WO2012137285A1 - 在圏検知システム、在圏検知方法及びプログラム - Google Patents

在圏検知システム、在圏検知方法及びプログラム Download PDF

Info

Publication number
WO2012137285A1
WO2012137285A1 PCT/JP2011/058528 JP2011058528W WO2012137285A1 WO 2012137285 A1 WO2012137285 A1 WO 2012137285A1 JP 2011058528 W JP2011058528 W JP 2011058528W WO 2012137285 A1 WO2012137285 A1 WO 2012137285A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception level
person
receiver
interval
determination unit
Prior art date
Application number
PCT/JP2011/058528
Other languages
English (en)
French (fr)
Inventor
正裕 石原
吉秋 小泉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/058528 priority Critical patent/WO2012137285A1/ja
Priority to EP11863171.2A priority patent/EP2696332B1/en
Priority to CN201180069819.8A priority patent/CN103460263B/zh
Priority to US14/009,343 priority patent/US9383438B2/en
Priority to JP2013508647A priority patent/JPWO2012137285A1/ja
Publication of WO2012137285A1 publication Critical patent/WO2012137285A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/22Status alarms responsive to presence or absence of persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers

Definitions

  • the present invention relates to a location detection system, a location detection method, and a program for detecting whether or not a person is present in a predetermined space.
  • a microwave with high straightness such as 10.5 GHz
  • a system for detecting the presence or absence of a person by directly irradiating the human body and receiving a reflected wave has been proposed.
  • a microwave is used, a dedicated transmitter and receiver are required, and the entire system becomes expensive.
  • the detection range is limited only to the direction in which the device emits the microwave. For this reason, this system is not suitable for applications such as detecting the presence of the entire room.
  • a human behavior detection system uses radio waves transmitted from a wireless system that provides services with constant transmission power, such as TV broadcast waves, as a transmission source.
  • This system uses the principle that the reception level of radio waves varies according to changes in the indoor multipath environment caused by the movement of a person, and detects the person's location by constantly detecting the fluctuation range of the reception level of radio waves. .
  • a dedicated location detection system can be realized using a wireless communication device installed indoors for other purposes without requiring dedicated hardware.
  • this system uses not only the radio wave transmitted directly from the transmitter to the receiver but also the reflected wave propagating throughout the room, it is possible to detect the presence of a wide room.
  • the transmission function and the reception function in the located area detection system be mounted on battery-powered equipment such as a home appliance remote control and sensor equipment. This is because if these functions are installed in the remote control of the home appliance, it becomes easy to control the home appliance based on the location detection information.
  • the present invention has been made in view of the above circumstances, and provides a located area detection system, a located area detection method, and a program that can easily and widely detect the person's area while reducing power consumption. For the purpose.
  • a location detection system includes a transmitter that transmits a multipath radio signal in a predetermined space, and a location of a person by receiving the transmitted radio signal. And a receiver for detection.
  • the first determination unit determines whether or not there is a change in the presence / absence state of the person based on the reception level of the radio signal received intermittently at the first interval.
  • the second determination unit varies the reception level of the radio signal received at a second interval shorter than the first interval. Based on the above, the presence / absence of the person is determined.
  • the interval for receiving the radio signal is shortened to be in the service area. Receives detection signals continuously. This eliminates the need to constantly receive a radio signal, so that it is possible to easily and widely detect the person's location while reducing power consumption.
  • FIG. 1 It is a schematic diagram which shows schematic structure of the located area detection system which concerns on Embodiment 1 of this invention. It is a block diagram which shows the structure of the receiver of FIG. It is a graph which shows a reception level. 3 is a flowchart (part 1) illustrating an operation of the receiver of FIG. 6 is a flowchart (part 2) illustrating an operation of the receiver of FIG. It is a schematic diagram which shows schematic structure of the located area detection system which concerns on Embodiment 2 of this invention. It is a block diagram which shows the structure of the receiver of FIG.
  • Embodiment 1 FIG. First, a first embodiment of the present invention will be described.
  • FIG. 1 shows the configuration of a location detection system 100 according to Embodiment 1 of the present invention.
  • the located area detection system 100 includes a transmitter 1a and a receiver 2a.
  • the transmitter 1a transmits a location detection signal that is a multipath radio signal.
  • the receiver 2a receives the transmitted area detection signal and detects the person's area. Both the transmitter 1a and the receiver 2a are installed in the in-zone detection area 4 as a predetermined space.
  • the transmitter 1a is, for example, a wireless LAN (Local Area Network) base station or a home controller, and periodically transmits a beacon signal.
  • the transmitter 1a can be used as long as it periodically transmits radio waves with a constant transmission output. For example, a broadcast wave of television or radio may be received and transferred into the in-zone detection area 4.
  • the in-zone detection area 4 in which the transmitter 1a and the transmitter 2a are arranged is a predetermined space in a range where the person 5 enters and exits and the person 5 is detected.
  • the location detection area 4 may be, for example, a single room or may extend over a plurality of rooms.
  • the radio wave transmitted from the transmitter 1a is repeatedly reflected, transmitted, and diffracted by a wall surface, a ceiling, a floor in the in-zone detection area 4, or a fixture arranged in the in-zone detection area 4, for example, a propagation path
  • the signal reaches the receiver 2a as a multipath radio signal via 3a, 3b, 3c, 3d and the like.
  • FIG. 2 shows the configuration of the receiver 2a.
  • the receiver 2 a includes an antenna 6, a radio circuit 7 a, a reception level measurement circuit 8, a located area determination unit 9, a control unit 10, and a storage unit 11.
  • the antenna 6 receives a multipath radio signal transmitted from the transmitter 1a.
  • the antenna 6 is an antenna with a small directivity, such as a dipole antenna, in order to facilitate reception of multipath radio signals.
  • the radio signal received by the antenna 6 is input to the radio circuit 7a.
  • the radio circuit 7a includes, for example, a filter that limits the band of the radio signal, an LNP (Low Noise Amp) that amplifies the radio signal, a mixer that converts the radio signal into an IF (Intermediate Frequency) stage, and the like.
  • the output of the radio circuit 7a is input to the reception level measurement circuit 8.
  • the reception level measurement circuit 8 measures the reception level of the radio signal based on the output of the radio circuit 7a.
  • the reception level measured by the reception level measurement circuit 8 is output to the in-zone determination unit 9.
  • the in-zone determination unit 9 functions as a first determination unit and a second determination unit.
  • the location determination unit 9 determines whether or not the presence / absence state of the person 5 has changed based on the reception level of the radio signal intermittently received at the first interval (location detection interval T1). judge.
  • the located area determination unit 9 receives the radio signal received at the located area detection interval T2 as the second interval shorter than the located area detection interval T1. Based on the variation in the reception level, the presence / absence of the person 5 is determined.
  • the control unit 10 performs overall control of the entire receiver 2a.
  • the control unit 10 controls the timing for operating the radio circuit 7a and the reception level measurement circuit 8. That is, the control unit 10 switches the timing at which the radio circuit 7a and the reception level measurement circuit 8 operate between the first reception interval and the second reception interval according to the determination result of the in-zone determination unit 9. .
  • the storage unit 11 stores data used for determination by the in-zone determination unit 9, determination results, and the like.
  • the located area determination unit 9 and the control unit 10 are, for example, microcomputers, and each function is realized by the CPU executing a program stored in the memory.
  • the storage unit 11 includes, for example, a flash memory or a RAM (Random Access Memory).
  • the transmitter 1a When the transmitter 1a starts operation, the transmitter 1a periodically transmits a beacon signal.
  • a beacon signal For example, when the transmitter 1a is a wireless LAN base station, beacon signals are generally transmitted at intervals of about 100 ms.
  • the beacon signal transmitted from the transmitter 1a reaches the receiver 2a via the propagation paths 3a, 3b, 3c, 3d and the like.
  • the reception level at the receiver 2a is stable and becomes a substantially constant value.
  • any of the propagation paths 3 a, 3 b, 3 c, 3 d, etc. is blocked or reflected by the person 5, so that the reception level at the receiver 2 a is lowered. It becomes larger than necessary or fluctuates according to the movement of the person 5.
  • the receiver 2a parameters relating to the operation of the receiver 2a are set in advance.
  • the setting of the receiver 2a will be described with reference to FIG.
  • the upper limit value and the lower limit value of the fluctuation range of the reception level when no person is present are set in the storage unit 11 of the receiver 2a.
  • the difference between the upper limit value and the lower limit value is a value of about 5 dB to 10 dB, although it depends on the environment where the in-zone detection system 100 is installed.
  • the median reception level when the person is absent is adjusted using the measurement result when the receiver 2a determines that the person is absent.
  • the control unit 10 sets the average value of the reception levels of radio signals when a person is absent for a predetermined number of times as the median value of the reception levels.
  • the upper limit value and the lower limit value can be updated based on the measurement result when it is determined that the person is absent.
  • the in-zone detection interval T1 is set according to the device to be controlled.
  • the in-zone detection interval T1 is set to an interval of several minutes in a low-urgency application in which the operation of home appliances such as an air conditioner is stopped in the absence.
  • the operation of the receiver 2a is different depending on whether the previous presence detection result in the receiver 2a is determined to be present or not. First, the operation when it is determined that the previous location detection result is absent will be described with reference to FIGS. 3 and 4.
  • FIG. 3 shows an example of the measurement result of the reception level determined by the location determination unit 9 when it is determined that the previous location detection result is absent.
  • FIG. 4 shows a flowchart showing processing when it is determined that the previous location detection result in the receiver 2a is absent.
  • the reception level measurement circuit 8 receives the in-zone detection signal transmitted by the transmitter 1a once and measures the reception level (step S101).
  • the in-zone detection signal received by the antenna 6 is input to the reception level measurement circuit 8 via the radio circuit 7a.
  • the reception level measurement circuit 8 measures the reception level of the received beacon signal.
  • the measured reception level is input to the in-zone determination unit 9.
  • the area determination unit 9 determines whether the reception level of the received area detection signal is equal to or lower than the upper limit L1 and lower limit L2 of the fluctuation range of the reception level when no person is present, that is, within the set range. It is determined whether or not (step S102).
  • the control unit 10 Leaves the in-zone detection result absent, and does not update the in-zone detection result (step S103). Such processing is performed at the reception levels at times t1, t2, and t3 in FIG.
  • control unit 10 shifts the receiver 2a to the sleep state (step S104).
  • the control unit 10 turns off the power of the wireless circuit 7a and the reception level measurement circuit 8.
  • the control part 10 sets the located area detection part 9 and its operation mode to the low power consumption mode of a microcomputer, for example.
  • control unit 10 operates a timer (not shown) in the sleep state, and waits for the set in-zone detection interval T1 to elapse (step S105).
  • control unit 10 shifts the entire receiver 2a to the reception standby state (step S106) and returns to step S101.
  • the control unit 10 increases the reception frequency of the in-zone detection signal by the radio circuit 7a and the reception level measurement circuit 8 for a certain period of time (that is, the reception interval is set as the second in-zone detection interval T2), The reception level is measured continuously (step S107).
  • the in-zone detection interval T2 is an interval of several hundred ms to several sec, and is sufficiently shorter than the in-zone detection interval T1.
  • the area determination unit 9 calculates the standard deviation S of the area detection signal continuously received with an increased reception frequency, and the standard deviation S of the calculated measurement result determines the person's area. It is determined whether or not the threshold is equal to or greater than (step S108). When the standard deviation S is less than the threshold (step S108; No), the located area determination unit 9 leaves the located area detection result of the receiver 2a absent and does not update the located area detection result (step S103).
  • step S108 when the calculated standard deviation S is greater than or equal to the threshold (step S108; Yes), the location determination unit 9 updates the location detection result of the receiver 2a to the location (step S109). Here, as necessary, the control unit 10 notifies the control target device of the person's location.
  • step S110 the control unit 10 shifts the receiver 2a to the sleep state (step S110), waits for the set in-zone detection interval T1 to elapse (step S111), and when the in-zone detection interval T1 elapses. Then, the entire receiver 2a is shifted to the reception standby state (step S112). After step S112 is completed, the process proceeds to step S201 in FIG.
  • the receiver 2a receives the location detection signal transmitted from the transmitter 1a and measures the reception level (step S201). At this time, a process of receiving and averaging the in-zone detection signal a plurality of times may be performed.
  • the location determination unit 9 determines whether or not the reception level of the received location detection signal is within a variation range of the reception level when the installed person is absent, that is, the upper limit value L1 or less and the lower limit value L2 or more. Is determined (step S202).
  • the location determination unit 9 keeps the location detection result of the receiver 2a as the location, The detection result is not updated (step S203).
  • control unit 10 causes the entire receiver 2a to transition to the sleep state (step S204).
  • control unit 10 operates the timer and causes the entire receiver 2a to wait for a time corresponding to the set location detection interval T1 (step S205).
  • the control unit 10 shifts the receiver 2a to the reception standby state (step S206). Thereafter, the receiver 2a returns to Step S201.
  • the control unit 10 determines that the radio circuit 7a and the reception level measurement circuit 8 are present for a certain period of time.
  • the reception frequency of the area detection signal is increased (that is, the reception interval is set as the area detection interval T2), the area detection signal is continuously received, and the reception level measurement circuit 8 measures the reception level (step S207).
  • the area determination unit 9 calculates the standard deviation S of the area detection signal continuously received with an increased reception frequency, and the standard deviation S of the calculated measurement result determines the person's area. It is determined whether it is below the threshold value (step S208). When the standard deviation S is larger than the threshold (step S208; No), the located area determination unit 9 leaves the located area detection result of the receiver 2a absent and does not update the located area detection result (step S203).
  • the in-zone determination unit 9 updates the in-zone detection result of the receiver 2a to absence (step S209).
  • the control unit 10 notifies the device to be controlled of the absence of a person.
  • step S210 the control unit 10 shifts the receiver 2a to the sleep state (step S210), waits for the set in-zone detection interval T1 to elapse (step S211), and when the in-zone detection interval T1 elapses. Then, the entire receiver 2a is shifted to the reception standby state (step S212). After step S212 ends, the process returns to step S101 in FIG.
  • the receiver 2a receives the multipath presence detection signal at the location detection interval T1 having a long interval, and the reception level has changed. Only when it is detected, the interval detection signal reception interval is shortened to T2 to continuously receive the location detection signal. As a result, it is not necessary to constantly receive the in-zone detection signal, so that it is possible to detect a person's zone in a simple and wide range while reducing power consumption.
  • the location detection system 100 can be constructed simply and at low cost without using a dedicated device for location detection in the transmitter 1a for the location detection signal.
  • the home appliance can be controlled based on the result of the area detection using the area detection system, the convenience for the user is increased.
  • Embodiment 2 FIG. Next, a second embodiment of the present invention will be described.
  • a beacon signal transmitted from the transmitter 1a is used as the location detection signal.
  • a remote controller or a sensor device is used for the transmitter 1a. More specifically, a location detection signal is transmitted from a parent device of a sensor device that performs wireless communication with the remote controller or the sensor device, or a home appliance that is operated by the remote controller.
  • FIG. 6 shows the configuration of the located area detection system 100 according to the second embodiment.
  • the transmitter 1b is a parent device of a sensor device that performs wireless communication with a remote controller or a controller, or a home appliance that is operated with the remote controller.
  • Other configurations are the same as those of the first embodiment.
  • the receiver 2 b includes an antenna 6, a radio circuit 7 b, a reception level measurement circuit 8, a located area determination unit 9, a control unit 10, a storage unit 11, and a modem unit 17.
  • the radio circuit 7 is connected to the reception level measurement circuit 8 and the modem 17.
  • the modem 17 has a function of modulating / demodulating communication signals.
  • the radio circuit 7b includes a reception circuit and a transmission circuit composed of PA (Power Amp.) And the like. Other configurations are the same as those of the first embodiment.
  • the transmitter 1b When the transmitter 1b starts operating, it waits for access from the receiver 2b.
  • the location determination unit 9 transmits a request for acquiring the location detection intervals T1 and T2 and the next location detection signal transmission time to the transmitter 1b.
  • the transmitted request is modulated by the modem unit 17 and wirelessly transmitted via the wireless circuit 7 b and the antenna 6.
  • the request transmitted wirelessly is received by the transmitter 1b.
  • the transmitter 1b transmits the in-zone detection interval T1 and the next in-zone detection signal transmission time to the receiver 2b.
  • the data transmitted from the transmitter 1b is input to the location detection unit 9 via the antenna 6, the radio circuit 7b, and the modem unit 17 of the receiver 2b.
  • the in-zone detection unit 9 writes the in-zone detection interval T1 in the storage unit 11, and shifts the receiver 2b to the sleep state by the timer control until the next in-zone detection signal transmission time.
  • the receiver 2b shifts to the reception standby state and receives the located area detection signal transmitted from the transmitter 1b.
  • the transmitter 1b and the receiver 2b need to have accurate clocks.
  • a ceramic oscillator mainly used as a clock for consumer equipment has a clock accuracy of about 0.1%. This is an error of 60 msec at a time interval of 1 minute. Therefore, it is necessary to lengthen the reception waiting time of the presence detection signal on the receiver 2b side in accordance with the clock error. Further, error accumulation can be reduced by correcting the clock error according to the reception timing of the in-zone detection signal.
  • the in-zone detection signal received by the antenna 6 is input to the reception level measurement circuit 8 via the radio circuit 7a.
  • the reception level of the located area detection signal transmitted by the transmitter 1 b is measured and input to the located area determination unit 9. At this time, a process of receiving and averaging the in-zone detection signal a plurality of times may be performed.
  • the reception level input to the location determination unit 9 is compared with the upper limit value and the lower limit value of the fluctuation range of the reception level when no person is present.
  • the upper limit value and the lower limit value of the fluctuation range of the reception level are set and adjusted in advance in the receiver 2b as in the first embodiment.
  • the location determination unit 9 of the receiver 2b When the previous location detection result in the receiver 2b is absent, when the reception level is higher than the upper limit value or lower than the lower limit value, the location determination unit 9 of the receiver 2b Then, a continuous transmission request for the presence detection signal is transmitted.
  • the location determination unit 9 of the receiver 2b sends the transmitter 1b On the other hand, a continuous transmission request for the presence detection signal is transmitted.
  • the transmitter 1b that has received the continuous transmission request for the location detection signal continuously transmits the location detection signal. Other operations are the same as those in the first embodiment.
  • a radio signal is received only when a multipath radio signal is received at a long-range in-zone detection interval T1 and a change in the reception level is detected.
  • the interval detection signal is shortened to T2 to continuously receive the in-zone detection signal. This eliminates the need to constantly receive a radio signal, so that it is possible to easily and widely detect the person's location while reducing power consumption.
  • the in-zone detection signal is transmitted with low frequency, and only when there is a request from the receiver 2b, the in-zone detection signal is transmitted with an increased frequency.
  • the power consumption of the machine 1b can be reduced.
  • the home appliance can be controlled based on the location detection information using the location detection system, the convenience for the user is increased.
  • the reception level measurement result is equal to or lower than the upper limit value L1 and lower limit value L2 of the fluctuation range of the reception level when no person is present, or is greater than the upper limit value L1 or smaller than the lower limit value L2.
  • This determination is made by receiving the in-zone detection signal once, but it may be determined by the result of receiving the in-zone detection signal a plurality of times. In this case, for example, the determination may be made by majority decision of a plurality of received results, or may be determined using an average value. In this way, the determination reliability can be further improved.
  • the upper limit value L1 and the lower limit value L2 of the fluctuation range of the reception level when no person is present are the absolute values of the reception level. You may make it make a deviation into a threshold value. In this way, the determination reliability can be further improved.
  • the program to be executed is a computer-readable recording medium such as a flexible disk, a CD-ROM (Compact Disc-Read-Only Memory), a DVD (Digital Versatile Disc), and an MO (Magneto-Optical Disc).
  • a system that executes the above-described thread may be configured by storing and distributing the program in a medium and installing the program.
  • the program may be stored in a disk device or the like of a predetermined server device on a communication network such as the Internet, and may be downloaded, for example, superimposed on a carrier wave.
  • This invention is suitable for detecting whether or not there is a person in a predetermined space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Emergency Alarm Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 在圏検知システムは、所定の空間内において、マルチパスの無線信号を送信する送信機と、送信された無線信号を受信して人物の在圏を検知する受信機とを備える。受信機は、第1の間隔で間欠的に受信される無線信号の受信レベルに基づいて、人物の在圏/不在状態に変化があったか否かを判定する(ステップS102)。人物の在圏/不在状態に変化があったと判定された場合に、受信機は、第1の間隔よりも短い第2の間隔で受信される無線信号の受信レベルのばらつきに基づいて、人物の在圏/不在を判定する(ステップS108)。

Description

在圏検知システム、在圏検知方法及びプログラム
 この発明は、所定の空間に人が居るか否かを検知する在圏検知システム、在圏検知方法及びプログラムに関する。
 従来、建物の中や、その中の特定の部屋に人が居るか否か(在圏か不在か)を検知(在圏検知)するシステムとして、10.5GHz等の直進性の高いマイクロ波を直接人体に照射し、反射波を受信することで、人物の在不在を検知するシステムが提案されている。しかしながら、マイクロ波を用いようとすると、専用の送信機や受信機が必要となるため、システム全体が高コストとなる。また、この方法では、マイクロ波の直進性を利用して人物の在不在を検知しているので、検知範囲は機器がマイクロ波を照射する方向のみに限られる。このため、このシステムは、部屋全体の在圏検知といった用途には適していない。
 また、赤外線センサを用いて、周囲との温度が異なる物質の動作を検知するシステムも提案されている。このシステムは、赤外線の受光部を備えるだけで簡易に構成可能である。しかしながら、このシステムは、人体から発生する微弱の赤外線を利用するため、感度の問題から部屋全体の在圏検知といった用途には適していない。
 簡易かつ広範囲に人物の在圏を検知するシステムとして、TV放送波などの一定の送信電力にてサービスを行っている無線システムから送信される電波を送信源とする人物挙動検知システムが提案されている(例えば、特許文献1参照)。このシステムは、人物の動きによる屋内のマルチパス環境の変化に応じて電波の受信レベルが変動する原理を利用して、電波の受信レベル変動幅を常時検知することで人の在圏を検知する。
 この人物挙動検知システムによれば、専用のハードウェアを必要とせず、他の目的で室内に設置される無線通信機器を用いて、簡易な在圏検知システムを実現することができる。
 また、このシステムは、直接的に送信機から受信機へ送信される電波のみでなく、部屋全体に伝搬する反射波を利用しているため、広い部屋全体の在圏検知が可能となる。
特開2006―221213号公報
 在圏検知システムにおける送信機能や受信機能については、家電機器のリモコンや、センサ機器といった電池駆動の機器に搭載されるようにするのが望ましい。家電機器のリモコンにこれらの機能を搭載すれば、在圏検知情報に基づく家電機器の制御が容易となるためである。
 しかしながら、上記特許文献1の在圏検知システムでは、常時、受信レベルの変動幅を検知する必要がある。このため、受信機を、常時受信状態としておく必要があるので、消費電力が大きくなる。消費電力が大きくなれば、機器を駆動する電池の寿命が短くなる。
 この発明は、上記実情に鑑みてなされたものであり、消費電力を低減しつつ、簡易かつ広範囲に人物の在圏を検知することができる在圏検知システム、在圏検知方法及びプログラムを提供することを目的とする。
 上記目的を達成するために、この発明に係る在圏検知システムは、所定の空間内において、マルチパスの無線信号を送信する送信機と、送信された無線信号を受信して人物の在圏を検知する受信機とを備える。受信機では、第1の判定部は、第1の間隔で間欠的に受信される無線信号の受信レベルに基づいて、人物の在圏/不在の状態に変化があったか否かを判定する。第2の判定部は、第1の判定部で無線信号の受信レベルが変化したと判定された場合に、第1の間隔よりも短い第2の間隔で受信される無線信号の受信レベルのばらつきに基づいて、人物の在圏/不在を判定する。
 この発明によれば、マルチパスの無線信号を間隔の長い第1の間隔で受信し、その受信レベルに変化があったことを検知したときのみ、無線信号を受信する間隔を短くして在圏検知信号の連続受信を行う。これにより、無線信号を常時受信する必要がなくなるので、消費電力を低減しつつ、簡易かつ広範囲に人物の在圏を検知することができる。
この発明の実施の形態1に係る在圏検知システムの概略的な構成を示す模式図である。 図1の受信機の構成を示すブロック図である。 受信レベルを示すグラフである。 図1の受信機の動作を示すフローチャート(その1)である。 図1の受信機の動作を示すフローチャート(その2)である。 この発明の実施の形態2に係る在圏検知システムの概略的な構成を示す模式図である。 図6の受信機の構成を示すブロック図である。
 この発明の実施の形態について、図面を参照して詳細に説明する。
実施の形態1.
 まず、この発明の実施の形態1について説明する。
 図1には、この発明の実施の形態1に係る在圏検知システム100の構成が示されている。図1に示すように、在圏検知システム100は、送信機1aと、受信機2aとを備える。送信機1aは、マルチパスの無線信号である在圏検知信号を送信する。受信機2aは、送信された在圏検知信号を受信し、人物の在圏を検知する。送信機1a及び受信機2aは、ともに所定の空間としての在圏検知エリア4内に設置されている。
 送信機1aは、例えば、無線LAN(Local Area Network)基地局やホームコントローラ等であり、定期的にビーコン信号を発信する。送信機1aは、一定の送信出力で定期的に電波を送信しているものであれば利用可能である。例えば、テレビやラジオの放送波を受信して在圏検知エリア4内に転送するものであってもよい。
 送信機1a及び送信機2aが配置される在圏検知エリア4は、人5の出入りがあり、人5の在圏検知を行う範囲の所定の空間である。在圏検知エリア4は、例えば単一の部屋であってもよいし、複数の部屋にまたがっていてもよい。
 送信機1aから送信される電波は、在圏検知エリア4内の壁面、天井や床、または、在圏検知エリア4内に配置されている什器により反射、透過、回折を繰り返し、例えば、伝搬経路3a、3b、3c、3dなどを経てマルチパスの無線信号として受信機2aに到達する。
 図2には、受信機2aの構成が示されている。受信機2aは、アンテナ6と、無線回路7aと、受信レベル測定回路8と、在圏判定部9と、制御部10と、記憶部11とを備える。
 アンテナ6は、送信機1aから送信されるマルチパスの無線信号を受信する。アンテナ6は、マルチパスの無線信号を受信しやすくするため、例えばダイポールアンテナのような指向性の小さいアンテナとなっている。アンテナ6で受信された無線信号は、無線回路7aに入力される。
 無線回路7aは、例えば無線信号を帯域制限するフィルタと、無線信号を増幅するLNP(Low Noise Amp.)と、無線信号をIF(Intermediate Frequency)段に変換するミキサ等を備える。無線回路7aの出力は、受信レベル測定回路8に入力される。
 受信レベル測定回路8は、無線回路7aの出力に基づいて、無線信号の受信レベルを測定する。受信レベル測定回路8によって測定された受信レベルは、在圏判定部9に出力される。
 在圏判定部9は、第1の判定部及び第2の判定部として機能する。在圏判定部9は、第1の間隔(在圏検知間隔T1)で間欠的に受信される無線信号の受信レベルに基づいて、人5の在圏/不在の状態に変化があったか否かを判定する。また、在圏判定部9は、無線信号の受信レベルが変化したと判定された場合に、在圏検知間隔T1よりも短い第2の間隔としての在圏検知間隔T2で受信される無線信号の受信レベルのばらつきに基づいて、人5の在圏/不在を判定する。
 制御部10は、受信機2a全体を統括制御する。制御部10は、無線回路7a、受信レベル測定回路8を動作させるタイミングを制御する。すなわち、制御部10は、無線回路7a、受信レベル測定回路8が動作するタイミングを、在圏判定部9の判定結果に応じて、第1の受信間隔と第2の受信間隔との間で切り替える。記憶部11は、在圏判定部9での判定に用いられるデータや判定結果等を記憶する。
 在圏判定部9、制御部10は、例えばマイクロコンピュータであり、それぞれCPUがメモリに格納されたプログラムを実行することにより、それぞれの機能を実現する。記憶部11は、例えばフラッシュメモリやRAM(Random Access Memory)で構成される。
 次に、この実施の形態1に係る在圏検知システム100の動作について説明する。
 送信機1aは、動作を開始すると、定期的にビーコン信号を送信する。例えば、送信機1aが無線LAN基地局である場合、一般に、100ms程度の間隔でビーコン信号が送信される。
 送信機1aから送信されたビーコン信号は、伝搬経路3a、3b、3c、3dなどを経て、受信機2aに到達する。在圏検知エリア4に人5がいない場合、伝搬経路の変動は無く、受信機2aにおける受信レベルは安定し、ほぼ一定の値になる。在圏検知エリア4に人5がいる場合、伝搬経路3a、3b、3c、3dなどのいずれかが遮断されたり、人5により反射したりすることで、受信機2aにおける受信レベルは低くなったり、必要以上に大きくなったり、人5の動きに合わせて変動したりする。
 受信機2aには、受信機2aの動作に関するパラメータが予め設定されている。受信機2aの設定について、図2を参照して説明する。受信機2aの記憶部11には、送信機1aから送信されるビーコン信号の受信レベルに基づいて、人物不在時の受信レベルの変動範囲の上限値と、下限値とが設定される。上限値と下限値の差は、在圏検知システム100が設置される環境にもよるが、5dB~10dB程度の値とする。
 人物不在時の受信レベルの中央値は、受信機2aにおいて、不在と判定された場合に、測定結果を用いて調整される。例えば、制御部10は、最近の所定回の人物不在時の無線信号の受信レベルの平均値を受信レベルの中央値とする。同様に、上限値、下限値についても人物が不在であると判定された場合の測定結果に基づいて、更新されるようにすることができる。
 また、受信機2aの記憶部11には、制御を行う機器に合わせて、在圏検知間隔T1が設定される。例えば、在圏検知間隔T1は、不在時にエアコンなどの家電機器の動作を停止するという緊急度の低いアプリケーションにおいては、数分といった間隔に設定される。
 受信機2aの動作は、受信機2aにおける前回の在圏検知結果が在圏と判定された場合、不在と判定された場合とで異なる。まず、前回の在圏検知結果が不在であると判定された場合の動作について図3、図4を参照して説明する。
 図3には、前回の在圏検知結果が不在であると判定された場合に、在圏判定部9において判定される受信レベルの測定結果の一例が示されている。図4には、受信機2aにおける前回の在圏検知結果が、不在と判定された場合の処理を示すフローチャートが示されている。
 図4に示すように、受信レベル測定回路8は、送信機1aが送信する在圏検知信号を1回受信し、受信レベルを測定する(ステップS101)。アンテナ6で受信された在圏検知信号は、無線回路7aを介して、受信レベル測定回路8に入力される。受信レベル測定回路8において、受信したビーコン信号の受信レベルが測定される。測定された受信レベルは、在圏判定部9に入力される。
 続いて、在圏判定部9は、受信した在圏検知信号の受信レベルが、人物不在時の受信レベルの変動範囲の上限値L1以下かつ下限値L2以上であるか、すなわち設定範囲内に収まっているか否かを判定する(ステップS102)。
 在圏判定部9によって受信した在圏検知信号の受信レベルが、上限値L1以下かつ下限値L2以上、すなわち設定範囲内に収まっていると判定された場合(ステップS102;Yes)、制御部10は、在圏検知結果を不在のままとし、在圏検知結果を更新しない(ステップS103)。図3における時刻t1、t2、t3の受信レベルであれば、このような処理が行われる。
 次に、制御部10は、受信機2aを、スリープ状態に移行させる(ステップS104)。スリープ状態では、制御部10は、無線回路7aや受信レベル測定回路8の電源を落とす。また、制御部10は、在圏検知部9や自らの動作モードを、例えばマイコンの低消費電力モードに設定する。
 続いて、制御部10は、スリープ状態で、タイマ(不図示)を動作させ、設定された在圏検知間隔T1が経過する間待機する(ステップS105)。
 在圏検知間隔T1が経過すると、制御部10は、受信機2a全体を受信待機状態に移行させ(ステップS106)、ステップS101に戻る。
 一方、在圏判定部9によって、受信した在圏検知信号の受信レベルが、上限値L1より大きいまたは下限値L2より小さい、すなわち設定範囲外であると判定された場合(ステップS102;No)、制御部10は、一定時間、無線回路7a及び受信レベル測定回路8による在圏検知信号の受信頻度を上げて(すなわち、受信間隔を第2の在圏検知間隔T2として)、在圏検知信号を連続受信させて、受信レベルを測定する(ステップS107)。在圏検知間隔T2は数100ms~数secの間隔であり、在圏検知間隔T1に対して十分短い間隔となっている。
 続いて、在圏判定部9は、受信頻度を上げて連続受信された在圏検知信号の標準偏差Sを算出し、算出された測定結果の標準偏差Sが、人物の在圏を判定するための閾値以上であるか否かを判定する(ステップS108)。標準偏差Sが閾値未満である場合(ステップS108;No)、在圏判定部9は、受信機2aの在圏検知結果を不在のままとし、在圏検知結果を更新しない(ステップS103)。
 一方、算出された標準偏差Sが閾値以上である場合(ステップS108;Yes)、在圏判定部9は、受信機2aの在圏検知結果を在圏に更新する(ステップS109)。ここで、必要に応じて、制御部10が、制御対象の機器へ、人物の在圏を通知する。
 この後、制御部10は、受信機2aを、スリープ状態に移行させる(ステップS110)、設定された在圏検知間隔T1が経過する間待機し(ステップS111)、在圏検知間隔T1が経過すると、受信機2a全体を受信待機状態に移行させる(ステップS112)。ステップS112終了後は、図5のステップS201に進む。
 次に、受信機2aにおける前回の在圏検知結果が、在圏と検知された場合の動作を、図5のフローチャートに従って説明する。
 受信機2aは、送信機1aから送信される在圏検知信号を受信し、受信レベルを測定する(ステップS201)。このとき、在圏検知信号を複数回受信して平均化する処理等を行ってもよい。
 続いて、在圏判定部9は、受信した在圏検知信号の受信レベルが、設置された人物不在時の受信レベルの変動範囲内、すなわち上限値L1以下かつ下限値L2以上であるか否かを判定する(ステップS202)。
 在圏判定部9は、受信した在圏検知信号の受信レベルが設定範囲内でないと判定された場合(ステップS202;No)、受信機2aの在圏検知結果は在圏のままとし、在圏検知結果を更新しない(ステップS203)。
 続いて、制御部10は、受信機2a全体を、スリープ状態に移行させる(ステップS204)。
 続いて、制御部10は、タイマを動作させ、受信機2a全体を、設定された在圏検知間隔T1に応じた時間待機させる(ステップS205)。
 在圏検知間隔T1が経過すると、制御部10は、受信機2aを受信待機状態に移行させる(ステップS206)。その後、受信機2aは、ステップS201に戻る。
 一方、在圏判定部9が、受信レベルが設定された設定範囲内であると判定した場合(ステップS202;Yes)、制御部10は、一定時間、無線回路7a及び受信レベル測定回路8による在圏検知信号の受信頻度を上げて(すなわち、受信間隔を在圏検知間隔T2として)、在圏検知信号を連続受信させて、受信レベル測定回路8に受信レベルを測定させる(ステップS207)。
 続いて、在圏判定部9は、受信頻度を上げて連続受信された在圏検知信号の標準偏差Sを算出し、算出された測定結果の標準偏差Sが、人物の在圏を判定するための閾値以下であるか否かを判定する(ステップS208)。標準偏差Sが閾値より大きい場合(ステップS208;No)、在圏判定部9は、受信機2aの在圏検知結果を不在のままとし、在圏検知結果を更新しない(ステップS203)。
 一方、算出された標準偏差Sが閾値以下である場合(ステップS208;Yes)、在圏判定部9は、受信機2aの在圏検知結果を不在に更新する(ステップS209)。ここで、必要に応じて、制御部10が、制御対象の機器へ、人物の不在を通知する。
 この後、制御部10は、受信機2aを、スリープ状態に移行させる(ステップS210)、設定された在圏検知間隔T1が経過する間待機し(ステップS211)、在圏検知間隔T1が経過すると、受信機2a全体を受信待機状態に移行させる(ステップS212)。ステップS212終了後は、図4のステップS101に戻る。
 以上詳細に説明したように、本実施形態によれば、受信機2aにおいて、マルチパスの在圏検知信号を間隔の長い在圏検知間隔T1で受信し、その受信レベルに変化があったことを検知したときのみ、在圏検知信号を受信する間隔をT2に短くして在圏検知信号の連続受信を行う。これにより、在圏検知信号を常時受信する必要がなくなるので、消費電力を低減しつつ、簡易かつ広範囲に人物の在圏を検知することができる。
 さらに、本実施形態によれば、在圏検知信号の送信機1aに、在圏検知専用の機器を使用することなく、在圏検知システム100を簡易、低コストに構築できる。
 また、本実施形態によれば、在圏検知システムを用いて、家電機器を在圏検知結果に基づいて制御することができるようになるので、ユーザの利便性が増す。
実施の形態2.
 次に、この発明の実施の形態2について説明する。
 実施の形態1において、在圏検知信号は、送信機1aから送信されるビーコン信号を利用するようにした。これに対し、この実施の形態2では、送信機1aに、リモコンやセンサ機器を使用する。より具体的には、リモコンやセンサ機器との間で無線通信を行うセンサ機器の親機や、リモコンで操作する家電機器から在圏検知信号が送信される。
 図6には、この実施の形態2に係る在圏検知システム100の構成が示されている。送信機1bは、リモコンやコントローラと無線通信を行うセンサ機器の親機や、リモコンで操作する家電機器である。その他の構成は、上記実施の形態1と同じである。
 次に、この実施の形態2に係る受信機2bの構成について図7を参照して説明する。受信機2bは、アンテナ6と、無線回路7bと、受信レベル測定回路8と、在圏判定部9と、制御部10と、記憶部11と、モデム部17とを備える。
 無線回路7は、受信レベル測定回路8及びモデム17に接続される。モデム17は、通信信号の変復調を行う機能を備える。無線回路7bは、受信回路と、PA(Power Amp.)等で構成される送信回路を備える。その他の構成は、上記実施の形態1と同じである。
 次に、この実施の形態2に係る在圏検知システムの動作について説明する。
 送信機1bは、動作を開始すると、受信機2bからのアクセスを待つ。受信機2bは動作を開始すると、在圏判定部9から、送信機1bに、在圏検知間隔T1、T2と、次回の在圏検知信号送信時刻の取得要求を送信する。送信された要求は、モデム部17により変調され、無線回路7bと、アンテナ6を介して無線送信される。
 無線送信された要求は、送信機1bで受信される。これに応じて、送信機1bは、在圏検知間隔T1と、次回の在圏検知信号送信時刻を受信機2bに送信する。送信機1bから送信されたデータは、受信機2bのアンテナ6、無線回路7b及びモデム部17を介して在圏検知部9に入力される。在圏検知部9は、記憶部11に在圏検知間隔T1を書き込み、タイマ制御により、次回の在圏検知信号送信時刻まで受信機2bをスリープ状態に移行させる。
 在圏検知信号の送信時刻になると、受信機2bは受信待機状態に移行し、送信機1bから送信される在圏検知信号を受信する。受信機2bが在圏検知信号を確実に受信するには、送信機1b、受信機2bが正確な時計を持っている必要がある。一般に、民生機器のクロックとして主に使用されるセラミック発振子では、クロック精度は0.1%程度である。これは、1分の時間間隔で、60msecの誤差となる。従って、クロックの誤差に合わせて受信機2b側の在圏検知信号の受信待機時間を長くする必要がある。また、在圏検知信号の受信タイミングにより、クロック誤差を補正することで誤差の蓄積を低減することができる。
 受信機2bにおいて、アンテナ6で受信された在圏検知信号は、無線回路7aを介して、受信レベル測定回路8に入力される。受信レベル測定回路8において、送信機1bが送信する在圏検知信号の受信レベルが測定され、在圏判定部9に入力される。このとき、在圏検知信号を複数回受信して平均化する処理等を行ってもよい。
 在圏判定部9に入力された受信レベルは、人物不在時の受信レベルの変動範囲の上限値、下限値と比較される。受信レベルの変動範囲の上限値、下限値は、上記実施の形態1と同様に、受信機2bに予め設定され、調整されている。
 なお、受信機2bにおける前回の在圏検知結果が不在であった場合、受信レベルが上限値より大きいか下限値より小さいときに、受信機2bの在圏判定部9は、送信機1bに対して、在圏検知信号の連続送信要求を送信する。
 また、受信機2bにおける前回の在圏検知結果が在圏であった場合、受信レベルが上限値以下かつ下限値以上であるときに、受信機2bの在圏判定部9は、送信機1bに対して、在圏検知信号の連続送信要求を送信する。
 在圏検知信号の連続送信要求を受信した送信機1bは、在圏検知信号を連続送信する。その他の動作は上記実施の形態1と同じである。
 以上詳細に説明したように、本実施形態によれば、マルチパスの無線信号を間隔の長い在圏検知間隔T1で受信し、その受信レベルに変化があったことを検知したときのみ、無線信号を受信する間隔をT2に短くして在圏検知信号の連続受信を行う。これにより、無線信号を常時受信する必要がなくなるので、消費電力を低減しつつ、簡易かつ広範囲に人物の在圏を検知することができる。
 さらに、在圏検知信号の送信機1bにおいて、在圏検知信号を低頻度で送信し、受信機2bからの要求があった場合にのみ頻度を上げて在圏検知信号を送信することで、送信機1bを低消費電力化することができる。
 在圏検知システムを用いて、家電機器を在圏検知情報に基づいて制御することができるようになるので、ユーザの利便性が増す。
 上記実施の形態1、2において、受信レベルの測定結果が、人物不在時の受信レベルの変動範囲の上限値L1以下かつ下限値L2以上であるか、上限値L1より大きいまたは下限値L2より小さいか、の判定は、在圏検知信号を1回受信して行うものとしたが、在圏検知信号を複数回受信した結果により判定するようにしてもよい。この場合、例えば、複数受信した結果の多数決で判定するようにしてもよいし、平均値を用いて判定するようにしてもよい。このようにすれば、判定の信頼性をさらに向上させることができる。
 また、上記実施の形態1、2では、人物不在時の受信レベルの変動範囲の上限値L1、下限値L2を、受信レベルの絶対値としたが、在圏検知信号を複数回受信し、標準偏差を閾値とするようにしてもよい。このようにすれば、判定の信頼性をさらに向上させることができる。
 なお、上記実施の形態において、実行されるプログラムは、フレキシブルディスク、CD-ROM(Compact Disc Read-Only Memory)、DVD(Digital Versatile Disc)、MO(Magneto-Optical Disc)等のコンピュータ読み取り可能な記録媒体に格納して配布し、そのプログラムをインストールすることにより、上述のスレッドを実行するシステムを構成することとしてもよい。
 また、プログラムをインターネット等の通信ネットワーク上の所定のサーバ装置が有するディスク装置等に格納しておき、例えば、搬送波に重畳させて、ダウンロード等するようにしてもよい。
 また、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみを媒体に格納して配布してもよく、また、ダウンロード等してもよい。
 この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 この発明は、所定の空間に人が居るか否かを検知するのに好適である。
 1a、1b 送信機
 2a、2b 受信機
 3a、3b、3c、3d 伝搬経路
 4 在圏検知エリア
 5 人
 6 アンテナ
 7a、7b 無線回路
 8 受信レベル測定回路
 9 在圏判定部
 10 制御部
 11 記憶部
 17 モデム部
 100 在圏検知システム

Claims (11)

  1.  所定の空間内において、マルチパスの無線信号を送信する送信機と、送信された無線信号を受信して人物の在圏を検知する受信機とを備え、
     前記受信機は、
     第1の間隔で間欠的に受信される前記無線信号の受信レベルに基づいて、人物の在圏/不在の状態に変化があったか否かを判定する第1の判定部と、
     前記第1の判定部で前記無線信号の受信レベルが変化したと判定された場合に、前記第1の間隔よりも短い第2の間隔で受信される前記無線信号の受信レベルのばらつきに基づいて、人物の在圏/不在を判定する第2の判定部と、
     を備える在圏検知システム。
  2.  前記送信機は、
     所定の空間内に設置され一定の送信電力で前記無線信号を送信する所定の無線通信サービスに用いられる送信機である、
     請求項1に記載の在圏検知システム。
  3.  前記送信機は、
     前記第1の間隔及び前記第2の間隔のいずれかで前記無線信号を送信可能であり、
     前記受信機からの要求により、送信間隔を前記第1の間隔から前記第2の間隔に切り替え、
     前記受信機は、
     前記第1の判定部で、人物の在圏/不在の状態に変化があったと判定された場合に、前記送信機に、送信頻度を上げる要求を送信する、
     請求項1又は2に記載の在圏検知システム。
  4.  前記第1の判定部は、
     前記無線信号の受信レベルに関するデータが、人物不在時の受信レベルの変動範囲内に収まっているか否かにより、人物の在圏/不在の状態に変化があったと判定する、
     請求項1乃至3のいずれか一項に記載の在圏検知システム。
  5.  過去に測定された前記無線信号の受信レベルに基づいて、人物不在時の受信レベルの変動範囲を調整する調整部をさらに備える、
     請求項4に記載の在圏検知システム。
  6.  前記第1の判定部は、
     複数回受信された前記無線信号の受信レベルの平均値が、人物不在時の受信レベルの変動範囲内に収まっているか否かにより、人物の在圏/不在の状態に変化があったと判定する、
     請求項4又は5に記載の在圏検知システム。
  7.  前記第1の判定部は、
     複数回受信された前記無線信号の受信レベルのうち、人物不在時の受信レベルの変動範囲内に収まっていないものの数が半数を上回るか否かにより、人物の在圏/不在の状態に変化があったと判定する、
     請求項4又は5に記載の在圏検知システム。
  8.  前記第2の判定部は、
     複数回受信された前記無線信号の受信レベルの標準偏差が、閾値を超える場合に、人物の在圏/不在を判定する、
     請求項4に記載の在圏検知システム。
  9.  前記閾値を、
     過去に測定された前記無線信号の受信レベルに基づいて調整する調整部をさらに備える、
     請求項8に記載の在圏検知システム。
  10.  所定の空間内において、マルチパスの無線信号を送信する送信機と、送信された無線信号を受信して人物の在圏を検知する受信機とを備えるシステムを用いた在圏検知方法であって、
     前記受信機により、第1の間隔で間欠的に受信される前記無線信号の受信レベルに基づいて、人物の在圏/不在の状態に変化があったか否かを判定する第1の判定工程と、
     前記第1の判定工程において前記無線信号の受信レベルが変化したと判定された場合に、前記受信機により、前記第1の間隔よりも短い第2の間隔で受信される前記無線信号の受信レベルのばらつきに基づいて、人物の在圏/不在を判定する第2の判定工程と、
     を含む在圏検知方法。
  11.  所定の空間内において、送信機から送信されるマルチパスの無線信号を受信して人物の在圏を検知する受信機を制御するコンピュータを、
     前記受信機により、第1の間隔で間欠的に受信される前記無線信号の受信レベルに基づいて、人物の在圏/不在の状態に変化があったか否かを判定する第1の判定部、
     前記第1の判定部で前記無線信号の受信レベルが変化したと判定された場合に、前記受信機により、前記第1の間隔よりも短い第2の間隔で受信される前記無線信号の受信レベルのばらつきに基づいて、人物の在圏/不在を判定する第2の判定部、
     として機能させるプログラム。
PCT/JP2011/058528 2011-04-04 2011-04-04 在圏検知システム、在圏検知方法及びプログラム WO2012137285A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/058528 WO2012137285A1 (ja) 2011-04-04 2011-04-04 在圏検知システム、在圏検知方法及びプログラム
EP11863171.2A EP2696332B1 (en) 2011-04-04 2011-04-04 Presence detection system, presence detection method, and program
CN201180069819.8A CN103460263B (zh) 2011-04-04 2011-04-04 在室探测系统、在室探测方法
US14/009,343 US9383438B2 (en) 2011-04-04 2011-04-04 Presence detection system, presence detection method, and program
JP2013508647A JPWO2012137285A1 (ja) 2011-04-04 2011-04-04 在圏検知システム、在圏検知方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058528 WO2012137285A1 (ja) 2011-04-04 2011-04-04 在圏検知システム、在圏検知方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2012137285A1 true WO2012137285A1 (ja) 2012-10-11

Family

ID=46968726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058528 WO2012137285A1 (ja) 2011-04-04 2011-04-04 在圏検知システム、在圏検知方法及びプログラム

Country Status (5)

Country Link
US (1) US9383438B2 (ja)
EP (1) EP2696332B1 (ja)
JP (1) JPWO2012137285A1 (ja)
CN (1) CN103460263B (ja)
WO (1) WO2012137285A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025527A1 (ja) * 2013-08-23 2015-02-26 パナソニックIpマネジメント株式会社 車両用物体検知装置
JP2015144796A (ja) * 2014-02-03 2015-08-13 株式会社ギガテック マイクロ波ドップラセンサによる人体検出及び生体モニタ方法
WO2016103394A1 (ja) * 2014-12-25 2016-06-30 三菱電機株式会社 状態検知システム、空調制御システム、及び、状態検知方法
WO2016157779A1 (ja) * 2015-03-27 2016-10-06 株式会社デンソー 対象物検出装置
WO2017013760A1 (ja) * 2015-07-22 2017-01-26 三菱電機株式会社 無線通信装置、存在検知システム、方法、及びプログラム
JP2019507999A (ja) * 2016-02-04 2019-03-22 エアリアル テクノロジーズ インコーポレイテッド 無線通信信号の環境を検知するためのシステムおよび方法
JP2019510960A (ja) * 2016-01-05 2019-04-18 ロシックス・インコーポレイテッド 無線周波数信号及びセンサを使用して環境を監視するためのシステム及び方法
JP2019090548A (ja) * 2017-11-13 2019-06-13 三菱電機株式会社 空調制御システム、遠隔制御装置及び空調制御方法
JP2020511654A (ja) * 2017-03-16 2020-04-16 コグニティヴ システムズ コーポレイション 動き検出のためのモデムパラメータの記憶
JP2021501308A (ja) * 2017-10-31 2021-01-14 コグニティヴ システムズ コーポレイション ワイヤレス信号の統計パラメータのグルーピングに基づく動き検出
JP2022028703A (ja) * 2016-04-14 2022-02-16 オリジン ワイヤレス, インコーポレイテッド 物体追跡のための方法、装置、サーバ及びシステム
WO2023286489A1 (ja) * 2021-07-16 2023-01-19 ソニーセミコンダクタソリューションズ株式会社 通信処理装置、通信システム、及び通信処理方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10361585B2 (en) 2014-01-27 2019-07-23 Ivani, LLC Systems and methods to allow for a smart device
DE102014208386A1 (de) * 2014-05-06 2015-11-12 Robert Bosch Gmbh Verfahren und Vorrichtung zum Überwachen eines immobilen Raumbereichs
FR3031194B1 (fr) * 2014-12-29 2018-04-06 Centre National De La Recherche Scientifique Procede et dispositif de detection et de localisation en interieur de personnes ou d’objets
US10028220B2 (en) 2015-01-27 2018-07-17 Locix, Inc. Systems and methods for providing wireless asymmetric network architectures of wireless devices with power management features
KR102314833B1 (ko) * 2015-03-26 2021-10-19 한국전자통신연구원 공간 전자파를 이용한 물체 감지 장치 및 방법
US9474042B1 (en) 2015-09-16 2016-10-18 Ivani, LLC Detecting location within a network
US10325641B2 (en) 2017-08-10 2019-06-18 Ivani, LLC Detecting location within a network
US10382893B1 (en) 2015-09-16 2019-08-13 Ivani, LLC Building system control utilizing building occupancy
US10665284B2 (en) 2015-09-16 2020-05-26 Ivani, LLC Detecting location within a network
US11533584B2 (en) 2015-09-16 2022-12-20 Ivani, LLC Blockchain systems and methods for confirming presence
US10321270B2 (en) 2015-09-16 2019-06-11 Ivani, LLC Reverse-beacon indoor positioning system using existing detection fields
US11350238B2 (en) 2015-09-16 2022-05-31 Ivani, LLC Systems and methods for detecting the presence of a user at a computer
US10455357B2 (en) 2015-09-16 2019-10-22 Ivani, LLC Detecting location within a network
US11030902B2 (en) 2016-01-05 2021-06-08 Locix, Inc. Systems and methods for using radio frequency signals and sensors to monitor environments
US10504364B2 (en) 2016-01-05 2019-12-10 Locix, Inc. Systems and methods for using radio frequency signals and sensors to monitor environments
US9523760B1 (en) 2016-04-15 2016-12-20 Cognitive Systems Corp. Detecting motion based on repeated wireless transmissions
US9584974B1 (en) 2016-05-11 2017-02-28 Cognitive Systems Corp. Detecting motion based on reference signal transmissions
US10129853B2 (en) 2016-06-08 2018-11-13 Cognitive Systems Corp. Operating a motion detection channel in a wireless communication network
US10455350B2 (en) 2016-07-10 2019-10-22 ZaiNar, Inc. Method and system for radiolocation asset tracking via a mesh network
US9524628B1 (en) 2016-08-04 2016-12-20 Cognitive Systems Corp. Detecting signal modulation for motion detection
US9927519B1 (en) 2017-03-16 2018-03-27 Cognitive Systems Corp. Categorizing motion detected using wireless signals
US9989622B1 (en) 2017-03-16 2018-06-05 Cognitive Systems Corp. Controlling radio states for motion detection
US10004076B1 (en) 2017-03-16 2018-06-19 Cognitive Systems Corp. Selecting wireless communication channels based on signal quality metrics
US10380870B2 (en) * 2017-05-05 2019-08-13 Hubbell Incorporated Device and method for controlling Bluetooth™ enabled occupancy sensors
DE102017109935A1 (de) * 2017-05-09 2018-11-15 Miele & Cie. Kg Verfahren zum Betreiben eines Haushaltsgeräts
US10051414B1 (en) 2017-08-30 2018-08-14 Cognitive Systems Corp. Detecting motion based on decompositions of channel response variations
US10109167B1 (en) 2017-10-20 2018-10-23 Cognitive Systems Corp. Motion localization in a wireless mesh network based on motion indicator values
US10228439B1 (en) 2017-10-31 2019-03-12 Cognitive Systems Corp. Motion detection based on filtered statistical parameters of wireless signals
US9933517B1 (en) * 2017-11-03 2018-04-03 Cognitive Systems Corp. Time-alignment of motion detection signals using buffers
US10109168B1 (en) 2017-11-16 2018-10-23 Cognitive Systems Corp. Motion localization based on channel response characteristics
US10108903B1 (en) * 2017-12-08 2018-10-23 Cognitive Systems Corp. Motion detection based on machine learning of wireless signal properties
WO2020044192A1 (en) * 2018-08-26 2020-03-05 Celeno Communications (Israel) Ltd. Wi-fi radar detection using synchronized wireless access point
US11105912B2 (en) 2018-12-31 2021-08-31 Celeno Communications (Israel) Ltd. Coherent Wi-Fi radar using wireless access point
WO2020141415A1 (en) 2019-01-01 2020-07-09 Celeno Communications (Israel) Ltd. Improved positioning system based on distributed transmission and reception of wi-fi signals
BE1027136B1 (nl) * 2019-03-21 2020-10-19 Rombit Nv Methode, systeem en computerprogrammaproduct voor het bepalen van een positie ten opzichte van een begrensde ruimte
RU2726012C1 (ru) * 2019-07-01 2020-07-08 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Радиолучевое устройство с объемной зоной обнаружения для периметров и помещений
EP4052066A4 (en) 2019-10-31 2022-12-14 Cognitive Systems Corp. TRIGGERING MIMO TRANSMISSIONS FROM WIRELESS COMMUNICATION DEVICES
WO2021081635A1 (en) 2019-10-31 2021-05-06 Cognitive Systems Corp. Using mimo training fields for motion detection
US11570712B2 (en) 2019-10-31 2023-01-31 Cognitive Systems Corp. Varying a rate of eliciting MIMO transmissions from wireless communication devices
US11385344B2 (en) * 2020-03-20 2022-07-12 Aptiv Technologies Limited Frequency-modulated continuous-wave (FMCW) radar-based detection of living objects
US11070399B1 (en) 2020-11-30 2021-07-20 Cognitive Systems Corp. Filtering channel responses for motion detection
US20240063927A1 (en) * 2021-01-05 2024-02-22 Lg Electronics Inc. Method and apparatus for performing wireless sensing by collecting empty data on basis of wireless sensing
CN117501703A (zh) 2021-09-01 2024-02-02 三星电子株式会社 显示装置及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879840A (ja) * 1994-08-31 1996-03-22 Sharp Corp ホームコントロールシステム
JPH1020925A (ja) * 1996-07-05 1998-01-23 Toshiba Corp プラント診断装置
JP2003230174A (ja) * 2003-02-14 2003-08-15 Nippon Telegr & Teleph Corp <Ntt> 位置検出方法
JP2006221213A (ja) 2005-02-08 2006-08-24 Masahiro Nishi 人物在圏検知システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142057A (ja) * 1974-05-01 1975-11-15
JPS63181587A (ja) * 1987-01-23 1988-07-26 Toshiba Corp 侵入監視装置
JP3001730B2 (ja) * 1992-09-22 2000-01-24 九州電力株式会社 移動体検出方法および装置
JP3469956B2 (ja) * 1995-03-27 2003-11-25 マスプロ電工株式会社 万引防止装置
JP3337872B2 (ja) * 1995-06-13 2002-10-28 セイコープレシジョン株式会社 物体検知装置
FR2745093B1 (fr) * 1996-02-21 1998-04-24 Legrand Sa Procede et dispositif de detection de presence d'un etre vivant d'espece particuliere dans un espace surveille par un capteur doppler
US5969595A (en) * 1996-07-22 1999-10-19 Trimble Navigation Limited Security for transport vehicles and cargo
US6239736B1 (en) * 1999-04-21 2001-05-29 Interlogix, Inc. Range-gated radar motion detector
JP4513154B2 (ja) 2000-02-14 2010-07-28 ソニー株式会社 受信回路及びそれを用いたセキュリティシステム
US6281797B1 (en) * 2000-04-04 2001-08-28 Marconi Data Systems Inc. Method and apparatus for detecting a container proximate to a transportation vessel hold
US6437702B1 (en) * 2000-04-14 2002-08-20 Qualcomm, Inc. Cargo sensing system and method
ATE411577T1 (de) * 2001-03-08 2008-10-15 Em Microelectronic Marin Sa System zum erfassen des passierens von personen oder gegenständen durch einen räumlich begrenzten eingang-ausgang
US20030210139A1 (en) * 2001-12-03 2003-11-13 Stephen Brooks Method and system for improved security
US7088236B2 (en) * 2002-06-26 2006-08-08 It University Of Copenhagen Method of and a system for surveillance of an environment utilising electromagnetic waves
US20050055568A1 (en) * 2003-08-12 2005-03-10 Agrawala Ashok K. Method and system for providing physical security in an area of interest
US7019683B2 (en) * 2004-03-05 2006-03-28 General Electric Company Shipping container security system
JP4301080B2 (ja) * 2004-05-24 2009-07-22 船井電機株式会社 監視システム
CN100440264C (zh) * 2005-11-30 2008-12-03 中国科学院声学研究所 一种超声波入侵探测方法和探测装置
US7884727B2 (en) * 2007-05-24 2011-02-08 Bao Tran Wireless occupancy and day-light sensing
US8525725B2 (en) * 2010-03-09 2013-09-03 Lockheed Martin Corporation Method and system for position and track determination
JP2011215031A (ja) * 2010-03-31 2011-10-27 Toshiba Corp 人感センサおよび空調装置
US8816895B2 (en) * 2011-04-15 2014-08-26 Raytheon Company Target-tracking radar classifier with glint detection and method for target classification using measured target epsilon and target glint information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879840A (ja) * 1994-08-31 1996-03-22 Sharp Corp ホームコントロールシステム
JPH1020925A (ja) * 1996-07-05 1998-01-23 Toshiba Corp プラント診断装置
JP2003230174A (ja) * 2003-02-14 2003-08-15 Nippon Telegr & Teleph Corp <Ntt> 位置検出方法
JP2006221213A (ja) 2005-02-08 2006-08-24 Masahiro Nishi 人物在圏検知システム

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040837A (ja) * 2013-08-23 2015-03-02 パナソニックIpマネジメント株式会社 車両用物体検知装置
CN105474038A (zh) * 2013-08-23 2016-04-06 松下知识产权经营株式会社 车辆专用的对象检测设备
WO2015025527A1 (ja) * 2013-08-23 2015-02-26 パナソニックIpマネジメント株式会社 車両用物体検知装置
JP2015144796A (ja) * 2014-02-03 2015-08-13 株式会社ギガテック マイクロ波ドップラセンサによる人体検出及び生体モニタ方法
WO2016103394A1 (ja) * 2014-12-25 2016-06-30 三菱電機株式会社 状態検知システム、空調制御システム、及び、状態検知方法
JPWO2016103394A1 (ja) * 2014-12-25 2017-06-15 三菱電機株式会社 状態検知システム、空調制御システム、及び、状態検知方法
US10677904B2 (en) 2015-03-27 2020-06-09 Denso Corporation Object detection apparatus
WO2016157779A1 (ja) * 2015-03-27 2016-10-06 株式会社デンソー 対象物検出装置
JP2016186456A (ja) * 2015-03-27 2016-10-27 株式会社日本自動車部品総合研究所 対象物検出装置
WO2017013760A1 (ja) * 2015-07-22 2017-01-26 三菱電機株式会社 無線通信装置、存在検知システム、方法、及びプログラム
JPWO2017013760A1 (ja) * 2015-07-22 2017-11-02 三菱電機株式会社 無線通信装置、存在検知システム、方法、及びプログラム
JP2019510960A (ja) * 2016-01-05 2019-04-18 ロシックス・インコーポレイテッド 無線周波数信号及びセンサを使用して環境を監視するためのシステム及び方法
JP2019507999A (ja) * 2016-02-04 2019-03-22 エアリアル テクノロジーズ インコーポレイテッド 無線通信信号の環境を検知するためのシステムおよび方法
JP2022028703A (ja) * 2016-04-14 2022-02-16 オリジン ワイヤレス, インコーポレイテッド 物体追跡のための方法、装置、サーバ及びシステム
JP7365593B2 (ja) 2016-04-14 2023-10-20 オリジン ワイヤレス, インコーポレイテッド 物体追跡のための方法、装置、サーバ及びシステム
JP2020511654A (ja) * 2017-03-16 2020-04-16 コグニティヴ システムズ コーポレイション 動き検出のためのモデムパラメータの記憶
JP7003146B2 (ja) 2017-03-16 2022-01-20 コグニティヴ システムズ コーポレイション 動き検出のためのモデムパラメータの記憶
JP2021501308A (ja) * 2017-10-31 2021-01-14 コグニティヴ システムズ コーポレイション ワイヤレス信号の統計パラメータのグルーピングに基づく動き検出
JP7249337B2 (ja) 2017-10-31 2023-03-30 コグニティヴ システムズ コーポレイション ワイヤレス信号の統計パラメータのグルーピングに基づく動き検出
JP2019090548A (ja) * 2017-11-13 2019-06-13 三菱電機株式会社 空調制御システム、遠隔制御装置及び空調制御方法
WO2023286489A1 (ja) * 2021-07-16 2023-01-19 ソニーセミコンダクタソリューションズ株式会社 通信処理装置、通信システム、及び通信処理方法

Also Published As

Publication number Publication date
EP2696332A4 (en) 2014-09-17
US9383438B2 (en) 2016-07-05
US20140015706A1 (en) 2014-01-16
CN103460263A (zh) 2013-12-18
CN103460263B (zh) 2015-12-09
EP2696332B1 (en) 2020-05-06
EP2696332A1 (en) 2014-02-12
JPWO2012137285A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
WO2012137285A1 (ja) 在圏検知システム、在圏検知方法及びプログラム
KR101738760B1 (ko) 최적화된 블루투스 저 에너지 통신들에 대한 방법 및 시스템
US10156852B2 (en) Systems and methods for using radio frequency signals and sensors to monitor environments
WO2018216088A1 (ja) 人位置検知装置、人位置検知システム、人位置検知方法及びプログラム
KR100850445B1 (ko) 전송 전력 제어를 갖는 무선 시스템
US20200209341A1 (en) Systems and methods for determining locations of wireless sensor nodes based on anchorless nodes and known environment information
US9952569B2 (en) Association of a portable sensor device in a building management system
US11297592B2 (en) Electronic beacon for a localization system
JP6355761B2 (ja) 状態検知システム、空調制御システム、及び、状態検知方法
US20100127837A1 (en) Passive wireless system
JP4572305B2 (ja) 人物在圏検知システム
CN103363625B (zh) 一种带多普勒微波传感器的智能遥控器
JP6925241B2 (ja) 空調制御システム、遠隔制御装置及び空調制御方法
JP6342077B2 (ja) 無線通信装置、存在検知システム、方法、及びプログラム
EP2511785B1 (en) Devices, methods, and systems for occupancy detection
KR20110020677A (ko) 다중 안테나를 이용한 무선 주차 검지 장치 및 그 검지 방법
JPWO2020012743A1 (ja) 受信装置、および、受信装置の制御方法
US20230232252A1 (en) Configuration module for configuring a network device of a radiofrequency sensing network
RU2829160C1 (ru) Электрический обогреватель с wi-fi управлением
EP4367940A1 (en) Configuring radiofrequency sensing nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508647

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14009343

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011863171

Country of ref document: EP