WO2012137370A1 - 再生エネルギー型発電装置 - Google Patents

再生エネルギー型発電装置 Download PDF

Info

Publication number
WO2012137370A1
WO2012137370A1 PCT/JP2011/071673 JP2011071673W WO2012137370A1 WO 2012137370 A1 WO2012137370 A1 WO 2012137370A1 JP 2011071673 W JP2011071673 W JP 2011071673W WO 2012137370 A1 WO2012137370 A1 WO 2012137370A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
tower
nacelle
refrigerant
hydraulic
Prior art date
Application number
PCT/JP2011/071673
Other languages
English (en)
French (fr)
Inventor
悠 明石
松尾 毅
慎輔 佐藤
拓郎 亀田
森井 喜之
文夫 浜野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2011/058647 external-priority patent/WO2012137311A1/ja
Priority claimed from PCT/JP2011/068284 external-priority patent/WO2013021488A1/ja
Priority to EP11810981.8A priority Critical patent/EP2532890A4/en
Priority to IN3061DEN2012 priority patent/IN2012DN03061A/en
Priority to CN2011800043868A priority patent/CN102822511A/zh
Priority to AU2011310939A priority patent/AU2011310939A1/en
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2012503813A priority patent/JP4995357B1/ja
Priority to KR1020127010773A priority patent/KR20120139669A/ko
Priority to US13/363,166 priority patent/US8684682B2/en
Priority to PCT/JP2012/001077 priority patent/WO2013051167A1/en
Priority to PCT/JP2012/070492 priority patent/WO2013042487A1/ja
Publication of WO2012137370A1 publication Critical patent/WO2012137370A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • F28D1/022Heat exchangers immersed in a large body of liquid for immersion in a natural body of water, e.g. marine radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • F05B2230/61Assembly methods using auxiliary equipment for lifting or holding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/916Mounting on supporting structures or systems on a stationary structure with provision for hoisting onto the structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a regenerative energy type power generation apparatus that transmits rotational energy of a rotor obtained from a regenerative energy source to a generator via a hydraulic transmission, and particularly relates to a regenerative energy type power generation apparatus provided with a cooling mechanism of a hydraulic transmission.
  • Patent Document 1 describes a wind power generation device in which a hydraulic pump, a hydraulic motor, and a generator are provided in a nacelle. In this wind power generator, the rotational energy of the rotor is transmitted to the generator via a hydraulic transmission (see FIG. 7 of Patent Document 1).
  • Patent Document 2 describes a wind power generator in which a hydraulic pump is provided in a nacelle, a hydraulic motor and a generator are provided in a lower portion of the tower, and the hydraulic pump and the hydraulic motor are connected by piping. Yes.
  • Patent Document 3 describes a wind power generator provided with a cooling system for cooling a converter, a transformer, and a control device.
  • This cooling system has a plurality of heat exchangers attached to the outer peripheral surface of the tower, and in the heat exchanger, heat is exchanged between the refrigerant after cooling the converter, the transformer, and the control device with the atmosphere. It has become.
  • Patent Document 4 describes a cooling device for a wind power generator for cooling a plurality of devices (converters, transformers, bearing boxes, generators, etc.). This cooling device cools the cooling water after cooling a plurality of devices by a heat exchanger attached to the outer wall of the tower or nacelle.
  • renewable energy generators equipped with a hydraulic transmission use renewable energy such as wind, tidal currents, rivers, and ocean currents, so they are often installed in locations where there are large temperature changes in the surrounding environment such as outside air temperature and water temperature.
  • the hydraulic oil temperature of the hydraulic transmission also changes.
  • the viscosity of the hydraulic oil changes with temperature changes, the hydraulic oil becomes highly viscous at low temperatures and the energy loss of the hydraulic transmission increases, and at high temperatures, the hydraulic oil deteriorates and the deterioration speed of the hydraulic oil increases and lubricity Deteriorates and wear of the sliding part occurs or oil leakage increases. Therefore, in a power generation device including a hydraulic transmission, it is required to keep the hydraulic oil at an appropriate temperature.
  • the conventional techniques disclosed in Patent Documents 3 and 4 do not disclose such a configuration. .
  • the cooling devices disclosed in Patent Documents 3 and 4 are configured to exchange heat with the air after cooling the heat generation source, but generally air cooling is not as high in heat exchange efficiency as water cooling. Therefore, it was necessary to increase the size of the fan for taking in the atmosphere or to install a large number of fans.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a regenerative energy type power generation apparatus including a cooling mechanism that can efficiently cool hydraulic oil of a hydraulic transmission.
  • a renewable energy type power generation device is a renewable energy type power generation device that generates electric power from renewable energy, and includes a tower, a nacelle that is pivotally supported at the tip of the tower, and stored in the nacelle.
  • a main shaft that rotates together with the rotor blades, a hydraulic pump that is housed in the nacelle and is driven by rotation of the main shaft, a hydraulic motor that is driven by hydraulic oil supplied from the hydraulic pump, and a hydraulic motor that is coupled
  • a hydraulic oil line that is provided between the hydraulic pump and the hydraulic motor and through which the hydraulic oil flows, and a refrigerant line through which a refrigerant that cools the hydraulic oil circulates via an intermediate heat exchanger
  • a main heat exchanger that cools the refrigerant by exchanging heat with a cold water source including seawater, lake water, river water, or groundwater around the tower base.
  • One of the hydraulic oil line and the refrigerant line relatively connects the first pipe supported on the nacelle side, the second pipe supported on the
  • the coolant used for cooling the hydraulic oil is cooled by exchanging heat with a cold water source composed of seawater, lake water, river water, or groundwater around the tower base.
  • the refrigerant can be cooled.
  • one of the hydraulic oil line and the refrigerant line is divided into a first pipe supported on the nacelle side and a second pipe supported on the tower side, and the first pipe and the second pipe are connected by a connecting portion having a swivel structure. Since the pipes are connected so as to be relatively rotatable, even when the nacelle turns, fluid can be smoothly exchanged between the first pipe on the nacelle side and the second pipe on the tower side. .
  • the hydraulic motor is disposed between the tip and the base of the tower, and the hydraulic oil line extends from the hydraulic pump in the nacelle to the hydraulic motor in the tower.
  • the hydraulic oil line includes the first pipe, the second pipe, and the connection portion, the first pipe is connected to the hydraulic pump, and the second pipe is the hydraulic motor. It may be connected to.
  • the hydraulic motor is arranged between the tip and base of the tower, the hydraulic oil line is extended to the tower side, and the hydraulic oil and the refrigerant exchange heat in the tower. Therefore, it is not necessary to extend a refrigerant line for cooling the hydraulic oil to the nacelle. Therefore, compared with the case where the refrigerant is pumped up to the nacelle height by the refrigerant line, the power of the pump can be reduced, and the pump can be downsized.
  • the hydraulic motor is supported on the nacelle side, while the intermediate heat exchanger is supported on the tower side, and the hydraulic oil line includes the hydraulic pump and the hydraulic pressure
  • a hydraulic oil circulation line through which hydraulic oil circulates between the motor and a hydraulic oil branch line branched from the low pressure side of the hydraulic oil circulation line and returning to the hydraulic oil circulation line through the intermediate heat exchanger
  • the hydraulic oil branch line includes the first pipe, the second pipe, and the connection portion, the first pipe is connected to the hydraulic oil circulation line, and the second pipe is connected to the intermediate heat exchanger. It may be connected.
  • the hydraulic motor is supported on the nacelle side, and the hydraulic oil branch line branched from the hydraulic oil circulation line is connected to the intermediate heat exchanger on the tower side.
  • the flow rate of hydraulic fluid passing through the connecting portion can be reduced.
  • the piping structure can be simplified.
  • the hydraulic oil branch line and the connecting portion can be configured by piping with low pressure resistance, and cost can be reduced.
  • the hydraulic motor and the generator are arranged inside the nacelle, while the intermediate heat exchanger is supported on the nacelle side, and the refrigerant line is It has the 1st piping, the 2nd piping, and the connection part,
  • the 1st piping may be connected to the intermediate heat exchanger side
  • the 2nd piping may be connected to the main heat exchanger side.
  • the hydraulic motor and the generator are arranged inside the nacelle, and the refrigerant line is connected to the intermediate heat exchanger supported on the nacelle side via the connection portion. Therefore, the cost can be reduced.
  • the regenerative energy type power generator includes a first flow path through which a fluid from the nacelle side toward the tower side flows, a second flow path through which a fluid from the tower side toward the nacelle side flows, and one or a plurality of the first flow paths.
  • a first jacket including an annular flow path communicating with the pipe; and an annular flow path provided to surround the tubular member and communicated with the second pipe via a second communication port provided in the second flow path. It is preferable that the first jacket and the second jacket are attached to the tubular member through a bearing so as to be relatively pivotable.
  • the fluid flowing from the nacelle side toward the tower side is formed in a tubular member from the annular passage of the first jacket connected to the first pipe through the first communication port. And is fed from the first flow path to the second pipe.
  • the fluid heading from the tower side to the nacelle side flows into the second flow path formed in the tubular member from the annular flow path of the second jacket connected to the second pipe through the second communication port, and the second It is fed from the flow path to the first pipe.
  • the first jacket and the second jacket are relatively pivotally attached to the tubular member via the bearings, the fluid traveling from the nacelle side to the tower side and the fluid traveling from the tower side to the nacelle side
  • the nacelle-side piping and the tower-side piping can be turned relative to each other while ensuring the flow.
  • the tubular member may be provided with a cable pipe that accommodates a cable extending from the nacelle side to the tower side further inside the first flow path and the second flow path.
  • the regenerative energy type power generator preferably further includes a water supply source that supplies water to the refrigerant line, and a pump that circulates the refrigerant in which an antifreeze is added to the water in the refrigerant line.
  • a water supply source that supplies water to the refrigerant line and a pump that circulates the refrigerant in the refrigerant line
  • the circulation amount of the refrigerant can be adjusted according to, for example, a change in the outside air temperature.
  • the hydraulic oil can be maintained at a constant temperature.
  • the refrigerant to which the antifreeze liquid is added the refrigerant can be prevented from freezing even when the outside air temperature becomes equal to or lower than the freezing temperature of water, and the cooling mechanism can be smoothly operated.
  • the water supply source may be a refrigerant tank that stores the refrigerant.
  • the refrigerant tank may be disposed at an upper portion of the tower, and the refrigerant tank may be open to a space in the tower.
  • various cooling devices that can secure a sufficient water pressure below the refrigerant line and are connected to the refrigerant line.
  • the power of the pump can be reduced, and the pump can be reduced in size.
  • the water supply source is a refrigerant tank that stores the refrigerant
  • the refrigerant tank is disposed inside the tower, and the refrigerant tank is sealed with respect to the space in the tower. Also good.
  • the arrangement of the refrigerant tank for example, the refrigerant tank is arranged below the refrigerant line. You can do it freely.
  • a filter that prevents foreign matters contained in the cold water source from entering the casing is provided at the cold water source inlet of the casing that houses the main heat exchanger.
  • the cold water source consists of seawater, lake water, river water or groundwater
  • there are foreign substances such as organisms in these and if these foreign substances adhere to the heat transfer tubes of the main heat exchanger, the heat transfer efficiency is improved. It will decline. In particular, it is inevitable that the heat transfer efficiency gradually decreases because the attached organisms grow on the heat transfer tubes. Therefore, by providing a filter at the cold water source inlet of the casing that houses the main heat exchanger as in this configuration, foreign matter can be prevented from entering the periphery of the heat transfer tube, and a decrease in heat transfer efficiency can be prevented.
  • the main heat exchanger is preferably attached to a foundation on which the tower is installed. Thereby, the cold water side of the main heat exchanger can be simplified.
  • a flow rate adjusting structure for adjusting the flow rate of the cold water source is disposed around the heat transfer tube of the heat exchanger, and the upper limit of the distance between the flow rate adjusting structure and the heat transfer tube is The heat transfer tube may be set based on a distance at which a predetermined heat transfer coefficient is obtained, and the lower limit may be set based on a distance at which foreign matter attached to the heat transfer tube peels. This is because the flow rate of the cold water source flowing around the heat transfer tube affects the heat transfer rate of the heat transfer tube, and thus a flow rate adjusting structure is arranged around the heat transfer tube so as to obtain a suitable heat transfer rate.
  • the upper limit of the distance between the flow rate adjusting structure and the heat transfer tube is set based on the distance at which a predetermined heat transfer coefficient can be obtained in the heat transfer tube, so that a heat transfer coefficient suitable for cooling the refrigerant can be obtained. Can be obtained.
  • the lower limit of the distance between the flow rate adjusting structure and the heat transfer tube is set based on the distance at which the foreign matter adhering to the heat transfer tube is peeled off, thereby suppressing the accumulation of foreign matter on the heat transfer tube. it can.
  • a spray nozzle for injecting the cold water source may be provided on the surface of the heat transfer tube of the main heat exchanger.
  • the heat exchanger may be a multi-tube heat exchanger having a plurality of heat transfer tubes.
  • a heat exchanger here is a main heat exchanger or an intermediate heat exchanger.
  • the renewable energy type power generation device is a wind power generation device, and the tower extends vertically upward from the base portion toward the tip portion, and the main shaft rotates by receiving wind by the rotor blades. It may be.
  • the renewable energy type power generator further includes a generator cooler that cools the generator with air that is housed in the nacelle and is taken in from the periphery of the nacelle.
  • the efficient cooling mechanism of a renewable energy type electric power generating apparatus can be constructed
  • a renewable energy power generation device is a renewable energy power generation device that generates electric power from renewable energy, and a tower, and a nacelle that is turnably supported at a tip of the tower.
  • a main shaft that is housed in the nacelle and rotates together with the rotor blades, a hydraulic pump that is housed in the nacelle and is driven by rotation of the main shaft, and a hydraulic motor that is driven by hydraulic oil supplied from the hydraulic pump;
  • a generator connected to the hydraulic motor, a hydraulic oil circulation line that is provided between the hydraulic pump and the hydraulic motor, and through which the hydraulic oil flows, the hydraulic oil, seawater around the tower base, lake water, A main heat exchanger that is cooled by exchanging heat with a cold water source comprising river water or groundwater, and the hydraulic oil circulation line and the hydraulic oil circulation line.
  • One of the hydraulic oil branch lines branched from the first pipe supported on the nacelle side, the second pipe supported on the tower side, the first pipe and the second pipe relatively And a connecting portion that is
  • the hydraulic oil is cooled by exchanging heat with a cold water source composed of seawater, lake water, river water, or groundwater around the tower base, so that the hydraulic oil is cooled with high efficiency by water cooling.
  • a cold water source composed of seawater, lake water, river water, or groundwater around the tower base
  • the hydraulic oil circulation line and the hydraulic oil branch line is divided into a first pipe supported on the nacelle side and a second pipe supported on the tower side, and the first pipe is connected by a connecting portion having a swivel structure. Since the second pipe and the second pipe are connected so as to be relatively rotatable, even when the nacelle turns, fluid is smoothly exchanged between the first pipe on the nacelle side and the second pipe on the tower side. be able to.
  • the efficient cooling mechanism of a renewable energy type electric power generating apparatus can be constructed
  • the coolant used for cooling the hydraulic oil is cooled by exchanging heat with a cold water source including seawater, lake water, river water, or groundwater around the tower base.
  • the refrigerant can be cooled with efficiency.
  • one of the hydraulic oil line and the refrigerant line is divided into a first pipe supported on the nacelle side and a second pipe supported on the tower side, and the first pipe and the second pipe are connected by a connecting portion having a swivel structure. Since the pipes are connected so as to be relatively rotatable, even when the nacelle turns, fluid can be smoothly exchanged between the first pipe on the nacelle side and the second pipe on the tower side. .
  • the hydraulic oil is cooled by exchanging heat with a cold water source including seawater, lake water, river water, or groundwater around the tower base. Can be cooled.
  • a cold water source including seawater, lake water, river water, or groundwater around the tower base.
  • one of the hydraulic oil circulation line and the hydraulic oil branch line is divided into a first pipe supported on the nacelle side and a second pipe supported on the tower side, and the first pipe is connected by a connecting portion having a swivel structure. Since the second pipe and the second pipe are connected so as to be relatively rotatable, even when the nacelle turns, fluid is smoothly exchanged between the first pipe on the nacelle side and the second pipe on the tower side. be able to.
  • FIG. 2A It is a figure showing the whole wind power generator composition concerning a 1st embodiment of the present invention. It is a side view which shows the specific structural example of the main heat exchanger of FIG. It is an AA line sectional view of the main heat exchanger shown in Drawing 2A. It is a perspective view of the main heat exchanger shown in FIG. 2A. It is a perspective view which shows the main heat exchanger which has a deposit
  • FIG. 5 is a cross-sectional view taken along line BB showing a first configuration example of the swivel structure of FIG. 4.
  • FIG. 5 is a cross-sectional view taken along line CC of the first configuration example of the swivel structure of FIG.
  • It is a figure which shows the 2nd structural example of the swivel structure applied to the wind power generator which concerns on embodiment of this invention.
  • It is a figure which shows the 3rd structural example of the swivel structure applied to the wind power generator which concerns on embodiment of this invention.
  • FIG. 1 is a diagram illustrating an overall configuration of the wind turbine generator according to the first embodiment.
  • the wind power generator 1 mainly includes a tower 2, a nacelle 4 provided at the tower tip 2 ⁇ / b> B, a rotor 6 that rotates by receiving wind, a hydraulic pump 8 and a hydraulic motor 10,
  • the generator 12 is connected to the hydraulic motor 10.
  • FIG. 1 illustrates an offshore wind power generator installed on the sea surface SL as the wind power generator 1, but the wind power generator 1 may be installed on land where a cold water source exists nearby. Good.
  • the tower 2 is erected on the foundation 3 located at a height near the sea surface SL, and extends from the base 2A on the foundation 3 side to the tip 2B in the vertical direction.
  • a nacelle 4 is provided on the tip 2 ⁇ / b> B of the tower 2.
  • the nacelle 4 has a nacelle base plate 16, and the nacelle base plate 16 is supported by a nacelle bearing 18 in a freely rotatable manner at the tip end portion 2 ⁇ / b> B of the tower 2.
  • the nacelle base plate 16 is fixed to the inner ring 18 ⁇ / b> A of the nacelle bearing 18, and the tip 2 ⁇ / b> B of the tower 2 is fixed to the outer ring 18 ⁇ / b> B of the nacelle bearing 18.
  • a nacelle turning mechanism 19 is attached to the nacelle base plate 16, and a yaw drive mechanism 13 is disposed on the nacelle base plate. By the nacelle turning mechanism 19 and the yaw drive mechanism 13, the nacelle base plate 16 is turned with respect to the tip 2B of the tower 2.
  • the nacelle turning mechanism 19 may be configured by, for example, a gear 19 ⁇ / b> A that meshes with an internal gear 19 ⁇ / b> B provided on the inner peripheral surface of the tip 2 ⁇ / b> B of the tower 2.
  • the yaw drive mechanism 13 includes, for example, a speed reducer that is directly connected to the shaft of the gear 19A or is connected to the gear 19A via a pinion, a clutch, a yaw motor, an electromagnetic brake, and a housing that houses these. It may be comprised. Note that a plurality of yaw drive mechanisms 13 may be provided on a circumference centered on the axis of the tower 2.
  • the nacelle 4 houses a main shaft 14 and a hydraulic pump 8 attached to the main shaft 14.
  • the main shaft 14 is rotatably supported on the nacelle 4 by a main shaft bearing 15.
  • the rotor 6 includes a hub 6A and a plurality of rotary blades 6B extending radially from the hub 6A.
  • the hub 6 ⁇ / b> A of the rotor 6 is connected to the main shaft 14. For this reason, when the rotor 6 rotates by receiving wind, the main shaft 14 also rotates together with the hub 6A.
  • the rotation of the main shaft 14 is input to the hydraulic pump 8, whereby high-pressure hydraulic oil (high-pressure oil) is generated in the hydraulic pump 8.
  • the hydraulic motor 10 is disposed in the tower internal space between the tip 2B and the base 2A of the tower 2.
  • the hydraulic motor 10 is disposed at a position closer to the distal end portion 2B than the base portion 2A of the tower 2, that is, above the tower.
  • the hydraulic motor 10 is supported on the tower 2 side.
  • the hydraulic motor 10 may be installed on a floor, a plate, a shelf, or the like that is fixed to the tower 2.
  • the hydraulic motor 10 is driven by high-pressure oil supplied from the hydraulic pump 8 in the nacelle 4.
  • the generator 12 connected to the hydraulic motor 10 via the output shaft is also supported on the tower 2 side.
  • the generator 12 may also be installed on a floor, board, shelf, or the like. It should be noted that the relative positional relationship between the hydraulic motor 10 and the generator 12 may be arranged so that they are positioned horizontally with respect to each other, or as shown in FIG. It may be arranged.
  • the hydraulic pump 8 and the hydraulic motor 10 are connected by a hydraulic oil line 30 through which hydraulic oil flows.
  • the hydraulic oil line 30 has a high-pressure side pipe that supplies high-pressure oil discharged from the hydraulic pump 8 to the hydraulic motor 10, and a low-pressure that supplies low-pressure hydraulic oil (low-pressure oil) discharged from the hydraulic motor 10 to the hydraulic pump 8.
  • Side piping The high-pressure side pipe is composed of a high-pressure side first pipe 31 supported on the nacelle 4 side and a high-pressure side second pipe 32 supported on the tower 2 side.
  • connection part 100 having a swivel structure is interposed between the high-pressure side first pipe 31 and the high-pressure side second pipe 32, and the high-pressure side first pipe 31 and the high-pressure side second pipe 32 are connected by the connection part 100. And are relatively pivotably connected.
  • the low pressure side pipe is composed of a low pressure side first pipe 34 supported on the nacelle 4 side and a low pressure side second pipe 33 supported on the tower 2 side. Between the low-pressure side first pipe 34 and the low-pressure side second pipe 33, the connection part 100 described above is interposed, and the low-pressure side first pipe 34 and the low-pressure side second pipe 33 are connected by the connection part 100. It is connected to be relatively rotatable.
  • the connection part 100 having a swivel structure is arranged at the turning center of the nacelle 4. The configuration of the connection unit 100 will be described later.
  • the hydraulic oil line 30 branches at least part of the low-pressure oil from the low-pressure side second pipe 33 and introduces it into the intermediate heat exchanger 52, and the low-pressure oil discharged from the intermediate heat exchanger 52 is supplied to the low-pressure side second pipe 30.
  • a hydraulic oil branch line 35 returning to the pipe 33 is further provided.
  • the hydraulic oil branched by the hydraulic oil branch line 35 is cooled by heat exchange with the refrigerant in the intermediate heat exchanger 52 and is returned to the low-pressure side second pipe 33.
  • the hydraulic pump 8 is driven by the main shaft 14 to generate high pressure oil.
  • the high-pressure oil is supplied to the hydraulic motor 10 via the high-pressure side pipe, and the hydraulic motor 10 is driven by the high-pressure oil.
  • the generator 12 connected to the hydraulic motor 10 is driven, and electric power is generated in the generator 12.
  • the low-pressure oil discharged from the hydraulic motor 10 is supplied to the hydraulic pump 8 via the low-pressure side pipe, and is boosted again by the hydraulic pump 8 and sent to the hydraulic motor 10 as high-pressure oil.
  • a cooling mechanism for cooling the hydraulic oil flowing through the hydraulic oil line 30 is further provided.
  • the cooling mechanism can be used for various cooling devices that cool the heat generation source in the nacelle 4 or the tower 2 in addition to the hydraulic oil.
  • the cooling mechanism will be described in detail.
  • the cooling mechanism mainly includes a main heat exchanger 51, an intermediate heat exchanger 52, and a refrigerant line 40.
  • the main heat exchanger 51 cools the refrigerant by exchanging heat between the refrigerant and a cold water source including seawater, lake water, river water, or groundwater around the base 2A of the tower 2.
  • the main heat exchanger 51 is preferably attached to the foundation 3 of the tower 2 to exchange heat between the refrigerant and seawater.
  • the intermediate heat exchanger 52 is disposed in the tower 2, exchanges heat between the hydraulic oil and the refrigerant, and cools the hydraulic oil with the refrigerant.
  • the refrigerant line 40 is a closed loop line that is disposed in the tower 2 and in which a refrigerant that cools the hydraulic oil circulates.
  • a refrigerant that cools the hydraulic oil circulates.
  • the refrigerant water, oil, water to which an antifreeze solution is added, or the like can be used.
  • the refrigerant line 40 is connected between the main heat exchanger 51 and the intermediate heat exchanger 52, and the refrigerant feed that sends the refrigerant cooled by seawater by the main heat exchanger 51 to the intermediate heat exchanger 52.
  • a refrigerant return line 42 which is connected between the line 41 and the intermediate heat exchanger 52 and the main heat exchanger 51 and returns the refrigerant after cooling the hydraulic oil in the intermediate heat exchanger 52 to the main heat exchanger 51; including.
  • the refrigerant line 40 includes a refrigerant branch line 43 branched from the refrigerant feed line 41 and joined to the refrigerant return line 42.
  • the refrigerant branch line 43 is provided with a generator cooler 53 that cools the generator 12.
  • the generator cooler 53 is configured as a cooling jacket provided around the generator 12, for example. In the generator cooler 53, the generator 12 is cooled by heat exchange with the refrigerant supplied from the refrigerant branch line 43.
  • the refrigerant line 40 includes another refrigerant branch line 44 branched from the refrigerant feed line 41 and joined to the refrigerant return line 42.
  • the refrigerant branch line 44 is provided with a tower cooler 54 that cools the space in the tower 2.
  • the tower cooler 54 is configured as a heat exchanger with a fan including a fan and a heat transfer tube group. In the tower cooler 54, the air in the tower 2 sucked (or pushed in) by the fan is cooled by heat exchange with the refrigerant supplied from the refrigerant branch line 44 to the heat transfer tube group. Thereby, the air in the tower 2 heated by the heat radiation from the heat generation source installed in the tower 2 of the wind power generator 1 can be effectively cooled.
  • the refrigerant line 40 includes a refrigerant branch line 45 branched from the refrigerant branch line 44 and joined to the refrigerant return line 42.
  • the refrigerant branch line 45 is provided with a transformer chamber cooler 55 that cools the space in the transformer chamber 21.
  • the transformer chamber 21 is a space that houses a transformer that transforms the electric power generated by the generator 12.
  • the transformer chamber cooler 55 is configured as a heat exchanger with a fan including a fan and a heat transfer tube group. In the transformer chamber cooler 55, the air in the transformer chamber 21 sucked (or pushed in) by the fan is cooled by heat exchange with the refrigerant supplied from the refrigerant branch line 45 to the heat transfer tube group. .
  • the refrigerant line 40 is provided with a refrigerant tank 48 that stores the refrigerant and a pump 47 that circulates the refrigerant.
  • the refrigerant tank 48 and the pump 47 can adjust the circulation amount of the refrigerant in accordance with, for example, a change in the outside air temperature. As a result, the hydraulic oil can be maintained at a constant temperature.
  • the refrigerant tank 48 is disposed at an upper portion of the tower 2, specifically, at an upper position in the height direction of the refrigerant line 40, and is opened to a space in the tower 2.
  • the refrigerant tank 48 in the upper part of the tower 2 and opening the refrigerant tank 48 to the space in the tower 2, the water pressure below the refrigerant line 40 can be sufficiently secured. It becomes possible to reliably supply the refrigerant to various cooling devices (for example, the intermediate heat exchanger 52, the generator cooler 53, the tower cooler 54, and the transformer chamber cooler 55) connected to the line 40. Further, if the siphon effect is used, the power of the pump 47 can be reduced, and the pump 47 can be downsized.
  • various cooling devices for example, the intermediate heat exchanger 52, the generator cooler 53, the tower cooler 54, and the transformer chamber cooler 55
  • FIG. 2A is a side view showing a specific configuration example of the main heat exchanger of FIG. 1
  • FIG. 2B is a cross-sectional view taken along line AA of the main heat exchanger shown in FIG. 2A
  • FIG. FIG. 2B is a perspective view of the main heat exchanger shown in FIG. 2A.
  • the main heat exchanger 51 includes a heat transfer tube 511 through which the refrigerant from the refrigerant line 40 flows, and seawater flows around the heat transfer tube 511. Therefore, piping for flowing seawater is not provided.
  • a flow rate adjusting structure that adjusts the flow rate of the seawater is disposed around the heat transfer tube 511 of the main heat exchanger 51. This is because the flow rate of the seawater flowing around the heat transfer tube 511 affects the heat transfer coefficient of the heat transfer tube 511, and thus a flow rate adjusting structure is arranged around the heat transfer tube 511 so as to obtain a suitable heat transfer rate. Is.
  • a configuration in which a flow rate adjusting block 501 made of concrete is provided around the heat transfer tube 511 is shown.
  • a plurality of the flow velocity adjusting blocks 501 are arranged in a circular shape, and a seawater inflow / outflow hole 502 is provided between adjacent blocks 501 so that seawater flows in or out.
  • Seawater flows into the space surrounded by the flow velocity adjustment block 501 through the seawater inflow / outflow hole 502, and the seawater cools the refrigerant through the periphery of the heat transfer pipe 511, and then passes from the seawater outflow / ingress hole 502 to the outside of the space. leak.
  • the flow rate adjusting block 501 secures the flow rate of the seawater around the heat transfer tube 511 and also has a protective function for preventing large-diameter foreign matter flowing in the seawater from contacting the heat transfer tube 511.
  • the upper limit of the distance between the flow rate adjusting block 501 and the heat transfer tube 511 is set based on the distance at which a predetermined heat transfer coefficient is obtained in the heat transfer tube 511, and the lower limit is a foreign matter adhering to the heat transfer tube 511. You may make it set based on the distance to peel.
  • the upper limit of the distance between the flow velocity adjusting block 501 and the heat transfer tube 511 is set based on the distance at which a predetermined heat transfer coefficient is obtained in the heat transfer tube 511, which is suitable for cooling the refrigerant. It becomes possible to obtain a heat transfer rate.
  • the lower limit of the distance between the flow rate adjusting block 501 and the heat transfer tube 511 is set based on the distance at which the foreign matter adhering to the heat transfer tube 511 is separated, thereby preventing the accumulation of foreign matters on the heat transfer tube 511. can do.
  • the heat transfer rate decreases.
  • the foreign matter deposited on the heat transfer tube 511 is separated by forming a certain space around the heat transfer tube 511. Therefore, by setting the distance that this space can be secured as the lower limit, it is possible to suppress the accumulation of foreign matter on the heat transfer tube 511.
  • any type of heat exchanger may be used for the main heat exchanger 51.
  • a multi-tube heat exchange having a plurality of heat transfer tubes 511 is possible. It is preferable to use a vessel. Thereby, the heat exchange efficiency in the main heat exchanger 511 can be maintained high.
  • a multitubular heat exchanger can be suitably used for the intermediate heat exchanger 52 as well.
  • FIG. 3A is a perspective view showing a main heat exchanger having a deposit removing function.
  • the main heat exchanger 51 has a spray nozzle 521 that injects seawater onto the surface of the heat transfer tube 511.
  • a plurality of spray nozzles 521 are provided around the heat transfer tube 511.
  • the plurality of spray nozzles 521 are connected to the header 522, respectively.
  • Seawater pumped up by the pump 523 is supplied to each spray nozzle 521 via the header 522, and is jetted from the spray nozzle 521 onto the surface of the heat transfer tube 511.
  • the foreign matter contained in seawater adheres to the heat transfer tube 511 of the main heat exchanger 51, the foreign matter can be peeled off by the seawater sprayed from the spray nozzle 521.
  • FIG. 3B is a perspective view showing a main heat exchanger having a deposit removing function of another embodiment.
  • the refrigerant feed line 41, the refrigerant return line 42, and the pump 47 are omitted.
  • the main heat exchanger 51 ′ has a perforated plate header 525 that is disposed around the heat transfer tube 511 and has a plurality of holes 526 formed on one side.
  • the perforated plate header 525 ejects seawater pumped by the pump 523 from the hole 526 and supplies a jet flow around the heat transfer tube 511. By this jet flow, the foreign matter adhered and deposited on the heat transfer tube 511 can be peeled off.
  • the heat transfer tube is applied without applying a paint containing harmful components to the heat transfer tube 511 or injecting chlorine. Adhesion and accumulation of foreign matter on 511 can be suppressed, and the environmental load can be reduced.
  • FIG. 3C is a perspective view showing a main heat exchanger having a deposit removing function of another embodiment.
  • the refrigerant feed line 41, the refrigerant return line 42, and the pump 47 are omitted.
  • the main heat exchanger 51 ′′ has a configuration in which a heat transfer tube 511 is accommodated in a casing 527, and a seawater inlet 528 and a seawater outlet 529 are formed in the casing 527. Further, the seawater inlet 528 includes A filter 528a is provided to prevent foreign matters contained in the seawater from entering the casing 527. As described above, foreign matter such as marine organisms exists in the seawater, and these are the main heat.
  • FIGS. 4 is a diagram showing a first configuration example of the swivel structure applied to the wind turbine generator according to the embodiment of the present invention
  • FIG. 5A is a line BB showing a first configuration example of the swivel structure of FIG.
  • FIG. 5B is a cross-sectional view taken along the line CC of FIG. 4 showing a first configuration example of the swivel structure of FIG.
  • the connection part 100 having a swivel structure in the first configuration example includes a tubular member 111 extending in the axial direction of the tower 2, and a first jacket 112 and a second jacket 115 provided so as to surround the tubular member 111.
  • the first flow path 121 through which high-pressure oil from the hydraulic pump 8 on the nacelle 4 side toward the hydraulic motor 10 at the tower 2 side flows and the second flow path through which low-pressure oil from the hydraulic motor 10 toward the hydraulic pump 8 flows.
  • a flow path 122 is formed.
  • the tubular member 111 has a double tube structure and includes an outer tube 111A, an inner tube 111B, and a partition wall 11C.
  • the partition wall 11C partitions an annular space formed by the outer tube 111A and the inner tube 111B in the circumferential direction to form a plurality of arc-shaped channels 114a and 114b.
  • FIG. 4B shows an example in which two arcuate channels 114a and 114b are formed, more arcuate channels may be formed.
  • the first jacket 112 is provided on the outer peripheral side of the outer tube 111 ⁇ / b> A of the tubular member 111.
  • An annular flow path 112 a formed from the inner wall surface of the first jacket 112 and the outer wall surface of the outer tube 111 ⁇ / b> A communicates with the high-pressure side first pipe 31 connected to the outer periphery of the first jacket 112.
  • the annular flow path 112a communicates with the arc-shaped flow path 114a via the first communication port 113 provided in the outer tube 111A. Further, the arc-shaped flow path 114a communicates with the high-pressure side second pipe 32 connected to the outer periphery of the outer pipe 111A.
  • the first flow path 121 is formed by the annular flow path 112a and the arc-shaped flow path 114a.
  • the high-pressure oil supplied from the high-pressure side first pipe 31 to the first flow path 121 is sent to the high-pressure side second pipe 32 through the annular flow path 112a, the first communication port 113, and the arc-shaped flow path 114a.
  • the second jacket 115 is provided on the outer peripheral side of the outer tube 111 ⁇ / b> A of the tubular member 111, and is disposed closer to the nacelle 4 than the first jacket 112.
  • the second jacket 115 is fastened to the first jacket 112 by a bolt 125.
  • the arcuate flow path 114b of the tubular member 111 communicates with the low pressure side second pipe 33 connected to the outer periphery of the outer pipe 111A.
  • the arc-shaped channel 114b communicates with an annular channel 115a formed by the inner wall surface of the second jacket 115 and the outer wall surface of the outer tube 111A via a second communication port 116 provided in the outer tube 111A. ing.
  • annular flow passage 115 a communicates with the low pressure side first pipe 34 connected to the outer periphery of the second jacket 115.
  • a second flow path 122 is formed by the arc-shaped flow path 114b and the annular flow path 115a.
  • the low-pressure oil supplied from the low-pressure side second pipe 33 to the second flow path 122 is sent to the low-pressure side first pipe 34 through the arc-shaped flow path 114b, the second communication port 116, and the annular flow path 115a.
  • the first jacket 112 and the second jacket 115 are supported on the nacelle 4 side.
  • the tubular member 111 is supported on the tower 2 side.
  • a bearing 118 is provided between the first jacket 112 and the outer tube 111A so as to ensure liquid tightness, and between the second jacket 115 and the outer tube 111A, liquid tightness is ensured.
  • a bearing 119 is provided.
  • the first jacket 112 and the second jacket 113 are pivotally attached to the tubular member 111 by these bearings 118 and 119.
  • the first pipe (high pressure side) is secured while ensuring the flow of high pressure oil from the hydraulic pump 8 on the nacelle 4 side to the hydraulic motor 10 on the tower 2 side and low pressure oil from the hydraulic pump 8 to the hydraulic motor 10.
  • the first pipe 31, the low-pressure side first pipe 34) and the second pipe (the high-pressure side second pipe 32, the low-pressure side second pipe 33) can be turned relative to each other. Therefore, even when the nacelle 4 turns, the high pressure oil and the low pressure oil can be exchanged between the hydraulic pump 8 in the nacelle 4 and the hydraulic motor 10 in the tower 2 via the connection portion 100.
  • the cable pipe 124 is a pipe that accommodates a cable 125 extending from the nacelle 4 side to the tower 2 side.
  • the cable pipe 124 is attached to the nacelle 4 side, such as a power cable used for power supply to a power utilization device arranged in the nacelle 4 such as the hydraulic pump 8 or the like, or a communication cable used for control.
  • a signal cable connected to various measuring devices or a cable 125 such as a lightning protection cable for releasing electricity in the event of a lightning strike to the rotor blade 6B or the nacelle 4 is accommodated.
  • the cable 125 can be prevented from being damaged even when the nacelle 4 is turned.
  • FIG. 6 is a diagram illustrating a second configuration example of the swivel structure applied to the wind turbine generator according to the embodiment of the present invention.
  • the swivel structure connecting portion 100 ′ includes a hydraulic pump 8 housed in the nacelle 4 and a hydraulic motor 10 provided in the tower 2, a first double pipe 130 and a second double pipe. 140 is used for connection.
  • the first double pipe 130 is fixed to the nacelle 4, the second double pipe 140 is fixed to the tower 2, and the first double pipe 130 and the second double pipe 140 are configured to be relatively rotatable. .
  • the specific structure of the 1st double pipe 130 and the 2nd double pipe 140 is demonstrated.
  • the first double pipe 130 includes an upper member 131 and a lower member 133 that are fastened with bolts 135 at the flange portion.
  • a bearing 136 is provided on the joint surface between the upper member 131 and the lower member 133 to maintain liquid tightness.
  • the upper member 131 has a high-pressure oil inlet connected to the discharge side of the hydraulic pump 8 via the high-pressure side first pipe 31 (see FIG. 1) at the upper part.
  • the lower member 133 has an inner peripheral side cylindrical portion and an outer peripheral side cylindrical portion that hang downward from a flange portion joined to the upper member 131, and the side surface of the outer peripheral side cylindrical portion is connected to the suction side of the hydraulic pump 8.
  • a low-pressure oil outlet connected via the low-pressure side first pipe 34 (see FIG. 1) is provided.
  • the first inner pipe 132 of the first double pipe 130 is formed by the upper member 131 and a part of the lower member 133 (inner cylindrical part). Further, a first outer pipe 134 of the first double pipe 130 is formed by a part of the lower member 133 (outer peripheral side cylindrical portion).
  • the second double pipe 140 has a second inner pipe 142 and a second outer pipe 144 provided on the outer periphery of the second inner pipe 142.
  • pressure side 2nd piping 32 (refer FIG. 1) is provided in the lower part of the 2nd double pipe 140.
  • a low-pressure oil inlet connected to the low-pressure side second pipe 33 (see FIG. 1) is provided on the side surface of the second double pipe 140.
  • the first double pipe 130 is rotatably fitted to the second double pipe 140.
  • first double pipe 130 and the second double pipe 140 fitted in this way, a first flow path 151 through which high-pressure oil from the nacelle 4 side toward the tower 2 side flows, and from the tower 2 side to the nacelle 4 side.
  • a second flow path 152 through which the low-pressure oil heading flows is formed.
  • An inner bearing 155 is provided between the inner wall surface of the first inner pipe 132 and the outer wall surface of the second inner pipe 142.
  • An outer bearing 156 is provided between the inner wall surface of the first outer pipe 134 and the outer wall surface of the second outer pipe 144.
  • the first double pipe 130 supported on the nacelle 4 side is rotatably connected to the second double pipe 140.
  • High pressure oil and low pressure oil can be exchanged between the hydraulic pump 8 and the hydraulic motor 10 in the tower 2 through the first double pipe 130 and the second double pipe 140.
  • FIG. 7 is a diagram illustrating a third configuration example of the swivel structure applied to the wind turbine generator according to the embodiment of the present invention.
  • the swivel structure connecting portion 100 ′′ in the third configuration example includes a double pipe 160 extending in the axial direction of the tower 2, and a first jacket 164 and a second jacket 166 provided so as to surround the double pipe 160.
  • a first flow path 171 through which high-pressure oil from the hydraulic pump 8 on the nacelle 4 side to the hydraulic motor 10 on the tower 2 side flows, and low-pressure oil from the hydraulic motor 10 to the hydraulic pump 8 is supplied.
  • a second flow path 172 is formed.
  • the double tube 160 includes an inner tube 160A and an outer tube 160B.
  • An inner channel is formed inside the inner tube 160A, and an outer channel is formed by the inner tube 160A and the outer tube 160B.
  • the first jacket 164 is provided on the outer peripheral side of the inner tube 160A.
  • An annular channel 164 a formed from the inner wall surface of the first jacket 164 and the outer wall surface of the inner tube 160 ⁇ / b> A communicates with the high-pressure side first pipe 31 connected to the outer periphery of the first jacket 164.
  • the annular flow path 164a communicates with the inner flow path via the first communication port 161 provided in the inner pipe 160A.
  • the inner flow path communicates with the high-pressure side second pipe 32 connected to the lower end portion of the inner pipe 160A.
  • a first flow path 171 is formed by the annular flow path 164a and the inner flow path.
  • the high-pressure oil supplied from the high-pressure side first pipe 31 to the first flow path 171 is sent to the high-pressure side second pipe 32 through the annular flow path 164a, the first communication port 161, and the inner flow path.
  • the second jacket 166 is provided on the outer peripheral side of the outer tube 160B, and is disposed closer to the tower 2 than the first jacket 164.
  • the second jacket 166 is fastened to the first jacket 164 by a bolt 175.
  • the outer flow path communicates with the low-pressure side second pipe 33 connected to the outer periphery of the outer pipe 160B, and an annular flow formed between the inner wall surface of the second jacket 166 and the outer wall surface of the inner pipe 160A. It communicates with the path 166a.
  • the annular channel 166 a communicates with the low-pressure side first pipe 34 connected to the outer periphery of the second jacket 166.
  • a second flow path 172 is formed by the outer flow path and the annular flow path 166a. The low pressure oil supplied from the low pressure side second pipe 33 to the second flow path 172 is sent to the low pressure side first pipe 34 through the outer flow path and the annular flow path 166a.
  • the first jacket 164 and the second jacket 166 are supported on the nacelle 4 side.
  • the double pipe 160 is supported on the tower 2 side.
  • a bearing 176 is provided between the first jacket 164 and the inner tube 160A of the double tube 160 so as to ensure liquid tightness.
  • a bearing 176 is provided between the second jacket 166 and the inner tube 160A so as to ensure liquid tightness, and between the second jacket 166 and the outer tube 160B, liquid tightness is ensured.
  • a bearing 177 is provided. With these bearings 176 and 177, the first jacket 164 and the second jacket 166 are pivotally attached to the double pipe 160.
  • the first pipe (high pressure side) is secured while ensuring the flow of high pressure oil from the hydraulic pump 8 on the nacelle 4 side to the hydraulic motor 10 on the tower 2 side and low pressure oil from the hydraulic pump 8 to the hydraulic motor 10.
  • the first pipe 31, the low-pressure side first pipe 34) and the second pipe (the high-pressure side second pipe 32, the low-pressure side second pipe 33) can be turned relative to each other. Therefore, even when the nacelle 4 turns, the high pressure oil and the low pressure oil can be exchanged between the hydraulic pump 8 in the nacelle 4 and the hydraulic motor 10 in the tower 2 via the connection portion 100.
  • the refrigerant used for cooling the hydraulic oil is cooled by exchanging heat with the seawater around the base 2A of the tower 2, so that the refrigerant is cooled more efficiently than air cooling. be able to.
  • the hydraulic oil line 30 is divided into a first pipe supported on the nacelle 4 side and a second pipe supported on the tower 2 side, and by the connection parts 100, 100 ′, 100 ′′ having a swivel structure, Since the first pipe and the second pipe are connected so as to be relatively rotatable, even if the nacelle 4 turns, the fluid is connected between the first pipe on the nacelle 4 side and the second pipe on the tower 2 side. Can be exchanged smoothly.
  • the hydraulic motor 10 is arranged between the tip 2B and the base 2A of the tower 2, the hydraulic oil line 30 is extended to the tower 2 side. Since heat can be exchanged with the refrigerant, there is no need to extend the refrigerant line 40 for cooling the hydraulic oil to the nacelle 4. Therefore, compared with the case where the refrigerant is pumped up to the nacelle height by the refrigerant line 40, the power of the pump 47 can be reduced, and the pump 47 can be downsized.
  • the first modification shown in FIG. 8 has a configuration in which a refrigerant branch line 44 ′ for connecting the transformer chamber cooler 55 and the tower cooler 54 in series is provided.
  • the refrigerant branch line 44 ′ is configured to be branched from the refrigerant feed line 41 and joined to the refrigerant return line 42.
  • a transformer chamber cooler 55 and a tower cooler 54 are connected in series to the refrigerant branch line 44 ′. Provided.
  • the refrigerant flowing through the refrigerant branch line 44 ′ is heat-exchanged with the air in the transformer chamber 21 by the transformer chamber cooler 55 to cool the air in the transformer chamber 21.
  • the refrigerant discharged from the transformer chamber cooler 55 is supplied to the tower cooler 54 and heat-exchanged with the air in the tower 2 to cool the air in the tower 2.
  • the refrigerant that has passed through these coolers is returned to the main heat exchanger 51.
  • these coolers may be provided in the refrigerant branch line 44 ′ in the order of the tower cooler 54 and the transformer chamber cooler 55, and the arrangement order of the coolers is not particularly limited.
  • the piping configuration can be simplified by providing a refrigerant line that connects a plurality of heat generation sources in series.
  • the refrigerant return line 42 is branched into two on the inlet side of the main heat exchangers 51a and 51b, one line is connected to the main heat exchanger 51a, and the other line is connected to the main heat exchanger 51b.
  • Each line is provided with a refrigerant circulation pump 47a, 47b.
  • the lines through which the refrigerant cooled by the main heat exchangers 51a and 51b flows join at the outlet side of the main heat exchangers 51a and 51b and are connected to the refrigerant feed line 41.
  • a cooling function can be made high by providing several main heat exchangers 51a and 51b.
  • the number of installed main heat exchangers is preferably determined from the total calorific value of the heat generation source to be cooled.
  • the third modification shown in FIG. 10 has a configuration in which a refrigerant tank 49 connected to the refrigerant line 40 is disposed inside the tower 2 and the refrigerant tank 49 is sealed with respect to the space in the tower. Yes.
  • the refrigerant tank 49 is arranged inside the tower 2 and the refrigerant tank 49 is sealed with respect to the space in the tower 2.
  • the refrigerant tank 49 is arranged below the refrigerant line.
  • the refrigerant tank 49 can be arranged freely.
  • the figure shows a case where one refrigerant tank 49 is installed, a plurality of refrigerant tanks 49 may be installed or used in combination with the open type refrigerant tank 48 shown in FIG. Also good.
  • FIG. 11 is a diagram showing an overall configuration of a wind turbine generator according to the second embodiment of the present invention.
  • the wind power generator 1 according to the present embodiment is the same as the wind power generator 1 according to the first embodiment except that the configurations of the hydraulic transmission and the hydraulic oil line 30 are different. Therefore, here, the description will focus on the differences from the first embodiment, and in FIG. 11, the same reference numerals are assigned to portions common to the wind power generator 1, and the description thereof is omitted.
  • the nacelle turning mechanism 19 and the yaw drive mechanism 13 are omitted.
  • the hydraulic oil line 30 includes a hydraulic oil circulation line that circulates hydraulic oil between the hydraulic pump 8 and the hydraulic motor 10, and a hydraulic oil branch line 38 that is connected in parallel to the hydraulic oil circulation line.
  • the hydraulic oil circulation line includes a high-pressure oil line 36 connecting the hydraulic oil outlet side of the hydraulic pump 8 and the hydraulic oil inlet side of the hydraulic motor 10, the hydraulic oil outlet side of the hydraulic motor 10, and the hydraulic oil inlet side of the hydraulic pump 8. And a low-pressure oil line 37 connecting the two.
  • the hydraulic oil branch line 38 is branched from the low-pressure oil line 37 and extends from the nacelle 4 side to the tower 2 side via the connection part 100 having a swivel structure, and is an inlet of the intermediate heat exchanger 52 on the tower 2 side. Connected to the side. Further, the hydraulic oil branch line 38 connected to the outlet side of the intermediate heat exchanger 52 is extended from the tower 2 side to the nacelle 4 side via the connection portion 100 and joined to the low pressure oil line 37.
  • the connection unit 100 can employ the configuration described in the first embodiment.
  • the low pressure oil branched from the low pressure oil line 37 is introduced into the intermediate heat exchanger 52 through the hydraulic oil branch line 38, cooled by the refrigerant in the intermediate heat exchanger 52, and then passed through the hydraulic oil branch line 38. Returned to the low pressure oil line 37.
  • the hydraulic motor 8 is supported on the nacelle 4 side, and the hydraulic oil branch line 37 branched from the low pressure oil line 37 is connected to the intermediate heat exchanger 52 on the tower 2 side.
  • Many hydraulic fluid lines 30 can be shortened, while the hydraulic fluid flow rate through the connecting portion 100 can be reduced. As a result, the piping structure can be simplified. Further, since the hydraulic oil branch line 38 is branched from the low-pressure oil line 37, the hydraulic oil branch line 38 and the connection part 100 can be configured by piping with low pressure resistance, and cost can be reduced.
  • the wind power generator 1 may include a generator cooler 53 ′ that cools the generator 12 by air cooling.
  • a duct 81 for taking in outside air is provided on the outer peripheral side of the nacelle 4.
  • the duct 81 has an air inlet and may be formed integrally with the wall surface of the nacelle 4.
  • the air taken in by the duct 81 is guided into the nacelle 4 through the air pipe 83.
  • the air pipe 83 is provided with a generator cooler 53 ′.
  • the generator cooler 53 ′ is configured as a cooling jacket provided around the generator 12, for example, and cools the generator 12 by the air taken in by the duct 81 flowing around the outer periphery of the cooling jacket. The cooled air is exhausted outside the nacelle through the air pipe 83. Further, the air taken in by the duct 81 can be used for cooling other heat generation sources in the nacelle 4. For example, it can be used for cooling a nacelle cooler (not shown) that cools the air in the nacelle 4. As described above, water cooling is mainly used for cooling the heat generation source in the tower 2, and air cooling is used for the heat generation source in the nacelle 4, so that the heat generation source of the wind power generator 1 can be efficiently cooled. It becomes possible.
  • FIG. 12 is a diagram showing an overall configuration of a wind turbine generator according to the third embodiment of the present invention.
  • the wind power generator 1 according to the present embodiment is the same as the wind power generator 1 according to the first embodiment except that the configurations of the hydraulic transmission and the hydraulic oil line 30 are different. Therefore, here, the description will focus on the points different from the first embodiment, and in FIG. 12, the same reference numerals are given to portions common to the wind turbine generator 1 and the description thereof is omitted.
  • the nacelle turning mechanism 19 and the yaw drive mechanism 13 are omitted.
  • the hydraulic oil line 30 includes a hydraulic oil circulation line that circulates hydraulic oil between the hydraulic pump 8 and the hydraulic motor 10, and a hydraulic oil branch line 38 ′ connected in parallel to the hydraulic oil circulation line. All the lines are arranged in the nacelle 4.
  • the hydraulic oil circulation line includes a high-pressure oil line 36 connecting the hydraulic oil outlet side of the hydraulic pump 8 and the hydraulic oil inlet side of the hydraulic motor 10, the hydraulic oil outlet side of the hydraulic motor 10, and the hydraulic oil inlet side of the hydraulic pump 8. And a low-pressure oil line 37 connecting the two.
  • the hydraulic oil branch line 38 ′ is branched from the low pressure oil line 37 and connected to the inlet side of the intermediate heat exchanger 52 in the nacelle 4.
  • the hydraulic oil branch line 38 ′ connected to the outlet side of the intermediate heat exchanger 52 is joined to the low pressure oil line 37.
  • the refrigerant line 40 is connected to the refrigerant feed line 41 connected between the main heat exchanger 51 and the intermediate heat exchanger 52 via the connection part 100 having a swivel structure, and similarly to the intermediate part via the connection part 100.
  • a refrigerant return line 42 connected between the heat exchanger 52 and the main heat exchanger 51 is included.
  • the connection unit 100 can employ the configuration described in the first embodiment.
  • the refrigerant cooled with seawater by the main heat exchanger 51 is supplied to the intermediate heat exchanger 52 through the refrigerant feed line 41, and the hydraulic oil is cooled by exchanging heat with the hydraulic oil in the intermediate heat exchanger 52. Thereafter, the refrigerant is returned to the main heat exchanger 51 through the refrigerant return line 42.
  • connection part 100 can be comprised with piping with low pressure
  • the refrigerant line 40 may include a refrigerant branch line 43 ′ branched from the nacelle 4 side of the refrigerant feed line 41 and joined to the nacelle 4 side of the refrigerant return line 42.
  • the refrigerant branch line 43 ′ is provided with a generator cooler 53 that cools the generator 12.
  • the generator cooler 53 is configured as a cooling jacket provided around the generator 12, for example. In the generator cooler 53, the generator 12 is cooled by heat exchange with the refrigerant supplied from the refrigerant branch line 43 '.
  • FIG. 13 is a diagram showing an overall configuration of a wind turbine generator according to the fourth embodiment of the present invention.
  • the wind turbine generator 1 according to the present embodiment does not include the refrigerant line 40 and is configured to directly cool the hydraulic oil of the hydraulic transmission with seawater.
  • the configuration other than the configuration of the hydraulic transmission, the hydraulic oil line 30 and the refrigerant line 40 is the same as that of the wind turbine generator 1 according to the first embodiment. Detailed description is omitted.
  • the nacelle turning mechanism 19 and the yaw drive mechanism 13 are omitted.
  • the hydraulic motor 10 and the generator 12 are disposed inside the nacelle 4.
  • the hydraulic oil line 30 includes a hydraulic oil circulation line that circulates hydraulic oil between the hydraulic pump 8 and the hydraulic motor 10, and a hydraulic oil branch line 70 that is connected in parallel to the hydraulic oil circulation line. Both lines are arranged in the nacelle 4.
  • the hydraulic oil circulation line includes a high pressure oil line 36 that connects the hydraulic oil outlet side of the hydraulic pump 8 and the hydraulic oil inlet side of the hydraulic motor 10, the hydraulic oil outlet side of the hydraulic motor 10, and the hydraulic oil inlet side of the hydraulic pump 8. And a low-pressure oil line 37 connecting the two.
  • the hydraulic oil branch line 70 includes first pipes 71 and 74 supported on the nacelle 4 side and second pipes 72 and 73 supported on the tower 2 side.
  • the hydraulic oil branch line 70 is preferably arranged in parallel with the low-pressure oil line 37. Further, the hydraulic oil branch line 70 is provided with a pump 71 that forms the flow of hydraulic oil in the branch line 70.
  • connection unit 100 can employ the configuration described in the first embodiment.
  • the hydraulic oil branched from the low-pressure line 37 is introduced into the main heat exchanger 58 through the first pipe 71, the connection part 100, and the second pipe 72 in order.
  • the refrigerant is cooled by heat exchange with seawater.
  • the refrigerant discharged from the main heat exchanger 58 is returned to the low pressure line 37 through the second pipe 73, the connection part 100, and the first pipe 74 in order.
  • the hydraulic oil is cooled by exchanging heat with a cold water source including seawater, lake water, river water, or groundwater around the tower base, so the hydraulic oil is cooled with higher efficiency than air cooling. be able to.
  • one of the hydraulic oil circulation line and the hydraulic oil branch line 70 is divided into first pipes 71 and 74 supported on the nacelle 4 side and second pipes 72 and 73 supported on the tower 2 side. Since the first piping 71 and 74 and the second piping 72 and 73 are connected so as to be relatively rotatable by the connecting portion 100 having a structure, even if the nacelle 4 turns, the first piping on the nacelle 4 side is connected. Fluid can be exchanged smoothly between the pipes 71 and 74 and the second pipes 72 and 73 on the tower side.
  • the wind power generator 1 may include a generator cooler 53 ′ that cools the generator 12 by air cooling.
  • a duct 81 for taking in outside air is provided on the outer peripheral side of the nacelle 4, and the air taken in by the duct 81 is guided into the nacelle 4 through the air pipe 83.
  • the air pipe 83 is provided with a generator cooler 53 ′.
  • the generator cooler 53 ′ is configured as a cooling jacket provided around the generator 12, for example, and cools the generator 12 by the air taken in by the duct 81 flowing around the outer periphery of the cooling jacket. The cooled air is exhausted outside the nacelle through the air pipe 83.
  • the air taken in by the duct 81 can be used for cooling other heat generation sources in the nacelle 4.
  • it can be used for cooling a nacelle cooler (not shown) that cools the air in the nacelle 4.
  • water cooling is mainly used for cooling the heat generation source in the tower 2, and air cooling is used for the heat generation source in the nacelle 4, so that the heat generation source of the wind power generator 1 can be efficiently cooled. It becomes possible.
  • the wind power generator 1 has been described as a specific example of the renewable energy power generator, but the present invention can also be applied to a renewable energy power generator other than the wind power generator.
  • a power generation device that uses tidal currents, ocean currents, or river flows, where the tower extends vertically downward in the sea or water from the base end toward the tip, and receives tidal currents, ocean currents, or river currents from the rotor blades.
  • the present invention may be applied to a power generation device in which the main shaft rotates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Wind Motors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

油圧トランスミッションの作動油を効率よく冷却することができる冷却機構を備えた再生エネルギー型発電装置を提供することを目的とする。再生エネルギー型発電装置1は、タワー2と、タワーの先端部2Bに旋回自在に支持されたナセル4と、回転翼6Bとともに回転する主軸14と、主軸14の回転によって駆動される油圧ポンプ8と、油圧ポンプ8から供給される作動油によって駆動される油圧モータ10と、油圧モータ10に連結された発電機12と、油圧ポンプ8と油圧モータ10との間に設けられ、作動油が流れる作動油ライン30と、中間熱交換器52を介して作動油を冷却する冷媒が循環する冷媒ライン40と、冷媒を、タワー基部周辺の海水、湖水、河川水または地下水からなる冷水源と熱交換することによって冷却する主熱交換器51とを備え、作動油ライン30及び冷媒ライン40の一方が、ナセル4側に支持される第1配管31、34と、タワー2側に支持される第2配管32、33と、第1配管31、34と第2配管32、33とを相対的に旋回自在に接続する接続部100とを有する。

Description

再生エネルギー型発電装置
 本発明は、油圧トランスミッションを介して、再生エネルギー源から得られるロータの回転エネルギーを発電機に伝達する再生エネルギー型発電装置に関し、特に、油圧トランスミッションの冷却機構を備えた再生エネルギー型発電装置に関する。
 近年、地球環境の保全の観点から、風力を利用した風力発電装置や、潮流、河流あるいは海流エネルギーを利用した潮流発電装置等の再生エネルギー型発電装置の普及が進んでいる。これらの再生エネルギー型発電装置は、発電効率を向上させるために大型化が進められている。特に、洋上に設置される風力発電装置は、陸上に設置される風力発電装置に比べて建設コストが高くなりがちであるから、大型化によって発電効率を向上させて、採算性を改善することが求められる。
 ところが、機械式(ギヤ式)の増速機を備える再生エネルギー型発電装置の場合、装置の大型化が進むにつれ、増速機の重量及びコストが増加する傾向にある。このため、機械式の増速機に替えて、油圧ポンプ及び油圧モータを組み合わせた油圧トランスミッションを採用した再生エネルギー型発電装置が注目を浴びている。
 油圧トランスミッションを備える再生エネルギー型発電装置として、例えば、特許文献1には、ナセル内に油圧ポンプ、油圧モータ及び発電機が設けられた風力発電装置が記載されている。この風力発電装置では、油圧トランスミッションを介してロータの回転エネルギーを発電機に伝達するようになっている(特許文献1のFig.7参照)。
 また、特許文献2には、ナセル内に油圧ポンプが設けられ、タワー下部に油圧モータ及び発電機が設けられており、油圧ポンプと油圧モータとが配管で接続された風力発電装置が記載されている。
 一方、再生エネルギー型発電装置の大型化により発電機の出力が増加すると、発電機からの熱損失も大きくなる。特に、油圧ポンプ及び油圧モータを組み合わせた油圧トランスミッションを備える再生エネルギー型発電装置では、発電機の熱損失に加えて、油圧トランスミッションからの熱損失も考慮しなければならない。そのため、発電機や油圧トランスミッション等の熱発生源の冷却機構を備えた再生エネルギー型発電装置の開発が望まれる。
 そこで、特許文献3には、コンバータや、変圧器や、制御装置を冷却するための冷却システムを備えた風力発電装置が記載されている。この冷却システムは、タワー外周面に取り付けられた複数の熱交換器を有し、該熱交換器において、コンバータや、変圧器や、制御装置を冷却した後の冷媒を大気と熱交換させるようになっている。
 また、特許文献4には、複数のデバイス(コンバータ、変圧器、軸受箱、発電機等)を冷却するための風力発電装置用の冷却装置が記載されている。この冷却装置は、複数のデバイスを冷却した後の冷却水を、タワーやナセルの外壁に取り付けられた熱交換器によって冷却するようになっている。
国際公開第2007/053036号 国際公開第2009/064192号 欧州特許出願公開第1798414号明細書 欧州特許出願公開第2007184号明細書
 通常、油圧トランスミッションを備えた再生エネルギー型発電装置は、風力や潮流、河流あるいは海流等の再生エネルギーを利用するため、外気温や水温等の周囲環境の温度変化が大きい場所に設置されることが多く、これにともない油圧トランスミッションの作動油温度も変化する。作動油は温度変化によって粘度が変化し、低温では作動油が高粘度となって油圧トランスミッションのエネルギーロスが大きくなり、高温では作動油の粘度低下により作動油の劣化速度が速くなったり、潤滑性が悪化して摺動部の損耗が生じたり、油漏れが多くなったりしてしまう。したがって、油圧トランスミッションを備える発電装置においては、作動油を適切な温度に保つことが求められるが、特許文献3、4等に開示される従来の技術にはこういった構成が何ら開示されていない。
 また、特許文献3、4に開示される冷却装置は、熱発生源を冷却した後の冷媒を大気と熱交換させる構成となっているが、一般に、空冷は水冷ほど熱交換効率が高くないため、大気を取り込むファンを大型化したり、ファンを多数設置したりする必要があった。
 本発明は、上述の事情に鑑みてなされたものであり、油圧トランスミッションの作動油を効率よく冷却することができる冷却機構を備えた再生エネルギー型発電装置を提供することを目的とする。
 本発明に係る再生エネルギー型発電装置は、再生エネルギーから電力を生成する再生エネルギー型発電装置であって、タワーと、前記タワーの先端部に、旋回自在に支持されたナセルと、前記ナセルに収納され、回転翼とともに回転する主軸と、前記ナセルに収納され、前記主軸の回転によって駆動される油圧ポンプと、前記油圧ポンプから供給される作動油によって駆動される油圧モータと、前記油圧モータに連結された発電機と、前記油圧ポンプと前記油圧モータとの間に設けられ、前記作動油が流れる作動油ラインと、中間熱交換器を介して前記作動油を冷却する冷媒が循環する冷媒ラインと、前記冷媒を、前記タワー基部周辺の海水、湖水、河川水または地下水からなる冷水源と熱交換することによって冷却する主熱交換器とを備え、前記作動油ライン及び前記冷媒ラインの一方が、前記ナセル側に支持される第1配管と、前記タワー側に支持される第2配管と、前記第1配管と前記第2配管とを相対的に旋回自在に接続する接続部とを有することを特徴とする。
 本発明によれば、作動油の冷却に用いられる冷媒を、タワー基部周辺の海水、湖水、河川水または地下水からなる冷水源と熱交換することによって冷却するようにしたので、水冷により高効率で冷媒を冷却することができる。
 また、作動油ライン及び冷媒ラインの一方を、ナセル側に支持される第1配管と、タワー側に支持される第2配管とに分割し、スイベル構造を有する接続部によって第1配管と第2配管とが相対的に旋回自在となるように接続したので、ナセルが旋回しても、ナセル側の第1配管とタワー側の第2配管との間で流体のやり取りを円滑に行うことができる。
 上記再生エネルギー型発電装置において、前記油圧モータは、前記タワーの前記先端部と前記基部との間に配置され、前記作動油ラインが、前記ナセル内の前記油圧ポンプから前記タワー内の前記油圧モータまで延設されており、前記作動油ラインは、前記第1配管、前記第2配管及び前記接続部を有し、前記第1配管が前記油圧ポンプに接続され、前記第2配管が前記油圧モータに接続されていてもよい。
 このように、油圧モータがタワーの先端部と基部との間に配置されるようにしたので、作動油ラインがタワー側まで延設されることとなり、タワー内で作動油と冷媒とを熱交換させることができるため、作動油を冷却するための冷媒ラインをナセルまで延設する必要がなくなる。したがって、冷媒ラインによってナセル高さまで冷媒を汲み上げる場合に比べて、ポンプの動力を小さくでき、またポンプを小型化することも可能である。
 あるいは、上記再生エネルギー型発電装置において、前記油圧モータは前記ナセル側に支持され、一方、前記中間熱交換器は前記タワー側に支持されており、前記作動油ラインは、前記油圧ポンプと前記油圧モータとの間を作動油が循環する作動油循環ラインと、前記作動油循環ラインの低圧側から分岐して前記中間熱交換器を通って前記作動油循環ラインに戻る作動油分岐ラインとを含み、前記作動油分岐ラインは、前記第1配管、前記第2配管及び前記接続部を有し、前記第1配管が前記作動油循環ラインに接続され、前記第2配管が前記中間熱交換器に接続されていてもよい。
 このように、油圧モータがナセル側に支持され、作動油循環ラインから分岐した作動油分岐ラインがタワー側の中間熱交換器に接続されるようにしたので、作動油流量の多い作動油循環ラインを短くでき、一方、接続部を通る作動油流量を少なくすることができる。これにより配管構造を簡素化することが可能となる。また、作動油分岐ラインは、作動油循環ラインの低圧側から分岐させているため、作動油分岐ライン及び接続部を耐圧性の低い配管で構成することができ、コスト低減が図れる。
 あるいは、上記再生エネルギー型発電装置において、前記油圧モータ及び前記発電機は、前記ナセルの内部に配置され、一方、前記中間熱交換器は、前記ナセル側に支持されており、前記冷媒ラインは、前記第1配管、前記第2配管及び前記接続部を有し、前記第1配管が前記中間熱交換器側に接続され、前記第2配管が前記主熱交換器側に接続されていてもよい。
 このように、油圧モータ及び発電機はナセルの内部に配置され、ナセル側に支持される中間熱交換器に、接続部を介して冷媒ラインが接続されるようにしたので、接続部を耐圧性の低い配管で構成することができ、コスト低減が図れる。
 上記再生エネルギー型発電装置は、前記ナセル側から前記タワー側へ向かう流体が流れる第1流路と、前記タワー側から前記ナセル側へ向かう流体が流れる第2流路と、一又は複数の前記第1流路及び一又は複数の前記第2流路が形成された管状部材と、前記管状部材を取り囲むように設けられ、前記第1流路に設けられた第1連通口を介して前記第1配管に連通した環状流路を含む第1ジャケットと、前記管状部材を取り囲むように設けられ、前記第2流路に設けられた第2連通口を介して前記第2配管に連通した環状流路を含む第2ジャケットとを有し、前記第1ジャケット及び前記第2ジャケットが、軸受を介して前記管状部材に相対的に旋回自在に取り付けられていることが好ましい。
 この再生エネルギー型発電装置では、ナセル側からタワー側へ向かう流体は、第1配管に接続される第1ジャケットの環状流路から第1連通口を介して管状部材に形成される第1流路に流入し、第1流路から第2配管に送給される。一方、タワー側からナセル側に向かう流体は、第2配管に接続される第2ジャケットの環状流路から第2連通口を介して管状部材に形成される第2流路に流入し、第2流路から第1配管に送給される。ここで、第1ジャケット及び第2ジャケットは、軸受を介して管状部材に相対的に旋回自在に取り付けられているので、ナセル側からタワー側へ向かう流体、及び、タワー側からナセル側に向かう流体の流れを確保しつつ、ナセル側配管とタワー側配管との相対的な旋回を可能としている。
 この場合、前記管状部材には、前記1流路及び前記第2流路のさらに内側に、前記ナセル側から前記タワー側へ延設されるケーブルを収容するケーブル用配管が設けられていてもよい。
 これにより、ナセルが旋回した場合であっても、管状部材に設けられたケーブル用配管内にケーブルが収容されているため、ケーブルが損傷することを防止できる。
 上記再生エネルギー型発電装置は、前記冷媒ラインに水を供給する水供給源と、前記水に不凍液が添加された冷媒を前記冷媒ライン内で循環させるポンプとをさらに備えることが好ましい。
 このように、冷媒ラインに水を供給する水供給源と、冷媒ライン内で冷媒を循環させるポンプとを備えることで、例えば外気温の変化等に応じて、冷媒の循環量を調整することができ、作動油を一定温度に維持することが可能となる。また、不凍液が添加された冷媒を用いることで、外気温が水の凍結温度以下となった場合でも冷媒が凍結することを防止でき、冷却機構の円滑な稼働が可能である。
 この場合、前記水供給源が、前記冷媒を貯留する冷媒タンクであり、前記冷媒タンクは前記タワーの上部に配置されるとともに、該冷媒タンクはタワー内空間に開放されていてもよい。
 このように、冷媒タンクをタワーの上部に配置し、且つ冷媒タンクがタワー内空間に開放されるようにしたので、冷媒ライン下方における水圧を十分に確保でき、冷媒ラインに接続される各種冷却機器へ確実に冷媒を供給することが可能となる。また、サイホン効果を利用するとポンプの動力を小さくでき、ポンプを小型化することも可能である。
 また、上述の場合、前記水供給源が、前記冷媒を貯留する冷媒タンクであり、前記冷媒タンクは前記タワーの内部に配置されるとともに、該冷媒タンクはタワー内空間に対して密閉されていてもよい。
 このように、冷媒タンクをタワーの内部に配置し、且つ冷媒タンクがタワー内空間に対して密閉されるようにしたので、例えば冷媒タンクを冷媒ラインの下方に配置するなど、冷媒タンクの配置を自由にできる。
 上記再生エネルギー型発電装置において、前記主熱交換器を収容するケーシングの冷水源入口には、前記冷水源に含まれる異物が前記ケーシング内部に混入することを防止するフィルタが設けられていることが好ましい。
 上記したように、冷水源は海水、湖水、河川水または地下水からなるため、これらの中には生物等の異物が存在し、これらの異物が主熱交換器の伝熱管に付着すると伝熱効率が低下してしまう。特に、付着生物は伝熱管で増殖するため徐々に伝熱効率が低下してしまうことは避けられない。そこで、本構成のように、主熱交換器を収容するケーシングの冷水源入口にフィルタを設けることにより、異物が伝熱管周囲に入り込むことを防ぎ、伝熱効率の低下を防止できる。
 上記再生エネルギー型発電装置において、前記主熱交換器は、前記タワーが設置される基礎に取り付けられていることが好ましい。
 これにより、主熱交換器の冷水側を簡素化することができる。
 この場合、前記熱交換器の伝熱管周囲に、冷水源の流速を調整する流速調整用構造体が配設され、前記流速調整用構造体と前記伝熱管との間の距離の上限が、前記伝熱管において所定の熱伝達率が得られる距離に基づいて設定され、下限が、前記伝熱管に付着する異物が剥離する距離に基づいて設定されるようにしてもよい。
 これは、伝熱管周囲を流れる冷水源の流速は伝熱管の熱伝達率に影響を及ぼすため、適した熱伝達率が得られるように伝熱管周囲に流速調整用構造体を配置している。そこで、流速調整用構造体と伝熱管との間の距離の上限が、伝熱管において所定の熱伝達率が得られる距離に基づいて設定されることで、冷媒の冷却に適した熱伝達率を得ることが可能となる。また、流速調整用構造体と伝熱管との間の距離の下限が、伝熱管に付着する異物が剥離する距離に基づいて設定されることで、伝熱管への異物の堆積を抑制することができる。
 また、上述の場合、前記主熱交換器の伝熱管表面に前記冷水源を噴射するスプレーノズルを設けるようにしてもよい。
 これにより、冷水源に含まれる異物が主熱交換器の伝熱管に付着した場合であっても、スプレーノズルから噴射する冷水源によって異物を剥離することができる。このように、スプレーノズルによって物理的に異物を剥離する構成とすることで、有害成分を含む塗料を伝熱管に塗布したり、塩素を注入したりすることなく伝熱管への異物の付着、堆積を抑制でき、環境負荷を小さくすることが可能である。
 さらにまた、上述の場合、前記熱交換器は、複数の伝熱管を有する多管式熱交換器であってもよい。
 このように、熱交換器に多管式熱交換器を用いることにより、安価で且つ伝熱面積を大きくすることができ、熱交換器での熱交換効率を高く維持することが可能となる。なお、ここでいう熱交換器とは、主熱交換器または中間熱交換器のことである。
 また、前記再生エネルギー型発電装置は風力発電装置であり、前記タワーが前記基部から前記先端部に向かって鉛直方向上方に延びるとともに、前記回転翼によって風を受けることで前記主軸が回転するようになっていてもよい。
 さらに、上記再生エネルギー型発電装置において、前記ナセル内に収納され、前記ナセルの周囲から取り込んだ空気によって前記発電機を冷却する発電機冷却器をさらに備えることが好ましい。
 このように、水冷による冷媒の冷却と、空冷による発電機の冷却とを組み合わせることで、再生エネルギー型発電装置の効率的な冷却機構を構築できる。
 別の態様において、本発明に係る再生エネルギー型発電装置は、再生エネルギーから電力を生成する再生エネルギー型発電装置であって、タワーと、前記タワーの先端部に、旋回可能に支持されたナセルと、前記ナセルに収納され、回転翼とともに回転する主軸と、前記ナセルに収納され、前記主軸の回転によって駆動される油圧ポンプと、前記油圧ポンプから供給される作動油によって駆動される油圧モータと、前記油圧モータに連結された発電機と、前記油圧ポンプと前記油圧モータとの間に設けられ、前記作動油が流れる作動油循環ラインと、前記作動油を、前記タワー基部周辺の海水、湖水、河川水または地下水からなる冷水源と熱交換することによって冷却する主熱交換器とを備え、前記作動油循環ライン及び該作動油循環ラインから分岐される作動油分岐ラインの一方が、前記ナセル側に支持される第1配管と、前記タワー側に支持される第2配管と、前記第1配管と前記第2配管とを相対的に旋回自在に接続する接続部とを有することを特徴とする。
 本発明によれば、作動油を、タワー基部周辺の海水、湖水、河川水または地下水からなる冷水源と熱交換することによって冷却するようにしたので、水冷により高効率で作動油を冷却することができる。
 また、作動油循環ライン及び作動油分岐ラインの一方を、ナセル側に支持される第1配管と、タワー側に支持される第2配管とに分割し、スイベル構造を有する接続部によって第1配管と第2配管とが相対的に旋回自在となるように接続したので、ナセルが旋回しても、ナセル側の第1配管とタワー側の第2配管との間で流体のやり取りを円滑に行うことができる。
 この場合、前記ナセル内に収納され、前記ナセルの周囲から取り込んだ空気によって前記発電機を冷却する発電機冷却器をさらに備えることが好ましい。
 このように、水冷による作動油の冷却と、空冷による発電機の冷却とを組み合わせることで、再生エネルギー型発電装置の効率的な冷却機構を構築できる。
 本発明の一の態様では、作動油の冷却に用いられる冷媒を、タワー基部周辺の海水、湖水、河川水または地下水からなる冷水源と熱交換することによって冷却するようにしたので、水冷により高効率で冷媒を冷却することができる。
 また、作動油ライン及び冷媒ラインの一方を、ナセル側に支持される第1配管と、タワー側に支持される第2配管とに分割し、スイベル構造を有する接続部によって第1配管と第2配管とが相対的に旋回自在となるように接続したので、ナセルが旋回しても、ナセル側の第1配管とタワー側の第2配管との間で流体のやり取りを円滑に行うことができる。
 また、本発明の他の態様では、作動油を、タワー基部周辺の海水、湖水、河川水または地下水からなる冷水源と熱交換することによって冷却するようにしたので、水冷により高効率で作動油を冷却することができる。
 また、作動油循環ライン及び作動油分岐ラインの一方を、ナセル側に支持される第1配管と、タワー側に支持される第2配管とに分割し、スイベル構造を有する接続部によって第1配管と第2配管とが相対的に旋回自在となるように接続したので、ナセルが旋回しても、ナセル側の第1配管とタワー側の第2配管との間で流体のやり取りを円滑に行うことができる。
本発明の第1実施形態に係る風力発電装置の全体構成を示す図である。 図1の主熱交換器の具体的な構成例を示す側面図である。 図2Aに示す主熱交換器のA-A線断面図である。 図2Aに示す主熱交換器の斜視図である。 付着物除去機能を有する主熱交換器を示す斜視図である。 他の態様の付着物除去機能を有する主熱交換器を示す斜視図である。 他の態様の付着物除去機能を有する主熱交換器を示す斜視図である。 本発明の実施形態に係る風力発電装置に適用されるスイベル構造の第1構成例を示す図である。 図4のスイベル構造の第1構成例を示すB-B線断面図である。 図4のスイベル構造の第1構成例を示すC-C線断面図である。 本発明の実施形態に係る風力発電装置に適用されるスイベル構造の第2構成例を示す図である。 本発明の実施形態に係る風力発電装置に適用されるスイベル構造の第3構成例を示す図である。 図1の風力発電装置の第1変形例を示す全体構成図である。 図1の風力発電装置の第2変形例を示す全体構成図である。 図1の風力発電装置の第3変形例を示す全体構成図である。 本発明の第2実施形態に係る風力発電装置の全体構成を示す図である。 本発明の第3実施形態に係る風力発電装置の全体構成を示す図である。 本発明の第4実施形態に係る風力発電装置の全体構成を示す図である。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
[第1実施形態]
 第1実施形態では、再生エネルギー型発電装置の一例として風力発電装置について説明する。図1は、第1実施形態に係る風力発電装置の全体構成を示す図である。
 図1に示すように、風力発電装置1は、主として、タワー2と、タワー先端部2Bに設けられたナセル4と、風を受けて回転するロータ6と、油圧ポンプ8及び油圧モータ10と、油圧モータ10に連結された発電機12とで構成される。
 なお、図1には、風力発電装置1として海面SL上に設置される洋上風力発電装置を例示しているが、風力発電装置1は、付近に冷水源が存在する陸上に設置されていてもよい。
 タワー2は、海面SL付近の高さに位置する基礎3上に立設されており、基礎3側の基部2Aから鉛直方向上方に先端部2Bまで延びている。タワー2の先端部2B上には、ナセル4が設けられている。
 ナセル4は、ナセル台板16を有しており、このナセル台板16はナセル軸受18によってタワー2の先端部2Bに旋回自在に支持されている。具体的には、ナセル台板16はナセル軸受18の内輪18Aに固定され、タワー2の先端部2Bはナセル軸受18の外輪18Bに固定されている。
 そして、ナセル台板16にはナセル旋回機構19が取り付けられるとともに、ナセル台板上にはヨー駆動機構13が配設されている。このナセル旋回機構19及びヨー駆動機構13によって、ナセル台板16がタワー2の先端部2Bに対して旋回するようになっている。
 ナセル旋回機構19は、例えば、タワー2の先端部2Bの内周面に設けられた内歯車19Bと噛み合うギヤ19Aとで構成されていてもよい。
 ヨー駆動機構13は、例えば、ギヤ19Aの軸に直接連結されるか、またはギヤ19Aにピニオンを介して連結される減速機と、クラッチと、ヨーモータと、電磁ブレーキと、これらを収納するハウジングとで構成されていてもよい。なお、ヨー駆動機構13は、タワー2の軸線を中心とした円周上に複数設けられていてもよい。
 上記構成を有する場合、クラッチが結合状態で電磁ブレーキがONにされたら、ヨーモータの駆動力が減速機を介してギヤ19Aに伝達され、ギヤ19Aが内歯車19Bと噛み合いながら回転する。これにより、ナセル4がタワー2に対してヨー方向に旋回する。
 ナセル4には、主軸14及びこの主軸14に取り付けられた油圧ポンプ8が収納されている。なお、主軸14は、主軸軸受15によってナセル4に回転自在に支持されている。
 ロータ6は、ハブ6Aと、ハブ6Aから放射状に延びる複数枚の回転翼6Bとからなる。ロータ6のハブ6Aは、主軸14に連結されている。このため、風を受けてロータ6が回転すると、主軸14もハブ6Aとともに回転する。そして、主軸14の回転が油圧ポンプ8に入力されることで、油圧ポンプ8において高圧の作動油(高圧油)が生成される。
 油圧モータ10は、タワー2の先端部2Bと基部2Aとの間におけるタワー内部空間に配置されている。好ましくは、油圧モータ10は、タワー2の基部2Aより先端部2Bに近い位置、すなわちタワー上方に配置されている。このとき、油圧モータ10は、タワー2側に支持される。例えば、タワー2に固定して設けられる床、板、または棚等に、油圧モータ10を据え付けるようにしてもよい。
 そして、油圧モータ10は、ナセル4内の油圧ポンプ8から供給される高圧油によって駆動されるようになっている。
 また、油圧モータ10に出力軸を介して連結される発電機12も、やはりタワー2側に支持される。この発電機12も、床、板、または棚等に据え付けるようにしてもよい。
 なお、油圧モータ10と発電機12との相対的な位置関係は、これらが互いに水平に位置するように配置されてもよいし、図1に示すように、これらが互いに鉛直に位置するように配置されてもよい。
 油圧ポンプ8と油圧モータ10とは、作動油が流れる作動油ライン30で接続されている。
 作動油ライン30は、油圧ポンプ8から排出される高圧油を油圧モータ10に供給する高圧側配管と、油圧モータ10から排出される低圧の作動油(低圧油)を油圧ポンプ8に供給する低圧側配管とを有する。
 高圧側配管は、ナセル4側に支持される高圧側第1配管31と、タワー2側に支持される高圧側第2配管32とから構成される。高圧側第1配管31と高圧側第2配管32との間には、スイベル構造を有する接続部100が介装されており、接続部100によって高圧側第1配管31と高圧側第2配管32とが相対的に旋回自在に接続されている。
 低圧側配管は、ナセル4側に支持される低圧側第1配管34と、タワー2側に支持される低圧側第2配管33とから構成される。低圧側第1配管34と低圧側第2配管33との間には、上記した接続部100が介装されており、接続部100によって低圧側第1配管34と低圧側第2配管33とが相対的に旋回自在に接続されている。
 スイベル構造を有する接続部100は、ナセル4の旋回中心に配置される。なお、この接続部100の構成については後述する。
 また、作動油ライン30は、低圧側第2配管33から低圧油の少なくとも一部を分岐して中間熱交換器52に導入し、中間熱交換器52から排出される低圧油を低圧側第2配管33に戻す作動油分岐ライン35をさらに有している。作動油分岐ライン35で分岐された作動油は、中間熱交換器52で冷媒と熱交換されることによって冷却され、低圧側第2配管33に戻されるようになっている。
 油圧ポンプ8は、主軸14によって駆動されて高圧油を生成する。この高圧油は、高圧側配管を介して油圧モータ10に供給され、該高圧油によって油圧モータ10が駆動される。このとき、油圧モータ10に連結された発電機12が駆動され、発電機12において電力が生成される。油圧モータ10から吐出された低圧油は、低圧側配管を介して油圧ポンプ8に供給され、油圧ポンプ8において再び昇圧されて高圧油として油圧モータ10に送られる。
 本実施形態では、作動油ライン30を流れる作動油の冷却を行う冷却機構をさらに備えている。なお、この冷却機構は、作動油の他にも、ナセル4内またはタワー2内の熱発生源を冷却する各種冷却機器に用いることもできる。以下に、冷却機構を詳細に説明する。
 冷却機構は、主に、主熱交換器51と、中間熱交換器52と、冷媒ライン40とを有する。
 主熱交換器51は、冷媒と、タワー2の基部2Aの周辺の海水、湖水、河川水または地下水からなる冷水源とを熱交換することによって、冷媒を冷却する。図1に示すような洋上風力発電装置では、主熱交換器51はタワー2の基礎3に取り付けられ、冷媒と海水とを熱交換する構成とすることが好ましい。これにより主熱交換器51の冷水側の配管構成を簡素化することができる。
 中間熱交換器52は、タワー2内に配設され、作動油と冷媒とを熱交換して、作動油を冷媒によって冷却する。
 冷媒ライン40は、タワー2内に配設され、作動油を冷却する冷媒が循環する閉ループのラインである。ここで、冷媒としては、水、油、または不凍液を添加された水等を用いることができる。具体的には、冷媒ライン40は、主熱交換器51と中間熱交換器52との間に接続され、主熱交換器51によって海水で冷却された冷媒を中間熱交換器52に送る冷媒送りライン41と、中間熱交換器52と主熱交換器51との間に接続され、中間熱交換器52で作動油を冷却した後の冷媒を、主熱交換器51に戻す冷媒戻しライン42とを含む。
 また、冷媒ライン40は、冷媒送りライン41から分岐され冷媒戻しライン42に合流される冷媒分岐ライン43を含んでいる。この冷媒分岐ライン43には、発電機12を冷却する発電機クーラ53が設けられている。
 発電機クーラ53は、例えば発電機12の周囲に設けられた冷却ジャケットとして構成される。発電機クーラ53では、冷媒分岐ライン43から供給される冷媒との熱交換によって発電機12を冷却するようになっている。
 さらに、冷媒ライン40は、冷媒分岐ライン43と同様に、冷媒送りライン41から分岐され冷媒戻しライン42に合流される他の冷媒分岐ライン44を含んでいる。この冷媒分岐ライン44には、タワー2内の空間を冷却するタワー冷却器54が設けられている。
 タワー冷却器54は、ファン及び伝熱管群を備えたファン付き熱交換器として構成される。タワー冷却器54では、ファンにより吸い込んだ(あるいは押し込んだ)タワー2内の空気が、冷媒分岐ライン44から伝熱管群に供給された冷媒と熱交換されて冷却されるようになっている。これにより、風力発電装置1のタワー2内に設置される熱発生源からの放熱によって昇温されたタワー2内の空気を効果的に冷却できる。
 さらにまた、冷媒ライン40は、冷媒分岐ライン44から分岐され、冷媒戻しライン42に合流される冷媒分岐ライン45を含んでいる。この冷媒分岐ライン45には、トランス室21内の空間を冷却するトランス室冷却器55が設けられている。ここで、トランス室21は、発電機12で発電した電力を変圧するトランスを収納する空間である。
 トランス室冷却器55は、ファン及び伝熱管群を備えたファン付き熱交換器として構成される。トランス室冷却器55では、ファンにより吸い込んだ(あるいは押し込んだ)トランス室21内の空気が、冷媒分岐ライン45から伝熱管群に供給された冷媒と熱交換されて冷却されるようになっている。
 また、冷媒ライン40には、冷媒を貯留する冷媒タンク48と、冷媒を循環させるポンプ47とが設けられている。この冷媒タンク48とポンプ47とによって、例えば外気温の変化等に応じて、冷媒の循環量を調整することができる。これにより、作動油を一定温度に維持することが可能となる。
 冷媒タンク48は、タワー2の上部、具体的には冷媒ライン40の高さ方向上部位置に配置され、タワー2内の空間に開放されている。このように、冷媒タンク48をタワー2の上部に配置し、且つ冷媒タンク48がタワー2内の空間に開放されるように構成することで、冷媒ライン40下方における水圧を十分に確保でき、冷媒ライン40に接続される各種冷却機器(例えば、中間熱交換器52、発電機クーラ53、タワー冷却器54、トランス室冷却器55)へ確実に冷媒を供給することが可能となる。また、サイホン効果を利用するとポンプ47の動力を小さくでき、ポンプ47を小型化することも可能である。
 また、上記した主熱交換器51は、図2A~図2Cに示すような構成を備えていてもよい。ここで、図2Aは、図1の主熱交換器の具体的な構成例を示す側面図で、図2Bは、図2Aに示す主熱交換器のA-A線断面図で、図2Cは、図2Aに示す主熱交換器の斜視図である。
 図2A~図2Cに示すように、主熱交換器51は、冷媒ライン40からの冷媒が流れる伝熱管511を有し、海水が伝熱管511の周囲を流れるように構成されている。したがって、海水を流すための配管は設けられていない。また、主熱交換器51の伝熱管511周囲には、海水の流速を調整する流速調整用構造体が配設されている。これは、伝熱管511周囲を流れる海水の流速は伝熱管511の熱伝達率に影響を及ぼすため、適した熱伝達率が得られるように伝熱管511周囲に流速調整用構造体が配置されるものである。
 ここでは一例として、伝熱管511の周囲に、コンクリートで形成される流速調整用ブロック501が設けられた構成を示している。この流速調整用ブロック501は、円形状に複数配置されており、隣接するブロック501間には海水が流入または流出するように海水流出入孔502が設けられている。流速調整用ブロック501で囲まれる空間には、海水流出入孔502を介して海水が流入し、海水は伝熱管511の周囲を通って冷媒を冷却した後、海水流出入孔502から空間外部へ流出する。なお、この流速調整用ブロック501は、伝熱管511周囲の海水の流速を確保するとともに、海水中を流れる大径の異物が伝熱管511に接触することを阻止する保護機能も兼ねている。
 また、流速調整用ブロック501と伝熱管511との間の距離の上限が、伝熱管511において所定の熱伝達率が得られる距離に基づいて設定され、下限が、伝熱管511に付着する異物が剥離する距離に基づいて設定されるようにしてもよい。
 このように、流速調整用ブロック501と伝熱管511との間の距離の上限が、伝熱管511において所定の熱伝達率が得られる距離に基づいて設定されることで、冷媒の冷却に適した熱伝達率を得ることが可能となる。
 一方、流速調整用ブロック501と伝熱管511との間の距離の下限が、伝熱管511に付着する異物が剥離する距離に基づいて設定されることで、伝熱管511への異物の堆積を防止することができる。海洋生物等の異物が伝熱管511へ付着、堆積すると熱伝達率が低下してしまうが、伝熱管511の周囲にある一定の空間を形成することで伝熱管511に堆積した異物は剥離する。したがって、この空間が確保できる距離を下限とすることで、伝熱管511への異物への堆積を抑制することができる。
 なお、主熱交換器51にはどのようなタイプの熱交換器を用いてもよいが、安価で且つ伝熱面積を大きくすることができることから、複数の伝熱管511を有する多管式熱交換器を用いることが好ましい。これにより、主熱交換器511での熱交換効率を高く維持することができる。また、中間熱交換器52にも同様に、多管式熱交換器を好適に用いることができる。
 図3Aは、付着物除去機能を有する主熱交換器を示す斜視図である。同図に示すように、この主熱交換器51は、伝熱管511の表面に海水を噴射するスプレーノズル521を有している。スプレーノズル521は伝熱管511の周囲に複数設けられている。複数のスプレーノズル521はヘッダ522にそれぞれ接続される。ポンプ523によって汲み上げられた海水は、ヘッダ522を介して各スプレーノズル521に供給され、各スプレーノズル521から伝熱管511の表面に噴射されるようになっている。
 これにより、海水に含まれる異物が主熱交換器51の伝熱管511に付着した場合であっても、スプレーノズル521から噴射する海水によって異物を剥離することができる。
 図3Bは、他の態様の付着物除去機能を有する主熱交換器を示す斜視図である。なお、同図では、冷媒送りライン41、冷媒戻しライン42及びポンプ47を省略している。この主熱交換器51’は、伝熱管511の周囲に配置され、片面に複数の孔526が形成された多孔板ヘッダ525を有している。多孔板ヘッダ525は、ポンプ523で汲み上げた海水を孔526から噴出させて、伝熱管511の周囲に噴流を供給するようになっている。この噴流によって伝熱管511に付着、堆積した異物を剥離することができる。
 このように、スプレーノズル521または多孔板ヘッダ525によって物理的に異物を剥離する構成とすることで、有害成分を含む塗料を伝熱管511に塗布したり、塩素を注入したりすることなく伝熱管511への異物の付着、堆積を抑制でき、環境負荷を小さくすることが可能である。
 図3Cは、他の態様の付着物除去機能を有する主熱交換器を示す斜視図である。なお、同図では、冷媒送りライン41、冷媒戻しライン42及びポンプ47を省略している。この主熱交換器51”は、伝熱管511がケーシング527に収納された構成となっており、ケーシング527には海水入口528及び海水出口529が形成されている。さらに、海水入口528には、海水に含まれる異物がケーシング527の内部に侵入することを防止するために、フィルタ528aが設けられている。上述したように、海水中には海洋生物等の異物が存在し、これらが主熱交換器51の伝熱管511に付着すると伝熱効率が低下してしまう。特に、海洋生物が伝熱管511に付着すると、ここで増殖するため徐々に伝熱効率が低下してしまうことは避けられない。そこで、本構成のように、主熱交換器51を収容するケーシング527の海水入口528にフィルタ528aを設けることにより、異物が伝熱管511の周囲に入り込むことを防ぎ、伝熱効率の低下を防止できる。なお、海水出口529にもフィルタ529aを設けてもよいことはもちろんである。これらのフィルタ528a、529aは、交換可能に設けられていることが好ましい。
 次に、図4~図7を用いて、上述した接続部100の具体的な構成例について説明する。
 図4は、本発明の実施形態に係る風力発電装置に適用されるスイベル構造の第1構成例を示す図で、図5Aは、図4のスイベル構造の第1構成例を示すB-B線断面図で、図5Bは、図4のスイベル構造の第1構成例を示すC-C線断面図である。
 第1構成例におけるスイベル構造の接続部100は、タワー2の軸方向に延設された管状部材111と、管状部材111を取り囲むように設けられた第1ジャケット112及び第2ジャケット115とを有しており、これらによって、ナセル4側の油圧ポンプ8からタワー2側の油圧モータ10へ向かう高圧油が流れる第1流路121と、油圧モータ10から油圧ポンプ8へ向かう低圧油が流れる第2流路122とが形成される。
 管状部材111は二重管構造となっており、外管111Aと内管111Bと隔壁11Cとからなる。隔壁11Cは、外管111Aと内管111Bとで形成される環状の空間を周方向に仕切り、複数の弧状流路114a、114bを形成する。なお、図4Bには、弧状流路114a、114bが2つ形成されている例を示したが、これより多くの弧状流路が形成されてもよい。
 第1ジャケット112は、管状部材111の外管111Aの外周側に設けられる。第1ジャケット112の内壁面と外管111Aの外壁面とから形成される環状流路112aは、第1ジャケット112の外周に接続される高圧側第1配管31に連通している。また、環状流路112aは、外管111Aに設けられた第1連通口113を介して、弧状流路114aに連通している。さらに、この弧状流路114aは、外管111Aの外周に接続される高圧側第2配管32に連通している。そして、環状流路112a及び弧状流路114aによって第1流路121が形成される。高圧側第1配管31から第1流路121に供給される高圧油は、環状流路112a、第1連通口113、弧状流路114aを通って、高圧側第2配管32へ送出される。
 第2ジャケット115は、管状部材111の外管111Aの外周側に設けられ、第1ジャケット112よりもナセル4側に配置されている。第2ジャケット115は、ボルト125によって第1ジャケット112に締結されている。管状部材111の弧状流路114bは、外管111Aの外周に接続される低圧側第2配管33に連通している。また、弧状流路114bは、外管111Aに設けられた第2連通口116を介して、第2ジャケット115の内壁面と外管111Aの外壁面とで形成される環状流路115aに連通している。さらに、環状流路115aは、第2ジャケット115の外周に接続される低圧側第1配管34に連通している。そして、弧状流路114b及び環状流路115aによって第2流路122が形成される。低圧側第2配管33から第2流路122に供給される低圧油は、弧状流路114b、第2連通口116、環状流路115aを通って、低圧側第1配管34へ送出される。
 第1ジャケット112及び第2ジャケット115は、ナセル4側に支持されている。一方、管状部材111は、タワー2側に支持されている。また、第1ジャケット112と外管111Aとの間には液密性を確保するように軸受118が設けられ、第2ジャケット115と外管111Aとの間には液密性を確保するように軸受119が設けられている。これらの軸受118、119によって、第1ジャケット112及び第2ジャケット113は、管状部材111に対して相対的に旋回自在に取り付けられている。
 上記構成により、ナセル4側の油圧ポンプ8からタワー2側の油圧モータ10へ向かう高圧油、及び、油圧ポンプ8から油圧モータ10に向かう低圧油の流れを確保しつつ、第1配管(高圧側第1配管31、低圧側第1配管34)と第2配管(高圧側第2配管32、低圧側第2配管33)との相対的な旋回を可能としている。したがって、ナセル4が旋回しても、ナセル4内の油圧ポンプ8とタワー2内の油圧モータ10との間の高圧油及び低圧油のやり取りを接続部100を介して行うことができる。
 また、上述した第1構成例において、管状部材111の内管111Bで囲まれる空間をケーブル用配管124として用いることが好ましい。ケーブル用配管124は、ナセル4側からタワー2側まで延設されるケーブル125を収容する配管である。ここで、ケーブル用配管124には、油圧ポンプ8等のようにナセル4内に配置される電気利用機器への電力供給に用いられる電力ケーブル若しくは制御に用いられる通信ケーブル、ナセル4側に取り付けられる各種計測機器に接続される信号ケーブル、または、回転翼6Bやナセル4への落雷の際に電気を逃がす避雷用ケーブル等のケーブル125が収容される。
 このように、内管111Bで囲まれる空間をケーブル用配管124として用いることによって、ナセル4が旋回した場合であっても、ケーブル125が損傷することを防止できる。
 図6は、本発明の実施形態に係る風力発電装置に適用されるスイベル構造の第2構成例を示す図である。
 第2構成例におけるスイベル構造の接続部100’は、ナセル4に収納された油圧ポンプ8と、タワー2内に設けられた油圧モータ10とを、第1二重管130及び第2二重管140を用いて接続している。
 第1二重管130はナセル4に固定され、第2二重管140はタワー2に固定され、第1二重管130及び第2二重管140は相対的に回転可能に構成されている。
 以下に、第1二重管130及び第2二重管140の具体的な構成を説明する。
 第1二重管130は、フランジ部においてボルト135で締結された上側部材131及び下側部材133によって構成されている。なお、上側部材131と下側部材133との接合面には軸受136が設けられ、液密性が保たれている。上側部材131は、その上部において油圧ポンプ8の吐出側に、高圧側第1配管31(図1参照)を介して接続される高圧油入口を有する。下側部材133は、上側部材131に接合されたフランジ部から下方に垂れる内周側円筒部と外周側円筒部とを有し、この外周側円筒部の側面には油圧ポンプ8の吸込側に、低圧側第1配管34(図1参照)を介して接続される低圧油出口が設けられている。
 そして、上側部材131と下側部材133の一部(内周側円筒部)とによって、第1二重管130の第1内側配管132が形成されている。また、下側部材133の一部(外周側円筒部)によって、第1二重管130の第1外側配管134が形成されている。
 一方、第2二重管140は、第2内側配管142及びこの第2内側配管142の外周に設けられる第2外側配管144を有する。また、第2二重管140の下部には、高圧側第2配管32(図1参照)に接続される高圧油出口が設けられている。さらに、第2二重管140の側面には、低圧側第2配管33(図1参照)に接続される低圧油入口が設けられている。
 そして、第1二重管130は、第2二重管140に回転自在に嵌合されている。このように嵌合された第1二重管130及び第2二重管140によって、ナセル4側からタワー2側へ向かう高圧油が流れる第1流路151と、タワー2側からナセル4側へ向かう低圧油が流れる第2流路152とが形成される。
 なお、第1内側配管132の内壁面と第2内側配管142の外壁面との間には、内側軸受155が設けられている。また、第1外側配管134の内壁面と第2外側配管144の外壁面との間には、外側軸受156が設けられている。
 上記構成の風力発電装置100によれば、ナセル4側に支持された第1二重管130を回転自在に第2二重管140に接続したので、ナセル4が旋回しても、ナセル4内の油圧ポンプ8とタワー2内の油圧モータ10との間の高圧油及び低圧油のやり取りを第1二重管130と第2二重管140とを介して行うことができる。
 図7は、本発明の実施形態に係る風力発電装置に適用されるスイベル構造の第3構成例を示す図である。
 第3構成例におけるスイベル構造の接続部100”は、タワー2の軸方向に延設された二重管160と、二重管160を取り囲むように設けられた第1ジャケット164及び第2ジャケット166とを有しており、これらによって、ナセル4側の油圧ポンプ8からタワー2側の油圧モータ10へ向かう高圧油が流れる第1流路171と、油圧モータ10から油圧ポンプ8へ向かう低圧油が流れる第2流路172とが形成される。
 二重管160は内管160Aと外管160Bとからなり、内管160Aの内部には内側流路が形成され、内管160A及び外管160Bにより外側流路が形成されている。
 第1ジャケット164は、内管160Aの外周側に設けられる。第1ジャケット164の内壁面と内管160Aの外壁面とから形成される環状流路164aは、第1ジャケット164の外周に接続される高圧側第1配管31に連通している。また、環状流路164aは、内管160Aに設けられた第1連通口161を介して、内側流路に連通している。さらに、この内側流路は、内管160Aの下端部に接続される高圧側第2配管32に連通している。そして、環状流路164a及び内側流路によって第1流路171が形成される。高圧側第1配管31から第1流路171に供給される高圧油は、環状流路164a、第1連通口161、内側流路を通って、高圧側第2配管32へ送出される。
 第2ジャケット166は、外管160Bの外周側に設けられ、第1ジャケット164よりもタワー2側に配置されている。第2ジャケット166は、ボルト175によって第1ジャケット164に締結されている。外側流路は、外管160Bの外周に接続される低圧側第2配管33に連通しているとともに、第2ジャケット166の内壁面と内管160Aの外壁面との間に形成される環状流路166aに連通している。環状流路166aは、第2ジャケット166の外周に接続される低圧側第1配管34に連通している。そして、外側流路及び環状流路166aによって第2流路172が形成される。低圧側第2配管33から第2流路172に供給される低圧油は、外側流路、環状流路166aを通って、低圧側第1配管34へ送出される。
 第1ジャケット164及び第2ジャケット166は、ナセル4側に支持されている。一方、二重管160は、タワー2側に支持されている。第1ジャケット164と二重管160の内管160Aとの間には液密性を確保するように軸受176が設けられている。また、第2ジャケット166と内管160Aとの間には液密性を確保するように軸受176が設けられ、第2ジャケット166と外管160Bとの間には液密性を確保するように軸受177が設けられている。これらの軸受176、177によって、第1ジャケット164及び第2ジャケット166は、二重管160に対して相対的に旋回自在に取り付けられている。
 上記構成により、ナセル4側の油圧ポンプ8からタワー2側の油圧モータ10へ向かう高圧油、及び、油圧ポンプ8から油圧モータ10に向かう低圧油の流れを確保しつつ、第1配管(高圧側第1配管31、低圧側第1配管34)と第2配管(高圧側第2配管32、低圧側第2配管33)との相対的な旋回を可能としている。したがって、ナセル4が旋回しても、ナセル4内の油圧ポンプ8とタワー2内の油圧モータ10との間の高圧油及び低圧油のやり取りを接続部100を介して行うことができる。
 上述した第1実施形態によれば、作動油の冷却に用いられる冷媒を、タワー2の基部2A周辺の海水と熱交換することによって冷却するようにしたので、空冷より高効率で冷媒を冷却することができる。
 また、作動油ライン30を、ナセル4側に支持される第1配管と、タワー2側に支持される第2配管とに分割し、スイベル構造を有する接続部100、100’、100”によって、第1配管と第2配管とが相対的に旋回自在となるように接続したので、ナセル4が旋回しても、ナセル4側の第1配管とタワー2側の第2配管との間で流体のやり取りを円滑に行うことができる。
 さらに、油圧モータ10がタワー2の先端部2Bと基部2Aとの間に配置されるようにしたので、作動油ライン30がタワー2側まで延設されることとなり、タワー2内で作動油と冷媒とを熱交換させることができるため、作動油を冷却するための冷媒ライン40をナセル4まで延設する必要がなくなる。したがって、冷媒ライン40によってナセル高さまで冷媒を汲み上げる場合に比べて、ポンプ47の動力を小さくでき、またポンプ47を小型化することも可能である。
 ここで、図1に示した第1実施形態に係る風力発電装置1の変形例について説明する。なお、以下の変形例においては、図1に示した第1実施形態と異なる構成のみ説明する。
 図8に示す第1変形例は、トランス室冷却器55とタワー冷却器54とを直列に接続する冷媒分岐ライン44’を設けた構成としている。冷媒分岐ライン44’は、冷媒送りライン41から分岐され冷媒戻しライン42に合流されるように構成されており、この冷媒分岐ライン44’にトランス室冷却器55とタワー冷却器54とを直列に設けている。冷媒分岐ライン44’を流れる冷媒は、トランス室冷却器55によってトランス室21内の空気と熱交換されてトランス室21内の空気を冷却する。次いで、トランス室冷却器55から排出された冷媒は、タワー冷却器54に供給され、タワー2内の空気と熱交換されてタワー2内の空気を冷却する。これらの冷却器を経た冷媒は、主熱交換器51に戻される。なお、これらの冷却器は、タワー冷却器54、トランス室冷却器55の順に冷媒分岐ライン44’に設けてもよく、冷却器の配置順は特に限定されるものではない。
 このように、複数の熱発生源を直列に接続する冷媒ラインを備えることにより、配管構成を簡素化することができる。
 図9に示す第2変形例は、主熱交換器51を複数台設けた構成となっている。なお、同図には2つの主熱交換器51a、51bを設けた例を示しているが、設置台数は限定されない。冷媒戻しライン42は、主熱交換器51a、51bの入り口側で2つに分岐され、一方のラインは主熱交換器51aに接続され、他方のラインは主熱交換器51bに接続される。各ラインには、冷媒循環用のポンプ47a、47bがそれぞれ設けられている。主熱交換器51a、51bで冷却された冷媒が流れる各ラインは、主熱交換器51a、51bの出口側で合流し、冷媒送りライン41に接続されている。このように、複数の主熱交換器51a、51bを設けることにより、冷却機能を高くすることができる。なお、主熱交換器の設置台数は、冷却対象となる熱発生源の総発熱量から決定されることが好ましい。
 図10に示す第3変形例は、冷媒ライン40に接続される冷媒タンク49がタワー2の内部に配置されるとともに、該冷媒タンク49がタワー内空間に対して密閉された構成を有している。このように、冷媒タンク49をタワー2の内部に配置し、且つ冷媒タンク49がタワー2内の空間に対して密閉されるようにしたので、例えば冷媒タンク49を冷媒ラインの下方に配置するなど、冷媒タンク49の配置を自由にできる。なお、同図には冷媒タンク49を一台設置した場合を示しているが、複数台の冷媒タンク49を設置してもよいし、図1に示す開放型の冷媒タンク48と組み合わせて用いてもよい。
[第2実施形態]
 次に、図11を参照して、第2実施形態に係る風力発電装置について説明する。図11は、本発明の第2実施形態に係る風力発電装置の全体構成を示す図である。なお、本実施形態に係る風力発電装置1は、油圧トランスミッション及び作動油ライン30の構成が異なる点を除けば、第1実施形態に係る風力発電装置1と同様である。よって、ここでは、第1実施形態と異なる点を中心に説明することとし、図11では風力発電装置1と共通する箇所には同一の符号を付し、その説明を省略する。また、図11においては、ナセル旋回機構19及びヨー駆動機構13を省略している。
 本実施形態に係る風力発電装置1では、油圧モータ10及び発電機12はナセル4側に支持されている。また、中間熱交換器52はタワー側2に支持されている。
 作動油ライン30は、油圧ポンプ8と油圧モータ10との間で作動油を循環させる作動油循環ラインと、作動油循環ラインに並行に接続された作動油分岐ライン38とを有する。
 作動油循環ラインは、油圧ポンプ8の作動油出口側と油圧モータ10の作動油入口側とを接続する高圧油ライン36と、油圧モータ10の作動油出口側と油圧ポンプ8の作動油入口側とを接続する低圧油ライン37とからなる。
 作動油分岐ライン38は、低圧油ライン37から分岐され、スイベル構造を有する接続部100を介して、ナセル4側からタワー2側まで延設されて、タワー2側の中間熱交換器52の入口側に接続される。また、中間熱交換器52の出口側に接続される作動油分岐ライン38は、接続部100を介して、タワー2側からナセル4側まで延設されて、低圧油ライン37に合流される。なお、接続部100には、第1実施形態で説明した構成を採用することができる。
 低圧油ライン37から分岐された低圧油は、作動油分岐ライン38を通って中間熱交換器52に導入され、中間熱交換器52で冷媒によって冷却された後、作動油分岐ライン38を通って低圧油ライン37に戻される。
 このように、油圧モータ8がナセル4側に支持され、低圧油ライン37から分岐した作動油分岐ライン37がタワー2側の中間熱交換器52に接続されるようにしたので、作動油流量の多い作動油ライン30を短くでき、一方、接続部100を通る作動油流量を少なくすることができる。これにより配管構造を簡素化することが可能となる。また、作動油分岐ライン38は、低圧油ライン37から分岐させているため、作動油分岐ライン38及び接続部100を耐圧性の低い配管で構成することができ、コスト低減が図れる。
 また、本実施形態に係る風力発電装置1は、空冷によって発電機12を冷却する発電機クーラ53’を有していてもよい。
 この場合、ナセル4の外周側に、外気を取り込むダクト81が設けられている。ダクト81は、吸気口を有しており、ナセル4の壁面に一体的に形成されていてもよい。このとき、外気の取り込みを促進するために、ダクト81内にファン82を設置することが好ましい。
 ダクト81で取り込まれた空気は、空気配管83を介してナセル4内に導かれる。空気配管83には発電機クーラ53’が設けられている。発電機クーラ53’は、例えば発電機12の周囲に設けられた冷却ジャケットとして構成され、冷却ジャケットの外周をダクト81で取り込まれた空気が流れることによって発電機12を冷却する。冷却後の空気は、空気配管83を通ってナセル外部へ排気される。
 また、ダクト81で取り込まれた空気は、ナセル4内の他の熱発生源の冷却に用いることもできる。例えば、ナセル4内の空気を冷却するナセル冷却器(不図示)の冷却に用いることができる。このように、タワー2内の熱発生源の冷却には主に水冷を用い、ナセル4内の熱発生源には空冷を用いることで、風力発電装置1の熱発生源の効率的な冷却が可能となる。
[第3実施形態]
 続いて、図12を参照して、第3実施形態に係る風力発電装置について説明する。図12は、本発明の第3実施形態に係る風力発電装置の全体構成を示す図である。
 なお、本実施形態に係る風力発電装置1は、油圧トランスミッション及び作動油ライン30の構成が異なる点を除けば、第1実施形態に係る風力発電装置1と同様である。よって、ここでは、第1実施形態と異なる点を中心に説明することとし、図12では風力発電装置1と共通する箇所には同一の符号を付し、その説明を省略する。また、図12においては、ナセル旋回機構19及びヨー駆動機構13を省略している。
 本実施形態に係る風力発電装置1では、油圧モータ10及び発電機12はナセル4の内部に配置されている。また、中間熱交換器52もナセル4内に配置されている。
 作動油ライン30は、油圧ポンプ8と油圧モータ10との間で作動油を循環させる作動油循環ラインと、作動油循環ラインに並行に接続された作動油分岐ライン38’とを有しており、いずれのラインもナセル4内に配設されている。
 作動油循環ラインは、油圧ポンプ8の作動油出口側と油圧モータ10の作動油入口側とを接続する高圧油ライン36と、油圧モータ10の作動油出口側と油圧ポンプ8の作動油入口側とを接続する低圧油ライン37とからなる。
 作動油分岐ライン38’は、低圧油ライン37から分岐され、ナセル4内の中間熱交換器52の入口側に接続される。また、中間熱交換器52の出口側に接続される作動油分岐ライン38’は、低圧油ライン37に合流される。
 冷媒ライン40は、スイベル構造を有する接続部100を介して、主熱交換器51と中間熱交換器52との間に接続される冷媒送りライン41と、同様に接続部100を介して、中間熱交換器52と主熱交換器51との間に接続される冷媒戻しライン42とを含んでいる。なお、接続部100には、第1実施形態で説明した構成を採用することができる。
 主熱交換器51によって海水で冷却された冷媒は、冷媒送りライン41を通って中間熱交換器52に供給され、中間熱交換器52で作動油と熱交換されることによって作動油を冷却した後、冷媒戻しライン42を通って主熱交換器51に戻される。
 このように、油圧モータ8及び発電機10はナセル4の内部に配置され、ナセル4側に支持される中間熱交換器52に、接続部100を介して冷媒ライン40が接続されるようにしたので、接続部100を耐圧性の低い配管で構成することができ、コスト低減が図れる。
 また、冷媒ライン40は、冷媒送りライン41のナセル4側から分岐され、冷媒戻しライン42のナセル4側に合流される冷媒分岐ライン43’を含んでいてもよい。この冷媒分岐ライン43’には、発電機12を冷却する発電機クーラ53が設けられる。発電機クーラ53は、例えば発電機12の周囲に設けられた冷却ジャケットとして構成される。発電機クーラ53では、冷媒分岐ライン43’から供給される冷媒との熱交換によって発電機12を冷却するようになっている。
[第4実施形態]
 最後に、図4を参照して、第4実施形態に係る風力発電装置について説明する。図13は、本発明の第4実施形態に係る風力発電装置の全体構成を示す図である。
 本実施形態に係る風力発電装置1は、冷媒ライン40を備えておらず、油圧トランスミッションの作動油を海水で直接冷却する構成となっている。なお、本実施形態に係る風力発電装置1では、油圧トランスミッション、作動油ライン30及び冷媒ライン40の構成を除く他の構成については、第1実施形態に係る風力発電装置1と同様であるためその詳細な説明を省略する。また、図13においては、ナセル旋回機構19及びヨー駆動機構13を省略している。
 本実施形態に係る風力発電装置1では、油圧モータ10及び発電機12はナセル4の内部に配置されている。
 作動油ライン30は、油圧ポンプ8と油圧モータ10との間で作動油を循環させる作動油循環ラインと、作動油循環ラインに並行に接続された作動油分岐ライン70とを有しており、いずれのラインもナセル4内に配設されている。
 作動油循環ラインは、油圧ポンプ8の作動油出口側と油圧モータ10の作動油入口側とを接続する高圧油ライン36と、油圧モータ10の作動油出口側と油圧ポンプ8の作動油入口側とを接続する低圧油ライン37とからなる。
 作動油分岐ライン70は、ナセル4側に支持される第1配管71、74と、タワー2側に支持される第2配管72、73とを有している。なお、作動油分岐ライン70は、低圧油ライン37に並行に配設されることが好ましい。また、作動油分岐ライン70には、分岐ライン70の作動油の流れを形成するポンプ71が設けられている。
 第1配管71と第2配管72とは、スイベル構造を有する接続部100によって相対的に旋回自在に接続されている。同様に、第1配管73と第2配管74とは、接続部100によって相対的に旋回自在に接続されている。この接続部100には、第1実施形態で説明した構成を採用することができる。
 低圧ライン37から分岐された作動油は、第1配管71、接続部100、第2配管72を順に通って主熱交換器58に導入される。主熱交換器58では、海水との熱交換によって冷媒が冷却される。主熱交換器58から排出される冷媒は、第2配管73、接続部100、第1配管74を順に通って低圧ライン37に戻される。
 本実施形態によれば、作動油を、タワー基部周辺の海水、湖水、河川水または地下水からなる冷水源と熱交換することによって冷却するようにしたので、空冷より高効率で作動油を冷却することができる。
 また、作動油循環ラインおよび作動油分岐ライン70の一方を、ナセル4側に支持される第1配管71、74と、タワー2側に支持される第2配管72、73とに分割し、スイベル構造を有する接続部100によって、第1配管71、74と第2配管72、73とが相対的に旋回自在となるように接続したので、ナセル4が旋回しても、ナセル4側の第1配管71、74とタワー側の第2配管72、73との間で流体のやり取りを円滑に行うことができる。
 また、本実施形態に係る風力発電装置1は、空冷によって発電機12を冷却する発電機クーラ53’を有していてもよい。
 この場合、ナセル4の外周側に、外気を取り込むダクト81が設けられており、ダクト81で取り込まれた空気は、空気配管83を介してナセル4内に導かれる。空気配管83には発電機クーラ53’が設けられている。発電機クーラ53’は、例えば発電機12の周囲に設けられた冷却ジャケットとして構成され、冷却ジャケットの外周をダクト81で取り込まれた空気が流れることによって発電機12を冷却する。冷却後の空気は、空気配管83を通ってナセル外部へ排気される。
 また、ダクト81で取り込まれた空気は、ナセル4内の他の熱発生源の冷却に用いることもできる。例えば、ナセル4内の空気を冷却するナセル冷却器(不図示)の冷却に用いることができる。このように、タワー2内の熱発生源の冷却には主に水冷を用い、ナセル4内の熱発生源には空冷を用いることで、風力発電装置1の熱発生源の効率的な冷却が可能となる。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
 さらに、上述の実施形態では、再生エネルギー型発電装置の具体例として風力発電装置1について説明したが、本発明は、風力発電装置以外の再生エネルギー型発電装置にも適用できる。
 例えば、潮流、海流又は河流を利用した発電装置であって、タワーが基端部から先端部に向かって海中又は水中を鉛直方向下方に延びるとともに、回転翼によって潮流、海流又は河流を受けることで主軸が回転するような発電装置に本発明を適用してもよい。
1   風力発電装置
2   タワー
2A  タワー基部
2B  タワー先端部
4   ナセル
6   ロータ
6A  ハブ
6B  回転翼
8   油圧ポンプ
10  油圧モータ
12  発電機
14  主軸
15  主軸軸受
21  トランス室
30  作動油ライン
31  高圧側第1配管
32  高圧側第2配管
33  低圧側第2配管
34  低圧側第1配管
36  高圧油ライン
37  低圧油ライン
38  作動油分岐ライン
40  冷媒ライン
41  冷媒送りライン
42  冷媒戻しライン
43、44、44’、45 冷媒分岐ライン
51、51’、58 主熱交換器
52  中間熱交換器
53  発電機クーラ
54  タワー冷却器
55  トランス室冷却器
70  作動油分岐ライン
71、74 第1配管
72、73 第2配管
100、100’、100” 接続部
 

Claims (18)

  1.  再生エネルギーから電力を生成する再生エネルギー型発電装置であって、
     タワーと、
     前記タワーの先端部に、旋回自在に支持されたナセルと、
     前記ナセルに収納され、回転翼とともに回転する主軸と、
     前記ナセルに収納され、前記主軸の回転によって駆動される油圧ポンプと、
     前記油圧ポンプから供給される作動油によって駆動される油圧モータと、
     前記油圧モータに連結された発電機と、
     前記油圧ポンプと前記油圧モータとの間に設けられ、前記作動油が流れる作動油ラインと、
     中間熱交換器を介して前記作動油を冷却する冷媒が循環する冷媒ラインと、
     前記冷媒を、前記タワー基部周辺の海水、湖水、河川水または地下水からなる冷水源と熱交換することによって冷却する主熱交換器とを備え、
     前記作動油ライン及び前記冷媒ラインの一方が、前記ナセル側に支持される第1配管と、前記タワー側に支持される第2配管と、前記第1配管と前記第2配管とを相対的に旋回自在に接続する接続部とを有することを特徴とする再生エネルギー型発電装置。
  2.  前記油圧モータは、前記タワーの前記先端部と前記基部との間に配置され、
     前記作動油ラインが、前記ナセル内の前記油圧ポンプから前記タワー内の前記油圧モータまで延設されており、
     前記作動油ラインは、前記第1配管、前記第2配管及び前記接続部を有し、
     前記第1配管が前記油圧ポンプに接続され、前記第2配管が前記油圧モータに接続されていることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  3.  前記油圧モータは前記ナセル側に支持され、一方、前記中間熱交換器は前記タワー側に支持されており、
     前記作動油ラインは、前記油圧ポンプと前記油圧モータとの間を作動油が循環する作動油循環ラインと、前記作動油循環ラインの低圧側から分岐して前記中間熱交換器を通って前記作動油循環ラインに戻る作動油分岐ラインとを含み、
     前記作動油分岐ラインは、前記第1配管、前記第2配管及び前記接続部を有し、
     前記第1配管が前記作動油循環ラインに接続され、前記第2配管が前記中間熱交換器に接続されていることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  4. 前記油圧モータ及び前記発電機は、前記ナセルの内部に配置され、一方、前記中間熱交換器は、前記ナセル側に支持されており、
     前記冷媒ラインは、前記第1配管、前記第2配管及び前記接続部を有し、
     前記第1配管が前記中間熱交換器側に接続され、前記第2配管が前記主熱交換器側に接続されていることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  5.  前記ナセル側から前記タワー側へ向かう流体が流れる第1流路と、
     前記タワー側から前記ナセル側へ向かう流体が流れる第2流路と、
     一又は複数の前記第1流路及び一又は複数の前記第2流路が形成された管状部材と、
     前記管状部材を取り囲むように設けられ、前記第1流路に設けられた第1連通口を介して前記第1配管に連通した環状流路を含む第1ジャケットと、
     前記管状部材を取り囲むように設けられ、前記第2流路に設けられた第2連通口を介して前記第2配管に連通した環状流路を含む第2ジャケットとを有し、
     前記第1ジャケット及び前記第2ジャケットが、軸受を介して前記管状部材に相対的に旋回自在に取り付けられていることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  6.  前記管状部材には、前記1流路及び前記第2流路のさらに内側に、前記ナセル側から前記タワー側へ延設されるケーブルを収容するケーブル用配管が設けられていることを特徴とする請求項5に記載の再生エネルギー型発電装置。
  7.  前記冷媒ラインに水を供給する水供給源と、
     前記水に不凍液が添加された冷媒を前記冷媒ライン内で循環させるポンプとをさらに備えることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  8.  前記水供給源が、前記冷媒を貯留する冷媒タンクであり、
     前記冷媒タンクは前記タワーの上部に配置されるとともに、該冷媒タンクはタワー内空間に開放されていることを特徴とする請求項7に記載の再生エネルギー型発電装置。
  9.  前記水供給源が、前記冷媒を貯留する冷媒タンクであり、
     前記冷媒タンクは前記タワーの内部に配置されるとともに、該冷媒タンクはタワー内空間に対して密閉されていることを特徴とする請求項7に記載の再生エネルギー型発電装置。
  10.  前記主熱交換器を収容するケーシングの冷水源入口には、前記冷水源に含まれる異物が前記ケーシング内部に混入することを防止するフィルタが設けられていることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  11.  前記主熱交換器は、前記タワーが設置される基礎に取り付けられていることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  12.  前記熱交換器の伝熱管周囲に、冷水源の流速を調整する流速調整用構造体が配設され、
     前記流速調整用構造体と前記伝熱管との間の距離の上限が、前記伝熱管において所定の熱伝達率が得られる距離に基づいて設定され、下限が、前記伝熱管に付着する異物が剥離する距離に基づいて設定されることを特徴とする請求項11に記載の再生エネルギー型発電装置。
  13.  前記主熱交換器の伝熱管表面に前記冷水源を噴射するスプレーノズルを設けたことを特徴とする請求項11に記載の再生エネルギー型発電装置。
  14.  前記熱交換器は、複数の伝熱管を有する多管式熱交換器であることを特徴とする請求項11に記載の再生エネルギー型発電装置。
  15.  前記再生エネルギー型発電装置は風力発電装置であり、
     前記タワーが前記基端部から前記先端部に向かって鉛直方向上方に延びるとともに、
     前記回転翼によって風を受けることで前記主軸が回転する請求項1に記載の再生エネルギー型発電装置。
  16.  前記ナセル内に収納され、前記ナセルの周囲から取り込んだ空気によって前記発電機を冷却する発電機冷却器をさらに備えることを特徴とする請求項1に記載の再生エネルギー型発電装置。
  17.  再生エネルギーから電力を生成する再生エネルギー型発電装置であって、
     タワーと、
     前記タワーの先端部に、旋回可能に支持されたナセルと、
     前記ナセルに収納され、回転翼とともに回転する主軸と、
     前記ナセルに収納され、前記主軸の回転によって駆動される油圧ポンプと、
     前記油圧ポンプから供給される作動油によって駆動される油圧モータと、
     前記油圧モータに連結された発電機と、
     前記油圧ポンプと前記油圧モータとの間に設けられ、前記作動油が流れる作動油循環ラインと、
     前記作動油を、前記タワー基部周辺の海水、湖水、河川水または地下水からなる冷水源と熱交換することによって冷却する主熱交換器とを備え、
     前記作動油循環ライン及び該作動油循環ラインから分岐される作動油分岐ラインの一方が、前記ナセル側に支持される第1配管と、前記タワー側に支持される第2配管と、前記第1配管と前記第2配管とを相対的に旋回自在に接続する接続部とを有することを特徴とする再生エネルギー型発電装置。
  18.  前記ナセル内に収納され、前記ナセルの周囲から取り込んだ空気によって前記発電機を冷却する発電機冷却器をさらに備えることを特徴とする請求項17に記載の再生エネルギー型発電装置。
PCT/JP2011/071673 2011-04-05 2011-09-22 再生エネルギー型発電装置 WO2012137370A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020127010773A KR20120139669A (ko) 2011-04-05 2011-09-22 재생 에너지형 발전 장치
JP2012503813A JP4995357B1 (ja) 2011-04-05 2011-09-22 再生エネルギー型発電装置
IN3061DEN2012 IN2012DN03061A (ja) 2011-04-05 2011-09-22
CN2011800043868A CN102822511A (zh) 2011-04-05 2011-09-22 再生能量型发电装置
AU2011310939A AU2011310939A1 (en) 2011-04-05 2011-09-22 Power generating apparatus of renewable energy type
EP11810981.8A EP2532890A4 (en) 2011-04-05 2011-09-22 DEVICE FOR GENERATING ELECTRICITY FROM REGENERATED ENERGY
US13/363,166 US8684682B2 (en) 2011-04-05 2012-01-31 Power generating apparatus of renewable energy type
PCT/JP2012/001077 WO2013051167A1 (en) 2011-04-05 2012-02-17 Blade attaching and detaching device and method for wind turbine generator
PCT/JP2012/070492 WO2013042487A1 (ja) 2011-04-05 2012-08-10 再生エネルギー型発電装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/058647 WO2012137311A1 (ja) 2011-04-05 2011-04-05 再生エネルギー型発電装置
JPPCT/JP2011/058647 2011-04-05
JPPCT/JP2011/068284 2011-08-10
PCT/JP2011/068284 WO2013021488A1 (ja) 2011-08-10 2011-08-10 再生エネルギー型発電装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/363,166 Continuation US8684682B2 (en) 2011-04-05 2012-01-31 Power generating apparatus of renewable energy type

Publications (1)

Publication Number Publication Date
WO2012137370A1 true WO2012137370A1 (ja) 2012-10-11

Family

ID=46968797

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2011/071673 WO2012137370A1 (ja) 2011-04-05 2011-09-22 再生エネルギー型発電装置
PCT/JP2012/001077 WO2013051167A1 (en) 2011-04-05 2012-02-17 Blade attaching and detaching device and method for wind turbine generator
PCT/JP2012/070492 WO2013042487A1 (ja) 2011-04-05 2012-08-10 再生エネルギー型発電装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/001077 WO2013051167A1 (en) 2011-04-05 2012-02-17 Blade attaching and detaching device and method for wind turbine generator
PCT/JP2012/070492 WO2013042487A1 (ja) 2011-04-05 2012-08-10 再生エネルギー型発電装置

Country Status (7)

Country Link
US (1) US8684682B2 (ja)
EP (1) EP2532890A4 (ja)
KR (1) KR20120139669A (ja)
CN (1) CN102822511A (ja)
AU (1) AU2011310939A1 (ja)
IN (1) IN2012DN03061A (ja)
WO (3) WO2012137370A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152711A (ja) * 2013-02-08 2014-08-25 Masao Omura 重力発電装置
JP2016114057A (ja) * 2014-12-11 2016-06-23 大洋プラント株式会社 浮体支持軸の軸構造および該浮体支持軸の軸構造を備えた水上発電装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541897B2 (en) * 2009-09-01 2013-09-24 University Of Southern California Generation of electric energy using cable-supported windmills
US20130028729A1 (en) * 2011-07-28 2013-01-31 Jones Jack A Power generation systems and methods
NO342628B1 (no) * 2012-05-24 2018-06-25 Fmc Kongsberg Subsea As Aktiv styring av undervannskjølere
US9091249B2 (en) * 2012-06-05 2015-07-28 Games Innovation & Technology, S.L. Integrated cooling and climate control system for an offshore wind turbine
US9528498B2 (en) * 2012-09-13 2016-12-27 Jaime Miguel Bardia On or off grid vertical axis wind turbine and self contained rapid deployment autonoous battlefield robot recharging and forward operating base horizontal axis wind turbine
NO336863B1 (no) * 2013-06-18 2015-11-16 Vetco Gray Scandinavia As Undersjøisk varmeveksler
EP2927478B1 (en) * 2014-03-31 2018-10-17 Alstom Renovables España, S.L. Installing a blade in a wind turbine and wind turbines
ES2556997B1 (es) * 2014-07-07 2016-12-12 Gamesa Innovation & Technology, S.L. Método y dispositivo de sustitución de pala en aerogeneradores
DK178627B1 (da) * 2014-10-08 2016-09-19 Liftra Ip Aps Fremgangsmåde til anvendelse ved enkeltvingeskift på en vindmølle, samt indretning til udøvelse af fremgangsmåden.
CN105179180B (zh) * 2015-08-20 2017-12-19 远景能源(江苏)有限公司 一种大功率海上风力发电机组塔底冷却系统及控制方法
US20170074248A1 (en) * 2015-09-10 2017-03-16 Ben M. Enis Wind turbine station and tower with vertical storage tanks
US9845792B2 (en) * 2015-10-13 2017-12-19 Huseyin Ozcan Wind turbine system
DE102015120706B4 (de) * 2015-11-30 2018-03-22 Aerodyn Engineering Gmbh Luftgekühlter Öltank
DE102015122855A1 (de) * 2015-12-28 2017-06-29 Wobben Properties Gmbh Windenergieanlage und Kühlvorrichtung für eine Windenergieanlage
US10197149B2 (en) * 2016-03-23 2019-02-05 Kawasaki Jukogyo Kabushiki Kaisha V-belt type continuously variable transmission
FR3052816B1 (fr) * 2016-06-16 2018-07-27 Soletanche Freyssinet Procede pour manoeuvrer une pale d'eolienne
EP3388666A1 (en) * 2017-04-12 2018-10-17 Adwen GmbH Lubrication system for a drive train of a wind turbine, wind turbine and method of lubrication
US10590916B2 (en) * 2018-01-22 2020-03-17 General Electric Company Multisiphon passive cooling system
US11885309B2 (en) 2018-11-20 2024-01-30 Vestas Wind Systems A/S Wind turbine cooling system
CN111946560B (zh) * 2020-08-24 2023-09-05 江苏常友环保科技股份有限公司 风力电机导流罩对接总成
CN112431730B (zh) * 2020-11-23 2022-08-26 上海齐耀动力技术有限公司 一种海上水电风冷系统
GB202207254D0 (en) * 2022-05-18 2022-06-29 Aquaterra Energy Ltd A heat-exchanger
EP4379093A1 (en) * 2022-12-02 2024-06-05 Siemens Gamesa Renewable Energy A/S Offshore wind turbine arrangement and method for cooling a hydrogen production apparatus of an offshore wind turbine arrangement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847181A (ja) * 1981-09-14 1983-03-18 Daikin Ind Ltd 風水力式ポンプ駆動装置
JPS61212674A (ja) * 1985-03-19 1986-09-20 Matsushita Seiko Co Ltd 風車の動力伝達装置
WO2009025420A1 (en) * 2007-08-21 2009-02-26 Dong Yong Kim Wind turbine system using fluid torque converter
JP2009138555A (ja) * 2007-12-04 2009-06-25 Mitsubishi Heavy Ind Ltd 風力発電装置

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE24179E (en) * 1956-07-10 Electric generating and air cooling system
US2539862A (en) * 1946-02-21 1951-01-30 Wallace E Rushing Air-driven turbine power plant
IT527036A (ja) 1950-04-24
US2706255A (en) 1954-01-18 1955-04-12 Garrett Corp Electric power generating and air cooling system
US3030118A (en) 1958-05-13 1962-04-17 Cocker Machine & Foundry Compa Seal for a rotating shaft
US3547556A (en) 1968-12-23 1970-12-15 Herman P Smith Hydraulically driven wind machine
DE2138376C3 (de) 1971-07-31 1978-05-24 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Kühlsystem für in Schränken untergebrachte elektronische Geräte
US3943717A (en) 1974-01-07 1976-03-16 Caterpillar Tractor Co. Contaminant removal from a hydraulic cylinder
US4503673A (en) * 1979-05-25 1985-03-12 Charles Schachle Wind power generating system
JPS5928136Y2 (ja) 1979-08-30 1984-08-14 株式会社島津製作所 風力エネルギ−の変換装置
NL186649C (nl) 1981-03-21 1991-01-16 Berg A P Ingbureau Stelsel voor het in elektrische energie omzetten van veranderlijke mechanische energie.
JPS6220678A (ja) * 1985-07-19 1987-01-29 Matsushita Seiko Co Ltd 風力暖房装置
US5183101A (en) 1991-05-21 1993-02-02 Bio-Rad Laboratories, Inc. Circulating chiller for electrified solutions
JP2975923B1 (ja) 1998-05-22 1999-11-10 日本ピラー工業株式会社 回転継手装置
AU2002344946B2 (en) 2002-05-27 2005-09-01 Vestas Wind Systems A/S Methods of handling wind turbine blades and mounting said blades on a wind turbine, system and gripping unit for handling a wind turbine blade
JP3979917B2 (ja) 2002-10-18 2007-09-19 サクサ株式会社 油圧装置
JP4210540B2 (ja) 2003-03-27 2009-01-21 株式会社荏原製作所 ブレードのメンテナンスが容易な風車及び風力発電装置
US20050174735A1 (en) 2003-08-26 2005-08-11 Nagui Mankaruse High performance cooling systems
JP2005248738A (ja) 2004-03-02 2005-09-15 Fuchu Giken:Kk 風力発電装置の運転制御方法
EP1637733A1 (en) 2004-09-17 2006-03-22 Elsam A/S A power plant, a windmill, and a method of producing electrical power from wind energy
DE202004016460U1 (de) 2004-10-25 2004-12-23 Geo. Gleistein & Sohn Gmbh Vorrichtung zum Austauschen eines Rotorblatts einer Windkraftanlage
JP2006152862A (ja) 2004-11-26 2006-06-15 Ishikawajima Harima Heavy Ind Co Ltd 風力発電装置におけるブレードの取り付け方法及び取り外し方法
JP4928749B2 (ja) 2005-06-30 2012-05-09 株式会社東芝 冷却装置
US7183664B2 (en) 2005-07-27 2007-02-27 Mcclintic Frank Methods and apparatus for advanced wind turbine design
AU2006309370B2 (en) 2005-10-31 2012-06-07 Chapdrive As A turbine driven electric power production system and a method for control thereof
US7485979B1 (en) * 2005-11-17 2009-02-03 Staalesen Haakon A Method and system for controlling power generator having hydraulic motor drive
US7168251B1 (en) 2005-12-14 2007-01-30 General Electric Company Wind energy turbine
US7569943B2 (en) 2006-11-21 2009-08-04 Parker-Hannifin Corporation Variable speed wind turbine drive and control system
EP1925582B1 (en) 2006-11-23 2010-06-23 Siemens Aktiengesellschaft Method and a device for mounting of wind turbine blades
DE602007005751D1 (de) 2006-11-23 2010-05-20 Siemens Ag Verfahren zur Handhabung von Windturbinenschaufeln und Vorrichtung zur Montage von Windturbinenschaufeln, insbesondere zur Montage von Schaufeln an eine Windturbine
DE202007004342U1 (de) 2007-03-21 2008-07-24 Rle International Gmbh Drehzahlgeregelter hydrostatischer Antrieb für Windkraftanlagen
US7656055B2 (en) 2007-04-12 2010-02-02 Rosalia Torres Hydro-wind power generating turbine system and retrofitting method
JP4796009B2 (ja) 2007-05-18 2011-10-19 三菱重工業株式会社 風力発電装置
US20080307817A1 (en) * 2007-06-18 2008-12-18 General Electric Company System for integrated thermal management and method for the same
JP4885073B2 (ja) 2007-06-20 2012-02-29 三菱重工業株式会社 風車回転翼の吊下げ装置、風車回転翼の取付け方法、および風力発電装置の建設方法
DE602007011653D1 (de) 2007-06-26 2011-02-10 Media Patents Sl Router zur Verwaltung von Multicastgruppen
NO327277B1 (no) * 2007-10-30 2009-06-02 Chapdrive As Vindturbin med hydraulisk svivel
JP2009118666A (ja) 2007-11-07 2009-05-28 Toyota Motor Corp 車両用流体供給装置
NO327276B1 (no) 2007-11-08 2009-06-02 Chapdrive As Vindturbin med elektrisk svivel
NO327275B1 (no) 2007-11-13 2009-06-02 Chapdrive As Vindturbin med roterende hydrostatisk transmisjonssystem
CA2708376A1 (en) * 2007-12-14 2009-06-25 David Mcconnell Wind to electric energy conversion with hydraulic storage
DE102008013728A1 (de) 2008-03-11 2009-09-17 Kenersys Gmbh Windenergieanlage zur Erzeugung elektrischer Energie
NL1035301C1 (nl) 2008-04-16 2008-06-04 Dhlc Lift- en daalmethode middels een demontabele hijsinrichting.
JP5123780B2 (ja) 2008-07-28 2013-01-23 三菱重工業株式会社 風力発電装置
US20100032959A1 (en) 2008-08-08 2010-02-11 General Electric Company Wind turbine system
US8074450B2 (en) 2008-08-13 2011-12-13 General Electric Company Wind energy system with fluid-working machine with non-symmetric actuation
GB2463647B (en) 2008-09-17 2012-03-14 Chapdrive As Turbine speed stabillisation control system
EP2376797B1 (en) 2008-12-15 2016-05-04 Jochen Corts Segmented composite bearings and wind generator utilizing hydraulic pump/motor combination
US20100139062A1 (en) 2009-02-25 2010-06-10 General Electric Company Lowering and raising a single wind turbine rotor blade from six-o'clock position
US20100254813A1 (en) 2009-04-02 2010-10-07 Frontier Pro Services Winch servicing of wind turbines
WO2010125568A2 (en) * 2009-04-28 2010-11-04 Technion- Research And Development Foundation Ltd. A system for wind energy harvesting and storage wising compressed air and hot water
US20110142596A1 (en) 2010-06-29 2011-06-16 Jacob Johannes Nies Method for monitoring a component in a hydraulic circuit, monitoring device and fluid turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847181A (ja) * 1981-09-14 1983-03-18 Daikin Ind Ltd 風水力式ポンプ駆動装置
JPS61212674A (ja) * 1985-03-19 1986-09-20 Matsushita Seiko Co Ltd 風車の動力伝達装置
WO2009025420A1 (en) * 2007-08-21 2009-02-26 Dong Yong Kim Wind turbine system using fluid torque converter
JP2009138555A (ja) * 2007-12-04 2009-06-25 Mitsubishi Heavy Ind Ltd 風力発電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2532890A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152711A (ja) * 2013-02-08 2014-08-25 Masao Omura 重力発電装置
JP2016114057A (ja) * 2014-12-11 2016-06-23 大洋プラント株式会社 浮体支持軸の軸構造および該浮体支持軸の軸構造を備えた水上発電装置

Also Published As

Publication number Publication date
US20120257970A1 (en) 2012-10-11
CN102822511A (zh) 2012-12-12
AU2011310939A1 (en) 2012-10-18
IN2012DN03061A (ja) 2015-07-31
KR20120139669A (ko) 2012-12-27
WO2013051167A1 (en) 2013-04-11
EP2532890A1 (en) 2012-12-12
US8684682B2 (en) 2014-04-01
WO2013042487A1 (ja) 2013-03-28
EP2532890A4 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2012137370A1 (ja) 再生エネルギー型発電装置
JP4995357B1 (ja) 再生エネルギー型発電装置
JP4950367B1 (ja) 再生エネルギー型発電装置
KR101296054B1 (ko) 재생 에너지형 발전 장치
JP5449523B2 (ja) 風力発電装置
JP5072994B2 (ja) 風力発電装置
EP2527650B1 (en) System to cool the nacelle and the heat generating components of an offshore wind turbine
KR101715315B1 (ko) 선박의 추진 유닛
WO2013021670A1 (ja) 再生エネルギー型発電装置
EP2573389B1 (en) Cooling and climate control system and method for a wind turbine
CA2826392A1 (en) Cooling system for a wind turbine generator system
WO2011073628A1 (en) A heating or cooling system and method
WO2015092912A1 (ja) 発電装置
JP5297568B1 (ja) 再生エネルギー型発電装置
JP5358020B2 (ja) 再生エネルギー型発電装置
JP2005256699A (ja) エネルギー利用方法及びエネルギー利用システム
CN117365880A (zh) 冷却系统以及海上风力发电机组

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004386.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012503813

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011810981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011310939

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3061/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127010773

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11810981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE