JP2008199158A - Heat-dissipating structure of solid-state imaging element, and solid-state imaging device - Google Patents

Heat-dissipating structure of solid-state imaging element, and solid-state imaging device Download PDF

Info

Publication number
JP2008199158A
JP2008199158A JP2007030212A JP2007030212A JP2008199158A JP 2008199158 A JP2008199158 A JP 2008199158A JP 2007030212 A JP2007030212 A JP 2007030212A JP 2007030212 A JP2007030212 A JP 2007030212A JP 2008199158 A JP2008199158 A JP 2008199158A
Authority
JP
Japan
Prior art keywords
solid
state imaging
heat
imaging device
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007030212A
Other languages
Japanese (ja)
Other versions
JP4964610B2 (en
Inventor
Miyoko Nyuraiin
美代子 入来院
Yukihiro Iwata
進裕 岩田
Shinya Ogasawara
真也 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007030212A priority Critical patent/JP4964610B2/en
Priority to US12/028,109 priority patent/US7554068B2/en
Publication of JP2008199158A publication Critical patent/JP2008199158A/en
Application granted granted Critical
Publication of JP4964610B2 publication Critical patent/JP4964610B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-dissipating structure for cooling a solid-state imaging element, while reducing the external force loads applied to the solid-state imaging element, in a relatively simple structure, in a heat-dissipating structure of the solid-state imaging element used in an imaging device which is provided with the solid-state imaging element. <P>SOLUTION: The solid-state imaging element is equipped with a heat-dissipating member, provided with a contact part to be brought into contact with the solid-state imaging element fixed to a prism member and a fin-like heat-dissipating part for radiating heat transmitted through the contact part into a gas around it, and the contact part and the heat-dissipating part are formed of a foil-like member comprising a high thermal conductivity material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体撮像素子を備えるテレビジョンカメラ、ビデオカメラなどの撮像装置に用いられる固体撮像素子の放熱構造及び固体撮像デバイスに関する。   The present invention relates to a heat dissipation structure for a solid-state image pickup device and a solid-state image pickup device used in an image pickup apparatus such as a television camera or a video camera including the solid-state image pickup device.

近年、固体撮像素子を3個用いる撮像装置として3板式カラーカメラ(以下3板カメラという)が開発され広く用いられるようになってきている。このような従来の3板カメラの構造について、図面を用いて説明する。   In recent years, a three-plate color camera (hereinafter referred to as a three-plate camera) has been developed and widely used as an imaging apparatus using three solid-state imaging devices. The structure of such a conventional three-panel camera will be described with reference to the drawings.

図1は、従来の3板カメラにおける撮像ブロック10の模式断面図である。図1に示すように、撮像ブロック10は、3板カメラにおける図示しない撮像レンズを通過して入射された光を所定の色成分に分解する色分解プリズムと、複数の固体撮像素子と、各々の固体撮像素子が搭載された撮像素子基板とにより構成されている。   FIG. 1 is a schematic cross-sectional view of an imaging block 10 in a conventional three-plate camera. As shown in FIG. 1, the imaging block 10 includes a color separation prism that separates light incident through an imaging lens (not shown) in a three-plate camera into predetermined color components, a plurality of solid-state imaging devices, And an image sensor substrate on which a solid-state image sensor is mounted.

図1に示すように、色分解プリズムは、3つのプリズム部材1r、1g、1bが互いに密着して接合されることより構成され、入射光を3つの色成分に分解する3色分解プリズム1である。それぞれのプリズム部材1r、1g、1bの接合界面は、ダイクロイックミラー4、5となっている。また、3つのプリズム部材1r、1g、1bの光の出射面には、個別に固体撮像素子2r、2g、2bが接着剤を介して固定されている。   As shown in FIG. 1, the color separation prism is composed of three prism members 1r, 1g, and 1b that are in close contact with each other, and is a three-color separation prism 1 that separates incident light into three color components. is there. The joining interfaces of the prism members 1r, 1g, and 1b are dichroic mirrors 4 and 5, respectively. In addition, solid imaging elements 2r, 2g, and 2b are individually fixed to the light emission surfaces of the three prism members 1r, 1g, and 1b via an adhesive.

図1において、3色分解プリズム1に入射した光束7は、ダイクロイックミラー4、5によって、3つの色成分、すなわち光の3原色の光束6a、6b、6cに色分解され、各々の固体撮像素子2r、2g、2bに受光される。ダイクロイックミラー4、5にて3原色に分解反射された光束のうちの光束6a、6bは、それぞれのプリズム部材1g、1b内にて再度全反射されることで、裏返し像(鏡像)ではなく表像を形成する光束として固体撮像素子2g、2bに受光される。それぞれの固体撮像素子2g、2b、2rにて受光されたそれぞれの光束は、それぞれの撮像素子基板3r、3g、3bにて撮像信号の処理がなされて、撮像信号が合成されたカラーテレビジョン信号が得られる。   In FIG. 1, a light beam 7 incident on a three-color separation prism 1 is color-separated into three color components, that is, light beams 6a, 6b, and 6c of three primary colors of light by dichroic mirrors 4 and 5, respectively. Light is received by 2r, 2g, and 2b. Of the light beams separated and reflected by the dichroic mirrors 4 and 5 into the three primary colors, the light beams 6a and 6b are totally reflected again in the respective prism members 1g and 1b, so that they are not inverted images (mirror images). It is received by the solid-state imaging devices 2g and 2b as a light beam that forms an image. The respective light fluxes received by the respective solid-state image pickup devices 2g, 2b, and 2r are processed as image pickup signals by the respective image pickup device substrates 3r, 3g, and 3b, and are color television signals obtained by combining the image pickup signals. Is obtained.

このような構成を有する従来の3板カメラでは、3色の被写体像の重ね合わせを精度良く行う必要がある。重ね合わせの精度、すなわちレジストレーションの精度が悪いと色ずれやモアレ偽信号が発生し、画質は微妙に劣化する。従って、レジストレーションの精度低下が生じないように、それぞれの固体撮像素子2r、2g、2bへ加わる外力負荷を低減させる必要がある。   In a conventional three-plate camera having such a configuration, it is necessary to accurately superimpose three color subject images. If the overlay accuracy, that is, the registration accuracy is poor, color misregistration and moire false signals are generated, and the image quality is slightly degraded. Therefore, it is necessary to reduce the external force load applied to each solid-state imaging device 2r, 2g, 2b so that the registration accuracy does not deteriorate.

また、固体撮像素子は高温環境下で使用すると、白傷による画質劣化、寿命短縮、等々の問題が発生するため、所定の温度以下での使用する必要がある。近年特に、固体撮像素子が搭載される3板カメラに代表される撮像装置においては、軽薄短小、多機能・高機能化による消費電力の増加に伴って、固体撮像素子の周辺温度(装置筐体内部温度)は益々上昇する傾向にあり、固体撮像素子を冷却する手段が不可欠となっている。   In addition, when the solid-state imaging device is used in a high temperature environment, problems such as image quality deterioration due to white scratches and shortening of the lifetime occur. Therefore, it is necessary to use the solid-state imaging device at a predetermined temperature or lower. In recent years, in particular, in an imaging apparatus typified by a three-plate camera on which a solid-state imaging device is mounted, the ambient temperature of the solid-state imaging device (apparatus housing) increases with the increase in power consumption due to lightness, shortness, multifunctionality, and high functionality. (Internal temperature) tends to increase more and more, and means for cooling the solid-state imaging device is indispensable.

そのため、従来の撮像装置においては、固体撮像素子へ加わる外力負荷を低減させながら、固体撮像素子を効率的に冷却するための様々な放熱構造が提案されている(例えば、特許文献1、2、3参照)。   Therefore, in the conventional imaging device, various heat dissipation structures for efficiently cooling the solid-state image sensor while reducing the external force load applied to the solid-state image sensor have been proposed (for example, Patent Documents 1 and 2). 3).

まず、特許文献1においては、伝熱部材にネジによって設置された熱電冷却素子が、それぞれの固体撮像素子の背面に接触するように配置された放熱構造が提案されている。このような放熱構造においては、各部材の熱膨張や熱収縮に伴う変形量を、ネジのバックラッシュにより吸収することができるため、冷却素子から固体撮像素子に対して熱変形に伴う力が加わらないようにすることができる。   First, Patent Document 1 proposes a heat dissipation structure in which a thermoelectric cooling element installed on a heat transfer member with screws is arranged so as to come into contact with the back surface of each solid-state imaging element. In such a heat dissipation structure, the amount of deformation accompanying thermal expansion and contraction of each member can be absorbed by screw backlash, so that a force accompanying thermal deformation is applied from the cooling element to the solid-state imaging element. Can not be.

また、特許文献2においては、熱伝導板に固定された熱電冷却素子を、熱伝導板の弾性を利用して、固体撮像素子の背面に適切な力にて密着させるように配置させた放熱構造が提案されている。このような放熱構造においては、熱伝導板の弾性を利用することで、冷却素子を固体撮像素子の背面に密着させることができ、効率的な放熱を実現することができる。   Further, in Patent Document 2, a heat dissipation structure in which a thermoelectric cooling element fixed to a heat conducting plate is disposed so as to be in close contact with the back surface of the solid-state imaging device by using the elasticity of the heat conducting plate. Has been proposed. In such a heat dissipation structure, by utilizing the elasticity of the heat conducting plate, the cooling element can be brought into close contact with the back surface of the solid-state imaging element, and efficient heat dissipation can be realized.

特許文献3においては、熱電冷却素子を用いない放熱構造として、固体撮像素子の背面と撮像素子基板との間に、金属部品の一端を挿入配置させるとともに、金属部材の他端を金属フレームに固定させて、固体撮像素子から金属部品に伝達される熱を金属フレームへと逃がすような放熱構造が提案されている。   In Patent Document 3, as a heat dissipation structure that does not use a thermoelectric cooling element, one end of a metal part is inserted and disposed between the back surface of the solid-state image sensor and the image sensor substrate, and the other end of the metal member is fixed to the metal frame. Thus, there has been proposed a heat dissipation structure that releases heat transferred from the solid-state imaging device to the metal part to the metal frame.

特開平1−295575号公報JP-A-1-295575 特開2002−247594号公報JP 2002-247594 A 特開2001−308569号公報JP 2001-30569 A

近年、このような3板カメラにおけるそれぞれの固体撮像素子の位置決めは、μmオーダの精度が要求されつつあり、例えばそれぞれの固体撮像素子2r、2g、2bの位置決めは光軸方向では焦点深度があるため数十μm、被写体映像面内方向ではμmオーダの精度を必要とするようになりつつある。   In recent years, positioning of each solid-state imaging device in such a three-plate camera is demanding accuracy of the order of μm. For example, positioning of each solid-state imaging device 2r, 2g, 2b has a depth of focus in the optical axis direction. Therefore, an accuracy of the order of μm is required in the direction of several tens μm and in the subject image plane.

しかしながら、特許文献1の放熱構造においては、ネジのバックラッシュにより外力の吸収を行っているため、微小な熱変形により生じる外力を十分に吸収することはできず、作用する外力の大きさによっては、撮像素子の位置決め精度に影響を与える場合があり、この位置ずれによるレジストレーションの精度低下が問題となる。また、特許文献2の放熱構造では、熱伝導板の弾性力により固体撮像素子に外力が付加され、その外力は熱膨張等により変化するため、位置決め精度に影響を与えてしまう場合がある。また、特許文献1及び2の放熱構造では、比較的高価な熱電冷却素子が用いられているため、撮像装置がコスト上昇するという問題もある。   However, in the heat dissipation structure of Patent Document 1, since external force is absorbed by screw backlash, the external force generated by minute thermal deformation cannot be sufficiently absorbed, and depending on the magnitude of the applied external force. In some cases, the positioning accuracy of the image sensor may be affected, and a decrease in registration accuracy due to this misalignment becomes a problem. Further, in the heat dissipation structure of Patent Document 2, an external force is applied to the solid-state imaging device due to the elastic force of the heat conduction plate, and the external force changes due to thermal expansion or the like, which may affect the positioning accuracy. Further, in the heat dissipation structures of Patent Documents 1 and 2, there is a problem that the cost of the imaging apparatus increases because a relatively expensive thermoelectric cooling element is used.

また、冷却素子を用いない特許文献3の放熱構造においても、金属フレームにその一端が固定された状態の金属部品が固体撮像素子の背面に接触するように配置されているため、金属部材の熱膨張・収縮によるスプリングバックに起因する負荷が固体撮像素子側の接触端部を通じて固体撮像素子に加わり、固体撮像素子とプリズム部材との接着面において位置ずれが生じ、この位置ずれによるレジストレーションの精度低下が問題となる。また、特許文献1〜3のいずれの放熱構造もその構造が複雑なものであり、取り付け作業や取り扱い作業が容易なものとは言えない。   Further, in the heat dissipation structure of Patent Document 3 that does not use a cooling element, the metal part having one end fixed to the metal frame is disposed so as to contact the back surface of the solid-state imaging element, so that the heat of the metal member Load caused by springback due to expansion / contraction is applied to the solid-state image sensor through the contact end on the solid-state image sensor side, and a displacement occurs on the bonding surface between the solid-state image sensor and the prism member. Decrease is a problem. In addition, any of the heat dissipation structures of Patent Documents 1 to 3 has a complicated structure, and it cannot be said that attachment work and handling work are easy.

また、固体撮像素子2r、2g、2bの前面とプリズム1r、1g、1bとの接着にはUV接着剤(紫外線硬化性接着剤)が用いられ、接着剤を接着面間に塗布した状態で各固体撮像素子2r、2g、2bの位置調整(6軸)を実施した後に、紫外線を照射して接着剤を硬化させ、接着面を固定する工法が広く利用されている。   Further, a UV adhesive (ultraviolet curable adhesive) is used for bonding the front surfaces of the solid-state imaging devices 2r, 2g, and 2b and the prisms 1r, 1g, and 1b, and each adhesive is applied between the bonding surfaces. A method is widely used in which the position adjustment (six axes) of the solid-state imaging devices 2r, 2g, and 2b is performed, and then the adhesive is cured by irradiating ultraviolet rays to fix the adhesive surface.

しかしながら、このようなUV接着剤は高温クリープ特性(高温環境下で負荷を掛け続けるとクリープする特性)を有するため、特に固体撮像素子2r、2g、2bの周辺温度(装置筐体内部温度)が高くなると、上記金属部品等のスプリングバックに起因する負荷が深刻な問題となる。   However, such a UV adhesive has a high temperature creep characteristic (characteristic of creeping when a load is continuously applied in a high temperature environment), and therefore the ambient temperature of the solid-state imaging devices 2r, 2g, and 2b (internal temperature of the apparatus housing) is particularly high. When it becomes high, the load resulting from the springback of the metal parts or the like becomes a serious problem.

従って、本発明の目的は、上記問題を解決することにあって、固体撮像素子を備える撮像装置に用いられる固体撮像素子の放熱構造において、比較的簡単な構造にて、固体撮像素子に加わる外力負荷を低減させながら、固体撮像素子を冷却する固体撮像素子の放熱構造及びこのような放熱構造を有する固体撮像デバイスを提供することにある。   Accordingly, an object of the present invention is to solve the above-described problem, and in a heat dissipation structure for a solid-state image sensor used in an image pickup apparatus including the solid-state image sensor, an external force applied to the solid-state image sensor with a relatively simple structure. An object of the present invention is to provide a solid-state imaging element heat dissipation structure for cooling a solid-state imaging element while reducing a load, and a solid-state imaging device having such a heat dissipation structure.

上記目的を達成するために、本発明は以下のように構成する。   In order to achieve the above object, the present invention is configured as follows.

本発明の第1態様によれば、プリズム部材に固定された固体撮像素子に接触される接触部と、上記接触部を通して伝達された熱をその周囲の気体中に放熱するフィン状の放熱部とを有し、上記接触部及び上記放熱部が高熱伝導性材料からなる箔状部材により形成された放熱部材を備えることを特徴とする固体撮像素子の放熱構造を提供する。   According to the first aspect of the present invention, the contact portion that is in contact with the solid-state imaging device fixed to the prism member, and the fin-like heat dissipation portion that dissipates the heat transmitted through the contact portion into the surrounding gas. There is provided a heat dissipation structure for a solid-state imaging device, characterized in that the contact portion and the heat dissipation portion include a heat dissipation member formed of a foil-like member made of a highly thermally conductive material.

本発明の第2態様によれば、上記放熱部材の上記接触部は、接触補助材料を介して上記固体撮像素子に接触されている、第1態様に記載の固体撮像素子の放熱構造を提供する。   According to a second aspect of the present invention, there is provided the solid-state image sensor heat dissipation structure according to the first aspect, wherein the contact portion of the heat dissipation member is in contact with the solid-state image sensor via a contact auxiliary material. .

本発明の第3態様によれば、上記放熱部材において、上記フィン状の放熱部は、上記箔状部材がその厚み方向に湾曲された又は折り曲げられた形状を有する、第1態様又は第2態様に記載の固体撮像素子の放熱構造を提供する。   According to the third aspect of the present invention, in the heat radiating member, the fin-like heat radiating portion has a shape in which the foil-like member is curved or bent in the thickness direction. The solid-state image sensor heat dissipation structure described in 1. is provided.

本発明の第4態様によれば、光を複数の色成分に分解する色分解プリズムを構成する複数の上記プリズム部材に固定された複数の上記固定撮像素子に、複数の上記放熱部材を個別に接触させている、第1態様から第3態様のいずれか1つに記載の固体撮像素子の放熱構造を提供する。   According to the fourth aspect of the present invention, the plurality of heat radiating members are individually attached to the plurality of fixed imaging elements fixed to the plurality of prism members constituting the color separation prism that separates light into a plurality of color components. The solid-state imaging device heat dissipation structure according to any one of the first to third aspects is provided.

本発明の第5態様によれば、上記フィン状の放熱部における上記気体の流れ方向が、全ての上記放熱部材において、同一の方向に配置されている、第4態様に記載の固体撮像素子の放熱構造を提供する。   According to the fifth aspect of the present invention, in the solid-state imaging device according to the fourth aspect, the gas flow direction in the fin-shaped heat radiation portion is arranged in the same direction in all the heat radiation members. Provide a heat dissipation structure.

本発明の第6態様によれば、上記接触部は上記固体撮像素子の一方の面の略全面に接触するように配置され、上記接触部における互いに対向するそれぞれの端部より延在する上記箔状部材により上記フィン状の放熱部が形成される、第1態様から第5態様のいずれか1つに記載の固体撮像素子の放熱構造を提供する。   According to the sixth aspect of the present invention, the contact portion is disposed so as to be in contact with substantially the entire one surface of the solid-state imaging device, and the foil extends from respective end portions of the contact portion facing each other. A solid-state imaging element heat dissipation structure according to any one of the first to fifth aspects, in which the fin-shaped heat dissipation part is formed by a member.

本発明の第7態様によればプリズム部材と、
上記プリズム部材に固定された固体撮像素子と、
上記固体撮像素子に接触される接触部と、上記接触部を通して伝達された熱をその周囲の気体中に放熱するフィン状の放熱部とを有し、上記接触部及び上記放熱部が高熱伝導性材料からなる箔状部材により形成された放熱部材とを備えることを特徴とする固体撮像デバイスを提供する。
According to a seventh aspect of the present invention, a prism member;
A solid-state imaging device fixed to the prism member;
A contact portion that is in contact with the solid-state imaging device; and a fin-like heat dissipation portion that dissipates heat transmitted through the contact portion into a surrounding gas. The contact portion and the heat dissipation portion have high thermal conductivity. There is provided a solid-state imaging device comprising a heat radiating member formed of a foil-like member made of a material.

本発明の第8態様によれば、複数のプリズム部材で構成され、光を複数の色成分に分解する色分解プリズムと、
複数の上記プリズム部材に個別に固定された複数の固定撮像素子と、
上記各々の固定撮像素子に個別に接触される接触部と、上記接触部を通して伝達された熱をその周囲の気体中に放熱するフィン状の放熱部とを有し、上記接触部及び上記放熱部が高熱伝導性材料からなる箔状部材により形成された複数の放熱部材とを備えることを特徴とする固体撮像デバイスを提供する。
According to an eighth aspect of the present invention, a color separation prism configured by a plurality of prism members and separating light into a plurality of color components;
A plurality of fixed imaging elements individually fixed to the plurality of prism members;
Each of the fixed imaging elements has a contact portion that is individually contacted, and a fin-like heat dissipation portion that dissipates heat transmitted through the contact portion into a surrounding gas. The contact portion and the heat dissipation portion And a plurality of heat dissipating members formed of a foil-like member made of a high thermal conductivity material.

本発明の第9態様によれば、上記放熱部材の上記接触部は、接触補助材料を介して上記固体撮像素子に接触されている、第7態様又は第8態様に記載の固体撮像デバイスを提供する。   According to a ninth aspect of the present invention, there is provided the solid-state imaging device according to the seventh aspect or the eighth aspect, wherein the contact portion of the heat dissipation member is in contact with the solid-state imaging element via a contact auxiliary material. To do.

本発明の第10態様によれば、上記放熱部材において、上記フィン状の放熱部は、上記箔状部材がその厚み方向に湾曲された又は折り曲げられた形状を有する、第7態様から第9態様のいずれか1つに記載の固体撮像デバイスを提供する。   According to a tenth aspect of the present invention, in the heat radiating member, the fin-shaped heat radiating portion has a shape in which the foil-like member is curved or bent in the thickness direction thereof. A solid-state imaging device according to any one of the above.

本発明の第11態様によれば、上記フィン状の放熱部における上記放熱部材の幅方向が、全ての上記放熱部材において、同一の方向に配置されている、第8態様に記載の固体撮像デバイスを提供する。   According to an eleventh aspect of the present invention, the solid-state imaging device according to the eighth aspect, in which the width direction of the heat radiating member in the fin-shaped heat radiating portion is arranged in the same direction in all the heat radiating members. I will provide a.

本発明の第12態様によれば、上記接触部は上記固体撮像素子の一方の面の略全面に接触するように配置され、上記接触部における互いに対向するそれぞれの端部より延在する上記箔状部材により上記フィン状の放熱部が形成される、第7態様から第11態様のいずれか1つに記載の固体撮像デバイスを提供する。   According to a twelfth aspect of the present invention, the contact portion is disposed so as to be in contact with substantially the entire surface of one surface of the solid-state imaging device, and the foil extends from respective end portions facing each other in the contact portion. The solid-state imaging device according to any one of the seventh aspect to the eleventh aspect, in which the fin-shaped heat radiation portion is formed by a member.

本発明によれば、固体撮像素子に接触される接触部とフィン状の放熱部とを有する放熱部材が、従来の放熱構造のように筐体などの他の部材に固定されて、筐体へと熱を逃がしてやるような構造が採用されるのではなく、筐体などの他の部材に固定されることなく、フィン状の放熱部を通じてその周囲の気体中に放熱させるような構造が採用されていることにより、放熱部材を通じて固体撮像素子に付加されるスプリングバックなどの応力負荷を著しく低減させることができる。また、このような放熱部材は、固体撮像素子の表面に接触されて配置されているものの、上記接触部及び上記フィン状の放熱部が共に箔状部材にて形成されているため、放熱部材の自重を、部材形態を保持できる限度にまで軽減することができる。従って、放熱部材の自重により固定撮像素子へ付加される応力負荷を抑制することができる。従って、比較的簡単な構造にて、必要な放熱性能を確保しながら、放熱部材を通じて固体撮像素子へ付加される応力負荷を低減することができ、レジストレーションの精度低下を抑制可能な固体撮像素子の放熱構造及びこのような放熱構造を有する固体撮像デバイスを提供することができる。   According to the present invention, a heat radiating member having a contact portion that is in contact with a solid-state imaging device and a fin-like heat radiating portion is fixed to another member such as a housing as in a conventional heat radiating structure, and then to the housing. Instead of adopting a structure that allows heat to escape, a structure that dissipates heat into the surrounding gas through a fin-shaped heat dissipation part without being fixed to other members such as a housing. As a result, the stress load such as springback applied to the solid-state imaging device through the heat radiating member can be remarkably reduced. Moreover, although such a heat radiating member is disposed in contact with the surface of the solid-state imaging device, both the contact portion and the fin-shaped heat radiating portion are formed of a foil-like member. The dead weight can be reduced to the limit that can maintain the member form. Therefore, it is possible to suppress the stress load applied to the fixed imaging element due to the weight of the heat radiating member. Therefore, with a relatively simple structure, a solid-state image sensor that can reduce the stress load applied to the solid-state image sensor through the heat radiating member while ensuring the necessary heat dissipation performance, and can suppress a decrease in registration accuracy. And a solid-state imaging device having such a heat dissipation structure can be provided.

以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

(第1実施形態)
本発明の第1の実施形態にかかる固体撮像素子の放熱構造が採用される3板カメラにおける撮像ブロック20(放熱構造が装備されていない状態)の模式斜視図を図2に示し、本第1実施形態の放熱構造が装備された状態の撮像ブロック20の模式斜視図を図3に示す。なお、撮像ブロック20の構造自体は、図1に示す撮像ブロック10と同じ構造であるため、同じ構成部材には同じ参照符号を付してその説明を省略する。
(First embodiment)
FIG. 2 shows a schematic perspective view of an imaging block 20 (a state in which no heat dissipation structure is provided) in the three-plate camera in which the solid-state image sensor heat dissipation structure according to the first embodiment of the present invention is adopted. FIG. 3 shows a schematic perspective view of the imaging block 20 in a state in which the heat dissipation structure of the embodiment is equipped. In addition, since the structure itself of the imaging block 20 is the same structure as the imaging block 10 shown in FIG. 1, the same referential mark is attached | subjected to the same structural member and the description is abbreviate | omitted.

図2及び図3に示すように、本第1実施形態の固体撮像素子の放熱構造は、高熱伝導性材料により形成された箔状部材により構成されたフィン状の放熱部材(放熱フィン部材)11、12、13を、それぞれの固体撮像素子2r、2g、2bの背面に接触させるように個別に配置させた構造を有している。各固体撮像素子2r、2g、2bにて発生した熱は、各々の放熱部材11、12、13を通して他の部材を介在させることなく、その周囲の気体中、すなわち大気中に放出され、その結果、それぞれの固体撮像素子2r、2g、2bの温度を低減させることができる。   As shown in FIGS. 2 and 3, the heat dissipation structure of the solid-state imaging device according to the first embodiment is a fin-shaped heat dissipation member (radiation fin member) 11 formed of a foil-like member formed of a high thermal conductivity material. , 12 and 13 are individually arranged so as to be in contact with the back surfaces of the respective solid-state imaging devices 2r, 2g and 2b. The heat generated in each solid-state imaging device 2r, 2g, 2b is released into the surrounding gas, that is, the atmosphere without interposing other members through the respective heat radiating members 11, 12, 13, and as a result. The temperature of each solid-state imaging device 2r, 2g, 2b can be reduced.

ここで、それぞれ同一の形状を有する放熱部材11、12、13を代表して、放熱部材11の外観構造を示す模式斜視図を図4に示す。   Here, the typical perspective view which shows the external appearance structure of the heat radiating member 11 on behalf of the heat radiating members 11, 12, and 13 which have the respectively same shape is shown in FIG.

図4に示すように、放熱部材11は、固体撮像素子2rの背面(光束の受光面とは逆側の面)と接触することで、固体撮像素子2rにて発生した熱をこの接触によって放熱部材11に伝熱させる接触部11aをその底部に備え、この底部において互いに対向するそれぞれの端部より図示上方に向けて延在する箔状部材を複数回その厚み方向に湾曲させるあるいは折り曲げることによりその周囲の雰囲気との接触面積、すなわち放熱面積を増大させるように複数のフィンが蛇腹状に形成された放熱部11bをその上部に備えている。   As shown in FIG. 4, the heat radiating member 11 is in contact with the back surface of the solid-state imaging device 2r (the surface opposite to the light receiving surface of the light beam), thereby radiating heat generated in the solid-state imaging device 2r by this contact. A contact portion 11a for transferring heat to the member 11 is provided at the bottom, and a foil-like member extending upward from the respective ends facing each other at the bottom is bent or bent a plurality of times in the thickness direction. A heat dissipating part 11b in which a plurality of fins are formed in an accordion shape so as to increase the contact area with the surrounding atmosphere, that is, the heat dissipating area, is provided at the upper part.

この放熱部材11においては、所定の幅寸法を有する箔状部材を用いて、接触部11aと放熱部11bとが形成されている。このような箔状部材は、高熱伝導性材料(高い熱伝導率を有する材料)として、例えば、銅若しくはグラファイトシートなどが用いられ、箔状として例えば0.1mm以下の厚みで形成される。   In this heat radiating member 11, the contact part 11a and the heat radiating part 11b are formed using the foil-shaped member which has a predetermined width dimension. Such a foil-shaped member is made of, for example, copper or a graphite sheet as a high thermal conductivity material (a material having a high thermal conductivity), and is formed in a thickness of, for example, 0.1 mm or less.

このような構造を有する放熱部材11は、図3に示すように、固体撮像素子2rと撮像素子基板3rとの間に、その箔状部材にて形成された接触部11aが配置されるとともに、この配置状態において接触部11aの底面が、固体撮像素子2rの背面に接触された状態とされる。なお、固体撮像素子2rにて生じた熱を効果的に逃がすことができるような接触面積を確保するために、固体撮像素子2rの背面における平坦な部分の略全体に接触部11aが接触するように接触部11aの形状(長さ及び幅寸法)が決定されている。また、放熱部材11の接触部11aと固体撮像素子2rの背面との実質的な接触性を高めるために、両者の間に接触補助材料として例えばグリスなどが塗布されて配置されるような場合であってもよい。すなわち、本発明において、固体撮像素子と放熱部材との間の接触とは、他の部材を介在させることなく両者を直接的に接触させるような場合と、固体撮像素子と放熱部材との間の接触性を向上させることを目的として、グリスなどに代表される接触補助材料を介在させて両者を間接的に接触させるような場合のいずれの場合をも含むものである。   As shown in FIG. 3, the heat dissipating member 11 having such a structure has a contact portion 11a formed of a foil-like member disposed between the solid-state image pickup device 2r and the image pickup device substrate 3r. In this arrangement state, the bottom surface of the contact portion 11a is in contact with the back surface of the solid-state imaging device 2r. In order to secure a contact area that can effectively release the heat generated in the solid-state imaging device 2r, the contact portion 11a comes into contact with substantially the entire flat portion of the back surface of the solid-state imaging device 2r. The shape (length and width dimensions) of the contact portion 11a is determined. Further, in order to enhance the substantial contact between the contact portion 11a of the heat radiating member 11 and the back surface of the solid-state imaging device 2r, for example, grease is applied as a contact auxiliary material between the two and disposed. There may be. In other words, in the present invention, the contact between the solid-state imaging device and the heat dissipation member refers to the case where both are in direct contact without interposing other members, and the contact between the solid-state image sensor and the heat dissipation member. For the purpose of improving the contactability, it includes any case where the both are indirectly brought into contact with each other through a contact auxiliary material typified by grease.

また、放熱部材11の接触部11aは、固体撮像素子2rと撮像素子基板3rとの間に配置されており、両者によって軽く挟まれて、放熱部材11の配置位置が保持されている。また、このような場合に代えて、両者によって挟まれることなく、固体撮像素子2rとの接触性が保たれた状態にて、放熱部材11がある程度自由にスライド移動可能な構成を採用することもできる。すなわち、固体撮像素子と放熱部材との間の接触性が保たれていれば、固体撮像素子に対する放熱部材の相対的な移動の有無は問わない。   Moreover, the contact part 11a of the heat radiating member 11 is disposed between the solid-state image sensor 2r and the image sensor substrate 3r, and is lightly sandwiched between the two to hold the position where the heat radiating member 11 is disposed. In addition, instead of such a case, it is also possible to adopt a configuration in which the heat radiation member 11 can be slid freely to some extent in a state where the contact with the solid-state imaging device 2r is maintained without being sandwiched between the two. it can. That is, as long as the contact between the solid-state imaging device and the heat radiating member is maintained, the relative movement of the heat radiating member with respect to the solid-state imaging device does not matter.

また、図3に示すように、その他の放熱部材12、13についても、放熱部材11と同様な構成にて、固体撮像素子2g、2bに個別に接触するように配置されている。さらに、このようにそれぞれの放熱部材11、12、13が撮像ブロック20に装備された状態において、各々の放熱部材11、12、13は、他の放熱部材、筐体、レンズ鏡筒ケースなどの他の部材に接触することが無いように配置されている。   Further, as shown in FIG. 3, the other heat radiating members 12 and 13 are also arranged in the same configuration as the heat radiating member 11 so as to be in contact with the solid-state imaging devices 2 g and 2 b individually. Furthermore, in a state where the respective heat radiation members 11, 12, and 13 are mounted on the imaging block 20, each of the heat radiation members 11, 12, and 13 includes other heat radiation members, a casing, a lens barrel case, and the like. It arrange | positions so that it may not contact another member.

本第1実施形態の固体撮像素子の放熱構造によれば、撮像ブロック20を構成するそれぞれのプリズム部材1r、1g、1bに個別に固定された固体撮像素子2r、2g、2bの背面に、個別に放熱部材11、12、13を接触させるように配置して、それぞれの放熱部材11、12、13が備える蛇腹状の放熱部によりその周囲雰囲気中へ放熱させるような構成が採用されていることにより、従来の放熱構造にように放熱部材が放熱側端部においても他の部材に固定されているような場合と比して、熱膨張・熱収縮によるスプリングバックにより放熱部材から固体撮像素子へ付加される応力負荷を著しく減少させることができる。   According to the heat radiation structure of the solid-state imaging device of the first embodiment, the solid-state imaging devices 2r, 2g, and 2b that are individually fixed to the prism members 1r, 1g, and 1b constituting the imaging block 20 The heat dissipating members 11, 12, and 13 are arranged in contact with each other, and a configuration is adopted in which the heat is dissipated into the surrounding atmosphere by the bellows-shaped heat dissipating part provided in each heat dissipating member 11, 12, 13 Compared to the case where the heat radiating member is fixed to other members at the heat radiating side end as in the conventional heat radiating structure, the heat radiating member is moved from the heat radiating member to the solid-state imaging device by the spring back due to thermal expansion / contraction. The applied stress load can be significantly reduced.

さらに、このようなフィン状の放熱部材11、12、13における接触部及び放熱部を含めた全体構造を、その厚みが0.1mm以下の高熱伝導性材料からなる箔状部材により構成する(例えば一体的に構成する)ことにより、放熱部材11、12、13の自重を大幅に軽減することができる。特に本第1実施形態のフィン状の放熱部材は、接触部と放熱部との間の距離を最短距離とするような構成を採用する一般的な放熱フィン部材とは異なり、上記距離の最短距離化よりも軽量化を重視して箔状部材により形成している。より具体的には、図4に示すように、所定の幅寸法を有する箔状部材を複数回湾曲させる若しくは折り曲げることにより複数のフィンを蛇腹状に形成している点において、一般的な放熱フィン部材とは大きく異なっている。このようにその自重を大幅に軽量化した放熱部材を用いることで、自重により固体撮像素子に与える応力負荷を大幅に低減することができる。   Furthermore, the entire structure including the contact portion and the heat radiating portion in such fin-shaped heat radiating members 11, 12, and 13 is configured by a foil-like member made of a highly thermally conductive material having a thickness of 0.1 mm or less (for example, By configuring them integrally, the weight of the heat dissipating members 11, 12, 13 can be greatly reduced. In particular, the fin-shaped heat dissipation member of the first embodiment is different from a general heat dissipation fin member adopting a configuration in which the distance between the contact portion and the heat dissipation portion is the shortest distance. It is formed of a foil-like member, with an emphasis on weight reduction rather than the formation. More specifically, as shown in FIG. 4, a general radiating fin in that a plurality of fins are formed in a bellows shape by bending or bending a foil-like member having a predetermined width dimension a plurality of times. It is very different from the member. Thus, by using the heat radiating member whose weight is significantly reduced, the stress load applied to the solid-state imaging device by the weight can be greatly reduced.

従って、比較的簡単な構造にて、必要な放熱性能を確保しながら、放熱部材を通じて固体撮像素子へ付加される応力負荷を低減することができ、レジストレーションの精度低下を抑制可能な固体撮像素子の放熱構造を提供することができる。   Therefore, with a relatively simple structure, a solid-state image sensor that can reduce the stress load applied to the solid-state image sensor through the heat radiating member while ensuring the necessary heat dissipation performance, and can suppress a decrease in registration accuracy. The heat dissipation structure can be provided.

また、放熱部材11における接触部11aは、固体撮像素子2rの背面に接触し、接触部11aの互いに対向するそれぞれの端部より延在するように放熱部11bが形成されていることにより、固体撮像素子にて発生する熱をそれぞれの端部より放熱部材へと伝達して放熱させることができ、放熱部が一方の端部より延在する場合に比べ高い放熱効率を有し、固体撮像素子の温度を均一にすることができるという効果を得ることができる。   Further, the contact portion 11a in the heat radiation member 11 is in contact with the back surface of the solid-state imaging device 2r, and the heat radiation portion 11b is formed so as to extend from the respective opposite ends of the contact portion 11a. The heat generated in the image sensor can be transferred from each end to the heat radiating member to dissipate the heat, and the heat dissipating part has higher heat dissipation efficiency than the case where the heat radiating part extends from one end. The effect that the temperature can be made uniform can be obtained.

ここで、本第1実施形態の変形例にかかる放熱構造が装備された撮像ブロック30の模式斜視図を図5に示す。図5に示す撮像ブロック30においては、それぞれの撮像素子基板3r、3g、3bが、それぞれのプリズム部材1r、1g、1bに対して90度その基板の表面沿いの方向に回転された配置位置にて固定されている。さらに、この撮像素子基板3r、3g、3bの配置位置に合わせて、それぞれの放熱部材11、12、13も90度回転された配置位置に装備されている。その結果、図5に示すように、それぞれの放熱部材11、12、13の放熱部のフィンの方向を同一方向Dとすることができる。言い換えれば、放熱部材の幅方向を同一方向Dとすることができる。これにより、それぞれの放熱部材11、12、13の放熱部のフィンにおける気体の流れ方向Dを、同一方向とすることができる。   Here, FIG. 5 shows a schematic perspective view of the imaging block 30 equipped with the heat dissipation structure according to the modification of the first embodiment. In the imaging block 30 shown in FIG. 5, each imaging element substrate 3r, 3g, 3b is arranged at an arrangement position rotated 90 degrees with respect to each prism member 1r, 1g, 1b in the direction along the surface of the substrate. Is fixed. Further, the heat dissipating members 11, 12, and 13 are also provided at the arrangement positions rotated by 90 degrees in accordance with the arrangement positions of the imaging element substrates 3r, 3g, and 3b. As a result, as shown in FIG. 5, the fin direction of the heat radiating portion of each heat radiating member 11, 12, 13 can be set to the same direction D. In other words, the width direction of the heat dissipation member can be the same direction D. Thereby, the flow direction D of the gas in the fin of the thermal radiation part of each thermal radiation member 11, 12, 13 can be made into the same direction.

このように放熱部の気体の流れ方向Dを全ての放熱部材11、12、13にて同一方向とすることで、例えば、方向Dが鉛直方向となるように撮像ブロック30を配置して、周辺空気の対流を積極的に利用して放熱効率を向上させることができる。また、全ての放熱部材11、12、13にて均等に放熱効果を得ることができる。また、方向Dが鉛直方向とされないような場合であっても、送風機などを用いて方向Dに沿った気流を機械的に形成することで放熱効率を向上させることができ、全ての放熱部材11、12、13にて均等に放熱効果を得ることができる。   In this way, by setting the gas flow direction D of the heat radiating portion to the same direction in all the heat radiating members 11, 12, and 13, for example, the imaging block 30 is arranged so that the direction D becomes the vertical direction, It is possible to improve the heat dissipation efficiency by actively utilizing the convection of air. Further, the heat radiation effect can be obtained evenly in all the heat radiation members 11, 12, and 13. Further, even if the direction D is not the vertical direction, the heat radiation efficiency can be improved by mechanically forming an air flow along the direction D using a blower or the like, and all the heat radiating members 11. , 12 and 13 can obtain a heat radiation effect evenly.

(第2実施形態)
なお、本発明は上記実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、本発明の第2の実施形態にかかる固体撮像素子の放熱構造が装備された撮像ブロック40の模式斜視図を図6に示す。また、図6の撮像ブロック40に装備されている放熱部材41、42、43の中から代表して放熱部材41の模式斜視図を図7に示す。なお、撮像ブロック40自体の構成は、上記第1実施形態の撮像ブロック20と同じであるので、同じ構成部材には同じ参照符号を付してその説明を省略する。
(Second Embodiment)
In addition, this invention is not limited to the said embodiment, It can implement with another various aspect. For example, FIG. 6 shows a schematic perspective view of an imaging block 40 equipped with a solid-state imaging device heat dissipation structure according to the second embodiment of the present invention. FIG. 7 shows a schematic perspective view of the heat radiating member 41 as a representative of the heat radiating members 41, 42, and 43 provided in the imaging block 40 of FIG. Since the configuration of the imaging block 40 itself is the same as that of the imaging block 20 of the first embodiment, the same reference numerals are assigned to the same structural members and the description thereof is omitted.

図6及び図7に示すように、本第2実施形態の放熱部材41、42、43は、各々の固体撮像素子2r、2g、2bの背面に個別に接触するように配置されている構成において、上記第1実施形態の放熱構造と同様な構成となっているものの、それぞれの放熱部材41、42、43における放熱部の形態が上記第1実施形態の放熱部の形態とは異なっている。   As shown in FIGS. 6 and 7, the heat dissipating members 41, 42, and 43 of the second embodiment are arranged so as to be in contact with the back surfaces of the respective solid-state imaging devices 2 r, 2 g, and 2 b individually. Although the configuration is the same as that of the heat dissipation structure of the first embodiment, the shape of the heat dissipation portion in each of the heat dissipation members 41, 42, and 43 is different from that of the heat dissipation portion of the first embodiment.

具体的には、上記第1実施形態の放熱部材11の放熱部11bは、大略蛇腹状に形成された複数のフィン状の形態を有しているのに対して、図7に示す本第2実施形態の放熱部材41の放熱部41bは、所定の幅寸法を有する箔状部材をその厚み方向に渦巻き状に湾曲させたフィン状の形態を有している。放熱部材41の接触部41aにおける互いに対向するそれぞれの端部より図示上方に向けて延在するそれぞれの箔状部材を、互いに異なる方向に湾曲させて渦巻き形状の放熱部41bが形成されている。   Specifically, the heat radiating portion 11b of the heat radiating member 11 of the first embodiment has a plurality of fin-like shapes formed in a generally bellows shape, whereas the second shape shown in FIG. The heat dissipating part 41b of the heat dissipating member 41 of the embodiment has a fin-like form in which a foil-like member having a predetermined width dimension is curved in a spiral shape in the thickness direction. Each foil-like member extending toward the upper side in the drawing from the mutually opposing end portions of the contact portion 41a of the heat radiating member 41 is curved in different directions to form a spiral heat radiating portion 41b.

このような渦巻き状の形態を有する放熱部材41、42、43は、上記第1実施形態の放熱部材11、12、13と同様な放熱特性を有することに加えて、箔状部材の両端部を湾曲させることで製造することができるため、その製造を比較的に容易なものとすることができるという利点を有している。   In addition to having the same heat dissipation characteristics as the heat dissipation members 11, 12, and 13 of the first embodiment, the heat dissipation members 41, 42, and 43 having such a spiral shape are provided at both ends of the foil-shaped member. Since it can manufacture by making it curve, it has the advantage that the manufacture can be made comparatively easy.

また、上記第1実施形態の変形例にかかる放熱構造と同様に、図8に示すように、このような渦巻き状の放熱部材41、42、43を、各々の気体の流れ方向Dが同一の方向となるように撮像ブロック50に装備させることもできる。   Further, like the heat dissipation structure according to the modified example of the first embodiment, as shown in FIG. 8, such spiral heat dissipation members 41, 42, and 43 have the same gas flow direction D. The imaging block 50 can also be equipped so as to be in the direction.

なお、上記それぞれの実施形態においては、放熱部材の形態の一例として、大略蛇腹状の形態、及び渦巻き状の形態について説明したが、このような形態にのみ限られるものではなく、箔状部材を固体撮像素子以外の部材(他の放熱部材や筐体など)に接触せず、必要な放熱効率を得ることができるような形態であれば、その他様々な形態を採用することができる。   In each of the above embodiments, as an example of the form of the heat dissipation member, the substantially bellows-like form and the spiral form have been described. However, the present invention is not limited to such a form, and a foil-like member is used. Various other forms can be adopted as long as the necessary heat radiation efficiency can be obtained without contacting a member other than the solid-state imaging device (other heat radiating member, housing, etc.).

なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   It is to be noted that, by appropriately combining arbitrary embodiments of the various embodiments described above, the effects possessed by them can be produced.

本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、特許請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。   Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as included within the scope of the present invention as long as they do not depart from the scope of the present invention.

従来の3板式カラーカメラにおける撮像ブロックの模式構成図Schematic configuration diagram of imaging block in a conventional three-plate color camera 本発明の第1実施形態の固体撮像素子の放熱構造が未装備状態の撮像ブロックの模式斜視図1 is a schematic perspective view of an imaging block in a state where a heat dissipation structure for a solid-state imaging device according to the first embodiment of the present invention is not installed. 図2の撮像ブロックに本第1実施形態の放熱構造を装備した状態の模式斜視図Schematic perspective view of the imaging block of FIG. 2 equipped with the heat dissipation structure of the first embodiment 本第1実施形態の放熱部材の模式斜視図Schematic perspective view of the heat dissipation member of the first embodiment 本第1実施形態の変形例にかかる放熱構造が装備された状態の撮像ブロックの模式斜視図The model perspective view of the imaging block of the state equipped with the thermal radiation structure concerning the modification of this 1st Embodiment 本発明の第2実施形態の固体撮像素子の放熱構造が装備された状態の撮像ブロックの模式斜視図The schematic perspective view of the imaging block of the state equipped with the thermal radiation structure of the solid-state image sensor of 2nd Embodiment of this invention 本第2実施形態の放熱部材の模式斜視図Schematic perspective view of the heat dissipation member of the second embodiment 本第2実施形態の変形例にかかる放熱構造が装備された状態の撮像ブロックの模式斜視図The model perspective view of the imaging block of the state equipped with the thermal radiation structure concerning the modification of this 2nd Embodiment

符号の説明Explanation of symbols

1 3色分解プリズム
1r プリズム部材(赤色)
1g プリズム部材(緑色)
1b プリズム部材(青色)
2r 固体撮像素子(赤色用)
2g 固体撮像素子(緑色用)
2b 固体撮像素子(青色用)
3r 撮像素子基板(赤色用)
3g 撮像素子基板(緑色用)
3b 撮像素子基板(青色用)
4 ダイクロイックミラー
5 ダイクロイックミラー
6a 原色の光束(赤色用)
6b 原色の光束(緑色用)
6c 原色の光束(青色用)
7 光束
10、20、30、40、50 撮像ブロック
11、12、13 放熱部材
11a 接触部
11b 放熱部
41、42、43 放熱部材
41a 接触部
41b 放熱部
1 Three-color separation prism 1r Prism member (red)
1g Prism member (green)
1b Prism member (blue)
2r solid-state image sensor (for red)
2g solid-state image sensor (for green)
2b Solid-state image sensor (for blue)
3r Image sensor substrate (for red)
3g Image sensor substrate (for green)
3b Image sensor substrate (for blue)
4 Dichroic mirror 5 Dichroic mirror 6a Primary light flux (for red)
6b Primary color luminous flux (for green)
6c Primary color luminous flux (for blue)
7 Light fluxes 10, 20, 30, 40, 50 Imaging blocks 11, 12, 13 Heat radiation member 11a Contact portion 11b Heat radiation portions 41, 42, 43 Heat radiation member 41a Contact portion 41b Heat radiation portion

Claims (12)

プリズム部材に固定された固体撮像素子に接触される接触部と、上記接触部を通して伝達された熱をその周囲の気体中に放熱するフィン状の放熱部とを有し、上記接触部及び上記放熱部が高熱伝導性材料からなる箔状部材により形成された放熱部材を備えることを特徴とする固体撮像素子の放熱構造。   A contact portion that is in contact with the solid-state imaging device fixed to the prism member; and a fin-like heat dissipation portion that dissipates heat transmitted through the contact portion into the surrounding gas. A heat dissipating structure for a solid-state imaging device, wherein the heat dissipating member is formed of a foil-shaped member made of a highly heat conductive material. 上記放熱部材の上記接触部は、接触補助材料を介して上記固体撮像素子に接触されている、請求項1に記載の固体撮像素子の放熱構造。   The heat radiation structure for a solid-state imaging device according to claim 1, wherein the contact portion of the heat radiating member is in contact with the solid-state imaging device via a contact auxiliary material. 上記放熱部材において、上記フィン状の放熱部は、上記箔状部材がその厚み方向に湾曲された又は折り曲げられた形状を有する、請求項1又は2に記載の固体撮像素子の放熱構造。   3. The heat dissipation structure for a solid-state imaging device according to claim 1, wherein the fin-shaped heat dissipation portion has a shape in which the foil-shaped member is curved or bent in the thickness direction thereof. 光を複数の色成分に分解する色分解プリズムを構成する複数の上記プリズム部材に固定された複数の上記固定撮像素子に、複数の上記放熱部材を個別に接触させている、請求項1から3のいずれか1つに記載の固体撮像素子の放熱構造。   The plurality of heat radiation members are individually brought into contact with the plurality of fixed imaging elements fixed to the plurality of prism members constituting a color separation prism that separates light into a plurality of color components. The heat dissipation structure of the solid-state image sensor as described in any one of these. 上記フィン状の放熱部における上記放熱部材の幅方向が、全ての上記放熱部材において、同一の方向に配置されている、請求項4に記載の固体撮像素子の放熱構造。   The solid-state imaging element heat dissipation structure according to claim 4, wherein a width direction of the heat dissipation member in the fin-shaped heat dissipation portion is arranged in the same direction in all the heat dissipation members. 上記接触部は上記固体撮像素子の一方の面の略全面に接触するように配置され、上記接触部における互いに対向するそれぞれの端部より延在する上記箔状部材により上記フィン状の放熱部が形成される、請求項1から5のいずれか1つに記載の固体撮像素子の放熱構造。   The contact portion is disposed so as to be in contact with substantially the entire surface of one surface of the solid-state imaging device, and the fin-like heat radiating portion is formed by the foil-like member extending from each of the contact portions facing each other. The heat dissipation structure for a solid-state imaging device according to claim 1, which is formed. プリズム部材と、
上記プリズム部材に固定された固体撮像素子と、
上記固体撮像素子に接触される接触部と、上記接触部を通して伝達された熱をその周囲の気体中に放熱するフィン状の放熱部とを有し、上記接触部及び上記放熱部が高熱伝導性材料からなる箔状部材により形成された放熱部材とを備えることを特徴とする固体撮像デバイス。
A prism member;
A solid-state imaging device fixed to the prism member;
A contact portion that is in contact with the solid-state imaging device; and a fin-like heat dissipation portion that dissipates heat transmitted through the contact portion into a surrounding gas. The contact portion and the heat dissipation portion have high thermal conductivity. A solid-state imaging device comprising: a heat radiating member formed of a foil-like member made of a material.
複数のプリズム部材で構成され、光を複数の色成分に分解する色分解プリズムと、
複数の上記プリズム部材に個別に固定された複数の固定撮像素子と、
上記各々の固定撮像素子に個別に接触される接触部と、上記接触部を通して伝達された熱をその周囲の気体中に放熱するフィン状の放熱部とを有し、上記接触部及び上記放熱部が高熱伝導性材料からなる箔状部材により形成された複数の放熱部材とを備えることを特徴とする固体撮像デバイス。
A color separation prism composed of a plurality of prism members, which separates light into a plurality of color components;
A plurality of fixed imaging elements individually fixed to the plurality of prism members;
Each of the fixed imaging elements has a contact portion that is individually contacted, and a fin-like heat dissipation portion that dissipates heat transmitted through the contact portion into a surrounding gas. The contact portion and the heat dissipation portion And a plurality of heat dissipating members formed of a foil-like member made of a highly heat conductive material.
上記放熱部材の上記接触部は、接触補助材料を介して上記固体撮像素子に接触されている、請求項7又は8に記載の固体撮像デバイス。   The solid-state imaging device according to claim 7 or 8, wherein the contact portion of the heat radiating member is in contact with the solid-state imaging element via a contact auxiliary material. 上記放熱部材において、上記フィン状の放熱部は、上記箔状部材がその厚み方向に湾曲された又は折り曲げられた形状を有する、請求項7から9のいずれか1つに記載の固体撮像デバイス。   10. The solid-state imaging device according to claim 7, wherein in the heat dissipation member, the fin-shaped heat dissipation portion has a shape in which the foil-shaped member is curved or bent in the thickness direction. 上記フィン状の放熱部における上記放熱部材の幅方向が、全ての上記放熱部材において、同一の方向に配置されている、請求項8に記載の固体撮像デバイス。   The solid-state imaging device according to claim 8, wherein a width direction of the heat radiating member in the fin-shaped heat radiating portion is arranged in the same direction in all the heat radiating members. 上記接触部は上記固体撮像素子の一方の面の略全面に接触するように配置され、上記接触部における互いに対向するそれぞれの端部より延在する上記箔状部材により上記フィン状の放熱部が形成される、請求項7から11のいずれか1つに記載の固体撮像デバイス。   The contact portion is disposed so as to be in contact with substantially the entire surface of one surface of the solid-state imaging device, and the fin-like heat radiating portion is formed by the foil-like member extending from each of the contact portions facing each other. The solid-state imaging device according to claim 7, wherein the solid-state imaging device is formed.
JP2007030212A 2007-02-09 2007-02-09 Solid-state imaging device heat dissipation structure and solid-state imaging device Expired - Fee Related JP4964610B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007030212A JP4964610B2 (en) 2007-02-09 2007-02-09 Solid-state imaging device heat dissipation structure and solid-state imaging device
US12/028,109 US7554068B2 (en) 2007-02-09 2008-02-08 Heat radiating structure for solid-state image sensor, and solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030212A JP4964610B2 (en) 2007-02-09 2007-02-09 Solid-state imaging device heat dissipation structure and solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2008199158A true JP2008199158A (en) 2008-08-28
JP4964610B2 JP4964610B2 (en) 2012-07-04

Family

ID=39757735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030212A Expired - Fee Related JP4964610B2 (en) 2007-02-09 2007-02-09 Solid-state imaging device heat dissipation structure and solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4964610B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177262A (en) * 2010-02-26 2011-09-15 Olympus Corp Solid image pickup apparatus
KR101413869B1 (en) * 2011-04-01 2014-06-30 가부시키가이샤 히다치 고쿠사이 덴키 Imaging apparatus and imaging apparatus production method
JP2015045772A (en) * 2013-08-29 2015-03-12 カシオ計算機株式会社 Heat radiation structure and heat radiation method of electronic component, and electronic apparatus
JP2015050566A (en) * 2013-08-30 2015-03-16 オリンパスメディカルシステムズ株式会社 Imaging apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131291U (en) * 1987-02-10 1988-08-26
JPH04219083A (en) * 1990-12-19 1992-08-10 Matsushita Electric Ind Co Ltd Solid-state image pickup device
JPH05122566A (en) * 1991-10-30 1993-05-18 Sony Corp Fitting device for solid-state image pickup device
JP2003282802A (en) * 2002-03-27 2003-10-03 Matsushita Electric Ind Co Ltd Heat sink and method of manufacturing the same
JP2005051519A (en) * 2003-07-29 2005-02-24 Pentax Corp Digital camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131291U (en) * 1987-02-10 1988-08-26
JPH04219083A (en) * 1990-12-19 1992-08-10 Matsushita Electric Ind Co Ltd Solid-state image pickup device
JPH05122566A (en) * 1991-10-30 1993-05-18 Sony Corp Fitting device for solid-state image pickup device
JP2003282802A (en) * 2002-03-27 2003-10-03 Matsushita Electric Ind Co Ltd Heat sink and method of manufacturing the same
JP2005051519A (en) * 2003-07-29 2005-02-24 Pentax Corp Digital camera

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177262A (en) * 2010-02-26 2011-09-15 Olympus Corp Solid image pickup apparatus
KR101413869B1 (en) * 2011-04-01 2014-06-30 가부시키가이샤 히다치 고쿠사이 덴키 Imaging apparatus and imaging apparatus production method
JP2015045772A (en) * 2013-08-29 2015-03-12 カシオ計算機株式会社 Heat radiation structure and heat radiation method of electronic component, and electronic apparatus
JP2015050566A (en) * 2013-08-30 2015-03-16 オリンパスメディカルシステムズ株式会社 Imaging apparatus

Also Published As

Publication number Publication date
JP4964610B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
EP2993885B1 (en) Image photographing apparatus
US8422523B2 (en) Laser light-source apparatus and projector apparatus
JP4903067B2 (en) Solid-state image sensor heat dissipation structure
TW591322B (en) Liquid crystal projector
JP2006319720A (en) Image pickup element driver and photographing device using the same
JP4964610B2 (en) Solid-state imaging device heat dissipation structure and solid-state imaging device
JP4890398B2 (en) Imaging device
US7554068B2 (en) Heat radiating structure for solid-state image sensor, and solid-state image pickup device
JP4964704B2 (en) Imaging device
JP2009272789A (en) Solid-state imaging apparatus
JP5090820B2 (en) Solid-state imaging device heat dissipation structure and solid-state imaging device
JP2010032945A (en) Heat radiation device for dmd element
JP2008300899A (en) Imaging apparatus
KR101413869B1 (en) Imaging apparatus and imaging apparatus production method
CN110531575B (en) Light source device and projection device
JP2009010800A (en) Imaging apparatus
EP3599493B1 (en) Imaging apparatus
JP2008193565A (en) Solid-state imaging device
JP5427076B2 (en) Heat dissipation structure of 3CCD compact camera
US20230055542A1 (en) Optical engine module
JP5574776B2 (en) Lens barrel and imaging device
JP2008193564A (en) Solid-state image pickup device
JP2009124622A (en) Ccd cooling structure, ccd camera, and ccd cooling method
JP2006245961A (en) Fitting structure of imaging element, and imaging device
CN116165832A (en) Optical machine module and projection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Ref document number: 4964610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees