JP2011254261A - Camera shake correction unit - Google Patents

Camera shake correction unit Download PDF

Info

Publication number
JP2011254261A
JP2011254261A JP2010126206A JP2010126206A JP2011254261A JP 2011254261 A JP2011254261 A JP 2011254261A JP 2010126206 A JP2010126206 A JP 2010126206A JP 2010126206 A JP2010126206 A JP 2010126206A JP 2011254261 A JP2011254261 A JP 2011254261A
Authority
JP
Japan
Prior art keywords
shake correction
camera shake
image sensor
correction unit
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010126206A
Other languages
Japanese (ja)
Inventor
Masahiro Ishiwatari
正浩 石渡
Yoshiaki Sueoka
良章 末岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Olympus Imaging Corp
Original Assignee
Olympus Corp
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Imaging Corp filed Critical Olympus Corp
Priority to JP2010126206A priority Critical patent/JP2011254261A/en
Publication of JP2011254261A publication Critical patent/JP2011254261A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Cameras Adapted For Combination With Other Photographic Or Optical Apparatuses (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a camera shake correction unit capable of fully dissipating heat from an imaging device and electronic components for controlling the imaging device and obtaining favorable imaging signals.SOLUTION: The camera shake correction unit 3 for displacing an imaging device and performing a camera shake correction operation comprises: a fixed member 5; an imaging device 16; a Y movable frame 8 displaceably supported with respect to the fixed member 5 in a Y direction in a plane parallel to the light receiving surface of the imaging device 12; a Y driving part 7 for driving the Y movable frame 8; an X movable frame 10 capable of displacing in a Y direction with the Y movable frame 8, displaceably supported with respect to the Y movable frame 8 in an X direction crossing the first direction in a plane parallel to the light receiving surface of the imaging device 16, and supporting the imaging device 16; an X driving part 9 for driving the X movable frame 10; a heat sink 11 disposed at a position facing the X movable frame 10 fixed to the member 5 through a penetrating member 12 made of a shape memory alloy.

Description

本発明は、手振れ補正ユニットの放熱構造に関する。   The present invention relates to a heat dissipation structure for a camera shake correction unit.

デジタルカメラ等の撮像素子を使用する撮像装置において、撮像動作が頻繁に繰り返された場合、撮像素子および撮像制御基板が高温になり、撮像信号にノイズ成分が増大する可能性がある。そのため、放熱構造を必要するが、特に上記撮像素子および撮像制御基板が可動である手振れ補正機構が組み込まれた撮像装置においては、可動体に対する放熱構造が必要となる。   In an imaging apparatus that uses an imaging device such as a digital camera, when the imaging operation is frequently repeated, the imaging device and the imaging control board may become high temperature, and noise components may increase in the imaging signal. For this reason, a heat dissipation structure is required. In particular, in an image pickup apparatus incorporating a camera shake correction mechanism in which the image pickup element and the image pickup control board are movable, a heat dissipation structure for the movable body is required.

そこで、特許文献1に開示された撮像装置は、撮像素子を適用する可動の撮像ユニットを備えた手振れ補正機構が組み込まれた装置に関するものである。図23に示すように該撮像装置の撮像ユニット18Aは、装置外装体に固定支持される固定部材22Aに対して2次元駆動装置を介して変位可能に支持されており、カバーガラス50Aと、撮像素子42Aと、放熱板44Aと、信号処理回路基板46Aと、放熱シート52Aとを具備している。   Therefore, the imaging apparatus disclosed in Patent Document 1 relates to an apparatus in which a camera shake correction mechanism including a movable imaging unit to which an imaging element is applied is incorporated. As shown in FIG. 23, the image pickup unit 18A of the image pickup apparatus is supported so as to be displaceable via a two-dimensional drive device with respect to a fixing member 22A fixedly supported by the apparatus exterior body. An element 42A, a heat radiating plate 44A, a signal processing circuit board 46A, and a heat radiating sheet 52A are provided.

放熱板44Aは、撮像素子42Aの背面側に密着して配されている。放熱板44Aと信号処理回路基板46Aとの間には、所定のスペースSAを設けるためにスペーサ48Aが配されている。放熱シート52Aは、信号処理回路基板46Aの各制御素子に密着した配されてる。撮像素子42Aの熱は、主に放熱板44Aを経て、さらに、信号処理回路基板46Aの制御素子の熱は、主に放熱シート52Aを経て空気を介して装置外に放熱される。   The heat sink 44A is disposed in close contact with the back side of the image sensor 42A. A spacer 48A is disposed between the heat radiating plate 44A and the signal processing circuit board 46A in order to provide a predetermined space SA. The heat radiation sheet 52A is disposed in close contact with each control element of the signal processing circuit board 46A. The heat of the image sensor 42A mainly passes through the heat radiating plate 44A, and further, the heat of the control element of the signal processing circuit board 46A mainly radiates outside the apparatus through the heat radiating sheet 52A via the air.

特開2009−147685号公報JP 2009-147485 A

上述した特許文献1に開示された撮像装置においては、撮像素子42Aおよび信号処理回路基板46Aの各制御素子の熱が主に一定隙間の空気を介して放熱されることから、必ずしも十分な放熱が期待できないといった問題があった。   In the imaging apparatus disclosed in Patent Document 1 described above, the heat of each of the imaging elements 42A and the control elements of the signal processing circuit board 46A is mainly radiated through air of a certain gap, and therefore sufficient heat dissipation is not necessarily performed. There was a problem that I could not expect.

本発明は、上述の問題を解決するためになされたものであり、撮像素子および撮像素子制御用電子部品からの熱が十分に放熱され、雑音のない良好な撮像信号が得られる手振れ補正ユニットを提供することを目的とする。   The present invention has been made in order to solve the above-described problems. A camera shake correction unit capable of sufficiently dissipating heat from the image sensor and the image sensor control electronic component and obtaining a good image signal without noise is provided. The purpose is to provide.

上記課題を解決するために本発明の手振れ補正ユニットは、撮影光学系により結像される被写体像を受けて画像データを生成するための撮像素子を変位させて手振れ補正動作を行なう手振れ補正ユニットにおいて、固定部材と、上記撮像素子、および、または、該撮像素子の受光面に平行に配置された電子部品が固着されたプリント基板との少なくとも一方と、上記撮像素子の受光面に平行な面内における第1の方向に沿って上記固定部材に対して変位可能に支持される第一の可動部材と、上記第一の可動部材を駆動するための第一の駆動手段と、上記第一の可動部材と共に上記第一の方向に沿って変位可能であり、上記撮像素子の受光面、および、または、上記プリント基板の平面と平行な面内において、上記第一の方向に交差する第二の方向に沿って上記第一の可動部材に対して変位可能に支持され、上記撮像素子を支持する第二の可動部材と、上記第二の可動部材を駆動するための第二の駆動手段と、上記第二の可動部材と対向する位置に配される放熱部材と、上記固定部材と上記放熱部材とを連結し、固定する形状記憶合金からなる貫通部材とを具備する。   In order to solve the above-described problems, a camera shake correction unit according to the present invention is a camera shake correction unit that performs a camera shake correction operation by displacing an image sensor for receiving a subject image formed by a photographing optical system and generating image data. , At least one of a fixing member, the image sensor and / or a printed circuit board to which an electronic component disposed in parallel to the light receiving surface of the image sensor is fixed, and a plane parallel to the light receiving surface of the image sensor A first movable member supported so as to be displaceable with respect to the fixed member along a first direction, first driving means for driving the first movable member, and the first movable member A second member that is displaceable along the first direction together with the member and intersects the first direction in a light receiving surface of the image sensor and / or a plane parallel to the plane of the printed circuit board. A second movable member that is supported so as to be displaceable with respect to the first movable member along a direction and supports the imaging element; and a second driving unit for driving the second movable member; A heat dissipating member disposed at a position facing the second movable member; and a penetrating member made of a shape memory alloy for connecting and fixing the fixing member and the heat dissipating member.

本発明によると、撮像素子あるいは撮像素子制御用電子部品からの熱が十分に放熱され、雑音のない良好な撮像信号が得られる手振れ補正ユニットを提供することができる。   According to the present invention, it is possible to provide a camera shake correction unit that can sufficiently dissipate heat from an image sensor or an image sensor control electronic component and obtain a good image signal without noise.

本発明の第一実施形態としての手振れ補正ユニットを内蔵するデジタルカメラの要部縦断面図1 is a longitudinal sectional view of an essential part of a digital camera including a camera shake correction unit as a first embodiment of the present invention. 図1のA−A断面図AA sectional view of FIG. 図1のデジタルカメラに内蔵される手振れ補正ユニットにて放熱板と固定部材とを結合する貫通部材の結合部断面図Sectional drawing of the coupling | bond part of the penetration member which couple | bonds a heat sink and a fixing member in the camera-shake correction unit built in the digital camera of FIG. 図1のデジタルカメラに内蔵される手振れ補正ユニットの撮像素子非動作状態における模式的断面図1 is a schematic cross-sectional view of a camera shake correction unit built in the digital camera of FIG. 図1のデジタルカメラに内蔵される手振れ補正ユニットの撮像素子動作状態における模式的断面図FIG. 1 is a schematic cross-sectional view of a camera shake correction unit built in the digital camera of FIG. 図1のデジタルカメラに内蔵される手振れ補正ユニットの撮像素子動作状態にて該撮像素子が高温に達した状態における模式的断面図FIG. 1 is a schematic cross-sectional view of a camera shake correction unit built in the digital camera of FIG. 図4の手振れ補正ユニットに組み込まれる適用される貫通部材の素材である形状記憶合金の温度に対する伸び率の変化を示す図The figure which shows the change of the elongation rate with respect to the temperature of the shape memory alloy which is a raw material of the penetration member applied to the camera-shake correction unit of FIG. 図4の手振れ補正ユニットにおける熱伝達経路図Heat transfer path diagram in the image stabilization unit of FIG. 図4の手振れ補正ユニットおよび従来の手振れ補正ユニットにおける外気温度に対する撮像素子と外気との温度差の変化を示す図The figure which shows the change of the temperature difference of an image pick-up element and external air with respect to external temperature in the camera-shake correction unit of FIG. 4, and the conventional camera-shake correction unit. 図4の手振れ補正ユニットおよび従来の手振れ補正ユニットにおける撮像素子発熱量に対する撮像素子と外気との温度差の変化を示す図The figure which shows the change of the temperature difference of an image pick-up element and external air with respect to the image pick-up element calorific value in the camera-shake correction unit of FIG. 4, and the conventional camera-shake correction unit. 図4の手振れ補正ユニットにおける貫通部材が形状記憶合金である場合と、他種の金属である場合との各構造部材と外気との温度差を示す図The figure which shows the temperature difference of each structural member and the external air when the penetrating member in the camera shake correction unit of FIG. 4 is a shape memory alloy and when it is another kind of metal 本発明の第二実施形態としての手振れ補正ユニットの撮像素子非動作状態における模式的断面図Schematic sectional view in a non-operating state of an image sensor of a camera shake correction unit as a second embodiment of the present invention 図12の手振れ補正ユニットの撮像素子動作状態における模式的断面図FIG. 12 is a schematic cross-sectional view of the image stabilization unit in FIG. 図12の手振れ補正ユニットにおける熱伝達経路図Heat transfer path diagram in the image stabilization unit of FIG. 図12の手振れ補正ユニットおよび従来の手振れ補正ユニットにおける外気温度に対する撮像素子と外気との温度差の変化を示す図The figure which shows the change of the temperature difference of an image pick-up element and external air with respect to external temperature in the camera-shake correction unit of FIG. 12, and the conventional camera-shake correction unit. 図12の手振れ補正ユニットおよび従来の手振れ補正ユニットにおける外気温度に対する制御基板ユニットと外気との温度差の変化を示す図The figure which shows the change of the temperature difference of a control board unit and external air with respect to external temperature in the camera-shake correction unit of FIG. 12, and the conventional camera-shake correction unit. 図12の手振れ補正ユニットおよび従来の手振れ補正ユニットにおける撮像素子発熱量に対する撮像素子と外気との温度差の変化を示す図The figure which shows the change of the temperature difference of an image pick-up element and external air with respect to the image pick-up element calorific value in the camera-shake correction unit of FIG. 12, and the conventional camera-shake correction unit. 図12の手振れ補正ユニットおよび従来の手振れ補正ユニットにおける制御基板ユニット発熱量に対する制御基板ユニットと外気との温度差の変化を示す図The figure which shows the change of the temperature difference of a control board unit with respect to external air with respect to the control board unit calorific value in the camera-shake correction unit of FIG. 12, and the conventional camera-shake correction unit. 図12の手振れ補正ユニットにおける貫通部材が形状記憶合金である場合と、他の金属で或る場合との各構造部材と外気との温度差を示す図12 is a diagram showing a temperature difference between each structural member and outside air when the penetrating member in the image stabilization unit of FIG. 12 is a shape memory alloy and when it is made of another metal. 本発明の第三実施形態としての手振れ補正ユニットの撮像素子動作状態における模式的断面図Typical sectional drawing in the image sensor operation state of the camera shake correction unit as a third embodiment of the present invention 図20の手振れ補正ユニットの撮像素子高温状態における模式的断面図20 is a schematic cross-sectional view of the image stabilization unit of FIG. 20 in a high-temperature state of the image sensor. 図20の手振れ補正ユニットにおける熱伝達経路図Heat transfer path diagram in the image stabilization unit of FIG. 従来の手振れ補正ユニットの要部縦断面図Longitudinal section of the main part of a conventional image stabilization unit

以下、本発明の実施形態について、図を用いて説明する。
本発明の一実施形態としての手振れ補正ユニットを内蔵する撮像装置であるデジタルカメラ1について、図1,2を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A digital camera 1 that is an imaging apparatus incorporating a camera shake correction unit according to an embodiment of the present invention will be described with reference to FIGS.

デジタルカメラ1は、手振れ補正ユニット3および撮像制御部(図示せず)を内蔵するカメラ外装体2と、撮影光学系である撮影レンズ31を内蔵する鏡筒部30とからなる。   The digital camera 1 includes a camera exterior body 2 including a camera shake correction unit 3 and an imaging control unit (not shown), and a lens barrel unit 30 including a photographing lens 31 that is a photographing optical system.

なお、図中、撮影レンズ31の光軸をOで示し、光軸O方向の被写体側を前方とし、光軸Oの結像側を後方(背面側)とする。また、光軸Oに対して垂直方向であって、通常のカメラ撮影姿勢にて左右方向をX方向とし、上下方向をY方向とする。   In the figure, the optical axis of the photographic lens 31 is indicated by O, the subject side in the optical axis O direction is the front, and the imaging side of the optical axis O is the rear (back side). Further, in the normal direction with respect to the optical axis O, the horizontal direction is the X direction and the vertical direction is the Y direction in a normal camera photographing posture.

上記撮像制御部は、撮像素子16より出力される画像データ(撮像信号)を取り込み、画像処理を行って、記憶媒体(図示せず)に記録するための電気制御部であり、さらに、カメラ外装体2の手振れを検出するための手振れセンサを備えている。   The imaging control unit is an electric control unit that takes in image data (imaging signal) output from the imaging element 16, performs image processing, and records it in a storage medium (not shown). A camera shake sensor for detecting the camera shake of the body 2 is provided.

手振れ補正ユニット3は、カメラ外装体2に固定支持される固定部材5と、固定部材5に支持され、固定部材5に対して第一の方向であるY方向に変位な第一の可動部材としてのY可動枠8と、固定部材に配置され、Y可動枠8をY方向に駆動するための第一の駆動手段としてのY駆動部7と、Y可動枠8に支持され、Y可動枠8に対して第二の方向であるX方向に変位な第二の可動部材としてのX可動枠10と、Y可動枠8に支持され、X可動枠10をX方向に駆動するための第二の駆動手段としてのX駆動部9と、X可動枠10に固定支持される部材として光学フィルタ17、撮像素子支持板15および撮像素子16と、固定部材5に貫通部材12を介して支持され、撮像素子支持板15と光軸O方向に対向する状態で配置される放熱部材としての放熱板11とを備えている。   The camera shake correction unit 3 is a fixed member 5 fixedly supported by the camera exterior body 2 and a first movable member supported by the fixed member 5 and displaced in the Y direction which is the first direction with respect to the fixed member 5. The Y movable frame 8 is disposed on the fixed member, and is supported by the Y movable frame 8 as a first driving means for driving the Y movable frame 8 in the Y direction. The X movable frame 10 as the second movable member that is displaced in the X direction, which is the second direction, and the second movable member 10 supported by the Y movable frame 8 and driving the X movable frame 10 in the X direction. An X drive unit 9 as a driving means, an optical filter 17, an image sensor support plate 15 and an image sensor 16 as members fixedly supported by the X movable frame 10, and a fixed member 5 supported by a penetrating member 12 for imaging. A heat radiating portion arranged in a state of facing the element support plate 15 in the direction of the optical axis O. And a heat radiating plate 11 as a.

固定部材5は、熱拡散性のよいアルミニウム合金、ステンレス鋼や銅合金、あるいは、高熱伝導性樹脂で形成され、カメラ外装体2に支持部6を介して固定されて配されている。   The fixing member 5 is formed of an aluminum alloy having good thermal diffusibility, stainless steel or copper alloy, or a high thermal conductive resin, and is fixed to the camera exterior body 2 via a support portion 6.

Y駆動部7およびX駆動部9は、ステッピングモータやボイスコイルモータなどのアクチュエータからなり、それぞれY可動枠8、または、X可動枠10をY方向、または、X方向に沿って変位駆動する。   The Y drive unit 7 and the X drive unit 9 are actuators such as a stepping motor and a voice coil motor, and drive the Y movable frame 8 or the X movable frame 10 to be displaced along the Y direction or the X direction, respectively.

Y可動枠8およびX可動枠10は、それぞれアルミニウム合金、あるいは、高熱伝導性樹脂で形成されている。   The Y movable frame 8 and the X movable frame 10 are each formed of an aluminum alloy or a high thermal conductive resin.

撮像素子16は、撮影レンズ31により結像される被写体像を受けて画像データを生成するためのものであって、撮像素子受光面がXY平面に沿った状態で撮像素子支持板15に固着され、フレキシブル回路基板19を介して上記撮影制御部に接続されている。   The image sensor 16 is for receiving the subject image formed by the photographing lens 31 and generating image data. The image sensor 16 is fixed to the image sensor support plate 15 with the image sensor light receiving surface along the XY plane. The imaging control unit is connected via the flexible circuit board 19.

撮像素子支持板15は、アルミニウム合金で形成される平板形状の部材であり、該支持板の平面部が上記撮像素子受光面に平行、すなわち、XY平面に沿った状態でX可動枠10に固着されている。   The imaging element support plate 15 is a flat plate member formed of an aluminum alloy, and is fixed to the X movable frame 10 in a state where the plane portion of the support plate is parallel to the imaging element light receiving surface, that is, along the XY plane. Has been.

放熱板11は、熱拡散性のよいステンレス鋼板、銅板、高熱伝導性樹脂等からなる平板部材であり、該放熱板の平面部が撮像素子支持板15と平行であって、通常の撮像素子非動作および動作状態で離間した状態で配置される。そして、放熱板11の背面と固定部材5の前面の間には、Y可動枠8のY方向長孔8aを貫通する状態で複数本の貫通部材12が密着して固着される。   The heat radiating plate 11 is a flat plate member made of a stainless steel plate, a copper plate, a high thermal conductive resin, or the like with good thermal diffusivity. The flat portion of the heat radiating plate is parallel to the image sensor support plate 15 and Arranged in a separated state in operation and operating state. A plurality of penetrating members 12 are adhered and fixed between the rear surface of the heat sink 11 and the front surface of the fixing member 5 in a state of passing through the Y-direction long hole 8a of the Y movable frame 8.

貫通部材12は、形状記憶合金からなる部材であり、温度によってマルテンサイトからオーステナイトへの相変態中に生じる長さの変化を利用する。そして、XY平面上の断面積が大きく、かつ、熱伝導率が高いもの、少なくとも熱伝導率1W/mK以上のものが望ましい。本実施形態においては、総断面積20mm×20mm、長さ4mm、熱伝導率16W/mKのものを適用する。但し、貫通部材12の上記断面積は、放熱板11の平面部面積より小さいものとする。なお、貫通部材12の素材の温度に対する伸び率は図7に示される。貫通部材12は、後述するように放熱板11および固定部材5に対して接着、ネジ締結、あるいは、かしめにより固着される。   The penetrating member 12 is a member made of a shape memory alloy, and utilizes a change in length that occurs during phase transformation from martensite to austenite depending on the temperature. It is desirable that the cross-sectional area on the XY plane is large and the thermal conductivity is high, that is, the thermal conductivity is 1 W / mK or more. In the present embodiment, one having a total cross-sectional area of 20 mm × 20 mm, a length of 4 mm, and a thermal conductivity of 16 W / mK is applied. However, the cross-sectional area of the penetrating member 12 is smaller than the plane area of the heat sink 11. In addition, the elongation rate with respect to the temperature of the raw material of the penetration member 12 is shown by FIG. As will be described later, the penetrating member 12 is fixed to the heat radiating plate 11 and the fixing member 5 by adhesion, screw fastening, or caulking.

貫通部材12の放熱板11および固定部材5との結合構造について、図3の結合部断面図を用いて説明する。貫通部材12の放熱板11側の端部は、放熱板11の凹部11aに嵌入し、接着固定される。一方、貫通部材12の固定部材5側の端部にはナット部材12aが接着固定されている。ナット部材12に固定部材5を当て付け、ビス18を螺着して、固定部材5に貫通部材12の端部が固定される。組み立て時には、予め、放熱板11に固着された貫通部材12をY可動枠8のY方向長孔8aに挿通させ、貫通部材12のナット部材12aに背面側から固定部材5を当て付け、ビス18により固定部材5に固定する。   A coupling structure between the heat radiating plate 11 and the fixing member 5 of the penetrating member 12 will be described with reference to a cross-sectional view of a coupling portion in FIG. The end of the penetrating member 12 on the side of the heat radiating plate 11 is fitted into the concave portion 11a of the heat radiating plate 11 and is bonded and fixed. On the other hand, a nut member 12a is bonded and fixed to an end portion of the penetrating member 12 on the fixing member 5 side. The fixing member 5 is applied to the nut member 12 and the screw 18 is screwed to fix the end of the penetrating member 12 to the fixing member 5. At the time of assembly, the penetrating member 12 fixed to the heat radiating plate 11 is inserted into the Y-direction long hole 8a of the Y movable frame 8 in advance, and the fixing member 5 is applied to the nut member 12a of the penetrating member 12 from the back side. To the fixing member 5.

上述した構成を有するデジタルカメラ1にて、手振れ補正モードでの撮影を行う場合の動作について説明する。レリーズスイッチが押圧操作されてとき、上記手振れセンサによりカメラ外装体2の手振れが検出された場合、手振れユニット3にてカメラ外装体2の手振れ状態を補正するべく、Y駆動部7およびX駆動部9が駆動され、Y可動枠8、または、X可動枠10がY方向、または、X方向に変位駆動される。該変位動作中に撮像素子16の露光が行われる。撮像素子16より手振れ補正がなされた撮像信号が上記撮像制御部に出力され、撮影画像データが上記記憶媒体に記録される。   An operation when the digital camera 1 having the above-described configuration performs photographing in the camera shake correction mode will be described. If the camera shake sensor detects the camera shake of the camera exterior body 2 when the release switch is pressed, the camera shake unit 3 corrects the camera shake state of the camera exterior body 2 by the camera shake unit 3 and the X drive section. 9 is driven, and the Y movable frame 8 or the X movable frame 10 is driven to be displaced in the Y direction or the X direction. The image sensor 16 is exposed during the displacement operation. An image pickup signal subjected to camera shake correction from the image pickup device 16 is output to the image pickup control unit, and photographed image data is recorded in the storage medium.

ここで、上述した撮影動作が繰り返し行われ、撮像素子16の温度が上昇したときの放熱状態について、図4〜6,8を用いて説明すると、デジタルカメラ1の撮影開始直後状態、あるいは、撮影待機状態では、撮像素子16、あるいは、放熱板11を支持する貫通部材12の温度は、常温に近く、貫通部材12の光軸O方向の長さは、図7に示した伸び率特性上、比較的に短い状態となっている。従って、図4に示すように撮像素子支持板15と放熱板11との間は、比較的に大きい離間距離C0だけ離間している。   Here, the heat radiation state when the above-described photographing operation is repeatedly performed and the temperature of the image sensor 16 rises will be described with reference to FIGS. 4 to 6 and 8. In the standby state, the temperature of the imaging element 16 or the penetrating member 12 that supports the heat sink 11 is close to room temperature, and the length of the penetrating member 12 in the optical axis O direction is based on the elongation characteristics shown in FIG. It is in a relatively short state. Therefore, as shown in FIG. 4, the imaging element support plate 15 and the heat radiating plate 11 are separated by a relatively large separation distance C0.

その後、撮影が繰り返され、撮像素子16の温度が上昇すると、放熱板11を支持する貫通部材12の温度も上昇し、光軸O方向に伸びる。この貫通部材12の伸びにより撮像素子支持板15と放熱板11との間が接近し、図5に示すようにより狭い離間距離C1となる。このように撮像素子支持板15と放熱板11との間が接近すると、撮像素子16の熱は、撮像素子支持板15から放熱板11に伝熱しやすくなり、さらに、放熱板11の熱は、貫通部材12を通して固定部材5に伝熱され、外気に向けて放熱される。これによって撮像素子16の温度上昇は抑えられ、雑音のない良好な撮像信号が撮像素子16から出力される。   Thereafter, when imaging is repeated and the temperature of the image sensor 16 rises, the temperature of the penetrating member 12 that supports the heat sink 11 also rises and extends in the direction of the optical axis O. The extension of the penetrating member 12 brings the imaging element support plate 15 and the heat radiating plate 11 closer together, resulting in a narrower separation distance C1 as shown in FIG. When the space between the image sensor support plate 15 and the heat radiating plate 11 approaches, the heat of the image sensor 16 is easily transferred from the image sensor support plate 15 to the heat radiating plate 11, and the heat of the heat radiating plate 11 is Heat is transferred to the fixing member 5 through the penetrating member 12 and is radiated toward the outside air. As a result, the temperature rise of the image sensor 16 is suppressed, and a good image signal without noise is output from the image sensor 16.

また、長時間撮影が繰り返され、加えて外気温度も高いようなとき、撮像素子16が異常高温状態になり、雑音のない良好な撮像信号が出力できない状態、撮像不能状態になると、貫通部材12がさらに光軸O方向に伸び、図6に示すように放熱板11が撮像素子支持板15に接触する。この接触状態では、撮像素子16の熱は、撮像素子支持板15から放熱板11に伝熱されやすくなり、撮像素子16の温度が急速に低下する。そして、撮像素子16は、速やかに雑音のない良好な撮像信号を出力できる状態に戻される。   In addition, when imaging is repeated for a long time and the outside air temperature is also high, the imaging element 16 is in an abnormally high temperature state, a state where a good imaging signal without noise cannot be output, or an imaging impossible state occurs, the penetrating member 12 Further extends in the direction of the optical axis O, and the heat radiating plate 11 contacts the image sensor support plate 15 as shown in FIG. In this contact state, the heat of the image sensor 16 is easily transferred from the image sensor support plate 15 to the heat radiating plate 11, and the temperature of the image sensor 16 rapidly decreases. And the image pick-up element 16 is returned to the state which can output the favorable image pick-up signal without noise promptly.

本実施形態の手振れ補正ユニット3の撮像素子16の熱が外気に放熱される経路を図8の熱伝達経路図を用いて説明する。撮像素子16の熱は、撮像素子支持板15からX可動枠10、X駆動部9、Y可動枠8、Y駆動部7、固定部材5へ伝わり、一方、撮像素子支持板15から空気を介して、または、接触熱抵抗状態にて放熱板11、貫通部材12、固定部材5へ伝熱され、さらに、固定部材5から支持部6を介してカメラ外装体2へ、さらに、外気へ直接、または、空気を介して放熱される。   A path through which heat from the image sensor 16 of the image stabilization unit 3 of the present embodiment is radiated to the outside air will be described with reference to a heat transfer path diagram of FIG. The heat of the image sensor 16 is transmitted from the image sensor support plate 15 to the X movable frame 10, the X drive unit 9, the Y movable frame 8, the Y drive unit 7, and the fixed member 5, while from the image sensor support plate 15 through the air. Or heat is transferred to the heat radiating plate 11, the penetrating member 12, and the fixing member 5 in a contact thermal resistance state, and further from the fixing member 5 to the camera exterior body 2 via the support portion 6 and further directly to the outside air. Alternatively, heat is dissipated through air.

本実施形態の手振れ補正ユニット3と従来の手振れ補正ユニットにおける外気温度に対する撮像素子と外気との温度差の変化について、パーソナルコンピュータ(以下、PCと記載)を用いたシミュレーションにより求めた結果を図9により説明する。   FIG. 9 shows results obtained by simulation using a personal computer (hereinafter referred to as “PC”) for changes in the temperature difference between the image sensor and the outside air with respect to the outside air temperature in the camera shake correcting unit 3 of the present embodiment and the conventional camera shake correcting unit. Will be described.

図9において、特性線Eaは、従来の手振れ補正ユニットにて放熱板11なしの構造における外気温度に対する撮像素子と外気との温度差を示す。特性線Ebは、手振れ補正ユニットにて放熱板11を撮像素子支持板15に対して一定の離間距離を保って配置する構造における外気温度に対する撮像素子と外気との温度差を示す。特性線Ecは、本実施形態の手振れ補正ユニット3にて上述した放熱板11と撮像素子支持板15との離間距離が温度によって変化する構造を採用したときの外気温度に対する撮像素子と外気との温度差を示す。それぞれ撮像素子16の発熱量0.5Wの場合を示している。   In FIG. 9, a characteristic line Ea indicates a temperature difference between the imaging element and the outside air with respect to the outside air temperature in a structure without the heat sink 11 in the conventional camera shake correction unit. A characteristic line Eb indicates a temperature difference between the image sensor and the outside air with respect to the outside air temperature in a structure in which the heat radiating plate 11 is arranged with a certain distance from the image sensor support plate 15 in the camera shake correction unit. The characteristic line Ec indicates the relationship between the image sensor and the outside air with respect to the outside air temperature when the structure in which the separation distance between the heat sink 11 and the image sensor support plate 15 described above is changed according to the temperature in the camera shake correction unit 3 of the present embodiment. Indicates temperature difference. Each shows a case where the heat generation amount of the image sensor 16 is 0.5 W.

本実施形態の手振れ補正ユニット3では、上記従来のユニットに比較して撮像素子16と外気との温度差が少なく、かつ、外気温度が高くなった場合、撮像素子と外気との温度差は、上記従来のユニットでは略一定、すなわち、外気と共に撮像素子の温度が高くなるが、本実施形態の手振れ補正ユニット3の場合は下がっていく。すなわち、撮像素子16の温度が高くなる度合いが低い。   In the camera shake correction unit 3 of the present embodiment, the temperature difference between the image sensor 16 and the outside air is small compared to the conventional unit, and when the outside air temperature is high, the temperature difference between the image sensor and the outside air is In the above-described conventional unit, the temperature of the image sensor increases with the outside air, but in the case of the camera shake correction unit 3 of the present embodiment, it decreases. That is, the degree to which the temperature of the image sensor 16 increases is low.

また、本実施形態の手振れ補正ユニット3と従来の手振れ補正ユニットにおける撮像素子発熱量に対する撮像素子と外気との温度差の変化について、PCを用いたシミュレーションにより求めた結果を図10により説明する。   Further, FIG. 10 illustrates a result obtained by a simulation using a PC regarding a change in the temperature difference between the image sensor and the outside air with respect to the image sensor heat generation amount in the camera shake correction unit 3 of the present embodiment and the conventional camera shake correction unit.

図10において、特性線Faは、従来の手振れ補正ユニットにて放熱板11なしの構造における撮像素子発熱量に対する撮像素子16と外気との温度差を示す。特性線Fbは、従来の手振れ補正ユニットにて放熱板11を撮像素子支持板15に対して一定の離間距離を保って配置する構造における撮像素子発熱量に対する撮像素子16と外気との温度差を示す。特性線Fcは、本実施形態の手振れ補正ユニット3にて上述した放熱板11と撮像素子支持板15との離間距離が温度によって変化する構造を採用したときの撮像素子発熱量に対する撮像素子16と外気との温度差を示す。それぞれ外気温度40°Cの場合を示している。   In FIG. 10, a characteristic line Fa indicates a temperature difference between the image sensor 16 and the outside air with respect to the heat generated by the image sensor in the structure without the heat sink 11 in the conventional camera shake correction unit. The characteristic line Fb indicates the temperature difference between the image sensor 16 and the outside air with respect to the heat generated by the image sensor in the structure in which the heat sink 11 is arranged with a certain distance from the image sensor support plate 15 in the conventional image stabilization unit. Show. The characteristic line Fc represents the image sensor 16 with respect to the image sensor heat generation amount when the structure in which the separation distance between the heat sink 11 and the image sensor support plate 15 described above in the camera shake correction unit 3 of the present embodiment changes with temperature is adopted. Indicates the temperature difference from the outside air. In each case, the outside air temperature is 40 ° C.

本実施形態の手振れ補正ユニット3では、上記従来のユニットの場合と同様に撮像素子発熱量が多いほど、撮像素子16と外気との温度差も大きくなるが、所定の撮像素子発熱量の範囲で、特に発熱量の高いところでの撮像素子16と外気との温度差は、上記従来のユニットよりも、本実施形態の手振れ補正ユニット3では少ない。すなわち、撮像素子16の温度がより低く抑えられる。   In the camera shake correction unit 3 of the present embodiment, as the image pickup element heat generation amount increases as in the case of the conventional unit, the temperature difference between the image pickup element 16 and the outside air increases, but within a predetermined image pickup element heat generation amount range. In particular, the temperature difference between the image sensor 16 and the outside air at a location where the heat generation amount is high is smaller in the camera shake correction unit 3 of the present embodiment than in the conventional unit. That is, the temperature of the image sensor 16 can be suppressed lower.

次に形状記憶合金製の貫通部材を適用する本実施形態の手振れ補正ユニット3と形状記憶合金製ではない貫通部材を適用する手振れ補正ユニットとにおける各構成部材と外気との温度差について、PCを用いたシミュレーションにより求めた結果を図11により説明する。   Next, regarding the temperature difference between each component member and the outside air in the camera shake correction unit 3 of the present embodiment that applies the penetrating member made of shape memory alloy and the camera shake correction unit that applies the penetrating member not made of shape memory alloy, PC is used. Results obtained by the simulation used will be described with reference to FIG.

図11において、特性線Gdは、形状記憶合金ではない金属製の貫通部材を適用する手振れ補正ユニットの構造における各構成部材と外気との温度差を示す。特性線Gcは、形状記憶合金製の貫通部材を適用する本実施形態の手振れ補正ユニット3における各構成部材と外気との温度差を示す。それぞれ外気温度40°Cであって、撮像素子16の発熱量0.5Wである場合を示している。   In FIG. 11, a characteristic line Gd indicates a temperature difference between each component member and the outside air in the structure of the camera shake correction unit to which a metal penetrating member that is not a shape memory alloy is applied. A characteristic line Gc indicates a temperature difference between each component member and outside air in the camera shake correction unit 3 of the present embodiment to which a shape memory alloy-made penetrating member is applied. In each case, the outside air temperature is 40 ° C. and the heat generation amount of the image sensor 16 is 0.5 W.

本実施形態の手振れ補正ユニット3の特性線Gcにおける撮像素子16と固定部材5との温度差mcは、外気との温度差で示される特性線Gdにおける撮像素子16と固定部材5との温度差mdよりも低く、本実施形態の手振れ補正ユニット3における撮像素子16の温度は、低く抑えられる。   The temperature difference mc between the imaging element 16 and the fixing member 5 on the characteristic line Gc of the camera shake correction unit 3 of the present embodiment is the temperature difference between the imaging element 16 and the fixing member 5 on the characteristic line Gd indicated by the temperature difference with the outside air. The temperature of the image sensor 16 in the camera shake correction unit 3 of the present embodiment is suppressed to be lower than md.

以上、説明したように本実施形態の手振れユニット3を内蔵するデジタルカメラ1によれば、撮像素子支持板15に対向して配される放熱板11を形状記憶合金製の貫通部材12で支える構造を採用して撮像素子16の作動温度により撮像素子支持板15と放熱板11との隙間を変化させ、撮像素子16の作動状態での伝熱性を向上させて撮像素子16を高温状態になりにくくする。また、万一、撮像素子16が異常高温状態に達したときには撮像素子支持板15に放熱板11を接触させ、撮像素子16を急速冷却することで速やかに撮像可能な状態に戻すことができる。   As described above, according to the digital camera 1 incorporating the camera shake unit 3 of the present embodiment, the structure in which the heat radiating plate 11 arranged to face the image sensor support plate 15 is supported by the penetrating member 12 made of shape memory alloy. By changing the gap between the image sensor support plate 15 and the heat radiating plate 11 according to the operating temperature of the image sensor 16, the heat transfer in the operating state of the image sensor 16 is improved and the image sensor 16 is unlikely to be in a high temperature state. To do. In the unlikely event that the image sensor 16 reaches an abnormally high temperature, the heat sink 11 can be brought into contact with the image sensor support plate 15 and the image sensor 16 can be rapidly cooled to return to a state in which imaging can be performed quickly.

なお、上述した第一実施形態の手振れ補正ユニット3において、貫通部材12を挿通させるためにY方向長孔8aを設けたY可動枠8を適用し、前述したように組み立て時に貫通部材12と固定部材5との結合をY可動枠8装着後に行う必要があって、組み立て性がよくない。   In addition, in the camera shake correction unit 3 of the first embodiment described above, the Y movable frame 8 provided with the Y-direction long hole 8a is applied to allow the penetrating member 12 to be inserted, and is fixed to the penetrating member 12 during assembly as described above. It is necessary to perform the coupling with the member 5 after the Y movable frame 8 is mounted, and the assemblability is not good.

そこで、上記Y可動枠8に替えて、Y駆動部としてリニアアクチュエータを適用することで枠形状ではないY方向に移動する直進のY可動部材を適用する変形例が考えられる。このY可動枠8にX駆動枠10を駆動するX駆動部9が支持されている。   Therefore, in place of the Y movable frame 8, a modification in which a linearly movable Y movable member that moves in the Y direction instead of the frame shape is applied by applying a linear actuator as the Y drive unit is conceivable. An X drive unit 9 that drives the X drive frame 10 is supported by the Y movable frame 8.

本変形例では第一実施形態における貫通部材挿通用のY方向長孔8aを設けたY可動枠8が不要である。そして、貫通部材12と固定部材5との結合を必ずしもナット部材12aを用いることなく、直接、接着固定する構造を採用することができ、手振れ補正ユニットの組み立て時に放熱板11、貫通部材12、固定部材5が一体化された状態でも組み付け可能となり、組立性が向上する。   In this modification, the Y movable frame 8 provided with the Y-direction long hole 8a for penetrating member insertion in the first embodiment is unnecessary. Further, it is possible to adopt a structure in which the coupling between the penetrating member 12 and the fixing member 5 is directly bonded and fixed without necessarily using the nut member 12a, and the heat sink 11, the penetrating member 12 and the fixing member are fixed when the camera shake correction unit is assembled. Assembly is possible even when the member 5 is integrated, and the assemblability is improved.

また、第一実施形態の別の変形例として放熱板11の撮像素子支持板15との接触可能な平面部に接触センサを配する構成のものを提案することも可能である。この変形例では、撮像素子16が異常高温状態になり、図6に示すように放熱板11が撮像素子支持板15に接触したことが上記接触センサで検出されたとき、撮像動作および手振れ補正動作を禁止するように制御する。   In addition, as another modification of the first embodiment, it is possible to propose a configuration in which a contact sensor is arranged on a flat surface portion of the heat radiating plate 11 that can come into contact with the imaging element support plate 15. In this modification, when the image sensor 16 is in an abnormally high temperature state and the contact sensor detects that the heat radiating plate 11 is in contact with the image sensor support plate 15 as shown in FIG. Control to prohibit.

従って、本変形例によれば、撮像素子16が異常高温状態に達したとき、放熱板11が撮像素子支持板15をさらに加圧することによる手振れ補正ユニット3の不具合発生を防止し、同時に不完全な手振れ補正処理動作を行わせないようにすることができる。   Therefore, according to this modification, when the image sensor 16 reaches an abnormally high temperature state, the heat radiating plate 11 further pressurizes the image sensor support plate 15 to prevent the camera shake correction unit 3 from malfunctioning and at the same time incomplete. Thus, it is possible to prevent the camera shake correction processing operation from being performed.

次に、本発明の第二の実施形態としての手振れ補正ユニットについて、図12〜19を用いて説明する。
本実施形態の手振れ補正ユニット3Aは、第一の実施形態の場合と同様に撮像装置であるデジタルカメラに内蔵される。第一の実施形態の手振れ補正ユニット3に対して異なる構成として、図12,13に示すように撮像素子支持板15の背面側に近接した状態で撮像素子16の制御を行う電子部品22が固着されたプリント基板である制御基板ユニット20が支持され、該制御基板ユニット20に対向し、隙間を有する状態で貫通部材12に支持された放熱板11が配置される。その他の固定部材5からY可動部8,X可動部10,撮像素子16等の構成は、第一の実施形態の手振れ補正ユニット3と同様であり、同一の符号を付す。以下、異なる部分について説明する。
Next, a camera shake correction unit as a second embodiment of the present invention will be described with reference to FIGS.
The camera shake correction unit 3A of the present embodiment is built in a digital camera that is an imaging device, as in the first embodiment. As a different configuration from the camera shake correction unit 3 of the first embodiment, an electronic component 22 that controls the image sensor 16 in the state of being close to the back side of the image sensor support plate 15 as shown in FIGS. The control board unit 20 that is the printed board is supported, and the heat radiating plate 11 that is supported by the penetrating member 12 is disposed in a state of being opposed to the control board unit 20 and having a gap. The other components from the fixed member 5 to the Y movable portion 8, the X movable portion 10, the image sensor 16 and the like are the same as those in the camera shake correction unit 3 of the first embodiment, and are denoted by the same reference numerals. Hereinafter, different parts will be described.

手振れ補正ユニット3Aにおいて、放熱板11は、制御基板ユニット20のプリント基板21上に実装される制御素子等の電子部品22に対向し、光軸O方向の隙間をもって配置され、固定部材5に貫通部材12を介して支持される。   In the camera shake correction unit 3 </ b> A, the heat radiating plate 11 faces the electronic component 22 such as a control element mounted on the printed board 21 of the control board unit 20, is disposed with a gap in the optical axis O direction, and penetrates the fixing member 5. It is supported via the member 12.

撮影が開始された状態、あるいは、撮影待機状態では、撮像素子16、電子部品22、あるいは、貫通部材12の温度は、常温に近く、図12に示すように制御基板ユニット20の電子部品22表面と放熱板11との間は、比較的に大きい離間距離P0だけ離間している。   In the state where photographing is started or in the photographing standby state, the temperature of the image pickup device 16, the electronic component 22, or the penetrating member 12 is close to room temperature, and the surface of the electronic component 22 of the control board unit 20 as shown in FIG. And the radiator plate 11 are separated by a relatively large separation distance P0.

撮影が繰り返された状態で撮像素子16、電子部品22とともに貫通部材12の温度が上昇すると、貫通部材12の光軸O方向の長さが伸びる。この貫通部材12の伸びにより制御基板ユニット20の電子部品22の表面と放熱板11との間が接近し、図13に示すようにより狭い離間距離P1となる。このように電子部品22と放熱板11との間が接近すると、撮像素子16および電子部品22の熱は、撮像素子支持板15、あるいは、制御基板ユニット20を経て放熱板11へより伝熱しやすい状態になる。そして、放熱板11の熱は、貫通部材12を通して固定部材5に伝熱され、外気に向けて放熱される。これによって撮像素子16および電子部品22の温度上昇はともに抑えられ、雑音の乗らない良好な撮像信号、撮影画像信号が撮像素子16および制御基板ユニット20から出力されることになる。   When the temperature of the penetrating member 12 rises together with the imaging element 16 and the electronic component 22 in a state where the photographing is repeated, the length of the penetrating member 12 in the optical axis O direction increases. Due to the extension of the penetrating member 12, the surface of the electronic component 22 of the control board unit 20 and the heat radiating plate 11 approach each other, resulting in a narrower distance P1 as shown in FIG. When the electronic component 22 and the heat radiating plate 11 are close to each other as described above, the heat of the image pickup device 16 and the electronic component 22 is more easily transferred to the heat radiating plate 11 via the image pickup device support plate 15 or the control board unit 20. It becomes a state. The heat of the heat radiating plate 11 is transferred to the fixing member 5 through the penetrating member 12 and is radiated toward the outside air. As a result, both the temperature rises of the image sensor 16 and the electronic component 22 are suppressed, and a good image signal and captured image signal free from noise are output from the image sensor 16 and the control board unit 20.

手振れ補正ユニット3Aにおける撮像素子16および制御基板ユニット20の熱が外気に放熱される経路を図14の熱伝達経路図を用いて説明する。撮像素子16の熱は、撮像素子支持板15からX可動枠10、X駆動部9、Y可動枠8、Y駆動部7、固定部材5へ伝熱される。一方、撮像素子支持板15から制御基板ユニット20、放熱板11に空気を介して伝熱され、さらに、貫通部材12、固定部材5へ伝熱され、さらに、固定部材5から支持部6を介してカメラ外装体2へ、さらに、外気へ直接、または、空気を介して放熱される。   A path through which heat of the image sensor 16 and the control board unit 20 in the camera shake correction unit 3A is radiated to the outside air will be described with reference to a heat transfer path diagram of FIG. The heat of the image sensor 16 is transferred from the image sensor support plate 15 to the X movable frame 10, the X drive unit 9, the Y movable frame 8, the Y drive unit 7, and the fixed member 5. On the other hand, heat is transferred from the imaging element support plate 15 to the control board unit 20 and the heat radiating plate 11 via air, and further transferred to the penetrating member 12 and the fixing member 5, and further from the fixing member 5 via the support portion 6. Then, heat is radiated to the camera exterior body 2 and to the outside air directly or via air.

制御基板ユニット20から放熱板11への伝熱は、通常の撮影状態にあっては、制御基板ユニット20と放熱板11の間が上述したように比較的狭い離間距離P1に保たれることから、撮像素子16や制御基板ユニット20の電子部品22が高温になることを防止することができる。   The heat transfer from the control board unit 20 to the heat sink 11 is maintained at a relatively small distance P1 between the control board unit 20 and the heat sink 11 as described above in a normal photographing state. Further, it is possible to prevent the electronic component 22 of the image sensor 16 and the control board unit 20 from becoming high temperature.

本実施形態の手振れ補正ユニット3Aと従来の手振れ補正ユニットにおける外気温度に対する撮像素子および制御基板ユニットと外気との温度差の変化について、PCを用いたシミュレーションにより求めた結果を図15,16により説明する。   FIGS. 15 and 16 illustrate the results obtained by the simulation using the PC regarding the change in the temperature difference between the image sensor and the control board unit and the outside air with respect to the outside air temperature in the camera shake correcting unit 3A of the present embodiment and the conventional camera shake correcting unit. To do.

図15において、特性線Haは、従来の手振れ補正ユニットにて放熱板11なしの構造における外気温度に対する撮像素子16と外気との温度差を示す。特性線Hbは、手振れ補正ユニットにて放熱板11を制御基板ユニット20に対して一定の離間距離を保って配置する構造における外気温度に対する撮像素子16と外気との温度差を示す。特性線Hcは、本実施形態の手振れ補正ユニット3Aにて上述した放熱板11と制御基板ユニット20との離間距離が温度によって変化する構造を採用したときの外気温度に対する撮像素子16と外気との温度差を示す。それぞれ撮像素子16および制御基板ユニット20の発熱量0.5Wの場合を示している。   In FIG. 15, a characteristic line Ha indicates a temperature difference between the image sensor 16 and the outside air with respect to the outside air temperature in a structure in which the conventional camera shake correction unit has no heat sink 11. A characteristic line Hb indicates a temperature difference between the imaging element 16 and the outside air with respect to the outside air temperature in a structure in which the heat sink 11 is arranged with a constant separation distance from the control board unit 20 in the camera shake correction unit. The characteristic line Hc indicates the relationship between the imaging element 16 and the outside air with respect to the outside air temperature when the structure in which the separation distance between the heat sink 11 and the control board unit 20 described above is changed according to the temperature in the camera shake correction unit 3A of the present embodiment. Indicates temperature difference. The case where the calorific values of the image sensor 16 and the control board unit 20 are 0.5 W is shown.

本実施形態の手振れ補正ユニット3Aでは、上記従来のユニットに比較して撮像素子16と外気との温度差が少なく、かつ、外気温度が高くなった場合、撮像素子16と外気との温度差は、上記従来のユニットでは略一定、すなわち、外気と共に撮像素子16の温度が高くなるが、本実施形態の手振れ補正ユニット3Aでは下がっていく。すなわち、撮像素子16の温度が高くなる度合いが低い。   In the camera shake correction unit 3A of the present embodiment, when the temperature difference between the image sensor 16 and the outside air is small and the outside air temperature is higher than that of the conventional unit, the temperature difference between the image sensor 16 and the outside air is The conventional unit is substantially constant, that is, the temperature of the image sensor 16 increases with the outside air, but decreases in the camera shake correction unit 3A of the present embodiment. That is, the degree to which the temperature of the image sensor 16 increases is low.

図16において、特性線Iaは、従来の手振れ補正ユニットにて放熱板11なしの構造における外気温度に対する制御基板ユニットと外気との温度差を示す。特性線Ibは、手振れ補正ユニットにて放熱板11を制御基板ユニット20に対して一定の離間距離を保って配置する構造における外気温度に対する制御基板ユニット20と外気との温度差を示す。特性線Icは、本実施形態の手振れ補正ユニット3Aにて上述した放熱板11と制御基板ユニット20との離間距離が温度によって変化する構造を採用したときの外気温度に対する制御基板ユニット20と外気との温度差を示す。それぞれ撮像素子16および制御基板ユニットの発熱量0.5Wの場合を示している。   In FIG. 16, a characteristic line Ia indicates a temperature difference between the control board unit and the outside air with respect to the outside air temperature in the structure without the heat sink 11 in the conventional camera shake correction unit. A characteristic line Ib indicates a temperature difference between the control board unit 20 and the outside air with respect to the outside air temperature in the structure in which the heat sink 11 is arranged with a constant separation distance from the control board unit 20 in the camera shake correction unit. The characteristic line Ic indicates that the control board unit 20 and the outside air with respect to the outside air temperature when the structure in which the separation distance between the heat sink 11 and the control board unit 20 described above is changed according to the temperature in the camera shake correction unit 3A of the present embodiment. The temperature difference is shown. The case where the calorific value of the image sensor 16 and the control board unit is 0.5 W is shown.

本実施形態の手振れ補正ユニット3Aでは、上記従来のユニットに比較して制御基板ユニット20と外気との温度差が少なく、かつ、外気温度が高くなった場合、制御基板ユニット20と外気との温度差は、上記従来のユニットでは略一定、すなわち、外気と共に制御基板ユニット20の温度が高くなるが、本実施形態の手振れ補正ユニット3Aでは下がっていく。すなわち、制御基板ユニット20の温度が高くなる度合いが低い。   In the camera shake correction unit 3A of the present embodiment, when the temperature difference between the control board unit 20 and the outside air is small compared to the conventional unit and the outside air temperature becomes high, the temperature between the control board unit 20 and the outside air is high. The difference is substantially constant in the conventional unit, that is, the temperature of the control board unit 20 increases with the outside air, but decreases in the camera shake correction unit 3A of the present embodiment. That is, the degree to which the temperature of the control board unit 20 becomes high is low.

また、本実施形態の手振れ補正ユニット3Aと従来の手振れ補正ユニットにおける撮像素子および制御基板ユニットの発熱量に対する撮像素子、または、制御基板ユニットと外気との温度差の変化について、PCを用いたシミュレーションにより求めた結果を図17,18により説明する。   Further, a simulation using a PC for a change in temperature difference between the image sensor or the control board unit and the outside air with respect to the heat generation amount of the image sensor and the control board unit in the camera shake correction unit 3A of the present embodiment and the conventional camera shake correction unit. The results obtained from the above will be described with reference to FIGS.

図17において、特性線Jaは、従来の手振れ補正ユニットにて放熱板11なしの構造における撮像素子発熱量に対する撮像素子と外気との温度差を示す。特性線Jbは、従来の手振れ補正ユニットにて放熱板11を制御基板ユニット20に対して一定の離間距離を保って配置する構造における撮像素子発熱量に対する撮像素子と外気との温度差を示す。特性線Jcは、本実施形態の手振れ補正ユニット3Aにて上述した放熱板11と制御基板ユニットとの離間距離が温度によって変化する構造を採用したときの撮像素子発熱量に対する撮像素子16と外気との温度差を示す。それぞれ外気温度40°Cの場合を示している。   In FIG. 17, a characteristic line Ja indicates a temperature difference between the image sensor and the outside air with respect to the heat generated by the image sensor in the structure without the heat sink 11 in the conventional camera shake correction unit. A characteristic line Jb indicates a temperature difference between the imaging element and the outside air with respect to the amount of heat generated by the imaging element in a structure in which the heat radiating plate 11 is arranged with a certain distance from the control board unit 20 in the conventional camera shake correction unit. The characteristic line Jc indicates that the image pickup device 16 and the outside air with respect to the heat generation amount of the image pickup device when the structure in which the separation distance between the heat sink 11 and the control board unit described above is changed depending on the temperature in the camera shake correction unit 3A of the present embodiment. The temperature difference is shown. In each case, the outside air temperature is 40 ° C.

本実施形態の手振れ補正ユニット3Aでは、上記従来のユニットの場合と同様に撮像素子発熱量が多いほど、撮像素子16と外気との温度差も大きくなるが、所定の撮像素子発熱量の範囲で、特に発熱量の高いところでの撮像素子16と外気との温度差は、上記従来のユニットよりも、本実施形態の手振れ補正ユニット3Aでは少ない。すなわち、撮像素子16の温度がより低く抑えられる。   In the camera shake correction unit 3A of the present embodiment, as the image pickup element heat generation amount increases as in the case of the conventional unit, the temperature difference between the image pickup element 16 and the outside air increases, but within a predetermined image pickup element heat generation amount range. In particular, the temperature difference between the image sensor 16 and the outside air where the heat generation amount is high is smaller in the camera shake correction unit 3A of the present embodiment than in the conventional unit. That is, the temperature of the image sensor 16 can be suppressed lower.

図18において、特性線Kaは、従来の手振れ補正ユニットにて放熱板11なしの構造における制御基板ユニット発熱量に対する制御基板ユニット20と外気との温度差を示す。特性線Kbは、手振れ補正ユニットにて放熱板11を制御基板ユニット20に対して一定の離間距離を保って配置する構造における制御基板ユニット発熱量に対する制御基板ユニット20と外気との温度差を示す。特性線Kcは、本実施形態の手振れ補正ユニット3Aにて上述した放熱板11と制御基板ユニットとの離間距離が温度によって変化する構造を採用したときの制御基板ユニット発熱量に対する制御基板ユニット20と外気との温度差を示す。それぞれ外気温度40°Cの場合を示している。   In FIG. 18, a characteristic line Ka indicates a temperature difference between the control board unit 20 and the outside air with respect to the heat generation amount of the control board unit in a structure in which the conventional camera shake correction unit has no heat sink 11. A characteristic line Kb indicates a temperature difference between the control board unit 20 and the outside air with respect to the heat generation amount of the control board unit in a structure in which the heat sink 11 is arranged with a constant separation distance from the control board unit 20 in the camera shake correction unit. . The characteristic line Kc is the control board unit 20 with respect to the amount of heat generated by the control board unit when the above-described structure in which the distance between the heat sink 11 and the control board unit varies depending on the temperature in the camera shake correction unit 3A of the present embodiment. Indicates the temperature difference from the outside air. In each case, the outside air temperature is 40 ° C.

本実施形態の手振れ補正ユニット3Aでは、上記従来のユニットの場合と同様に制御基板ユニット発熱量が多いほど、制御基板ユニット20と外気との温度差も大きくなるが、所定の制御基板ユニット発熱量の範囲で、特に発熱量の高いところでの制御基板ユニット20と外気との温度差は、上記従来のユニットよりも、本実施形態の手振れ補正ユニット3Aでは少ない。すなわち、制御基板ユニット20の温度がより低く抑えられる。   In the camera shake correction unit 3A of the present embodiment, as the control board unit heat generation amount increases as in the case of the conventional unit, the temperature difference between the control board unit 20 and the outside air increases, but a predetermined control board unit heat generation amount. In this range, the temperature difference between the control board unit 20 and the outside air at a particularly high calorific value is smaller in the camera shake correction unit 3A of the present embodiment than in the conventional unit. That is, the temperature of the control board unit 20 can be kept lower.

次に形状記憶合金製の貫通部材を適用する本実施形態の手振れ補正ユニット3Aと形状記憶合金製ではない貫通部材を適用する手振れ補正ユニットとにおける各構成部材と外気との温度差について、PCを用いたシミュレーションにより求めた結果を図19により説明する。   Next, regarding the temperature difference between each component member and the outside air in the camera shake correction unit 3A of the present embodiment that applies the penetrating member made of shape memory alloy and the camera shake correction unit that applies the penetrating member not made of shape memory alloy, PC is used. Results obtained by the simulation used will be described with reference to FIG.

図19において、特性線Ldは、形状記憶合金製ではない貫通部材を適用する手振れ補正ユニットの構造における各構成部材と外気との温度差を示す。特性線Lcは、形状記憶合金製の貫通部材を適用する本実施形態の手振れ補正ユニット3Aにおける各構成部材と外気との温度差を示す。それぞれ外気温度40°Cであって、撮像素子16および制御基板ユニット20のそれぞれ発熱量0.5Wである場合を示している。   In FIG. 19, a characteristic line Ld indicates a temperature difference between each component member and the outside air in the structure of the camera shake correction unit to which the penetrating member that is not made of the shape memory alloy is applied. A characteristic line Lc indicates a temperature difference between each component member and the outside air in the camera shake correction unit 3A of the present embodiment to which a shape memory alloy-made penetrating member is applied. In this example, the outside air temperature is 40 ° C. and the image sensor 16 and the control board unit 20 respectively generate heat of 0.5 W.

本実施形態の手振れ補正ユニット3Aの特性線Lcにおける制御基板ユニット20と固定部材5との温度差ncは、特性線Ldにおける制御基板ユニット20と固定部材5との温度差ndよりも低くなるため、本実施形態の手振れ補正ユニット3Aにおける撮像素子16、制御基板ユニット20を含む周辺の温度は、低く抑えられる。   The temperature difference nc between the control board unit 20 and the fixing member 5 in the characteristic line Lc of the camera shake correction unit 3A of the present embodiment is lower than the temperature difference nd between the control board unit 20 and the fixing member 5 in the characteristic line Ld. The ambient temperature including the image sensor 16 and the control board unit 20 in the camera shake correction unit 3A of the present embodiment can be kept low.

以上、説明したように本実施形態の手振れユニット3Aを内蔵するデジタルカメラ1によれば、制御基板ユニット20に対向して配される放熱板11を形状記憶合金製の貫通部材12で支える構造を採用することにより、撮像素子16および制御基板ユニット20の作動温度により制御基板ユニット20と放熱板11との隙間を変化させることで撮像素子16および制御基板ユニット20の高温状態での伝熱性をよくし、撮像素子16および制御基板ユニット20をともに高温になる状態を防止することができる。   As described above, according to the digital camera 1 incorporating the camera shake unit 3A of the present embodiment, the structure in which the heat radiating plate 11 disposed facing the control board unit 20 is supported by the penetrating member 12 made of shape memory alloy. By adopting, the gap between the control board unit 20 and the heat radiating plate 11 is changed according to the operating temperature of the image pickup element 16 and the control board unit 20, thereby improving the heat transfer property of the image pickup element 16 and the control board unit 20 in a high temperature state. In addition, it is possible to prevent both the image sensor 16 and the control board unit 20 from becoming a high temperature.

本発明の第三の実施形態としての手振れ補正ユニットについて図20〜22を用いて説明する。
本実施形態の手振れ補正ユニット3Bは、撮像装置であるデジタルカメラに内蔵され、第一の実施形態の手振れ補正ユニット3に対して異なる構成として、図20,21に示すように撮像素子支持板15に光軸O方向に対向して配される放熱板25に対して撮像素子支持板15背面側である放熱板25の前面に放熱シート26を貼り付ける構造を採用する。放熱板25の背面側には固定部材5との間に第一の実施形態の場合と同様に形状記憶合金製の貫通部材12が固着される。その他の固定部材5からY可動部8,X可動部10,撮像素子16等の構成は、第一の実施形態の手振れ補正ユニット3と同様であり、同一の符号を付す。以下、異なる部分について説明する。
A camera shake correction unit according to a third embodiment of the present invention will be described with reference to FIGS.
The camera shake correction unit 3B of the present embodiment is built in a digital camera that is an image pickup apparatus, and has a configuration different from that of the camera shake correction unit 3 of the first embodiment, as shown in FIGS. A structure in which a heat radiating sheet 26 is attached to the front surface of the heat radiating plate 25 on the back side of the image sensor support plate 15 with respect to the heat radiating plate 25 arranged opposite to the optical axis O direction. As in the case of the first embodiment, the shape memory alloy penetrating member 12 is fixed to the rear surface side of the heat radiating plate 25 in the same manner as in the first embodiment. The other components from the fixed member 5 to the Y movable portion 8, the X movable portion 10, the image sensor 16 and the like are the same as those in the camera shake correction unit 3 of the first embodiment, and are denoted by the same reference numerals. Hereinafter, different parts will be described.

放熱板25に貼付される放熱シート26は、熱伝導性のよい弾性変形可能な材料からなり、撮像素子支持板15に接触したときの応力緩和部材として作用し、例えば、シリコンゴム、アクリル製エラストマ等で形成される。   The heat radiating sheet 26 attached to the heat radiating plate 25 is made of an elastically deformable material having good thermal conductivity, and acts as a stress relieving member when contacting the image sensor support plate 15. For example, silicon rubber, acrylic elastomer Etc. are formed.

手振れ補正ユニット3Bにおいて、撮影開始直後状態、あるいは、撮影待機状態、あるいは、撮影状態では、図20に示すように撮像素子支持板15と放熱板25側の放熱シート26との間の隙間Qは、貫通部材12の温度によって変化し、該温度が高い程、隙間Qが減少し、撮像素子16の熱が放熱板25側により伝熱しやすい状態となり、撮像素子16の放熱が行われる。   In the camera shake correction unit 3B, in the state immediately after the start of photographing, in the photographing standby state, or in the photographing state, the gap Q between the imaging element support plate 15 and the heat radiating sheet 26 on the heat radiating plate 25 side is as shown in FIG. The gap Q decreases as the temperature of the penetrating member 12 increases, and the heat of the image sensor 16 is more easily transferred to the heat radiating plate 25 side, so that the image sensor 16 is radiated.

万一、撮像素子16が異常な高温状態になると貫通部材12が光軸O方向に伸び、図21に示すように隙間Qがなくなり、撮像素子支持板15と放熱シート26が接触する状態になる。放熱シート接触状態は、撮像素子支持板15から放熱シート26、放熱板25への高熱伝達可能状態であり、急速な冷却がなされ、撮像素子16は、速やかに撮像可能な状態に戻される。また、この放熱シート接触状態では放熱シート26が光軸O方向に圧縮変形するため、撮像素子支持板15および該支持板に固着されている撮像素子16やX可動枠10に無理な力が作用しない。すなわち、放熱シート26が応力緩和材として機能する。   Should the imaging device 16 become in an abnormally high temperature state, the penetrating member 12 extends in the direction of the optical axis O, the gap Q disappears as shown in FIG. 21, and the imaging device support plate 15 and the heat dissipation sheet 26 come into contact with each other. . The heat radiation sheet contact state is a state in which high heat can be transferred from the image sensor support plate 15 to the heat radiation sheet 26 and the heat radiation plate 25, rapid cooling is performed, and the image sensor 16 is quickly returned to a state in which imaging can be performed. In addition, since the heat radiating sheet 26 is compressed and deformed in the direction of the optical axis O in the contact state of the heat radiating sheet, an unreasonable force acts on the image sensor supporting plate 15 and the image sensor 16 fixed to the support plate and the X movable frame 10. do not do. That is, the heat dissipation sheet 26 functions as a stress relaxation material.

本実施形態の手振れ補正ユニット3Bの撮像素子16の熱が外気に放熱される経路を図22の熱伝達経路図を用いて説明する。撮像素子16の熱は、撮像素子支持板15からX可動枠10、X駆動部9、Y可動枠8、Y駆動部7、固定部材5へ伝わり、一方、撮像素子支持板15から空気、または、接触熱抵抗状態にて放熱シート26、放熱板11、貫通部材12、固定部材5へ伝熱され、さらに、固定部材5から支持部6を介してカメラ外装体2へ、さらに、外気へ直接、または、空気を介して放熱される。   A path through which heat of the image sensor 16 of the camera shake correction unit 3B of the present embodiment is radiated to the outside air will be described with reference to a heat transfer path diagram of FIG. The heat of the image sensor 16 is transmitted from the image sensor support plate 15 to the X movable frame 10, the X drive unit 9, the Y movable frame 8, the Y drive unit 7, and the fixed member 5, while air from the image sensor support plate 15 or In the contact thermal resistance state, heat is transferred to the heat radiating sheet 26, the heat radiating plate 11, the penetrating member 12, and the fixing member 5, and further from the fixing member 5 to the camera exterior body 2 via the support portion 6 and further directly to the outside air. Or is dissipated through air.

撮像素子支持板15から放熱シート26、放熱板11への伝熱は、通常の撮影状態にあっては、撮像素子支持板15と放熱シート26の間が上述したように比較的狭い離間距離Qに保たれるので、撮像素子16が高温になることを防止できる。さらに、万一、撮像素子16が異常高温状態になったときは、撮像素子支持板15と放熱シート26とが接触することから両者の間には接触熱抵抗が作用し、伝熱しやすい状態になる。従って、撮像素子16は異常高温状態状態から速やかに温度が低下して良好な撮像信号が出力可能な状態になる。   The heat transfer from the image sensor support plate 15 to the heat radiating sheet 26 and the heat radiating plate 11 is a relatively narrow distance Q between the image sensor support plate 15 and the heat radiating sheet 26 as described above in a normal photographing state. Therefore, the imaging element 16 can be prevented from becoming high temperature. Furthermore, in the unlikely event that the image sensor 16 is in an abnormally high temperature state, the image sensor support plate 15 and the heat radiating sheet 26 come into contact with each other, so that a contact thermal resistance acts between them, making it easy to transfer heat. Become. Accordingly, the image sensor 16 quickly falls from an abnormally high temperature state and is in a state where a good image signal can be output.

以上、説明したように本実施形態の手振れ補正ユニット3Bを内蔵するデジタルカメラによれば、前述した第一実施形態による効果に加えて、さらに、撮像素子16が異常高温になった場合、撮像素子支持板15に放熱板25側の放熱シート26が接触することで急速冷却が可能である。さらに、放熱シート26が撮像素子支持板15に接触したとき、撮像素子支持板15、撮像素子16、X可動枠10等に異常な当接力が作用することが阻止され、手振れ補正ユニット3Bに動作不良、破損等が発生することがない。   As described above, according to the digital camera incorporating the camera shake correction unit 3B of the present embodiment, in addition to the effects of the first embodiment described above, if the image sensor 16 becomes abnormally hot, the image sensor Rapid cooling is possible when the heat radiating sheet 26 on the heat radiating plate 25 side contacts the support plate 15. Further, when the heat dissipation sheet 26 comes into contact with the image sensor support plate 15, abnormal contact force is prevented from acting on the image sensor support plate 15, the image sensor 16, the X movable frame 10, etc., and the camera shake correction unit 3B operates. There will be no defects or damage.

本実施形態の手振れ補正ユニット3Bの変形例として放熱シート26の撮像素子支持板15との接触可能な平面部に接触センサを配する構成のものを提案することが可能である。この変形例では、撮像素子16が異常高温状態になり、図21に示すように放熱シート26が撮像素子支持板15に接触したことが上記接触センサで検出されたとき、撮像動作および手振れ補正動作を禁止するように制御する。   As a modified example of the camera shake correction unit 3B of the present embodiment, it is possible to propose a configuration in which a contact sensor is arranged on a flat surface portion of the heat radiation sheet 26 that can come into contact with the imaging element support plate 15. In this modified example, when the image sensor 16 is in an abnormally high temperature state and the contact sensor detects that the heat dissipation sheet 26 is in contact with the image sensor support plate 15 as shown in FIG. Control to prohibit.

従って、本変形例によれば、撮像素子16が異常高温状態に達したとき、放熱板11により放熱シート26を介して撮像素子支持板15が加圧されることによる手振れ補正ユニット3の不具合発生を防止するとともに不完全な手振れ補正処理動作を禁止することができる。   Therefore, according to this modification, when the image sensor 16 reaches an abnormally high temperature state, the malfunction of the camera shake correction unit 3 due to the heat sensor 11 pressing the image sensor support plate 15 via the heat radiating sheet 26 is generated. And an incomplete camera shake correction processing operation can be prohibited.

この発明は、上記各実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記各実施形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得る。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention at the stage of implementation. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.

本発明の手振れ補正ユニットは、撮像素子あるいは撮像素子制御用電子部品からの熱が十分に放熱され、良好な撮像信号が得られる手振れ補正ユニットとしての利用が可能である。   The camera shake correction unit of the present invention can be used as a camera shake correction unit in which heat from the image sensor or the image sensor control electronic component is sufficiently dissipated and a good image signal is obtained.

5…固定部材
7…Y駆動部(第一の駆動手段)
8…Y可動枠(第一の可動部材)
9…X駆動枠(第二の駆動手段)
10…X可動枠(第二の可動部材)
11,25…放熱板(放熱部材)
12…貫通部材
16…撮像素子
20…制御基板ユニット(電子部品が固着されたプリント基板)
22…電子部品
31…撮影レンズ(撮影光学系)
5 ... Fixing member 7 ... Y drive section (first drive means)
8 ... Y movable frame (first movable member)
9 ... X drive frame (second drive means)
10 ... X movable frame (second movable member)
11, 25 ... Radiating plate (heat radiating member)
DESCRIPTION OF SYMBOLS 12 ... Penetration member 16 ... Image pick-up element 20 ... Control board unit (printed circuit board to which the electronic component was fixed)
22 ... Electronic component 31 ... Shooting lens (shooting optical system)

Claims (4)

撮影光学系により結像される被写体像を受けて画像データを生成するための撮像素子を変位させて手振れ補正動作を行なう手振れ補正ユニットにおいて、
固定部材と、
上記撮像素子、および、または、該撮像素子の受光面に平行に配置された電子部品が固着されたプリント基板との少なくとも一方と、
上記撮像素子の受光面に平行な面内における第一の方向に沿って上記固定部材に対して変位可能に支持される第一の可動部材と、
上記第一の可動部材を駆動するための第一の駆動手段と、
上記第一の可動部材と共に上記第一の方向に沿って変位可能であり、上記撮像素子の受光面、および、または、上記プリント基板の平面と平行な面内において、上記第一の方向に対して交差する第二の方向に沿って上記第一の可動部材に対して変位可能に支持され、上記撮像素子を支持する第二の可動部材と、
上記第二の可動部材を駆動するための第二の駆動手段と、
上記第二の可動部材と対向する位置に配される放熱部材と、
上記放熱部材を上記固定部材に連結し、固定する形状記憶合金からなる貫通部材と、
を具備することを特徴とする手振れ補正ユニット。
In a camera shake correction unit that performs a camera shake correction operation by displacing an image sensor for receiving a subject image formed by a photographing optical system and generating image data,
A fixing member;
At least one of the image sensor and / or a printed circuit board to which an electronic component arranged in parallel to the light receiving surface of the image sensor is fixed;
A first movable member supported displaceably with respect to the fixed member along a first direction in a plane parallel to the light receiving surface of the imaging element;
First driving means for driving the first movable member;
The first movable member and the first movable member can be displaced along the first direction. The light receiving surface of the image sensor and / or the plane parallel to the plane of the printed circuit board can be displaced with respect to the first direction. A second movable member that is supported so as to be displaceable with respect to the first movable member along a second direction intersecting with each other, and that supports the imaging element;
Second driving means for driving the second movable member;
A heat dissipating member disposed at a position facing the second movable member;
A penetrating member made of a shape memory alloy for connecting and fixing the heat dissipation member to the fixing member;
A camera shake correction unit comprising:
上記貫通部材の断面積に対して上記第二の可動部材に対向する上記放熱部材の平板面積を大きくしたことを特徴とする請求項1記載の手振れ補正ユニット。 The camera shake correction unit according to claim 1, wherein a flat plate area of the heat radiating member facing the second movable member is increased with respect to a cross-sectional area of the penetrating member. 上記貫通部材は、複数個とし、上記固定部材に雌ネジ部材を介在して固定することを特徴とする請求項1記載の手振れ補正ユニット。 2. The camera shake correction unit according to claim 1, wherein a plurality of the penetrating members are provided and fixed to the fixing member via a female screw member. 上記貫通部材は、周囲温度が上昇すると、上記撮像素子と上記放熱部材との離間距離が減少する方向に変形することを特徴とする請求項1記載の手振れ補正ユニット。 The camera shake correction unit according to claim 1, wherein the penetrating member is deformed in a direction in which a separation distance between the imaging element and the heat radiating member decreases when an ambient temperature rises.
JP2010126206A 2010-06-01 2010-06-01 Camera shake correction unit Withdrawn JP2011254261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126206A JP2011254261A (en) 2010-06-01 2010-06-01 Camera shake correction unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126206A JP2011254261A (en) 2010-06-01 2010-06-01 Camera shake correction unit

Publications (1)

Publication Number Publication Date
JP2011254261A true JP2011254261A (en) 2011-12-15

Family

ID=45417834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126206A Withdrawn JP2011254261A (en) 2010-06-01 2010-06-01 Camera shake correction unit

Country Status (1)

Country Link
JP (1) JP2011254261A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137586A1 (en) * 2011-04-01 2012-10-11 株式会社日立国際電気 Imaging apparatus and imaging apparatus production method
WO2018135732A1 (en) * 2017-01-23 2018-07-26 자화전자 주식회사 Apparatus for driving reflector for ois by using wire
JP2019061228A (en) * 2017-09-27 2019-04-18 キヤノン株式会社 Control device, imaging device, control method, and program
WO2020021854A1 (en) * 2018-07-27 2020-01-30 富士フイルム株式会社 Imaging device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137586A1 (en) * 2011-04-01 2012-10-11 株式会社日立国際電気 Imaging apparatus and imaging apparatus production method
JP2012217094A (en) * 2011-04-01 2012-11-08 Hitachi Kokusai Electric Inc Imaging apparatus and imaging apparatus production method
WO2018135732A1 (en) * 2017-01-23 2018-07-26 자화전자 주식회사 Apparatus for driving reflector for ois by using wire
JP2019061228A (en) * 2017-09-27 2019-04-18 キヤノン株式会社 Control device, imaging device, control method, and program
JP7150516B2 (en) 2017-09-27 2022-10-11 キヤノン株式会社 Control device, imaging device, control method, and program
WO2020021854A1 (en) * 2018-07-27 2020-01-30 富士フイルム株式会社 Imaging device
CN112771445A (en) * 2018-07-27 2021-05-07 富士胶片株式会社 Image pickup apparatus
JPWO2020021854A1 (en) * 2018-07-27 2021-07-01 富士フイルム株式会社 Imaging device
CN112771445B (en) * 2018-07-27 2022-04-01 富士胶片株式会社 Image pickup apparatus
US11378865B2 (en) 2018-07-27 2022-07-05 Fujifilm Corporation Imaging device

Similar Documents

Publication Publication Date Title
US11809067B2 (en) Heat spreader for camera
JP4438737B2 (en) Portable electronic devices
US8139933B2 (en) Imaging device
JP2016502371A (en) Video shooting device
JP2011254261A (en) Camera shake correction unit
JP2006251058A (en) Digital camera and lens unit
JP2006319720A (en) Image pickup element driver and photographing device using the same
JP2010268133A (en) Imaging unit and electronic camera including the same
JP2005352033A (en) Lens drive mechanism and imaging device
JP6035015B2 (en) Circuit board
JP4722505B2 (en) Imaging device
JP2006293006A (en) Optical device and digital camera
JP2014081504A (en) Imaging unit and electronic apparatus
JP2012217179A (en) Imaging unit and imaging device
JP2015088888A (en) Heat radiation structure for imaging device
JP5460178B2 (en) Imaging device
JP4343614B2 (en) Digital camera
JP2012058405A (en) Camera shake correction unit
JP2014011758A (en) Heat radiation mechanism
JP2008300899A (en) Imaging apparatus
JP2014158121A (en) Cooling method of imaging apparatus
JP2006066880A (en) Electronic apparatus, digital camera and driving method of electronic apparatus
JP2001326840A (en) Image pickup device
JP2020022154A (en) Imaging apparatus
KR102180795B1 (en) A camera

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806