放熱体114との間隙には、熱伝導グリースが充満しており、第2の放熱体114の熱を効率よく水平固定冷却プレート112へ伝えることができる。  また、信号処理用半導体素子109と第2の放熱体114との間にも、熱伝導グリースが介在するので、信号処理用半導体素子109からの熱を第2の放熱体114へ効率よく伝えることができる。  したがって、信号処理用半導体素子109から発生した熱を、熱伝導グリースを介して第2の放熱体114に伝え、第2の放熱体114から熱伝導グリースを介して水平固定冷却プレート112に伝えることができる。 Further, the second opening 112b is filled with heat conductive grease having high heat conductivity that efficiently transfers heat and does not hinder the movement of the second heat radiator 114. As a result, the gap between the horizontally fixed cooling plate 112 and the second radiator 114 in the second opening 112b is filled with the thermal conductive grease, and the heat of the second radiator 114 is efficiently horizontally fixed. It can be transmitted to the cooling plate 112. In addition, since the thermal conductive grease is interposed between the signal processing semiconductor element 109 and the second heat radiating body 114, heat from the signal processing semiconductor element 109 can be efficiently transmitted to the second heat radiating body 114. Can do. Therefore, the heat generated from the signal processing semiconductor element 109 is transmitted to the second heat radiating body 114 via the thermal conductive grease, and is transmitted from the second heat radiating body 114 to the horizontal fixed cooling plate 112 via the thermal conductive grease. Can do.
  本発明の第1実施形態では、図1~図4で示す様に、固体撮像素子103の冷却機構が、コの字状シート111、コの字状シート111と第1の放熱体113との間の熱伝導グリース、第1の放熱体113、板バネ115、第1の放熱体113と水平固定冷却プレート112との間の熱伝導グリース、水平固定冷却プレート112、垂直固定冷却プレート122a、122b、フロントフレーム101等で構成される。  また、信号処理用半導体素子109の冷却機構が、信号処理用半導体素子109と第2の放熱体114との間の熱伝導グリース、第2の放熱体114、板バネ115、第2の放熱体114と水平固定冷却プレート112との間の熱伝導グリース、水平固定冷却プレート112、垂直固定冷却プレート122a、122b、フロントフレーム101等で構成されている。 In the first embodiment of the present invention, as shown in FIGS. 1 to 4, the cooling mechanism of the solid-state imaging device 103 includes a U-shaped sheet 111, a U-shaped sheet 111, and a first radiator 113. Thermal conduction grease between, first heat radiator 113, leaf spring 115, heat conduction grease between first heat radiator 113 and horizontal fixed cooling plate 112, horizontal fixed cooling plate 112, vertical fixed cooling plates 122a, 122b The front frame 101 and the like. In addition, the cooling mechanism of the signal processing semiconductor element 109 includes a thermal conductive grease between the signal processing semiconductor element 109 and the second radiator 114, a second radiator 114, a leaf spring 115, and a second radiator. 114 and a horizontal fixed cooling plate 112, a horizontal fixed cooling plate 112, vertical fixed cooling plates 122a and 122b, a front frame 101, and the like.
  したがって、固体撮像素子103から発生した熱は、センサー基板108、コの字状シート111、コの字状シート111と第1の放熱体113との間の熱伝導グリース、第1の放熱体113、第1の放熱体113と水平固定冷却プレート112との間の熱伝導グリース、水平固定冷却プレート112、垂直固定冷却プレート122a、122bなどを経て、効率よくフロントフレーム101に伝わり、固体撮像素子103を冷却することができる。  また、信号処理用半導体素子109から発生した熱は、信号処理用半導体素子109と第2の放熱体114との間の熱伝導グリース、第2の放熱体114、第2の放熱体114と水平固定冷却プレート112の間の熱伝導グリース、水平固定冷却プレート112、垂直固定冷却プレート122a、122bなどを経て、効率よくフロントフレーム101に伝わり、信号処理用半導体素子109を冷却することができる。 Therefore, the heat generated from the solid-state image sensor 103 is the sensor substrate 108, the U-shaped sheet 111, the heat conduction grease between the U-shaped sheet 111 and the first heat radiator 113, and the first heat radiator 113. The heat conduction grease between the first radiator 113 and the horizontal fixed cooling plate 112, the horizontal fixed cooling plate 112, the vertical fixed cooling plates 122a and 122b, etc., are efficiently transmitted to the front frame 101, and the solid-state image sensor 103 Can be cooled. In addition, the heat generated from the signal processing semiconductor element 109 is in parallel with the heat conduction grease between the signal processing semiconductor element 109 and the second heat dissipation element 114, the second heat dissipation element 114, and the second heat dissipation element 114. Through the heat conduction grease between the fixed cooling plates 112, the horizontal fixed cooling plate 112, the vertical fixed cooling plates 122a and 122b, etc., it is efficiently transmitted to the front frame 101, and the signal processing semiconductor element 109 can be cooled.
  このとき、第1の開口112a内における水平固定冷却プレート112と第1の放熱体113との間隙、及び第2の開口112b内における水平固定冷却プレート112と第2の放熱体114との間隙は、固体撮像素子103或は各部材の寸法公差、実装寸法公差などを全て吸収し、かつ冷却性能を満足させる値を設定している。例えば、水平固定冷却プレート112がアルミニュウム製で3mmの厚さなら、間隙は、100~200μmに選べば良い。 At this time, the gap between the horizontal fixed cooling plate 112 and the first radiator 113 in the first opening 112a and the gap between the horizontal fixed cooling plate 112 and the second radiator 114 in the second opening 112b are as follows. The solid-state imaging device 103 or each member is set to a value that absorbs all dimensional tolerances, mounting dimensional tolerances, and the like and satisfies the cooling performance. For example, if the horizontal fixed cooling plate 112 is made of aluminum and has a thickness of 3 mm, the gap may be selected from 100 to 200 μm.
  かくして、固体撮像素子103がセンサー基板108の前面側に実装され、また、信号処理用半導体素子109がセンサー基板108の後面側に実装されるなど、前面と後面の両方に発熱体が実装されている第1実施形態においても、センサー基板108やセンサー基板108の固定部である半田接合部に大きな力を加えることなく、上記発熱体から発生した熱を効率よく撮像装置筐体に放熱できる。  なお、第1実施形態では、センサー基板108を半田付けにより固定したが、接着剤により固定する場合にも、第1実施形態の冷却機構を適用することは可能である。  また、第1実施形態では、第1の開口112aと第2の開口112bを貫通穴とし、これら貫通穴の後方から板バネ115で第1の放熱体113と第2の放熱体114を押圧するようにしたが、第1の開口112aと第2の開口112bを後面が塞がった非貫通穴(凹部)とし、穴内の後面に板バネやコイルバネ等の弾性体を設けることもできる。 Thus, the solid-state imaging device 103 is mounted on the front surface side of the sensor substrate 108, and the signal processing semiconductor element 109 is mounted on the rear surface side of the sensor substrate 108. Also in the first embodiment, the heat generated from the heating element can be efficiently radiated to the imaging device housing without applying a large force to the sensor substrate 108 or the solder joint portion that is a fixing portion of the sensor substrate 108. In the first embodiment, the sensor substrate 108 is fixed by soldering, but the cooling mechanism of the first embodiment can be applied even when the sensor substrate 108 is fixed by an adhesive. In the first embodiment, the first opening 112a and the second opening 112b are formed as through holes, and the first heat dissipating body 113 and the second heat dissipating body 114 are pressed by the leaf spring 115 from the rear of the through holes. However, the first opening 112a and the second opening 112b can be formed as non-through holes (concave portions) whose rear surfaces are closed, and an elastic body such as a leaf spring or a coil spring can be provided on the rear surface in the holes.
  第1実施形態によれば、次の(1)~(10)などの効果を得ることができる。  (1)半田接合部に対する小さな機械的ストレスによっても色ずれ等の不具合を発生し易い3板カメラにおいて、固体撮像素子103や信号処理用半導体素子109を実装したセンサー基板108を固定する半田接合部に大きな機械的ストレスを加えることなく、センサー基板108の前面側に実装された固体撮像素子103からの熱を、コの字状シート111、コの字状シート111と第1の放熱体113との間の熱伝導グリース、第1の放熱体113、第1の放熱体113と水平固定冷却プレート112との間の熱伝導グリース、水平固定冷却プレート112等により、効率よく放熱することができる。  (2)センサー基板108の前面に固体撮像素子103を実装し、後面に信号処理用半導体素子109を実装し、固体撮像素子103からの熱を熱伝導シート111を介して第1の放熱体113へ伝え、信号処理用半導体素子109からの熱を熱伝導シートを介さずに第2の放熱体114へ伝えるようにしたので、センサー基板の前面に固体撮像素子と信号処理用半導体素子を実装し、固体撮像素子と信号処理用半導体素子からの熱を熱伝導シートを介して放熱体へ伝える構成と比べ、放熱効果を高くすることができる。 に よ According to the first embodiment, the following effects (1) to (10) can be obtained. (1) Solder joint for fixing the sensor substrate 108 on which the solid-state image sensor 103 and the signal processing semiconductor element 109 are mounted in a three-panel camera that is liable to cause a problem such as color misregistration even with a small mechanical stress on the solder joint. Without applying a large mechanical stress to the U-shaped sheet 111, the U-shaped sheet 111, and the first heat radiator 113. The heat conduction grease between the first heat radiator 113, the heat conduction grease between the first heat radiator 113 and the horizontal fixed cooling plate 112, the horizontal fixed cooling plate 112, and the like can efficiently radiate heat. (2) The solid-state imaging device 103 is mounted on the front surface of the sensor substrate 108, the signal processing semiconductor device 109 is mounted on the rear surface, and the heat from the solid-state imaging device 103 is transferred to the first heat dissipating body 113 via the heat conductive sheet 111. Since the heat from the signal processing semiconductor element 109 is transmitted to the second radiator 114 without going through the heat conductive sheet, the solid-state imaging element and the signal processing semiconductor element are mounted on the front surface of the sensor substrate. Compared with the configuration in which heat from the solid-state imaging device and the signal processing semiconductor device is transmitted to the heat radiating body through the heat conductive sheet, the heat radiation effect can be enhanced.
  (3)第1の放熱体113は前後方向を含む全方向に遊動できるので、コの字状シート111がセンサー基板108の後面に対して多少傾いた状態で取り付けられたとしても、第1の放熱体113は、コの字状シート111と熱伝導の良好な接触を保つことができる。  (4)第2の放熱体114は前後方向を含む全方向に遊動できるので、信号処理用半導体素子109がセンサー基板108の後面に対して多少傾いた状態で実装されたとしても、第2の放熱体114は、信号処理用半導体素子109と熱伝導の良好な接触を保つことができる。  (5)第2の開口112bと第2の放熱体114を、複数の信号処理用半導体素子109に1対1で対応するよう複数設けているので、各信号処理用半導体素子109がそれぞれ、センサー基板108の後面に対して異なる方向に傾いて実装、又は異なる角度で実装されたとしても、各第2の放熱体114はそれぞれ、対応する信号処理用半導体素子109と熱伝導の良好な接触を保つことができる。  (6)1枚の水平固定冷却プレート112(熱伝導板)に、第1の開口112aと1つ又は複数の第2の開口112bを設けているので、小型の冷却機構を実現できる。  (7)コの字状シート111は、熱伝導グリースをセンサー基板108に接触させないようにするので、熱伝導グリースがセンサー基板108に浸透してセンサー基板108を変質させることを防止することができる。  さらに、コの字状シート111は、電気絶縁性を有しているため、第1の放熱体113が接する場合、センサー基板108の電気絶縁性を確保している。 (3) Since the first heat dissipating body 113 can move in all directions including the front-rear direction, even if the U-shaped sheet 111 is attached with a slight inclination with respect to the rear surface of the sensor substrate 108, The heat dissipating body 113 can maintain good contact with the U-shaped sheet 111 in heat conduction. (4) Since the second heat dissipator 114 can move in all directions including the front-rear direction, even if the signal processing semiconductor element 109 is mounted with a slight inclination with respect to the rear surface of the sensor substrate 108, The radiator 114 can maintain a good thermal conductivity contact with the signal processing semiconductor element 109. (5) Since the plurality of second openings 112b and the second radiators 114 are provided so as to correspond to the plurality of signal processing semiconductor elements 109 on a one-to-one basis, each of the signal processing semiconductor elements 109 is a sensor. Even when mounted in a different direction with respect to the rear surface of the substrate 108 or mounted at a different angle, each of the second radiators 114 has good contact with the corresponding signal processing semiconductor element 109 in heat conduction. Can keep. (6) Since one horizontal fixed cooling plate 112 (heat conduction plate) is provided with the first opening 112a and one or more second openings 112b, a small cooling mechanism can be realized. (7) Since the U-shaped sheet 111 prevents the thermal conductive grease from coming into contact with the sensor substrate 108, it is possible to prevent the thermal conductive grease from penetrating into the sensor substrate 108 and altering the sensor substrate 108. . Furthermore, since the U-shaped sheet 111 has electrical insulation, the electrical insulation of the sensor substrate 108 is ensured when the first heat radiator 113 is in contact therewith.
  (8)コの字状シート111は、前面視をコの字状としているので、信号接続コネクタ110と干渉することを回避でき、かつセンサー基板108との間で大きな接触面積を実現できる。  (9)センサー基板108の半田固定穴108aに撮像素子固定下金具105の半田付けリード105aを挿入して半田付けするので、従来の例えば図9に示す平面同士の半田付けと比べ、半田接合部における半田クリープを抑制することができる。  (10)板バネ115は、放熱体113を前方へ押圧する押圧部115aと放熱体114を前方へ押圧する押圧部115bとを一体的に形成しているので、板バネ115が押圧する荷重が、センサー基板108を接合する半田接合部に半田クレープを発生させない程度、あるいは、固体撮像素子103にレジストレーションのズレを発生させない程度の小さい、小型の板バネ115を製作することが容易となる。 (8) Since the U-shaped sheet 111 has a U-shape when viewed from the front, it can be prevented from interfering with the signal connection connector 110, and a large contact area with the sensor substrate 108 can be realized. (9) Since the solder lead 105a of the imaging element fixing lower metal fitting 105 is inserted into the solder fixing hole 108a of the sensor substrate 108 and soldered, compared with the conventional soldering between the flat surfaces shown in FIG. It is possible to suppress solder creep. (10) The leaf spring 115 is integrally formed with a pressing portion 115a that presses the radiator 113 forward and a pressing portion 115b that presses the radiator 114 forward. Thus, it is easy to manufacture a small leaf spring 115 that is small enough not to generate solder crepe at the solder joint where the sensor substrate 108 is joined, or does not cause registration deviation in the solid-state image sensor 103.
(第2実施形態)  次に、第2実施形態の撮像装置の冷却機構について、図5を参照して説明する。図5は、第2実施形態における撮像装置の一部分の分解斜視図である。なお、図5のうち第1実施形態で説明したものと同じ構成は、同じ番号を付け説明を省略する。また、各3原色の光(赤R,緑G,青B)に対する構造が同じなので、ここでは真中のGチャンネルについてのみ詳細に図示し説明する。 (Second Embodiment) Next, a cooling mechanism of an image pickup apparatus according to a second embodiment will be described with reference to FIG. FIG. 5 is an exploded perspective view of a part of the imaging apparatus according to the second embodiment. 5 that are the same as those described in the first embodiment in FIG. Also, since the structures for the three primary colors of light (red R, green G, and blue B) are the same, only the middle G channel is shown and described in detail here.
  第2実施形態においては、固体撮像素子103と信号処理用半導体素子209は、電気信号を取り出すセンサー基板208の前面に半田付けされている。センサー基板208は、その他の点については第1実施形態のセンサー基板108と同様であり、センサー基板208の後面には、固体撮像素子103の映像信号を取り出す信号接続コネクタ(図示せず)が設けられている。 In the second embodiment, the solid-state imaging device 103 and the signal processing semiconductor device 209 are soldered to the front surface of the sensor substrate 208 that extracts an electrical signal. The sensor board 208 is the same as the sensor board 108 of the first embodiment in other respects, and a signal connection connector (not shown) for taking out the video signal of the solid-state image sensor 103 is provided on the rear surface of the sensor board 208. It has been.
  色分解プリズム102とセンサー基板208の外側に、間隙を持って色分解プリズム102及びセンサー基板208を覆うように、水平固定冷却プレート212(熱伝導板)と垂直固定冷却プレート122a、122bと、フロントフレーム101とが互いにネジ止め固定される。水平固定冷却プレート212と垂直固定冷却プレート122a、122bは、熱伝導性の高い高熱伝導金属、例えばアルミニュウムや銅などで作られる。  これらの水平固定冷却プレート212と垂直固定冷却プレート122a、122bは、センサー基板208に実装した固体撮像素子103及び信号処理用半導体素子209から発生した熱を、色分解プリズム102を装着したカメラ筐体のフロントフレーム101に導くためのものである。 A horizontal fixed cooling plate 212 (heat conduction plate), vertical fixed cooling plates 122a and 122b, and a front surface so as to cover the color separation prism 102 and the sensor substrate 208 with a gap outside the color separation prism 102 and the sensor substrate 208. The frame 101 is fixed to each other with screws. The horizontal fixed cooling plate 212 and the vertical fixed cooling plates 122a and 122b are made of a high heat conductive metal having high heat conductivity, such as aluminum or copper. The horizontal fixed cooling plate 212 and the vertical fixed cooling plates 122a and 122b are arranged in a camera housing in which the heat generated from the solid-state imaging device 103 and the signal processing semiconductor device 209 mounted on the sensor substrate 208 is mounted on the color separation prism 102. It is for guiding to the front frame 101.
  また、センサー基板208と所定の間隔を空けて、センサー基板208に立設された支柱208bに、弾性体である板バネ215がネジ止め固定される。このとき板バネ215を固定するネジは、水平固定冷却プレート212を貫通する。なお、板バネ215は水平固定冷却プレート212に固定するようにしてもよい。板バネ215の形状や材質や厚さは、第1実施形態の板バネ115と同様である。 In addition, a leaf spring 215 that is an elastic body is screwed and fixed to a support 208b that is erected on the sensor substrate 208 at a predetermined interval from the sensor substrate 208. At this time, the screw for fixing the leaf spring 215 passes through the horizontal fixed cooling plate 212. The plate spring 215 may be fixed to the horizontal fixed cooling plate 212. The shape, material, and thickness of the leaf spring 215 are the same as those of the leaf spring 115 of the first embodiment.
  水平固定冷却プレート212には、後述するように、第3の開口212aが設けられ、その中に、放熱体213が前後方向を含む全方向に遊動可能なように収容される。放熱体213は、板バネ215により前方に付勢され、センサー基板208の後面を押圧する。このときの板バネ215を押す荷重は、第1実施形態と同様に、センサー基板208を外部と接合する半田接合部に半田クレープを発生させない程度、あるいは、固体撮像素子103にレジストレーションのズレを発生させない程度の小さいものに設定され、50g以下である。 As will be described later, the horizontal fixed cooling plate 212 is provided with a third opening 212a, in which the radiator 213 is accommodated so as to be movable in all directions including the front-rear direction. The radiator 213 is biased forward by the leaf spring 215 and presses the rear surface of the sensor substrate 208. The load that pushes the leaf spring 215 at this time is the same as in the first embodiment, so that no solder crepe is generated at the solder joint where the sensor substrate 208 is joined to the outside, or the solid-state image sensor 103 is misaligned. It is set to be small enough not to generate and is 50 g or less.
  水平固定冷却プレート212には、固体撮像素子103及び信号処理用半導体素子209と対向する位置に、固体撮像素子103及び信号処理用半導体素子209冷却用の第3の開口212aが開けられている。本実施形態では、第3の開口212aは、前面視が矩形の矩形開口であり、水平固定冷却プレート212の前面から後面に貫通する貫通穴である。第3の開口212a内には、第3の開口212aの開口寸法より小さく第3の開口212a内を前後方向を含む全方向に遊動できる第3の放熱体213が挿入され配置されていると共に、センサー基板208の映像信号を取り出す信号接続コネクタ(図示せず)も挿入される。  第3の放熱体213は、前面視がロの字状であり、その中央部には矩形状の貫通穴である開口213aが形成されている。第3の放熱体213のロの字状の形状は、第3の放熱体213が信号接続コネクタと干渉しないように定められている。なお、信号接続コネクタは映像信号を高速に取り出すため、センサー基板208の中央に設けられている。 In the horizontal fixed cooling plate 212, a third opening 212 a for cooling the solid-state image sensor 103 and the signal processing semiconductor element 209 is opened at a position facing the solid-state image sensor 103 and the signal processing semiconductor element 209. In the present embodiment, the third opening 212 a is a rectangular opening that is rectangular when viewed from the front, and is a through hole that penetrates from the front surface of the horizontal fixed cooling plate 212 to the rear surface. In the third opening 212a, a third radiator 213 that is smaller than the opening size of the third opening 212a and can freely move in all directions including the front-rear direction in the third opening 212a is inserted and disposed. A signal connection connector (not shown) for taking out the video signal of the sensor substrate 208 is also inserted. The third radiator 213 has a square shape when viewed from the front, and an opening 213a, which is a rectangular through hole, is formed at the center thereof. The B-shaped shape of the third radiator 213 is determined so that the third radiator 213 does not interfere with the signal connection connector. The signal connection connector is provided at the center of the sensor substrate 208 in order to take out the video signal at high speed.
  第2実施形態では、固体撮像素子103及び信号処理用半導体素子209から発生した熱は、センサー基板208を介して、センサー基板208の後面から取り込むことになる。そのため、センサー基板208の後面と第3の放熱体213との間に、電気絶縁性と高熱伝導性とを有するロの字状シート211を挟む。そして、第3の放熱体213の後方から一体形状の板バネ215によって小さな荷重を与圧し、ロの字状シート211と第3の放熱体213との間で熱伝導の良好な接触を保つようにしている。  ロの字状シート211は、前面視がロの字状をしており、その中央部には矩形状の開口211aが形成されている。ロの字状シート211のロの字状は、信号接続コネクタと干渉しないように定められている。ロの字状シート211は、第1実施形態のコの字状シート111と同様に、高熱伝導性の熱伝導グリースをセンサー基板208に接触させないようにする役割を果たす。 In the second embodiment, the heat generated from the solid-state imaging device 103 and the signal processing semiconductor device 209 is taken from the rear surface of the sensor substrate 208 via the sensor substrate 208. Therefore, a square-shaped sheet 211 having electrical insulation and high thermal conductivity is sandwiched between the rear surface of the sensor substrate 208 and the third radiator 213. Then, a small load is applied from behind the third radiator 213 by the integral leaf spring 215 so as to maintain a good heat conduction contact between the B-shaped sheet 211 and the third radiator 213. I have to. The square-shaped sheet 211 has a square shape when viewed from the front, and a rectangular opening 211a is formed at the center thereof. The square shape of the square-shaped sheet 211 is determined so as not to interfere with the signal connection connector. The U-shaped sheet 211 plays a role of preventing the heat conductive grease having high thermal conductivity from coming into contact with the sensor substrate 208, similarly to the U-shaped sheet 111 of the first embodiment.
  さらに、第3の開口212a内には、熱を効率よく伝え、第3の放熱体213の動きを妨げない高熱伝導性の熱伝導グリースを充填している。これにより、第3の開口212aと第3の放熱体213との間隙には、熱伝導グリースが充満しており、第3の放熱体213の熱を効率よく水平固定冷却プレート212へ伝えることができる。  また、ロの字状シート211と第3の放熱体213との間にも、熱伝導グリースが介在するので、ロの字状シート211からの熱を第3の放熱体213へ効率よく伝えることができる。  したがって、電気絶縁性と高熱伝導性とを有するロの字状シート211は、固体撮像素子103及び信号処理用半導体素子209からセンサー基板208に伝わった熱を効率よく導き出し、該導き出した熱は、熱伝導グリースを介して第3の放熱体213に伝えられる。さらに、第3の放熱体213からの熱は、熱伝導グリースを介して水平固定冷却プレート212に伝えられる。  なお、センサー基板208、第3の放熱体213、ロの字状シート211、第3の開口212a内に充填される熱伝導グリースの材質は、それぞれ、第1実施形態のセンサー基板108、第1の放熱体113、コの字状シート111、第1の開口112a内に充填される熱伝導グリースの材質と同様である。 In addition, the third opening 212a is filled with heat conductive grease having high heat conductivity that efficiently transfers heat and does not hinder the movement of the third radiator 213. As a result, the gap between the third opening 212a and the third heat radiating body 213 is filled with the heat conductive grease, and the heat of the third heat radiating body 213 can be efficiently transmitted to the horizontal fixed cooling plate 212. it can. In addition, since the thermal conductive grease is interposed between the square-shaped sheet 211 and the third radiator 213, the heat from the square-shaped sheet 211 can be efficiently transmitted to the third radiator 213. Can do. Therefore, the B-shaped sheet 211 having electrical insulation and high thermal conductivity efficiently derives the heat transmitted from the solid-state imaging device 103 and the signal processing semiconductor element 209 to the sensor substrate 208, and the derived heat is It is transmitted to the third heat radiating body 213 through the thermal conductive grease. Further, the heat from the third radiator 213 is transmitted to the horizontal fixed cooling plate 212 via the heat conductive grease. The material of the thermal conductive grease filled in the sensor substrate 208, the third heat radiator 213, the square-shaped sheet 211, and the third opening 212a is the sensor substrate 108 of the first embodiment, and the first The heat dissipating body 113, the U-shaped sheet 111, and the material of the heat conductive grease filled in the first opening 112a are the same.
  第2実施形態では、図5に示す様に、固体撮像素子103及び信号処理用半導体素子209の冷却機構が、ロの字状シート211、ロの字状シート211と第3の放熱体213との間の熱伝導グリース、第3の放熱体213、板バネ215、第3の放熱体213と水平固定冷却プレート212との間の熱伝導グリース、水平固定冷却プレート212、垂直固定冷却プレート122a、122b、フロントフレーム101等で構成されている。  したがって、固体撮像素子103及び信号処理用半導体素子209から発生した熱は、センサー基板208、熱伝導性を有するロの字状シート211、ロの字状シート211と第3の放熱体213との間の熱伝導グリース、第3の放熱体213、第3の放熱体213と水平固定冷却プレート212との間の熱伝導グリース、水平固定冷却プレート212、垂直固定冷却プレート122a、122bなどを経て、効率よくフロントフレーム101に伝わり、固体撮像素子103及び信号処理用半導体素子209を冷却することができる。 In the second embodiment, as shown in FIG. 5, the cooling mechanism of the solid-state imaging device 103 and the signal processing semiconductor element 209 includes a B-shaped sheet 211, a B-shaped sheet 211, a third radiator 213, and the like. Thermal conduction grease between, third heat radiator 213, leaf spring 215, heat conduction grease between third heat radiator 213 and horizontal fixed cooling plate 212, horizontal fixed cooling plate 212, vertical fixed cooling plate 122a, 122b, the front frame 101, and the like. Therefore, the heat generated from the solid-state image sensor 103 and the signal processing semiconductor element 209 is generated between the sensor substrate 208, the B-shaped sheet 211 having thermal conductivity, the B-shaped sheet 211, and the third radiator 213. The heat conduction grease between, the third heat radiator 213, the heat conduction grease between the third heat radiator 213 and the horizontal fixed cooling plate 212, the horizontal fixed cooling plate 212, the vertical fixed cooling plates 122a, 122b, etc. The solid-state imaging element 103 and the signal processing semiconductor element 209 can be cooled efficiently by being transmitted to the front frame 101.
  第2実施形態では、センサー基板208を介して熱を伝えるため、冷却性能は第1実施形態よりも若干低下するが、冷却部品が少なく、組立が容易であるため、撮像装置を安価に組み立てられる特徴がある。 In the second embodiment, since the heat is transmitted through the sensor substrate 208, the cooling performance is slightly lower than that in the first embodiment, but since there are few cooling parts and the assembly is easy, the imaging apparatus can be assembled at low cost. There are features.
(第3実施形態)  次に、第3実施形態の撮像装置について説明する。  第3実施形態の撮像装置の冷却機構は、上述した第1実施形態の冷却機構又は第2実施形態の冷却機構と同じ冷却機構であるが、固体撮像素子103を色分解プリズム102に固定する手段が異なるものである。従って、固定手段についてのみ図6を用いて説明する。図6は、第3実施形態における撮像装置のセンサー基板を色分解プリズムに固定する方法を説明する分解斜視図である。なおここでも、第1実施形態や第2実施形態で説明したものと同じ構成は、同じ番号を付け説明を省略する。 (Third Embodiment) Next, an image pickup apparatus according to a third embodiment will be described. The cooling mechanism of the imaging device of the third embodiment is the same as the cooling mechanism of the first embodiment or the cooling mechanism of the second embodiment described above, but means for fixing the solid-state imaging device 103 to the color separation prism 102. Are different. Therefore, only the fixing means will be described with reference to FIG. FIG. 6 is an exploded perspective view illustrating a method for fixing the sensor substrate of the imaging apparatus according to the third embodiment to the color separation prism. In this case as well, the same configurations as those described in the first embodiment and the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  プリズム102に取り付けられた撮像素子固定下金具305の四隅には、半田接続部305aが形成されている。一方、固体撮像素子103の裏面には撮像素子固定金具306が接着剤で止められている。撮像素子固定金具306の四隅にも半田接続部306aが形成されている。固体撮像素子103はセンサー基板308の前面に実装され、固体撮像素子103の接続端子は、センサー基板308の後面で半田付けされている。本実施形態の場合でも、各固体撮像素子103ごとの各3原色の光(赤R,緑G,青B)の映像信号を見ながら、互いに色収差や画像ずれがないように色分解プリズム102に対して各固体撮像素子103を動かして所定精度の位置決めを行い、撮像素子固定下金具305の四隅の半田接続部305aと撮像素子固定金具306の四隅の半田接続部306aを半田付けして固定する。 Solder connection portions 305 a are formed at the four corners of the imaging element fixing lower metal fitting 305 attached to the eyelid prism 102. On the other hand, an image sensor fixing bracket 306 is fixed to the back surface of the solid-state image sensor 103 with an adhesive. Solder connection portions 306 a are also formed at the four corners of the image sensor fixing bracket 306. The solid-state image sensor 103 is mounted on the front surface of the sensor substrate 308, and the connection terminals of the solid-state image sensor 103 are soldered on the rear surface of the sensor substrate 308. Even in the case of the present embodiment, while viewing the video signals of the light of each of the three primary colors (red R, green G, and blue B) for each solid-state imaging device 103, the color separation prism 102 is arranged so that there is no chromatic aberration or image misalignment. On the other hand, each solid-state image sensor 103 is moved to perform positioning with a predetermined accuracy, and the solder connection portions 305a at the four corners of the imaging device fixing lower bracket 305 and the solder connection portions 306a at the four corners of the imaging device fixing bracket 306 are soldered and fixed. .
  第3実施形態では、固体撮像素子103から発生した熱は、上述した第1実施形態や第2実施形態のようにセンサー基板308を介して水平固定冷却プレート等からフロントフレーム301へ熱を逃がす以外に、撮像素子固定上金具306と固体撮像素子103の裏面全体が接着されていることにより、撮像素子固定下金具305を介してプリズム102側からもフロントフレーム301へ逃がすことができる特徴がある。 In the third embodiment, the heat generated from the solid-state image sensor 103 is not released from the horizontal fixed cooling plate or the like to the front frame 301 via the sensor substrate 308 as in the first and second embodiments described above. In addition, since the imaging device fixing upper metal fitting 306 and the entire back surface of the solid-state imaging device 103 are bonded, the prism 102 can also escape from the prism 102 side through the imaging device fixing lower metal fitting 305.
(第4実施形態)  次に、第4実施形態の撮像装置について説明する。  第4実施形態の撮像装置の冷却機構は、上述した第1実施形態の冷却機構又は第2実施形態の冷却機構と同じ冷却機構であるが、3原色の光(赤R,緑G,青B)に対して検知する素子が一個の固体撮像素子の中に組み込まれている場合である。これは、通常、単板カメラと呼ばれているものであり、この単板カメラに本発明の冷却機構を適用した場合を示す。以下、図7、図8を用いて説明する。図7は、第4実施形態における撮像装置の水平中央断面図である。図8は、第4実施形態における撮像装置の垂直断面図である。 (Fourth Embodiment) Next, an image pickup apparatus according to a fourth embodiment will be described. The cooling mechanism of the imaging device of the fourth embodiment is the same as the cooling mechanism of the first embodiment or the cooling mechanism of the second embodiment described above, but the light of the three primary colors (red R, green G, blue B). ) Is detected in a single solid-state imaging device. This is generally called a single plate camera, and shows a case where the cooling mechanism of the present invention is applied to this single plate camera. Hereinafter, a description will be given with reference to FIGS. FIG. 7 is a horizontal central cross-sectional view of the imaging apparatus according to the fourth embodiment. FIG. 8 is a vertical sectional view of the imaging apparatus according to the fourth embodiment.
  撮像素子固定下金具405は、例えばアルミニュウム製のカメラ筐体(撮像装置筐体)のフロントフレーム(筐体前部)401にネジ止めされている。一方、固体撮像素子403はセンサー基板408の前面に実装され、固体撮像素子403の接続端子はセンサー基板408の後面で半田付けされている。センサー基板408の後面には、固体撮像素子403の映像信号を処理する信号処理用半導体素子409と、信号処理用半導体素子409から信号を取り出す信号接続コネクタ(図示せず)が設けられている。 The imaging element fixing lower metal fitting 405 is screwed to a front frame (front part of the casing) 401 of a camera casing (imaging apparatus casing) made of, for example, aluminum. On the other hand, the solid-state image sensor 403 is mounted on the front surface of the sensor substrate 408, and the connection terminal of the solid-state image sensor 403 is soldered on the rear surface of the sensor substrate 408. On the rear surface of the sensor substrate 408, a signal processing semiconductor element 409 that processes a video signal of the solid-state imaging element 403 and a signal connection connector (not shown) that extracts a signal from the signal processing semiconductor element 409 are provided.
  固体撮像素子403の位置決めは、次のように行われる。すなわち、信号接続コネクタ(図示せず)に映像信号を接続し、映像信号を見ながら画像ずれがないように、固体撮像素子403を動かして所定精度の位置決めを行う。このとき、センサー基板408の半田固定穴(図示せず)に撮像素子固定下金具405の半田付けリード405aが挿入されるので、この位置決めした状態で半田付けリード405aを半田固定穴(図示せず)に半田付けする。これにより、固体撮像素子403はフロントフレーム401に固定される。 The positioning of the solid-state image sensor 403 is performed as follows. That is, a video signal is connected to a signal connection connector (not shown), and the solid-state image sensor 403 is moved to perform positioning with a predetermined accuracy so that there is no image shift while viewing the video signal. At this time, since the soldering lead 405a of the imaging device fixing lower metal fitting 405 is inserted into the solder fixing hole (not shown) of the sensor substrate 408, the soldering lead 405a is inserted into the solder fixing hole (not shown) in this positioned state. Solder to). Thereby, the solid-state image sensor 403 is fixed to the front frame 401.
  その後、図7に示すように、センサー基板408の外側に、間隙を持ってセンサー基板408を覆うように、水平固定冷却プレート412(熱伝導板)と垂直固定冷却プレート422a、422bと、フロントフレーム401とが互いにネジ止め固定される。水平固定冷却プレート412(熱伝導板)と垂直固定冷却プレート422a、422bは、熱伝導性の高い高熱伝導金属、例えばアルミニュウムや銅などで作られる。  これらの水平固定冷却プレート412と垂直固定冷却プレート422a、422bは、センサー基板408に実装した固体撮像素子403及び信号処理用半導体素子409から発生した熱を、カメラ筐体のフロントフレーム401に導くためのものである。 Thereafter, as shown in FIG. 7, the horizontal fixed cooling plate 412 (heat conduction plate), the vertical fixed cooling plates 422a and 422b, and the front frame so as to cover the sensor substrate 408 with a gap outside the sensor substrate 408. 401 are fixed to each other by screws. The horizontal fixed cooling plate 412 (heat conductive plate) and the vertical fixed cooling plates 422a and 422b are made of a high heat conductive metal having high thermal conductivity, such as aluminum or copper. The horizontal fixed cooling plate 412 and the vertical fixed cooling plates 422a and 422b guide heat generated from the solid-state imaging device 403 and the signal processing semiconductor device 409 mounted on the sensor substrate 408 to the front frame 401 of the camera housing. belongs to.
  また、水平固定冷却プレート412には、弾性体である板バネ415がネジ止め固定される。板バネ415の形状や材質や厚さは第1実施形態の板バネ115と同様である。  水平固定冷却プレート412には、後述するように、第4の開口412aと第5の開口412bとが設けられ、その中にそれぞれ、放熱体413と放熱体414が前後方向を含む全方向に遊動可能なように収容される。放熱体413と放熱体414は、板バネ415により前方に付勢され、センサー基板408の後面又はセンサー基板408の後面に実装された信号処理用半導体素子409を押圧する。このときの板バネ415のバネ荷重は、第1実施形態と同様に、センサー基板408を接合する半田接合部に半田クレープを発生させない程度、あるいは、固体撮像素子403にレジストレーションのズレを発生させない程度の小さいものに設定され、50g以下である。 Further, a plate spring 415 that is an elastic body is fixed to the horizontal fixed cooling plate 412 with screws. The shape, material, and thickness of the leaf spring 415 are the same as those of the leaf spring 115 of the first embodiment. As will be described later, the horizontal fixed cooling plate 412 is provided with a fourth opening 412a and a fifth opening 412b, in which the heat radiating body 413 and the heat radiating body 414 move in all directions including the front-rear direction. Accomodated as possible. The heat radiating body 413 and the heat radiating body 414 are urged forward by a leaf spring 415 and press the signal processing semiconductor element 409 mounted on the rear surface of the sensor substrate 408 or the rear surface of the sensor substrate 408. The spring load of the leaf spring 415 at this time does not cause a solder crepe to occur at the solder joint where the sensor substrate 408 is joined, or does not cause a registration shift in the solid-state image sensor 403, as in the first embodiment. It is set to a small one and is 50 g or less.
  水平固定冷却プレート412には、固体撮像素子403及び信号処理用半導体素子409と対向する位置に、それぞれ、固体撮像素子冷却用の第4の開口412aと、半導体素子冷却用の第5の開口412bとが開けられている。本実施形態では、第4の開口412aは前面視が矩形の矩形開口であり、第5の開口412bは前面視が円形の円形開口であり、いずれも水平固定冷却プレート412の前面から後面に貫通する貫通穴である。第4の開口412a内には、第4の開口412aの開口寸法より小さく第4の開口412a内を前後方向を含む全方向に遊動できる第4の放熱体413が挿入され配置されていると共に、センサー基板408の映像信号を取り出す信号接続コネクタ(図示せず)も挿入される。第4の放熱体413は、第1実施形態の第1の放熱体113と同様、前面視がコの字状であり、このコの字状の形状は、第4の放熱体413が信号接続コネクタと干渉しないように定められている。なお、信号接続コネクタは映像信号を高速に取り出すため、センサー基板408の中央に設けられている。 The horizontal fixed cooling plate 412 has a fourth opening 412a for cooling the solid-state imaging element and a fifth opening 412b for cooling the semiconductor element at positions facing the solid-state imaging element 403 and the signal processing semiconductor element 409, respectively. And are opened. In the present embodiment, the fourth opening 412a is a rectangular opening that is rectangular when viewed from the front, and the fifth opening 412b is a circular opening that is circular when viewed from the front, both of which penetrate from the front surface to the rear surface of the horizontal fixed cooling plate 412. It is a through hole. In the fourth opening 412a, a fourth heat radiating body 413 that is smaller than the opening size of the fourth opening 412a and can freely move in all directions including the front-rear direction in the fourth opening 412a is inserted and disposed. A signal connection connector (not shown) for taking out the video signal of the sensor substrate 408 is also inserted. The fourth radiator 413 is U-shaped when viewed from the front, like the first radiator 113 of the first embodiment, and this U-shaped configuration is such that the fourth radiator 413 is connected to the signal. It is determined not to interfere with the connector. Note that the signal connector is provided at the center of the sensor substrate 408 in order to take out the video signal at high speed.
  固体撮像素子403はセンサー基板408の前面に実装されているので、固体撮像素子403から発生した熱はセンサー基板408を介して取り込むことになる。そのため、センサー基板408と第4の放熱体413との間に、電気絶縁性と高熱伝導性とを有するコの字状シート411を挟む。そして、第4の放熱体413の後方から一体形状の板バネ415によって小さな荷重を与圧し、コの字状シート411と第4の放熱体413との間で熱伝導の良好な接触を保つようにしている。コの字状シート411と板バネ415の形状と材質は、第1実施形態のコの字状シート111と板バネ115の形状と材質と同様である。  第1実施形態と同様に、第4の放熱体413は前後方向を含む全方向に遊動できるので、コの字状シート411がセンサー基板408の後面に対して多少傾いた状態で取り付けられたとしても、第4の放熱体413はコの字状シート411と熱伝導の良好な接触を保つことができる。  また、コの字状シート411は、第1実施形態と同様に、熱伝導グリースをセンサー基板408に接触させないようにする役割を果たす。なお、コの字状としている理由は、第1実施形態と同様に、信号接続コネクタと干渉しないためである。 の Since the solid-state image sensor 403 is mounted on the front surface of the sensor substrate 408, heat generated from the solid-state image sensor 403 is taken in via the sensor substrate 408. Therefore, a U-shaped sheet 411 having electrical insulation and high thermal conductivity is sandwiched between the sensor substrate 408 and the fourth heat radiating body 413. Then, a small load is applied from behind the fourth radiator 413 by the integrated leaf spring 415 so as to maintain a good contact of heat conduction between the U-shaped sheet 411 and the fourth radiator 413. I have to. The shape and material of the U-shaped sheet 411 and the leaf spring 415 are the same as the shape and material of the U-shaped sheet 111 and the leaf spring 115 of the first embodiment. As in the first embodiment, the fourth heat radiating body 413 can move in all directions including the front-rear direction, so that the U-shaped sheet 411 is attached with a slight inclination with respect to the rear surface of the sensor substrate 408. In addition, the fourth heat radiating body 413 can maintain good contact with the U-shaped sheet 411 in heat conduction. The U-shaped sheet 411 plays the role of preventing the thermal conductive grease from coming into contact with the sensor substrate 408, as in the first embodiment. The reason for the U-shape is that it does not interfere with the signal connection connector as in the first embodiment.
  さらに、第4の開口412a内には、熱を効率よく伝え、第4の放熱体413の動きを妨げない高熱伝導性の熱伝導グリースを充填している。これにより、第4の開口412a内における水平固定冷却プレート412と第4の放熱体413との間隙には、熱伝導グリースが充満しており、第4の放熱体413の熱を効率よく水平固定冷却プレート412へ伝えることができる。  また、コの字状シート411と第4の放熱体413との間にも、熱伝導グリースが介在するので、コの字状シート411からの熱を第4の放熱体413へ効率よく伝えることができる。  したがって、電気絶縁性と高熱伝導性とを有するコの字状シート411は、固体撮像素子403からセンサー基板408に伝わった熱を効率よく導き出し、該導き出した熱は、熱伝導グリースを介して第4の放熱体413に伝えられる。さらに、第4の放熱体413からの熱は、熱伝導グリースを介して、効率よく水平固定冷却プレート412に伝えられる。 Further, the fourth opening 412a is filled with heat conductive grease having high heat conductivity that efficiently transfers heat and does not hinder the movement of the fourth heat radiating body 413. As a result, the gap between the horizontal fixed cooling plate 412 and the fourth radiator 413 in the fourth opening 412a is filled with the thermal grease, and the heat of the fourth radiator 413 is horizontally fixed efficiently. It can be transmitted to the cooling plate 412. In addition, since the thermal conductive grease is interposed between the U-shaped sheet 411 and the fourth radiator 413, the heat from the U-shaped sheet 411 is efficiently transmitted to the fourth radiator 413. Can do. Therefore, the U-shaped sheet 411 having electrical insulation and high thermal conductivity efficiently derives the heat transmitted from the solid-state imaging device 403 to the sensor substrate 408, and the derived heat is transmitted through the heat conduction grease. 4 radiating body 413. Furthermore, the heat from the fourth radiator 413 is efficiently transmitted to the horizontal fixed cooling plate 412 via the heat conductive grease.
  一方、第5の開口412b内には、第5の開口412bの開口寸法より小さく第5の開口412b内を前後方向を含む全方向に遊動できる第5の放熱体414が挿入され配置されている。第5の放熱体414は前面視が円形の円柱状である。第5の放熱体414は、センサー基板408の後面に実装されている信号処理用半導体素子409の表面に熱伝導グリースを介して直接接触しており、第5の放熱体414の後方から一体形状の板バネ415によって小さな荷重を与圧することで、信号処理用半導体素子409と第5の放熱体414の間で、熱伝導の良好な接触を保つようにしている。  また、上述したように、第5の放熱体414は前後方向を含む全方向に遊動できるので、信号処理用半導体素子409がセンサー基板408の後面に対して多少傾いた状態で実装されたとしても、第5の放熱体414は信号処理用半導体素子409と熱伝導の良好な接触を保つことができる。 On the other hand, in the fifth opening 412b, a fifth heat radiating body 414 that is smaller than the opening size of the fifth opening 412b and can move in all directions including the front-rear direction in the fifth opening 412b is inserted and disposed. . The fifth radiator 414 has a circular columnar shape when viewed from the front. The fifth heat radiating body 414 is in direct contact with the surface of the signal processing semiconductor element 409 mounted on the rear surface of the sensor substrate 408 via heat conductive grease, and is integrally formed from the rear of the fifth heat radiating body 414. By applying a small load by the plate spring 415, a good heat conduction contact is maintained between the signal processing semiconductor element 409 and the fifth radiator 414. Further, as described above, since the fifth heat radiating body 414 can move in all directions including the front-rear direction, even if the signal processing semiconductor element 409 is mounted with a slight inclination with respect to the rear surface of the sensor substrate 408, The fifth radiator 414 can maintain good contact with the signal processing semiconductor element 409 in heat conduction.
  さらに、第5の開口412b内には、熱を効率よく伝え、第5の放熱体414の動きを妨げない高熱伝導性の熱伝導グリースを充填している。これにより、第5の開口412b内における水平固定冷却プレート412と第5の放熱体414との間隙には、熱伝導グリースが充満しており、第5の放熱体414の熱を効率よく水平固定冷却プレート412へ伝えることができる。  また、信号処理用半導体素子409と第5の放熱体414との間にも、熱伝導グリースが介在するので、信号処理用半導体素子409からの熱を第5の放熱体414へ効率よく伝えることができる。  したがって、信号処理用半導体素子409から発生した熱を、熱伝導グリースを介して第5の放熱体414に伝え、第5の放熱体414から熱伝導グリースを介して水平固定冷却プレート412に伝えることができる。  なお、センサー基板408、第4の放熱体413と第5の放熱体414、第4の開口412aと第5の開口412b内に充填される熱伝導グリースの材質は、それぞれ、第1実施形態のセンサー基板108、第1の放熱体113、第1の開口112a内に充填される熱伝導グリースの材質と同様である。 Further, the fifth opening 412b is filled with high thermal conductive grease that efficiently transfers heat and does not hinder the movement of the fifth radiator 414. As a result, the gap between the horizontal fixed cooling plate 412 and the fifth radiator 414 in the fifth opening 412b is filled with the heat conductive grease, and the heat of the fifth radiator 414 is horizontally fixed efficiently. It can be transmitted to the cooling plate 412. In addition, since the thermal conductive grease is interposed between the signal processing semiconductor element 409 and the fifth heat radiating body 414, the heat from the signal processing semiconductor element 409 is efficiently transmitted to the fifth heat radiating body 414. Can do. Therefore, the heat generated from the signal processing semiconductor element 409 is transmitted to the fifth heat radiating body 414 via the thermal conductive grease, and is transmitted from the fifth heat radiating body 414 to the horizontal fixed cooling plate 412 via the thermal conductive grease. Can do. The material of the thermal conductive grease filled in the sensor substrate 408, the fourth radiator 413 and the fifth radiator 414, and the fourth opening 412a and the fifth opening 412b is the same as that of the first embodiment. The material of the thermal conductive grease filled in the sensor substrate 108, the first heat radiator 113, and the first opening 112a is the same.
  本発明の第4実施形態では、図7~図8で示す様に、固体撮像素子403の冷却機構が、コの字状シート411、コの字状シート411と第4の放熱体413との間の熱伝導グリース、第4の放熱体413、板バネ415、第4の放熱体413と水平固定冷却プレート412との間の熱伝導グリース、水平固定冷却プレート412、垂直固定冷却プレート422a、422b、フロントフレーム401等で構成される。  また、信号処理用半導体素子409の冷却機構が、信号処理用半導体素子409と第5の放熱体414の間の熱伝導グリース、第5の放熱体414、板バネ415、第5の放熱体414と水平固定冷却プレート412の間の熱伝導グリース、水平固定冷却プレート412、垂直固定冷却プレート422a、422b、フロントフレーム401等で構成されている。 In the fourth embodiment of the present invention, as shown in FIGS. 7 to 8, the cooling mechanism of the solid-state imaging device 403 includes a U-shaped sheet 411, a U-shaped sheet 411, and a fourth radiator 413. Thermal conductive grease between, fourth heat radiator 413, leaf spring 415, heat conductive grease between fourth heat radiator 413 and horizontal fixed cooling plate 412, horizontal fixed cooling plate 412, vertical fixed cooling plates 422a, 422b The front frame 401 and the like. In addition, the cooling mechanism of the signal processing semiconductor element 409 includes a thermal conductive grease between the signal processing semiconductor element 409 and the fifth radiator 414, a fifth radiator 414, a leaf spring 415, and a fifth radiator 414. And a horizontal fixed cooling plate 412, a horizontal fixed cooling plate 412, vertical fixed cooling plates 422 a and 422 b, a front frame 401, and the like.
  したがって、固体撮像素子403から発生した熱は、センサー基板408、熱伝導性を有するコの字状シート411、コの字状シート411と第4の放熱体413との間の熱伝導グリース、第4の放熱体413、第4の放熱体413と水平固定冷却プレート412との間の熱伝導グリース、水平固定冷却プレート412、垂直固定冷却プレート422a、422bなどを経て、効率よくフロントフレーム401に伝わるので、固体撮像素子403を冷却することができる。  また、信号処理用半導体素子409から発生した熱は、信号処理用半導体素子409と第5の放熱体414の間の熱伝導グリース、第5の放熱体414、第5の放熱体414と水平固定冷却プレート412の間の熱伝導グリース、水平固定冷却プレート412、垂直固定冷却プレート422a、422bなどを経て、効率よくフロントフレーム401に伝わるので、信号処理用半導体素子409を冷却することができる。 Therefore, the heat generated from the solid-state image sensor 403 includes the sensor substrate 408, the U-shaped sheet 411 having thermal conductivity, the thermal conductive grease between the U-shaped sheet 411 and the fourth radiator 413, 4, heat conduction grease between the fourth heat radiating body 413 and the horizontal fixed cooling plate 412, the horizontal fixed cooling plate 412, the vertical fixed cooling plates 422 a and 422 b, and the like, and efficiently transmitted to the front frame 401. Therefore, the solid-state image sensor 403 can be cooled. Further, the heat generated from the signal processing semiconductor element 409 is fixed horizontally to the heat conductive grease between the signal processing semiconductor element 409 and the fifth heat radiating body 414, the fifth heat radiating body 414, and the fifth heat radiating body 414. The signal processing semiconductor element 409 can be cooled because it is efficiently transmitted to the front frame 401 via the heat conduction grease between the cooling plates 412, the horizontal fixed cooling plate 412, the vertical fixed cooling plates 422a and 422b, and the like.
  このとき、第4の開口412a内における水平固定冷却プレート412と第4の放熱体413との間隙、及び第5の開口412b内における水平固定冷却プレート412と第5の放熱体414との間隙は、固体撮像素子403或は各部材の寸法公差、実装寸法公差などを全て吸収し、かつ冷却性能を満足させる値を設定している。例えば、水平固定冷却プレート412がアルミニュウム製で3mmの厚さなら、間隙は、100~200μmに選べば良い。 At this time, the gap between the horizontal fixed cooling plate 412 and the fourth radiator 413 in the fourth opening 412a and the gap between the horizontal fixed cooling plate 412 and the fifth radiator 414 in the fifth opening 412b are as follows. The solid-state imaging device 403 or each member is set to a value that absorbs all the dimensional tolerances, mounting dimensional tolerances, etc., and satisfies the cooling performance. For example, if the horizontal fixed cooling plate 412 is made of aluminum and has a thickness of 3 mm, the gap may be selected from 100 to 200 μm.
  したがって、固体撮像素子403がセンサー基板408の前面側に実装され、また、信号処理用半導体素子409がセンサー基板408の後面側に実装されるなど、前面と後面の両方に発熱体が実装されている第4実施形態においても、センサー基板408を固定する半田接合部に大きな力を加えることなく、上記発熱体から発生した熱を効率よく撮像装置筐体に放熱できる。 Accordingly, the solid-state imaging device 403 is mounted on the front surface side of the sensor substrate 408, and the signal processing semiconductor element 409 is mounted on the rear surface side of the sensor substrate 408. Also in the fourth embodiment, the heat generated from the heating element can be efficiently radiated to the imaging device housing without applying a large force to the solder joint for fixing the sensor substrate 408.
  なお、本発明は、前記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々に変更が可能であることはいうまでもない。  第4実施形態では、固体撮像素子をセンサー基板の前面に実装し、信号処理用半導体素子を後面に実装したが、第2実施形態と同様に、固体撮像素子信号処理用半導体素子をセンサー基板の前面に実装することも可能である。 Of course, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. In the fourth embodiment, the solid-state imaging device is mounted on the front surface of the sensor substrate and the signal processing semiconductor device is mounted on the rear surface. However, as in the second embodiment, the solid-state imaging device signal processing semiconductor device is mounted on the sensor substrate. It can also be mounted on the front.
  本明細書の記載事項には、少なくとも次の発明が含まれる。すなわち、  第1の発明は、第1実施形態の撮像装置に係るものであり、  装置外側に筐体を有し、装置前方から入射する光を色分解プリズムにより複数の色成分に分解し、各色成分をそれぞれ固体撮像素子により電気信号に変換し、該変換した電気信号を信号処理用半導体素子により信号処理する撮像装置であって、  前記各色成分ごとにそれぞれ、前記固体撮像素子と前記信号処理用半導体素子を冷却する冷却機構と、前記固体撮像素子と前記信号処理用半導体素子を実装したセンサー基板を備え、  前記それぞれのセンサー基板は、前記撮像装置筐体内に設けられた半田接合部において半田付けにより固定され、前記センサー基板の前面に前記固体撮像素子が実装され、前記センサー基板の後面に1つ又は複数の前記信号処理用半導体素子が実装されており、  前記それぞれの冷却機構は、  前記固体撮像素子に対向する位置に設けられた第1の開口及び前記信号処理用半導体素子に対向する位置に設けられた1つ又は複数の第2の開口を有し、前記センサー基板の後方に配置されるとともに前記撮像装置筐体に固定された熱伝導板と、  前記熱伝導板の第1の開口内に配置され該第1の開口内を前後方向を含む全方向に遊動可能な第1の放熱体と、  前記熱伝導板の第2の開口内に配置され該第2の開口内を前後方向を含む全方向に遊動可能な第2の放熱体と、  前記第1の放熱体を後方から前記センサー基板に押圧し、前記第2の放熱体を後方から前記信号処理用半導体素子に押圧する弾性体と、  前記固体撮像素子に対向するように前記センサー基板の後面に設けられた電気絶縁性を有する第1の熱伝導シートと、  前記第1の開口内及び第2の開口内に充填された熱伝導グリースとを備え、 
前記固体撮像素子からの発熱を、前記センサー基板、前記第1の放熱体と前記センサー基板の間に介在する前記第1の熱伝導シート、前記第1の熱伝導シートと前記第1の放熱体との間に介在する熱伝導グリース、前記第1の放熱体、前記第1の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えるとともに、  前記信号処理用半導体素子からの発熱を、前記信号処理用半導体素子と前記第2の放熱体との間に介在する熱伝導グリース、前記第2の放熱体、前記第2の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えることを特徴とする撮像装置。
The matters described in this specification include at least the following inventions. That is, the first invention relates to the imaging apparatus according to the first embodiment, has a housing on the outside of the apparatus, separates light incident from the front of the apparatus into a plurality of color components by a color separation prism, and An image pickup apparatus that converts each component into an electric signal by a solid-state image sensor, and performs signal processing on the converted electric signal by a signal processing semiconductor element, wherein the solid-state image sensor and the signal processing unit are each for each color component A cooling mechanism for cooling a semiconductor element; and a sensor substrate on which the solid-state imaging element and the signal processing semiconductor element are mounted. Each of the sensor substrates is soldered at a solder joint provided in the imaging device casing. The solid-state imaging device is mounted on the front surface of the sensor substrate, and one or more of the signal processing semiconductor elements are mounted on the rear surface of the sensor substrate. And each of the cooling mechanisms includes a first opening provided at a position facing the solid-state imaging element and one or a plurality of first openings provided at a position facing the signal processing semiconductor element. A heat conduction plate having two openings, disposed behind the sensor substrate and fixed to the imaging device housing, and disposed in the first opening of the heat conduction plate. A first heat dissipating member that can move in all directions including the front-rear direction, and a second heat dissipating member arranged in the second opening of the heat conducting plate and movable in all directions including the front-rear direction in the second opening. A heat dissipating body, an elastic body that presses the first heat dissipating element against the sensor substrate from the rear, and a second heat dissipating element from the rear against the signal processing semiconductor element, and the solid-state imaging element. As shown in FIG. A first heat conductive sheet having edge properties, and a heat conductive grease filled in the first opening and the second opening,
The first heat conductive sheet, the first heat conductive sheet, and the first heat radiator interposed between the sensor substrate, the first heat radiator, and the sensor substrate to generate heat from the solid-state imaging device. A thermal conductive grease interposed between the first thermal radiator, the thermal conductive grease interposed between the first thermal radiator and the thermal conductive plate, and the thermal conductive plate through the thermal conductive plate. A heat conduction grease interposed between the signal processing semiconductor element and the second heat dissipating member, the second heat dissipating member, and the second heat dissipating member. An image pickup apparatus comprising: a heat conduction grease interposed between a heat radiator and the heat conduction plate; and the heat conduction plate and the heat conduction plate that transmits the heat to the image pickup apparatus casing.
  第2の発明は、第2実施形態の撮像装置に係るものであり、  装置外側に筐体を有し、装置前方から入射する光を色分解プリズムにより複数の色成分に分解し、各色成分をそれぞれ固体撮像素子により電気信号に変換し、該変換した電気信号を信号処理用半導体素子により信号処理する撮像装置であって、  前記各色成分ごとにそれぞれ、前記固体撮像素子と前記信号処理用半導体素子を冷却する冷却機構と、前記固体撮像素子と前記信号処理用半導体素子を実装したセンサー基板を備え、  前記それぞれのセンサー基板は、前記撮像装置筐体内に設けられた半田接合部において半田付けにより固定され、前記センサー基板の前面に前記固体撮像素子と1つ又は複数の前記信号処理用半導体素子が実装されており、  前記それぞれの冷却機構は、  前記固体撮像素子に対向する位置に設けられた第1の開口及び前記信号処理用半導体素子に対向する位置に設けられた1つ又は複数の第2の開口を有し、前記センサー基板の後方に配置されるとともに前記撮像装置筐体に固定された熱伝導板と、  前記熱伝導板の第1の開口内に配置され該第1の開口内を前後方向を含む全方向に遊動可能な第1の放熱体と、  前記熱伝導板の第2の開口内に配置され該第2の開口内を前後方向を含む全方向に遊動可能な第2の放熱体と、  前記第1、第2の放熱体を後方から前記センサー基板に押圧する弾性体と、 
前記固体撮像素子に対向するように前記センサー基板の後面に設けられた電気絶縁性を有する第1の熱伝導シートと、 
前記信号処理用半導体素子に対向するように前記センサー基板の後面に設けられた電気絶縁性を有する第2の熱伝導シートと、  前記第1の開口内及び第2の開口内に充填された熱伝導グリースとを備え、 
前記固体撮像素子からの発熱を、前記センサー基板、前記第1の放熱体と前記センサー基板の間に介在する前記第1の熱伝導シート、前記第1の熱伝導シートと前記第1の放熱体との間に介在する熱伝導グリース、前記第1の放熱体、前記第1の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えるとともに、  前記信号処理用半導体素子からの発熱を、前記センサー基板、前記第2の放熱体と前記センサー基板の間に介在する前記第2の熱伝導シート、前記第2の熱伝導シートと前記第2の放熱体との間に介在する熱伝導グリース、前記第2の放熱体、前記第2の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えることを特徴とする撮像装置。  なお、第1の熱伝導シートと第2の熱伝導シートは一体的に形成してもよい。
A second invention relates to the imaging apparatus according to the second embodiment, has a housing on the outside of the apparatus, separates light incident from the front of the apparatus into a plurality of color components by a color separation prism, and converts each color component into An imaging device that converts an electrical signal by a solid-state image sensor and processes the converted electrical signal by a signal processing semiconductor element, the solid-state image sensor and the signal processing semiconductor element for each color component And a sensor board on which the solid-state imaging device and the signal processing semiconductor element are mounted. Each sensor board is fixed by soldering at a solder joint provided in the imaging device casing. The solid-state image sensor and one or more signal processing semiconductor elements are mounted on the front surface of the sensor substrate, and the respective cooling mechanisms are A first opening provided at a position facing the solid-state imaging element and one or a plurality of second openings provided at a position facing the signal processing semiconductor element; A heat conduction plate disposed and fixed to the imaging device casing; and a first heat conduction plate disposed in a first opening of the heat conduction plate and capable of floating in all directions including the front-rear direction in the first opening. A second radiator that is disposed in the second opening of the heat conducting plate and is movable in all directions including the front-rear direction in the second opening, and the first and second radiators An elastic body that presses the body against the sensor substrate from behind;
A first heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so as to face the solid-state imaging device;
A second heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so as to face the signal processing semiconductor element; and heat filled in the first opening and the second opening With conductive grease,
The first heat conductive sheet, the first heat conductive sheet, and the first heat radiator interposed between the sensor substrate, the first heat radiator, and the sensor substrate to generate heat from the solid-state imaging device. A thermal conductive grease interposed between the first thermal radiator, the thermal conductive grease interposed between the first thermal radiator and the thermal conductive plate, and the thermal conductive plate through the thermal conductive plate. And transmitting the heat generated from the signal processing semiconductor element to the sensor substrate, the second heat conductive sheet, and the second heat conductive sheet interposed between the second heat radiator and the sensor substrate. Heat conduction grease interposed between the second heat radiator, the second heat radiator, the heat conduction grease interposed between the second heat radiator and the heat conduction plate, and the heat conduction plate. Via the imaging device housing Imaging device for. Note that the first heat conductive sheet and the second heat conductive sheet may be integrally formed.
  第3の発明は、第1実施形態ないし第4実施形態の撮像装置に係るものであり、  装置外側に筐体を有し、装置前方から入射する光を固体撮像素子により電気信号に変換し、該変換した電気信号を信号処理用半導体素子により信号処理する撮像装置であって、  前記固体撮像素子と前記信号処理用半導体素子を冷却する冷却機構と、前記固体撮像素子と前記信号処理用半導体素子を実装したセンサー基板を備え、  前記センサー基板は、前記撮像装置筐体内に設けられた半田接合部に半田付けにより固定され、その前面に前記固体撮像素子が実装され、その前面又は後面に1つ又は複数の前記信号処理用半導体素子が実装されており、  前記冷却機構は、  前記固体撮像素子に対向する位置に設けられた第1の開口及び前記信号処理用半導体素子に対向する位置に設けられた1つ又は複数の第2の開口を有し、前記センサー基板の後方に配置されるとともに前記撮像装置筐体に固定された熱伝導板と、  前記熱伝導板の第1の開口内に配置され該第1の開口内を前後方向を含む全方向に遊動可能な第1の放熱体と、  前記熱伝導板の第2の開口内に配置され該第2の開口内を前後方向を含む全方向に遊動可能な第2の放熱体と、  前記第1、第2の放熱体を後方から前方へ押圧する弾性体とを備え、 
前記固体撮像素子からの発熱を、前記センサー基板、前記第1の放熱体と前記センサー基板の間に介在するように前記センサー基板の後面に設けられた電気絶縁性を有する第1の熱伝導シート、前記第1の熱伝導シートと前記第1の放熱体との間に介在する熱伝導グリース、前記第1の放熱体、前記第1の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えるとともに、  前記信号処理用半導体素子からの発熱を、前記信号処理用半導体素子と前記第2の放熱体との間に介在する熱伝導グリース、前記第2の放熱体、前記第2の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えるか、又は、前記信号処理用半導体素子からの発熱を、前記センサー基板、前記第2の放熱体と前記センサー基板の間に介在するように前記センサー基板の後面に設けられた電気絶縁性を有する第2の熱伝導シート、前記第2の熱伝導シートと前記第2の放熱体との間に介在する熱伝導グリース、前記第2の放熱体、前記第2の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えることを特徴とする撮像装置。
A third invention relates to the imaging device of the first embodiment to the fourth embodiment, has a housing on the outside of the device, converts light incident from the front of the device into an electrical signal by a solid-state imaging device, An imaging apparatus that performs signal processing on the converted electrical signal using a signal processing semiconductor element, the cooling mechanism for cooling the solid-state imaging element and the signal processing semiconductor element, the solid-state imaging element, and the signal processing semiconductor element The sensor substrate is fixed by soldering to a solder joint provided in the imaging device casing, the solid-state imaging device is mounted on the front surface, and one is mounted on the front or rear surface. Alternatively, a plurality of the signal processing semiconductor elements are mounted, and the cooling mechanism includes a first opening provided at a position facing the solid-state imaging element and the signal processing semiconductor elements. A heat conduction plate having one or a plurality of second openings provided at positions opposed to the sensor substrate, disposed behind the sensor substrate, and fixed to the imaging device housing; and A first radiator disposed in the first opening and capable of floating in the first opening in all directions including the front-rear direction; and the second opening disposed in the second opening of the heat conducting plate. A second heat radiating body capable of floating in all directions including the front-rear direction, and an elastic body that presses the first and second heat radiating bodies from the rear to the front,
A first heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so that heat generated from the solid-state imaging device is interposed between the sensor substrate and the first heat radiator and the sensor substrate. , Heat conductive grease interposed between the first heat conductive sheet and the first heat radiator, the first heat radiator, heat interposed between the first heat radiator and the heat conductive plate. Conductive grease is transmitted to the imaging device casing via the thermal conductive plate, and heat generated from the signal processing semiconductor element is interposed between the signal processing semiconductor element and the second heat radiator. Heat conduction grease, the second heat radiating body, the heat conduction grease interposed between the second heat radiating body and the heat conducting plate, via the heat conducting plate, transmitted to the imaging device casing, or , Heat generation from the signal processing semiconductor element The second heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so as to be interposed between the sensor substrate, the second radiator and the sensor substrate, and the second heat conductive sheet Heat conduction grease interposed between the second heat radiator, the second heat radiator, the heat conduction grease interposed between the second heat radiator and the heat conduction plate, and the heat conduction plate. The imaging device is transmitted to the imaging device casing.
  第4の発明は、第1の発明ないし第3の発明の撮像装置であって、  前記センサー基板の後面に信号接続コネクタが実装されており、  前記第1の開口を前方から見た形状が矩形であり、  前記第1の放熱体を前方から見た形状がコの字形状又はロの字形状であり、該コの字形状又はロの字形状は、前記信号接続コネクタと干渉しないための形状であることを特徴とする撮像装置。  なお、第4の発明の撮像装置において、前記第2の開口を前方から見た形状と前記第2の放熱体を前方から見た形状を円形としてもよい。 A fourth invention is the imaging device according to the first to third inventions, wherein a signal connection connector is mounted on the rear surface of the sensor board, and the shape of the first opening viewed from the front is rectangular. The shape of the first heat radiating body as viewed from the front is a U shape or a B shape, and the U shape or the B shape does not interfere with the signal connection connector. An imaging device characterized by being: Note that in the imaging device of the fourth invention, the shape of the second opening viewed from the front and the shape of the second heat radiator viewed from the front may be circular.
  第5の発明は、第1の発明ないし第4の発明の撮像装置であって、  前記第1の熱伝導シート又は前記第2の熱伝導シートは、前記熱伝導グリースが前記センサー基板に浸透することを防止するものであることを特徴とする撮像装置。 5th invention is an imaging device of 1st invention thru | or 4th invention, Comprising: As for the said 1st heat conductive sheet or the said 2nd heat conductive sheet, the said heat conductive grease osmose | permeates the said sensor substrate. What is claimed is: 1. An imaging apparatus, wherein
  第6の発明は、第1の発明ないし第5の発明の撮像装置であって、  前記センサー基板の前記半田接合部における半田付けは、前記センサー基板に設けられた半田固定用穴に、前記半田接合部から突き出た半田付けリードを挿入して半田付けがなされたことを特徴とする撮像装置。 A sixth invention is the imaging device according to the first to fifth inventions, wherein soldering at the solder joint portion of the sensor substrate is performed in a solder fixing hole provided in the sensor substrate. An image pickup apparatus, wherein soldering is performed by inserting a soldering lead protruding from a joint.
  第7の発明は、第1の発明ないし第6の発明の撮像装置であって、  前記弾性体は、前記第1の放熱体を押圧する押圧部と前記第2の放熱体を押圧する押圧部が一体形成された板バネであることを特徴とする撮像装置。 7th invention is an imaging device of 1st invention thru | or 6th invention, Comprising: The said elastic body is a press part which presses the said 2nd heat radiator and the press part which presses the said 1st heat radiator. Is a leaf spring integrally formed.
  第8の発明は、第1の発明ないし第7の発明の撮像装置であって、  前記信号処理用半導体素子が前記センサー基板に複数実装され、該複数の信号処理用半導体素子にそれぞれ対応するように、前記第2の開口と前記第2の放熱体が複数設けられたことを特徴とする撮像装置。 An eighth invention is the imaging device according to the first to seventh inventions, wherein a plurality of the signal processing semiconductor elements are mounted on the sensor substrate so as to respectively correspond to the plurality of signal processing semiconductor elements. An image pickup apparatus comprising: a plurality of the second openings and a plurality of the second radiators.
  第9の発明は、第1実施形態ないし第4実施形態の撮像装置に係るものであり、  装置外側に筐体を有し、装置前方から入射する光を固体撮像素子により電気信号に変換し、該変換した電気信号を信号処理用半導体素子により信号処理する撮像装置であって、  前記固体撮像素子と前記信号処理用半導体素子を含む発熱体を冷却する冷却機構と、前記発熱体を複数実装し前記撮像装置筐体内に固定されたセンサー基板を備え、  前記冷却機構は、  前記複数の発熱体に対向する位置にそれぞれ設けられた開口を複数有し、前記センサー基板の後方に配置されるとともに前記撮像装置筐体に固定された熱伝導板と、  前記熱伝導板の各開口内にそれぞれ配置され該開口内を遊動可能な放熱体と、 
前記放熱体を後方から前方へ押圧する弾性体とを備え、  前記発熱体からの発熱を、前記発熱体と前記放熱体との間に介在する熱伝導グリース、前記放熱体、前記放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えるか、又は、前記発熱体からの発熱を、前記センサー基板、前記放熱体と前記センサー基板の間に介在するように前記センサー基板の後面に設けられた電気絶縁性を有する熱伝導シート、前記熱伝導シートと前記放熱体との間に介在する熱伝導グリース、前記放熱体、前記放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えることを特徴とする撮像装置。
A ninth invention relates to the imaging device of the first to fourth embodiments, has a housing on the outside of the device, converts light incident from the front of the device into an electrical signal by a solid-state imaging device, An image pickup apparatus that performs signal processing of the converted electrical signal using a signal processing semiconductor element, wherein a cooling mechanism that cools the heating element including the solid-state imaging element and the signal processing semiconductor element, and a plurality of the heating elements are mounted. A sensor substrate fixed in the imaging device housing, wherein the cooling mechanism has a plurality of openings respectively provided at positions facing the plurality of heating elements, and is disposed behind the sensor substrate and A heat conduction plate fixed to the imaging device casing; a heat dissipating body that is disposed in each opening of the heat conduction plate and is movable in the opening;
An elastic body that presses the heat dissipating body from the rear to the front, and heat conduction grease interposed between the heat generating body and the heat dissipating member for generating heat from the heat generating body, the heat dissipating body, the heat dissipating body, and the Heat conduction grease interposed between the heat conduction plate, the heat conduction plate, and the heat conduction plate to transmit to the imaging device casing, or the heat generation from the heat generation body, the sensor substrate, the heat dissipation body, and the sensor An electrically insulating heat conductive sheet provided on the rear surface of the sensor substrate so as to be interposed between the substrates, a heat conductive grease interposed between the heat conductive sheet and the heat radiator, the heat radiator, and the heat dissipation An image pickup apparatus comprising: a heat conduction grease interposed between a body and the heat conduction plate; and the heat conduction plate that transmits the heat conduction plate to the image pickup apparatus casing.
  第10の発明は、  装置外側に筐体を有し、装置前方から入射する光を固体撮像素子により電気信号に変換し、該変換した電気信号を信号処理用半導体素子により信号処理する撮像装置の製造方法であって、  前記固体撮像素子がその前面に実装され、1つ又は複数の前記信号処理用半導体素子がその前面又は後面に実装されたセンサー基板の位置決めを行い、前記撮像装置筐体内に前記センサー基板を固定するステップと、  前記固体撮像素子に対向する位置に設けられた第1の開口及び前記信号処理用半導体素子に対向する位置に設けられた1つ又は複数の第2の開口を有する熱伝導板を、前記センサー基板の後方に配置して、前記撮像装置筐体に固定するステップと、  前記熱伝導板の第1の開口内に、該第1の開口内を前後方向を含む全方向に遊動可能な第1の放熱体を配置するステップと、  前記熱伝導板の第2の開口内に、該第2の開口内を前後方向を含む全方向に遊動可能な第2の放熱体を配置するステップと、  前記第1の放熱体を、前記第1の放熱体と前記センサー基板の間に介在し電気絶縁性を有する第1の熱伝導シートと熱伝導グリースを介して、弾性体により前記センサー基板に押圧するステップと、  前記第2の放熱体を、熱伝導グリースを介して弾性体により前記信号処理用半導体素子に押圧するか、又は、前記第2の放熱体と前記センサー基板の間に介在し電気絶縁性を有する第2の熱伝導シートと熱伝導グリースを介して、弾性体により前記センサー基板に押圧するステップと、を備えることを特徴とする撮像装置の製造方法。 According to a tenth aspect of the present invention, there is provided an image pickup apparatus having a housing on the outside of the saddle device, converting light incident from the front of the device into an electric signal by a solid-state image pickup device, and processing the converted electric signal by a signal processing semiconductor element. In the manufacturing method, the solid-state imaging device is mounted on a front surface thereof, and one or a plurality of the signal processing semiconductor devices are mounted on the front surface or the rear surface of the sensor substrate, and the sensor substrate is positioned in the housing of the imaging device. A step of fixing the sensor substrate; a first opening provided at a position facing the solid-state image sensor; and one or a plurality of second openings provided at a position facing the signal processing semiconductor element. A step of disposing a heat conduction plate having the rear side of the sensor substrate and fixing the heat conduction plate to the housing of the imaging device; and a front opening of the first opening of the heat conduction plate in the first opening of the heat conduction plate. A step of disposing a first heat dissipating member including all of the first heat dissipating member including the first heat dissipating member in a second opening of the heat conducting plate, and a second member capable of moving freely in all directions including the front-rear direction in the second opening. A heat dissipating member, and a first heat dissipating member interposed between the first heat dissipating member and the sensor substrate, and a first heat conductive sheet having heat insulation and a heat conductive grease. Pressing the sensor substrate with an elastic body, and pressing the second heat radiating body against the signal processing semiconductor element with an elastic body via a thermal conductive grease, or with the second heat radiating body And a step of pressing the sensor substrate with an elastic body through a second heat conductive sheet having electrical insulation interposed between the sensor substrates and a heat conductive grease. Method.
 本発明によれば、固体撮像素子や信号処理用半導体素子等の発熱体を実装したセンサー基板を固定する半田接合部に大きな機械的ストレスを加えることなく、発熱体から発生した熱を効率よく放熱することができるので、密閉構造の筐体から成る一般的な電子機器等の冷却においても利用可能である。 According to the present invention, heat generated from a heating element can be efficiently dissipated without applying a large mechanical stress to a solder joint that fixes a sensor substrate on which a heating element such as a solid-state imaging device or a signal processing semiconductor element is mounted. Therefore, it can be used for cooling a general electronic device or the like having a sealed housing.
  1:フロントフレーム、2:色分解プリズム、3:固体撮像素子、4:プリズム面固定金具、5:撮像素子固定下金具、6:撮像素子固定上金具、7:撮像素子用熱伝導板、8:センサー基板、9:信号処理用半導体素子、10:半導体素子用熱伝導板、11a、11b:銅箔放熱板、12a、12b:銅製支持板、13a、13b:あて板、14:半田、101:カメラ筐体のフロントフレーム、102:色分解プリズム、103:固体撮像素子、104:プリズム面固定金具、105:撮像素子固定下金具、105a:半田付けリード、108:センサー基板、108a:半田固定穴、108b:支柱、109:信号処理用半導体素子、110:信号接続コネクタ、111:コの字状シート(熱伝導シート)、112:水平固定冷却プレート(熱伝導板)、112a:矩形開口(第1の開口)、112b:円形開口(第2の開口)、113:コの字状放熱体(第1の放熱体)、114:円柱状放熱体(第2の放熱体)、115:板バネ(弾性体)、115a:押圧部、115b:押圧部、117:遮光部材、122a、122b:垂直固定冷却プレート、208:センサー基板、208a:半田固定穴、209:信号処理用半導体素子、211:ロの字状シート(熱伝導シート)、211a:矩形開口、212:水平固定冷却プレート、212a:矩形開口、213:ロの字状放熱体(第3の放熱体)、213a:矩形開口、216:板バネ、301:フロントフレーム、305:撮像素子固定下金具、305a:半田接続部、306:撮像素子固定上金具、306a:半田接続部、308:センサー基板、308a:半田固定穴、401:フロントフレーム、403:固体撮像素子、405:撮像素子固定下金具、405a:半田付けリード、408:センサー基板、409:信号処理用半導体素子、411:コの字状シート(熱伝導シート)、412:水平固定冷却プレート、412a:矩形開口、412b:円形開口、413:コの字状放熱体(第4の放熱体)、414:円柱状放熱体(第5の放熱体)、415:板バネ、422a、422b:垂直固定冷却プレート。 1: front frame, 2: color separation prism, 3: solid-state imaging device, 4: prism surface fixing bracket, 5: imaging device fixing lower bracket, 6: imaging device fixing upper bracket, 7: thermal conduction plate for imaging device, 8 : Sensor substrate, 9: semiconductor element for signal processing, 10: heat conduction plate for semiconductor element, 11a, 11b: copper foil heat sink, 12a, 12b: copper support plate, 13a, 13b: cover plate, 14: solder, 101 : Front frame of camera housing, 102: color separation prism, 103: solid-state imaging device, 104: prism surface fixing bracket, 105: imaging device fixing lower bracket, 105a: soldering lead, 108: sensor substrate, 108a: solder fixing Hole 108b: support column 109: signal processing semiconductor element 110: signal connection connector 111: U-shaped sheet (heat conduction sheet) 112: horizontal fixed cooling plate (Heat conduction plate), 112a: rectangular opening (first opening), 112b: circular opening (second opening), 113: U-shaped radiator (first radiator), 114: columnar heat dissipation Body (second heat radiating body), 115: leaf spring (elastic body), 115a: pressing portion, 115b: pressing portion, 117: light shielding member, 122a, 122b: vertical fixed cooling plate, 208: sensor substrate, 208a: solder Fixing hole, 209: signal processing semiconductor element, 211: square-shaped sheet (heat conduction sheet), 211a: rectangular opening, 212: horizontal fixed cooling plate, 212a: rectangular opening, 213: square-shaped radiator ( (Third heat radiator), 213a: rectangular opening, 216: leaf spring, 301: front frame, 305: imaging element fixing lower metal fitting, 305a: solder connection part, 306: imaging element fixing upper metal fitting, 306a: solder connection part, 308 : Sensor substrate, 308a: solder fixing hole, 401: front frame, 403: solid-state imaging device, 405: imaging device fixing lower bracket, 405a: soldering lead, 408: sensor substrate, 409: signal processing semiconductor device, 411: U-shaped sheet (thermal conductive sheet), 412: horizontal fixed cooling plate, 412a: rectangular opening, 412b: circular opening, 413: U-shaped radiator (fourth radiator), 414: cylindrical radiator (Fifth radiator) 415: leaf spring, 422a, 422b: vertical fixed cooling plate.

Claims (5)

  1. 装置外側に筐体を有し、装置前方から入射する光を色分解プリズムにより複数の色成分に分解し、各色成分をそれぞれ固体撮像素子により電気信号に変換し、該変換した電気信号を信号処理用半導体素子により信号処理する撮像装置であって、  前記各色成分ごとにそれぞれ、前記固体撮像素子と前記信号処理用半導体素子を冷却する冷却機構と、前記固体撮像素子と前記信号処理用半導体素子を実装したセンサー基板を備え、  前記それぞれのセンサー基板は、前記撮像装置筐体内に設けられた半田接合部において半田付けにより固定され、前記センサー基板の前面に前記固体撮像素子が実装され、前記センサー基板の後面に1つ又は複数の前記信号処理用半導体素子が実装されており、  前記それぞれの冷却機構は、  前記固体撮像素子に対向する位置に設けられた第1の開口及び前記信号処理用半導体素子に対向する位置に設けられた1つ又は複数の第2の開口を有し、前記センサー基板の後方に配置されるとともに前記撮像装置筐体に固定された熱伝導板と、  前記熱伝導板の第1の開口内に配置され該第1の開口内を前後方向を含む全方向に遊動可能な第1の放熱体と、  前記熱伝導板の第2の開口内に配置され該第2の開口内を前後方向を含む全方向に遊動可能な第2の放熱体と、  前記第1の放熱体を後方から前記センサー基板に押圧し、前記第2の放熱体を後方から前記信号処理用半導体素子に押圧する弾性体と、  前記固体撮像素子に対向するように前記センサー基板の後面に設けられた電気絶縁性を有する第1の熱伝導シートと、  前記第1の開口内及び第2の開口内に充填された熱伝導グリースとを備え、 
    前記固体撮像素子からの発熱を、前記センサー基板、前記第1の放熱体と前記センサー基板の間に介在する前記第1の熱伝導シート、前記第1の熱伝導シートと前記第1の放熱体との間に介在する熱伝導グリース、前記第1の放熱体、前記第1の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えるとともに、  前記信号処理用半導体素子からの発熱を、前記信号処理用半導体素子と前記第2の放熱体との間に介在する熱伝導グリース、前記第2の放熱体、前記第2の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えることを特徴とする撮像装置。
    Has a housing outside the device, separates light incident from the front of the device into a plurality of color components by a color separation prism, converts each color component into an electrical signal by a solid-state image sensor, and processes the converted electrical signal An image pickup apparatus that performs signal processing using a semiconductor element for image processing, comprising: a cooling mechanism that cools the solid-state image pickup element and the signal processing semiconductor element for each color component; and the solid-state image pickup element and the signal processing semiconductor element. Each of the sensor substrates is fixed by soldering at a solder joint provided in the imaging device casing, the solid-state imaging device is mounted on the front surface of the sensor substrate, and the sensor substrate One or a plurality of the signal processing semiconductor elements are mounted on the rear surface, and each of the cooling mechanisms is connected to the solid-state imaging element. A first opening provided at a facing position and one or a plurality of second openings provided at a position facing the signal processing semiconductor element, and disposed behind the sensor substrate and A heat conduction plate fixed to the imaging device housing; a first heat dissipating member disposed in the first opening of the heat conduction plate and capable of floating in all directions including the front-rear direction in the first opening; A second heat dissipating member disposed in the second opening of the heat conducting plate and capable of floating in the second opening in all directions including the front-rear direction; and the first heat dissipating member from the rear to the sensor substrate. An elastic body that presses and presses the second heat radiating body against the signal processing semiconductor element from behind, and an electric insulating first provided on the rear surface of the sensor substrate so as to face the solid-state imaging element. A heat conductive sheet, and the first opening and the second opening And a filled thermal grease, the
    The first heat conductive sheet, the first heat conductive sheet, and the first heat radiator interposed between the sensor substrate, the first heat radiator, and the sensor substrate to generate heat from the solid-state imaging device. A thermal conductive grease interposed between the first thermal radiator, the thermal conductive grease interposed between the first thermal radiator and the thermal conductive plate, and the thermal conductive plate through the thermal conductive plate. A heat conduction grease interposed between the signal processing semiconductor element and the second heat dissipating member, the second heat dissipating member, and the second heat dissipating member. An image pickup apparatus comprising: a heat conduction grease interposed between a heat radiator and the heat conduction plate; and the heat conduction plate and the heat conduction plate that transmits the heat to the image pickup apparatus casing.
  2. 請求項1に記載された撮像装置であって、  前記センサー基板の後面に信号接続コネクタが実装されており、  前記第1の開口を前方から見た形状が矩形であり、  前記第1の放熱体を前方から見た形状がコの字形状又はロの字形状であり、該コの字形状又はロの字形状は、前記信号接続コネクタと干渉しないための形状であることを特徴とする撮像装置。 2. The imaging device according to claim 1, wherein a signal connection connector is mounted on the rear surface of the sensor board, the shape of the first opening viewed from the front is rectangular, and the first heat radiator The imaging device is characterized in that the shape viewed from the front is a U shape or a B shape, and the U shape or the B shape is a shape that does not interfere with the signal connection connector. .
  3. 装置外側に筐体を有し、装置前方から入射する光を色分解プリズムにより複数の色成分に分解し、各色成分をそれぞれ固体撮像素子により電気信号に変換し、該変換した電気信号を信号処理用半導体素子により信号処理する撮像装置であって、  前記各色成分ごとにそれぞれ、前記固体撮像素子と前記信号処理用半導体素子を冷却する冷却機構と、前記固体撮像素子と前記信号処理用半導体素子を実装したセンサー基板を備え、  前記それぞれのセンサー基板は、前記撮像装置筐体内に設けられた半田接合部において半田付けにより固定され、前記センサー基板の前面に前記固体撮像素子と1つ又は複数の前記信号処理用半導体素子が実装されており、  前記それぞれの冷却機構は、  前記固体撮像素子に対向する位置に設けられた第1の開口及び前記信号処理用半導体素子に対向する位置に設けられた1つ又は複数の第2の開口を有し、前記センサー基板の後方に配置されるとともに前記撮像装置筐体に固定された熱伝導板と、  前記熱伝導板の第1の開口内に配置され該第1の開口内を前後方向を含む全方向に遊動可能な第1の放熱体と、  前記熱伝導板の第2の開口内に配置され該第2の開口内を前後方向を含む全方向に遊動可能な第2の放熱体と、  前記第1、第2の放熱体を後方から前記センサー基板に押圧する弾性体と、 
    前記固体撮像素子に対向するように前記センサー基板の後面に設けられた電気絶縁性を有する第1の熱伝導シートと、 
    前記信号処理用半導体素子に対向するように前記センサー基板の後面に設けられた電気絶縁性を有する第2の熱伝導シートと、  前記第1の開口内及び第2の開口内に充填された熱伝導グリースとを備え、 
    前記固体撮像素子からの発熱を、前記センサー基板、前記第1の放熱体と前記センサー基板の間に介在する前記第1の熱伝導シート、前記第1の熱伝導シートと前記第1の放熱体との間に介在する熱伝導グリース、前記第1の放熱体、前記第1の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えるとともに、  前記信号処理用半導体素子からの発熱を、前記センサー基板、前記第2の放熱体と前記センサー基板の間に介在する前記第2の熱伝導シート、前記第2の熱伝導シートと前記第2の放熱体との間に介在する熱伝導グリース、前記第2の放熱体、前記第2の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えることを特徴とする撮像装置。
    Has a housing outside the device, separates light incident from the front of the device into a plurality of color components by a color separation prism, converts each color component into an electrical signal by a solid-state image sensor, and processes the converted electrical signal An image pickup apparatus that performs signal processing using a semiconductor element for image processing, comprising: a cooling mechanism that cools the solid-state image pickup element and the signal processing semiconductor element for each color component; and the solid-state image pickup element and the signal processing semiconductor element. Each of the sensor substrates is fixed by soldering at a solder joint provided in the imaging device casing, and the solid-state imaging device and one or more of the one or more of the sensor substrates are mounted on a front surface of the sensor substrate. A signal processing semiconductor element is mounted, and each of the cooling mechanisms includes a first opening provided at a position facing the solid-state imaging element. And one or a plurality of second openings provided at positions opposed to the signal processing semiconductor element, disposed behind the sensor substrate and fixed to the imaging device casing A first radiator that is disposed in the first opening of the heat conducting plate and is movable in all directions including the front-rear direction in the first opening, and in the second opening of the heat conducting plate. A second heat dissipating member that is arranged and can float in all directions including the front-rear direction in the second opening, and an elastic body that presses the first and second heat dissipating members from the rear to the sensor substrate,
    A first heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so as to face the solid-state imaging device;
    A second heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so as to face the signal processing semiconductor element; and heat filled in the first opening and the second opening With conductive grease,
    The first heat conductive sheet, the first heat conductive sheet, and the first heat radiator interposed between the sensor substrate, the first heat radiator, and the sensor substrate to generate heat from the solid-state imaging device. A thermal conductive grease interposed between the first thermal radiator, the thermal conductive grease interposed between the first thermal radiator and the thermal conductive plate, and the thermal conductive plate through the thermal conductive plate. And transmitting the heat generated from the signal processing semiconductor element to the sensor substrate, the second heat conductive sheet, and the second heat conductive sheet interposed between the second heat radiator and the sensor substrate. Heat conduction grease interposed between the second heat radiator, the second heat radiator, the heat conduction grease interposed between the second heat radiator and the heat conduction plate, and the heat conduction plate. Via the imaging device housing Imaging device for.
  4. 装置外側に筐体を有し、装置前方から入射する光を固体撮像素子により電気信号に変換し、該変換した電気信号を信号処理用半導体素子により信号処理する撮像装置であって、  前記固体撮像素子と前記信号処理用半導体素子を冷却する冷却機構と、前記固体撮像素子と前記信号処理用半導体素子を実装したセンサー基板を備え、  前記センサー基板は、前記撮像装置筐体内に設けられた半田接合部に半田付けにより固定され、その前面に前記固体撮像素子が実装され、その前面又は後面に1つ又は複数の前記信号処理用半導体素子が実装されており、  前記冷却機構は、  前記固体撮像素子に対向する位置に設けられた第1の開口及び前記信号処理用半導体素子に対向する位置に設けられた1つ又は複数の第2の開口を有し、前記センサー基板の後方に配置されるとともに前記撮像装置筐体に固定された熱伝導板と、  前記熱伝導板の第1の開口内に配置され該第1の開口内を前後方向を含む全方向に遊動可能な第1の放熱体と、  前記熱伝導板の第2の開口内に配置され該第2の開口内を前後方向を含む全方向に遊動可能な第2の放熱体と、  前記第1、第2の放熱体を後方から前方へ押圧する弾性体とを備え、 
    前記固体撮像素子からの発熱を、前記センサー基板、前記第1の放熱体と前記センサー基板の間に介在するように前記センサー基板の後面に設けられた電気絶縁性を有する第1の熱伝導シート、前記第1の熱伝導シートと前記第1の放熱体との間に介在する熱伝導グリース、前記第1の放熱体、前記第1の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えるとともに、  前記信号処理用半導体素子からの発熱を、前記信号処理用半導体素子と前記第2の放熱体との間に介在する熱伝導グリース、前記第2の放熱体、前記第2の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えるか、又は、前記信号処理用半導体素子からの発熱を、前記センサー基板、前記第2の放熱体と前記センサー基板の間に介在するように前記センサー基板の後面に設けられた電気絶縁性を有する第2の熱伝導シート、前記第2の熱伝導シートと前記第2の放熱体との間に介在する熱伝導グリース、前記第2の放熱体、前記第2の放熱体と前記熱伝導板との間に介在する熱伝導グリース、前記熱伝導板を介して、前記撮像装置筐体に伝えることを特徴とする撮像装置。
    An imaging apparatus having a casing on the outside of the apparatus, converting light incident from the front of the apparatus into an electrical signal by a solid-state imaging device, and processing the converted electrical signal by a signal processing semiconductor element, the solid-state imaging A cooling mechanism for cooling the element and the signal processing semiconductor element, and a sensor substrate on which the solid-state imaging element and the signal processing semiconductor element are mounted. The sensor substrate is provided with a solder joint provided in the imaging device casing. The solid-state image sensor is mounted on the front surface thereof, and one or more signal processing semiconductor elements are mounted on the front surface or the rear surface thereof. The cooling mechanism includes the solid-state image sensor. A first opening provided at a position facing the semiconductor element, and one or a plurality of second openings provided at a position facing the signal processing semiconductor element. A heat conduction plate disposed behind the image sensor and fixed to the housing of the imaging device, and disposed in a first opening of the heat conduction plate and capable of floating in all directions including the front-rear direction in the first opening. A first heat dissipating member, a second heat dissipating member disposed in the second opening of the heat conducting plate and capable of floating in the second opening in all directions including the front-rear direction, the first, second An elastic body that presses the heat radiator of 2 from the rear to the front,
    A first heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so that heat generated from the solid-state imaging device is interposed between the sensor substrate and the first heat radiator and the sensor substrate. , Heat conductive grease interposed between the first heat conductive sheet and the first heat radiator, the first heat radiator, heat interposed between the first heat radiator and the heat conductive plate. Conductive grease is transmitted to the imaging device casing via the thermal conductive plate, and heat generated from the signal processing semiconductor element is interposed between the signal processing semiconductor element and the second heat radiator. Heat conduction grease, the second heat radiating body, the heat conduction grease interposed between the second heat radiating body and the heat conducting plate, via the heat conducting plate, transmitted to the imaging device casing, or , Heat generation from the signal processing semiconductor element The second heat conductive sheet having electrical insulation provided on the rear surface of the sensor substrate so as to be interposed between the sensor substrate, the second radiator and the sensor substrate, and the second heat conductive sheet Heat conduction grease interposed between the second heat radiator, the second heat radiator, the heat conduction grease interposed between the second heat radiator and the heat conduction plate, and the heat conduction plate. The imaging device is transmitted to the imaging device casing.
  5. 装置外側に筐体を有し、装置前方から入射する光を固体撮像素子により電気信号に変換し、該変換した電気信号を信号処理用半導体素子により信号処理する撮像装置の製造方法であって、  前記固体撮像素子がその前面に実装され、1つ又は複数の前記信号処理用半導体素子がその前面又は後面に実装されたセンサー基板の位置決めを行い、前記撮像装置筐体内に前記センサー基板を固定するステップと、  前記固体撮像素子に対向する位置に設けられた第1の開口及び前記信号処理用半導体素子に対向する位置に設けられた1つ又は複数の第2の開口を有する熱伝導板を、前記センサー基板の後方に配置して、前記撮像装置筐体に固定するステップと、  前記熱伝導板の第1の開口内に、該第1の開口内を前後方向を含む全方向に遊動可能な第1の放熱体を配置するステップと、  前記熱伝導板の第2の開口内に、該第2の開口内を前後方向を含む全方向に遊動可能な第2の放熱体を配置するステップと、  前記第1の放熱体を、前記第1の放熱体と前記センサー基板の間に介在し電気絶縁性を有する第1の熱伝導シートと熱伝導グリースを介して、弾性体により前記センサー基板に押圧するステップと、  前記第2の放熱体を、熱伝導グリースを介して弾性体により前記信号処理用半導体素子に押圧するか、又は、前記第2の放熱体と前記センサー基板の間に介在し電気絶縁性を有する第2の熱伝導シートと熱伝導グリースを介して、弾性体により前記センサー基板に押圧するステップと、を備えることを特徴とする撮像装置の製造方法。 A manufacturing method of an imaging apparatus having a casing on the outside of the apparatus, converting light incident from the front of the apparatus into an electrical signal by a solid-state imaging device, and processing the converted electrical signal by a signal processing semiconductor element, The solid-state imaging device is mounted on the front surface, and the sensor substrate on which one or more of the signal processing semiconductor devices are mounted on the front surface or the rear surface is positioned, and the sensor substrate is fixed in the imaging device casing. A heat conduction plate having a step, a first opening provided at a position facing the solid-state imaging device, and one or a plurality of second openings provided at a position facing the signal processing semiconductor element, Arranging behind the sensor substrate and fixing it to the imaging device housing, and movable in the first opening of the heat conducting plate in all directions including the front-rear direction in the first opening. A step of disposing a first heat dissipating member, and a step of disposing a second heat dissipating member capable of floating in the second opening of the heat conducting plate in all directions including the front-rear direction in the second opening. And the first heat radiator is interposed between the first heat radiator and the sensor substrate, and the sensor substrate is formed by an elastic body through a first heat conductive sheet and a heat conductive grease having electrical insulation. Pressing the second heat radiating member against the signal processing semiconductor element by means of an elastic member via thermal conductive grease, or intervening between the second heat radiating member and the sensor substrate. And a step of pressing the sensor substrate with an elastic body via a second heat conductive sheet having electrical insulation and a heat conductive grease.
PCT/JP2012/056912 2011-04-01 2012-03-16 Imaging apparatus and imaging apparatus production method WO2012137586A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137017165A KR101413869B1 (en) 2011-04-01 2012-03-16 Imaging apparatus and imaging apparatus production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011082096A JP5813351B2 (en) 2011-04-01 2011-04-01 Imaging apparatus and manufacturing method of imaging apparatus
JP2011-082096 2011-04-01

Publications (1)

Publication Number Publication Date
WO2012137586A1 true WO2012137586A1 (en) 2012-10-11

Family

ID=46749583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056912 WO2012137586A1 (en) 2011-04-01 2012-03-16 Imaging apparatus and imaging apparatus production method

Country Status (4)

Country Link
JP (1) JP5813351B2 (en)
KR (1) KR101413869B1 (en)
CN (1) CN202424864U (en)
WO (1) WO2012137586A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11013148B2 (en) 2018-07-24 2021-05-18 Ricoh Company, Ltd. Imaging apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6595388B2 (en) * 2016-03-30 2019-10-23 京セラ株式会社 Imaging module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983878A (en) * 1995-09-14 1997-03-28 Matsushita Electric Ind Co Ltd Cooling device for image pickup element
JP2007208731A (en) * 2006-02-02 2007-08-16 Sony Corp Electronic equipment
JP2011254261A (en) * 2010-06-01 2011-12-15 Olympus Imaging Corp Camera shake correction unit
JP2012049383A (en) * 2010-08-27 2012-03-08 Nikon Corp Imaging apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207486A (en) * 1992-01-30 1993-08-13 Matsushita Electric Ind Co Ltd Solid-state image pickup device
JP2002247594A (en) * 2001-02-20 2002-08-30 Olympus Optical Co Ltd Image pickup device
JP4964610B2 (en) * 2007-02-09 2012-07-04 パナソニック株式会社 Solid-state imaging device heat dissipation structure and solid-state imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983878A (en) * 1995-09-14 1997-03-28 Matsushita Electric Ind Co Ltd Cooling device for image pickup element
JP2007208731A (en) * 2006-02-02 2007-08-16 Sony Corp Electronic equipment
JP2011254261A (en) * 2010-06-01 2011-12-15 Olympus Imaging Corp Camera shake correction unit
JP2012049383A (en) * 2010-08-27 2012-03-08 Nikon Corp Imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11013148B2 (en) 2018-07-24 2021-05-18 Ricoh Company, Ltd. Imaging apparatus

Also Published As

Publication number Publication date
KR20130105686A (en) 2013-09-25
CN202424864U (en) 2012-09-05
JP5813351B2 (en) 2015-11-17
JP2012217094A (en) 2012-11-08
KR101413869B1 (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP6176118B2 (en) Imaging unit and imaging apparatus
EP3125038B1 (en) Camera module and manufacturing method therefor
US20150031162A1 (en) Photoelectric conversion device, image pickup system and method of manufacturing photoelectric conversion device
WO2016009558A1 (en) Imaging device
JP6000337B2 (en) Imaging device
US20100245662A1 (en) Imaging apparatus
JP4903067B2 (en) Solid-state image sensor heat dissipation structure
JP5813351B2 (en) Imaging apparatus and manufacturing method of imaging apparatus
JP4890398B2 (en) Imaging device
JP5640616B2 (en) Heat dissipation structure for electronic components
JP4964704B2 (en) Imaging device
JP6769087B2 (en) Method for forming cooling member, cooling device, electronic device and cooling member
JP2008198669A (en) Imaging device and method of manufacturing the same
JP2008199158A (en) Heat-dissipating structure of solid-state imaging element, and solid-state imaging device
JP2008227043A (en) Radiating substrate and power source unit using the same
JP5427076B2 (en) Heat dissipation structure of 3CCD compact camera
JP3606534B2 (en) Solid-state imaging device
CN111526265A (en) Camera module and vehicle equipment
JPH0983878A (en) Cooling device for image pickup element
JP4182598B2 (en) Imaging device
US10971639B2 (en) Method of mounting an electrical component on a base part
JPH07154657A (en) Solid-state image pickup device
CN116528026A (en) Camera and image sensing device
JP2009010800A (en) Imaging apparatus
WO2019021737A1 (en) Electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137017165

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768588

Country of ref document: EP

Kind code of ref document: A1