JP3606534B2 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
JP3606534B2
JP3606534B2 JP21210995A JP21210995A JP3606534B2 JP 3606534 B2 JP3606534 B2 JP 3606534B2 JP 21210995 A JP21210995 A JP 21210995A JP 21210995 A JP21210995 A JP 21210995A JP 3606534 B2 JP3606534 B2 JP 3606534B2
Authority
JP
Japan
Prior art keywords
solid
heat
imaging device
state imaging
conducting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21210995A
Other languages
Japanese (ja)
Other versions
JPH0965348A (en
Inventor
裕樹 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP21210995A priority Critical patent/JP3606534B2/en
Publication of JPH0965348A publication Critical patent/JPH0965348A/en
Application granted granted Critical
Publication of JP3606534B2 publication Critical patent/JP3606534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、CCD等の固体撮像素子を用いた固体撮像装置係わり、特に固体撮像素子の放熱機構の改良に関するものである。
【0002】
【従来の技術】
従来、CCD等の固体撮像素子は、動作中のそれ自身の温度上昇に伴なって固体撮像素子内の暗電流が増加するため、より高い温度の固体撮像素子で撮像された画像の画質は、より劣化する。そのため、固体撮像装置においては、固体撮像素子を冷却する機構を設けるものがある。一方、より鮮明な画像を得るためには、固体撮像装置における各固体撮像素子の取り付け精度を1μm程度以下に保つ必要がある。そのため、取付時の機械的ストレスの発生や、熱膨張または熱収縮による寸法変化の影響が、取り付け精度を劣化させることを考慮して固体撮像素子および上記冷却機構を固体撮像装置内に取り付ける必要がある。
【0003】
そのため従来技術としては、固体撮像素子の裏面に熱伝導性の良好な固定部材を設け、金属箔が重ね合わされて形成された熱伝導部材を介してカメラ筐体へ放熱し、固体撮像素子の冷却を行なっているものがある。
【0004】
以下、この従来技術による固体撮像装置の構造について、図3〜図5を用いてより詳しく説明する。
図3において、1はカメラ筐体、2は色分解プリズムで、色分解プリズム2は撮像レンズ(図示せず)から入射した光を所定の色成分ごと、例えば、3原色の光に分解する。その各々分解された光成分は、それぞれ固体撮像素子3によって電気信号に変換された後、固体撮像装置内の処理回路によって合成され、撮像画像が得られる。
【0005】
固体撮像素子3の背面3bには、固体撮像素子3内の熱を吸収するために、銅板からなる熱伝導チップ21が密着固定され、さらに熱伝導チップ21には熱伝導板22が密着固定されている。また、熱伝導板22の後方には、絶縁板23をはさんでセンサ基板4が配置される。このセンサ基板4は、固体撮像素子3からの信号を処理する回路を有し、固体撮像素子3の端子3aがはんだ付け固定される。さらに、色分解プリズム2の各色成分光射出面に固定して取付けられた第1の金具5と、各固体撮像素子3に固定して取付けられた第2の金具6とをはんだ7でもってはんだ付けすることによって、色分解プリズム2と撮像素子3とが固定される。
【0006】
一方、各熱伝導板22は、取付ネジ25によって銅箔放熱板24に密着固定される。また、銅箔放熱板24は、取付ネジ26によってカメラ筐体1に密着固定される。銅箔放熱板24は、複数の銅箔、例えば、銅箔24aから銅箔24fまでが薄い粘着剤でもって接合かつ一体化されて層状に積層されたものであり、例えば図5に示すような、プレス加工により切断、曲げ加工が処された形状となっている。また、銅箔放熱板24の可ぎょう性を更に良くするために、各々の曲げ部ごとにスリットが数本設けられている。
【0007】
以上のような構造によって、撮像素子3から発熱した熱は、熱伝導チップ21を介して熱伝導板22まで伝達され、さらに、その伝達された熱は可ぎょう性のある銅箔放熱板24によってカメラ筐体1まで伝達される。
【0008】
【発明が解決しようとする課題】
しかしながら、上述の従来技術には下記に示す問題点を有する。
すなわち、各固体撮像素子は、それぞれ色分解プリズムに対し光学的な3次元位置調整を行なった後に、色分解プリズムに固定される。そのため、個別に調整された結果、R、G、B各チャネルの3つの固体撮像素子の位置関係は定まっておらず、固体撮像装置によりその位置関係が、あらゆる方向にずれたものとなる可能性がある。その結果、上述のように熱伝導チップを介して固体撮像素子の裏面に密着固定された熱伝導板22の各ネジ穴位置と、それに対応する熱伝導部材24のネジ穴位置との相対的なずれ量がより大きくなる可能性がある。また、この放熱構造を構成する各部材が有する寸法誤差が累積された結果によっても、前記ネジ穴位置の相対的なずれは生じる。
【0009】
従って、銅箔放熱板24が取付ネジ25及び26で各々熱伝導板22及びカメラ筐体1へネジ締結される場合、各々のネジ穴位置ずれ量が大きく、そのため生じる機械的ストレスは、可ぎょう性のある銅箔放熱板24だけでもって吸収させなければならず、その機械的ストレスが著しく1方向へ片寄った場合等は、熱伝導板22に密着固定された固体撮像素子3において、銅箔放熱板24でもって吸収し切れなかった多大なストレスを受ける可能性がある。その場合、そのストレスによって固体撮像素子の取り付け位置がずれ、その取り付け精度が悪化することによってレジストレーションのずれが発生し、撮像する画質を劣化させるという欠点がある。また、この放熱経路のうち、固体撮像素子3から熱伝導板22までの部分は金属等の剛体からなる上、それぞれ固定されてつながっており、熱伝導板22のネジ締結時において、ネジの締付トルクによる機械的ストレスが固体撮像素子へ加わり、レジストレーションのズレが発生する。なお、このネジ締結によるレジストレーションのずれの発生を防止するには、前述のネジ締結時の締付トルクの規制を行わなければならず、そのことにより組立性の悪化および伝熱効率の悪化が生じる。
【0010】
本発明はこれらの欠点を除去し、固体撮像素子を効率良く冷却すると共に、組立性の良い固体撮像素子冷却構造を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、上記の課題を解決するために、固体撮像素子からの熱を吸収することができる第1の熱伝導部材と、重ね合わされた金属箔で形成された可ぎょう性の優れた第2の熱伝導部材とを、それぞれ複数の色チャネル、例えば、R、G、B各チャネルの固体撮像素子の裏面に各々配設する。そして、上記各固体撮像素子にそれぞれ取り付けられた板ばねにより、第1の熱伝導部材および第1の熱伝導部材に取り付けられた第2の熱伝導部材を、所定の圧力で固体撮像素子の背面に密着させるようにしたものである。
【0012】
上述した構成によれば、固体撮像素子から発生した熱を上記熱伝導部材を介して、第2の熱伝導部材がねじ固定されたカメラ筐体側へ効率良く放熱することができ、さらに、前述した組立時のネジ穴位置ずれによって起こる機械的ストレスは、各々R、G、B各チャネルに分散され、それぞれのストレスを各々の第2の熱伝導部材の可ぎょう性によって吸収するので、レジストレーションずれの発生を抑えることができる。
【0013】
また、上述した構成によれば、第1の熱伝導部材と熱吸収部材とが接する面およびその熱吸収部材と固体撮像素子が接する面は、所定の圧力でもって密着されているだけであり、固定されていないので、第2の熱伝導部材を第1の熱伝導部材にねじ固定した場合、または第2の熱伝導部材をカメラ筐体側にねじ固定した場合であっても、ねじ締めトルクによってそれら密着面の擦れが生じることによって、そのネジ締めトルクによる固体撮像素子への機械的ストレスの影響が生じないようにすることができる。
【0014】
【発明の実施の形態】
以下、この発明の一実施例について、図1及び図2を用いて説明する。図1における1から7までは、前述した従来の技術で説明したものと同様であり、ここでは説明を省略する。
【0015】
図1において、第2の金具6には、後述する板バネ14を取付けるための、ネジ部を有した支柱8が取付けられる。固体撮像素子3の裏面3bには、熱伝導性両面接着テープ10を介して熱吸収部材であるペルチェ冷却素子9の吸熱部が接触され、ペルチェ冷却素子9の放熱部には、同じく熱伝導性接着テープ10を介して、高熱伝導率の金属で形成された第1の熱伝導部材11が接触される。
【0016】
また、12は、高熱伝導率の金属箔が重ね合わされて形成された上、可ぎょう性を増すためにスリットを有する曲げ部が設けられた第2の熱伝導部材である。この第2の熱伝導部材12は、取り付けねじ18および押え板13により第1の熱伝導部材11に圧接固定される。押え板13は、第1の熱伝導部材11と第2の熱伝導部材12との密着において、より密着度が高くなるようにそれらのねじ締め時の締め付け圧力がそれらのより広い面積に加わるようにするために設けられたものである。
【0017】
さらに、14は板バネ、15は板バネ14に取り付けられる絶縁チップで、この絶縁チップ15は熱絶縁性を高めるため、例えば、難燃性プラスチックで形成される。この板バネ14は、取り付けねじ19によって前述の支柱8にねじ止め固定されることにより、取り付けられた絶縁チップ15を介して所定の圧力でもって、金具6に取り付けられた固体撮像素子3の方向に、第1の熱伝導部材11を押さえ付けるようにする。このため、固体撮像素子3とペルチェ冷却素子9、およびペルチェ冷却素子9と第1の熱伝導部材11とが密着させられる。
【0018】
各第2の熱伝導部材12は、カメラ筐体1にねじ結合された放熱板16のそれぞれの取り付け位置に、それぞれ角ワッシャ17をはさみ込ませた上、取り付けネジ20によって圧接固定される。
【0019】
以上説明した構造とすることにより、固体撮像素子3から発生した熱は、ペルチェ冷却素子9の吸熱側によって吸収される。その吸収された熱は、ペルチェ冷却素子9の放熱側と密着した第1の熱伝導部材11に伝達され、さらに、それから第2の熱伝導部材12と放熱板16を介してカメラ筐体1へ効率よく放熱される。
【0020】
このとき、各部材の温度変化によって生じる各部品における機械的ストレスは、複数の第2の熱伝導部材12によって分散され、かつ、各々第2の熱伝導部材の可ぎょう性によって吸収されるので、レジストレーションのずれが発生しない。
【0021】
また、第2の熱伝導部材12が取り付けられた第1の熱伝導部材11を、R、G、B各チャネルの固体撮像素子3の裏面3bに、所定の圧力で押しつけられて密着されることで、従来の技術で述べられた構造とは異なり、第2の熱伝導部材12と固体撮像素子3とは固定されていない。従って、ネジの締め付け時に上記密着個所で擦れを生じさせることができ、機械的ストレスが固体撮像素子3に及ぶことがないので、ネジ締付トルクを規制する必要がなく、組立性が非常に良い。
【0022】
図1に示した実施例では、熱吸収部材としてペルチェ冷却素子9を使用しているが、その部材設けるを必要が無い場合は、第1の熱伝導部材11を固体撮像素子3の裏面へ直接接触させたとしても、良好な放熱効果が得られる。
【0023】
また、固体撮像素子3を更に冷却したい場合は、図2に仮想線で示す様に、熱伝導部材11の両端から放熱板16のみならず放熱板16’にも放熱する様な構造とすれば、更なる冷却効果を得ることができる。
【0024】
【発明の効果】
本発明によれば、冷却機構を固体撮像素子に取り付けたことによっては、その冷却機構からの機械的ストレスが固体撮像素子に影響を及ぼすことのないようにし、その影響によるレジストレーションのずれが発生しないようにすることができる。
【0025】
また、、熱伝導材の形状が単純で加工性がよい固体撮像装置を実現することができる。
さらに、所定の圧力により密着させることで、その密着部分で擦れが起こることにより、ねじ締め時の機械的ストレスをなくすことができるので、ネジ締めトルク規制が必要なく、そのため組立性が向上するので固体撮像装置のコストの低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例の固体撮像装置の一部分の分解斜視図。
【図2】本発明の一実施例の固体撮像装置の一部分の断面図。
【図3】従来の技術による固体撮像装置の一部分の分解斜視図。
【図4】従来の技術による固体撮像装置の一部分の断面図。
【図5】銅箔を重ね合せて形成された銅箔放熱板24の銅箔の重ね合せ状態を説明する図。
【符号の説明】
1 カメラ筐体、2 色分解プリズム、3 固体撮像素子、9 ペルチェ冷却素子、10 熱伝導性両面接着テープ、11 第1の熱伝導部材、12 第2の熱伝導部材、13 押え板、14 板バネ、15 絶縁チップ、16 放熱板、17 角ワッシャ、18〜20 取付ネジ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid-state imaging device using a solid-state imaging device such as a CCD, and more particularly to an improvement in a heat dissipation mechanism of a solid-state imaging device.
[0002]
[Prior art]
Conventionally, a solid-state image pickup device such as a CCD increases in dark current in the solid-state image pickup device with an increase in temperature of the solid-state image pickup device during operation. More deteriorated. Therefore, some solid-state imaging devices are provided with a mechanism for cooling the solid-state imaging device. On the other hand, in order to obtain a clearer image, it is necessary to keep the mounting accuracy of each solid-state imaging element in the solid-state imaging device at about 1 μm or less. Therefore, it is necessary to mount the solid-state imaging element and the cooling mechanism in the solid-state imaging device in consideration of the occurrence of mechanical stress during mounting and the influence of dimensional change due to thermal expansion or contraction, which degrades mounting accuracy. is there.
[0003]
Therefore, as a conventional technique, a fixing member having a good thermal conductivity is provided on the back surface of the solid-state image sensor, and the heat is dissipated to the camera casing through the heat conductive member formed by superimposing the metal foil, thereby cooling the solid-state image sensor. There is something that is doing.
[0004]
Hereinafter, the structure of the conventional solid-state imaging device will be described in more detail with reference to FIGS.
In FIG. 3, 1 is a camera casing, 2 is a color separation prism, and the color separation prism 2 separates light incident from an imaging lens (not shown) into light of three primary colors, for example, for each predetermined color component. Each of the decomposed light components is converted into an electric signal by the solid-state imaging device 3 and then synthesized by a processing circuit in the solid-state imaging device to obtain a captured image.
[0005]
A heat conduction chip 21 made of a copper plate is closely attached and fixed to the back surface 3b of the solid state image pickup element 3 in order to absorb heat in the solid state image pickup element 3, and a heat conduction plate 22 is closely attached and fixed to the heat conduction chip 21. ing. In addition, the sensor substrate 4 is disposed behind the heat conducting plate 22 with the insulating plate 23 interposed therebetween. The sensor substrate 4 has a circuit for processing a signal from the solid-state image sensor 3, and a terminal 3a of the solid-state image sensor 3 is fixed by soldering. Further, the first metal fitting 5 fixedly attached to each color component light emission surface of the color separation prism 2 and the second metal fitting 6 fixedly attached to each solid-state imaging device 3 are soldered with solder 7. By attaching, the color separation prism 2 and the image sensor 3 are fixed.
[0006]
On the other hand, each heat conducting plate 22 is closely fixed to the copper foil heat radiating plate 24 by mounting screws 25. In addition, the copper foil heat sink 24 is tightly fixed to the camera housing 1 by mounting screws 26. The copper foil heat sink 24 is formed by laminating a plurality of copper foils, for example, copper foil 24a to copper foil 24f, which are joined and integrated with a thin adhesive and layered, for example, as shown in FIG. The shape is cut and bent by pressing. In order to further improve the flexibility of the copper foil heat sink 24, several slits are provided for each bent portion.
[0007]
With the structure as described above, the heat generated from the imaging device 3 is transmitted to the heat conductive plate 22 via the heat conductive chip 21, and the transmitted heat is a flexible copper foil heat radiating plate 24. Is transmitted to the camera casing 1.
[0008]
[Problems to be solved by the invention]
However, the above prior art has the following problems.
That is, each solid-state imaging device is fixed to the color separation prism after optical three-dimensional position adjustment with respect to the color separation prism. Therefore, as a result of individual adjustment, the positional relationship of the three solid-state imaging elements of the R, G, and B channels is not fixed, and the positional relationship may be shifted in all directions by the solid-state imaging device. There is. As a result, as described above, the relative positions of the screw hole positions of the heat conducting plate 22 that are closely fixed to the back surface of the solid-state imaging device via the heat conducting chip and the corresponding screw hole positions of the heat conducting member 24 are provided. There is a possibility that the amount of deviation becomes larger. In addition, relative displacement of the screw hole positions also occurs due to the accumulated dimensional errors of the members constituting the heat dissipation structure.
[0009]
Therefore, when the copper foil heat sink 24 is screwed to the heat conduction plate 22 and the camera casing 1 with the mounting screws 25 and 26, the displacement amount of each screw hole is large, and the mechanical stress generated thereby is very small. In the case where the mechanical stress must be absorbed by only the flexible copper foil heat radiating plate 24 and the mechanical stress is significantly shifted in one direction, the There is a possibility that the foil heat radiating plate 24 may receive a great deal of stress that cannot be absorbed. In that case, the mounting position of the solid-state imaging device is shifted due to the stress, and the mounting accuracy is deteriorated, thereby causing a registration shift and degrading the image quality to be captured. Further, in this heat radiation path, the portion from the solid-state imaging device 3 to the heat conducting plate 22 is made of a rigid body such as a metal and is fixedly connected to each other. Mechanical stress due to the applied torque is applied to the solid-state imaging device, and registration deviation occurs. In order to prevent the occurrence of registration deviation due to the screw fastening, it is necessary to regulate the tightening torque at the time of the screw fastening described above, which causes deterioration in assemblability and heat transfer efficiency. .
[0010]
It is an object of the present invention to eliminate these drawbacks, to cool a solid-state image sensor efficiently, and to provide a solid-state image sensor cooling structure with good assemblability.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a first heat conductive member capable of absorbing heat from a solid-state imaging device and a highly flexible material formed by overlapping metal foils. The two heat conducting members are respectively disposed on the back surfaces of the solid-state imaging devices of a plurality of color channels, for example, R, G, and B channels. The first heat conducting member and the second heat conducting member attached to the first heat conducting member are attached to the back surface of the solid state image sensing device with a predetermined pressure by the leaf springs attached to the respective solid state image sensing devices. It is made to adhere to.
[0012]
According to the above-described configuration, the heat generated from the solid-state imaging device can be efficiently radiated to the camera housing side to which the second heat conducting member is screwed via the heat conducting member. The mechanical stress caused by the screw hole misalignment at the time of assembly is distributed to each of the R, G, and B channels, and each stress is absorbed by the flexibility of each second heat conducting member. The occurrence of deviation can be suppressed.
[0013]
Further, according to the above-described configuration, the surface where the first heat conducting member and the heat absorbing member are in contact and the surface where the heat absorbing member and the solid-state imaging element are in contact are only in close contact with a predetermined pressure, Even if the second heat conducting member is screwed to the first heat conducting member or the second heat conducting member is screwed to the camera housing side, the screw tightening torque is used. By rubbing these contact surfaces, it is possible to prevent the influence of mechanical stress on the solid-state image sensor due to the screw tightening torque.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS. 1 to 7 in FIG. 1 are the same as those described in the prior art described above, and the description thereof is omitted here.
[0015]
In FIG. 1, a support 8 having a screw portion for attaching a plate spring 14 to be described later is attached to the second metal fitting 6. The heat absorption part of the Peltier cooling element 9 which is a heat absorption member is brought into contact with the back surface 3b of the solid-state imaging element 3 via the heat conductive double-sided adhesive tape 10, and the heat dissipation part of the Peltier cooling element 9 is also thermally conductive. The first heat conducting member 11 made of a metal having high thermal conductivity is brought into contact with the adhesive tape 10.
[0016]
Reference numeral 12 denotes a second heat conducting member which is formed by superposing metal foils having high thermal conductivity and is provided with a bent portion having a slit to increase flexibility. The second heat conducting member 12 is pressed and fixed to the first heat conducting member 11 by means of a mounting screw 18 and a holding plate 13. The presser plate 13 is such that the tightening pressure at the time of tightening those screws is applied to a wider area so that the degree of adhesion becomes higher in the close contact between the first heat conductive member 11 and the second heat conductive member 12. It is provided to make it.
[0017]
Further, 14 is a leaf spring, 15 is an insulating chip attached to the leaf spring 14, and this insulating chip 15 is made of, for example, a flame retardant plastic in order to improve thermal insulation. The plate spring 14 is screwed and fixed to the above-mentioned support column 8 with an attachment screw 19, whereby the direction of the solid-state imaging device 3 attached to the metal fitting 6 with a predetermined pressure through the attached insulating chip 15. In addition, the first heat conducting member 11 is pressed. For this reason, the solid-state imaging element 3 and the Peltier cooling element 9 and the Peltier cooling element 9 and the first heat conducting member 11 are brought into close contact with each other.
[0018]
Each second heat conducting member 12 is pressed and fixed by a mounting screw 20 after a square washer 17 is inserted into each mounting position of the heat radiating plate 16 screwed to the camera housing 1.
[0019]
With the structure described above, the heat generated from the solid-state imaging element 3 is absorbed by the heat absorption side of the Peltier cooling element 9. The absorbed heat is transmitted to the first heat conducting member 11 in close contact with the heat radiating side of the Peltier cooling element 9, and then to the camera housing 1 via the second heat conducting member 12 and the heat radiating plate 16. Heat is dissipated efficiently.
[0020]
At this time, the mechanical stress in each part caused by the temperature change of each member is dispersed by the plurality of second heat conducting members 12 and absorbed by the flexibility of each second heat conducting member. Registration deviation does not occur.
[0021]
In addition, the first heat conducting member 11 to which the second heat conducting member 12 is attached is pressed and adhered to the back surface 3b of the solid-state imaging device 3 of each of the R, G, and B channels with a predetermined pressure. Thus, unlike the structure described in the prior art, the second heat conducting member 12 and the solid-state imaging device 3 are not fixed. Therefore, rubbing can be generated at the contact portion when the screw is tightened, and no mechanical stress is applied to the solid-state imaging device 3, so that it is not necessary to regulate the screw tightening torque, and the assemblability is very good. .
[0022]
In the embodiment shown in FIG. 1, the Peltier cooling element 9 is used as the heat absorbing member. However, when it is not necessary to provide the member, the first heat conducting member 11 is directly applied to the back surface of the solid-state imaging element 3. Even if they are brought into contact with each other, a good heat dissipation effect can be obtained.
[0023]
In order to further cool the solid-state imaging device 3, as shown by phantom lines in FIG. 2, the heat conducting member 11 has a structure that radiates heat not only to the heat radiating plate 16 but also to the heat radiating plate 16 ′. Further cooling effect can be obtained.
[0024]
【The invention's effect】
According to the present invention, by attaching the cooling mechanism to the solid-state imaging device, mechanical stress from the cooling mechanism is prevented from affecting the solid-state imaging device, and registration shift due to the influence occurs. You can avoid it.
[0025]
In addition, it is possible to realize a solid-state imaging device with a simple shape of the heat conductive material and good workability.
Furthermore, since the mechanical stress at the time of screw tightening can be eliminated by the fact that the contact is caused by rubbing at the predetermined pressure, there is no need for screw tightening torque regulation, and therefore the assembly is improved. The cost of the solid-state imaging device can be reduced.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a part of a solid-state imaging device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a part of a solid-state imaging device according to an embodiment of the present invention.
FIG. 3 is an exploded perspective view of a part of a conventional solid-state imaging device.
FIG. 4 is a cross-sectional view of a part of a conventional solid-state imaging device.
FIG. 5 is a diagram for explaining a state of overlapping of copper foils on a copper foil heat sink 24 formed by overlapping copper foils.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Camera housing, 2 Color separation prism, 3 Solid-state image sensor, 9 Peltier cooling element, 10 Thermal conductive double-sided adhesive tape, 11 1st heat conductive member, 12 2nd heat conductive member, 13 Presser plate, 14 plate Spring, 15 Insulating chip, 16 Heat sink, 17 Square washer, 18-20 Mounting screw.

Claims (3)

撮像素子に入射された光を所定の色成分に分解する色分解プリズムの各色成分光射出面に固定された固体撮像素子を用いてカラー撮像を行う固体撮像装置において、In a solid-state imaging device that performs color imaging using a solid-state imaging device fixed to each color component light emission surface of a color separation prism that separates light incident on the imaging device into predetermined color components,
上記各固体撮像素子の裏面に接して配置される熱吸収部材と、該各熱吸収部材の上記接触面と相対する他の面に接して配置される第1の熱伝導部材と、該各第1の熱伝導部材に固定された可ぎょう性を有する第2の熱伝導部材と、上記各第1の熱伝導部材に加圧する板バネとを有し、該各板バネが所定の圧力でもって上記各第1の熱伝導部材をそれぞれ上記各固体撮像素子に向けて押さえ付け、上記固体撮像素子、上記熱吸収部材及び上記第1の熱伝導部材とを各々密着させることを特徴とする固体撮像装置。A heat-absorbing member disposed in contact with the back surface of each solid-state imaging device; a first heat-conducting member disposed in contact with another surface opposite to the contact surface of each heat-absorbing member; A flexible second heat conductive member fixed to the first heat conductive member, and a leaf spring that pressurizes each first heat conductive member, and each leaf spring is at a predetermined pressure. Thus, the first heat conducting member is pressed against the respective solid-state imaging device, and the solid-state imaging device, the heat absorbing member, and the first heat conducting member are in close contact with each other. Imaging device.
請求項1に記載の固体撮像装置において、The solid-state imaging device according to claim 1,
上記各固体撮像素子と上記第1の熱伝導部材との間に配設される上記熱吸収部材をペルチェ冷却素子とし、該各ペルチェ冷却素子が上記固体撮像素子から熱を吸収し、上記第1の熱伝導部材へ熱を放熱するよう動作させることを特徴とする固体撮像装置。The heat absorbing member disposed between each solid-state image sensor and the first heat conducting member is a Peltier cooling element, and each Peltier cooling element absorbs heat from the solid-state image sensor, and the first A solid-state imaging device which is operated to dissipate heat to the heat conducting member.
請求項1乃至2に記載の固体撮像装置において、The solid-state imaging device according to claim 1,
上記第2の熱伝導部材は、曲げ部を有すると共に、該曲げ部に各々スリットを設けたことを特徴とする固体撮像装置。The second heat conducting member has a bent portion, and each of the bent portions is provided with a slit.
JP21210995A 1995-08-21 1995-08-21 Solid-state imaging device Expired - Fee Related JP3606534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21210995A JP3606534B2 (en) 1995-08-21 1995-08-21 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21210995A JP3606534B2 (en) 1995-08-21 1995-08-21 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH0965348A JPH0965348A (en) 1997-03-07
JP3606534B2 true JP3606534B2 (en) 2005-01-05

Family

ID=16617033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21210995A Expired - Fee Related JP3606534B2 (en) 1995-08-21 1995-08-21 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3606534B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309216A (en) 2000-04-24 2001-11-02 Olympus Optical Co Ltd Electron camera
JP5427076B2 (en) * 2009-12-16 2014-02-26 株式会社日立国際電気 Heat dissipation structure of 3CCD compact camera

Also Published As

Publication number Publication date
JPH0965348A (en) 1997-03-07

Similar Documents

Publication Publication Date Title
US8081207B2 (en) High accuracy stereo camera
JP5565117B2 (en) Imaging device
JP4872091B2 (en) Imaging device
JP5371106B2 (en) Heat dissipation structure for image sensor package
JP2008219704A (en) Semiconductor device
JP6000337B2 (en) Imaging device
CN101848326A (en) Picture pick-up device
JP3606534B2 (en) Solid-state imaging device
JP2002247594A (en) Image pickup device
JP3400114B2 (en) Cooling system
JP2011049623A (en) Imaging apparatus
KR101413869B1 (en) Imaging apparatus and imaging apparatus production method
JP5427076B2 (en) Heat dissipation structure of 3CCD compact camera
JPH07154657A (en) Solid-state image pickup device
JP2000022366A (en) Heat conduction member and cooling structure using the same
JP6675241B2 (en) Imaging device
JP2001177023A (en) Mounting structure of chip device
JPH0983878A (en) Cooling device for image pickup element
JP2018189667A (en) Imaging apparatus
JPH06233311A (en) Heat radiation structure of solid state image pickup element
JP2011146856A (en) Imaging apparatus
JP4182598B2 (en) Imaging device
CN116528026A (en) Camera and image sensing device
US10136039B2 (en) Image pickup apparatus capable of preventing thermal deformation of a fixing member fixed to image pickup device package
JP2023090254A (en) Imaging apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees