WO2012133851A1 - ポリカーボネート樹脂の製造方法 - Google Patents

ポリカーボネート樹脂の製造方法 Download PDF

Info

Publication number
WO2012133851A1
WO2012133851A1 PCT/JP2012/058735 JP2012058735W WO2012133851A1 WO 2012133851 A1 WO2012133851 A1 WO 2012133851A1 JP 2012058735 W JP2012058735 W JP 2012058735W WO 2012133851 A1 WO2012133851 A1 WO 2012133851A1
Authority
WO
WIPO (PCT)
Prior art keywords
dihydroxy compound
polycarbonate resin
dissolution tank
reactor
producing
Prior art date
Application number
PCT/JP2012/058735
Other languages
English (en)
French (fr)
Inventor
慎悟 並木
剛一 永尾
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020137025527A priority Critical patent/KR101898308B1/ko
Priority to CN201280016551.6A priority patent/CN103476828B/zh
Priority to EP12763109.1A priority patent/EP2692765B1/en
Publication of WO2012133851A1 publication Critical patent/WO2012133851A1/ja
Priority to US14/042,102 priority patent/US8907048B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a method for producing a polycarbonate resin for stably producing a polycarbonate resin excellent in transparency, color tone, heat resistance, moldability, mechanical strength and the like.
  • Polycarbonate resins generally contain bisphenols as monomer components and take advantage of transparency, heat resistance, mechanical strength, etc., so-called electrical and electronic parts, automotive parts, optical recording media, optical fields such as lenses, etc. Widely used as engineering plastic.
  • a dihydroxy compound having an ether bond such as ISB in the molecule generally has low thermal stability and stability to oxygen, and the polycarbonate resin obtained in the transesterification reaction that reacts at high temperature is colored, There was a problem that the reaction did not reach the desired molecular weight.
  • a method has been reported in which the color tone of the obtained polycarbonate resin is improved by a method of reducing the thermal load in the reaction step (see, for example, Patent Document 4).
  • Patent Document 7 a method of separately dissolving the dihydroxy compound in a method for producing a copolymer polycarbonate resin of an alicyclic dihydroxy compound and an aromatic dihydroxy compound has been proposed.
  • aromatic dihydroxy compounds require a relatively high temperature to dissolve, there is a problem that heat degradation occurs when alicyclic dihydroxy compounds with poor thermal stability are mixed, but they dissolve separately.
  • the alicyclic dihydroxy compound can be stored at a lower temperature, the quality of the obtained polycarbonate resin was improved.
  • the dihydroxy compound used in the present invention when stored in a molten state for a long time, it not only affects the color tone of the obtained polycarbonate resin but also affects the reactivity. Became clear.
  • a continuous polymerization process that is useful for industrially producing polycarbonate resin from the viewpoint of productivity and quality, if the reactivity of the raw material changes, it becomes impossible to produce the polycarbonate resin under certain reaction conditions. This leads to problems such as poor yield and unstable product quality.
  • the preparation method of the raw material preparation solution is batch type, it takes time to melt the raw material, and the fluctuation in the time from melting to use for the reaction can vary. It is thought to be a factor.
  • a polycarbonate resin comprising a step of continuously supplying a dihydroxy compound (A) having a site represented by the following formula (1) in a part of the structure and a carbonic acid diester to a reactor in a liquid state and performing melt polycondensation
  • a method for producing a polycarbonate resin wherein a residence time from liquefaction of the dihydroxy compound (A) to supply to the reactor is 0.1 hour or more and 10 hours or less.
  • the dihydroxy compound (A) is liquefied using two or more dissolution tanks connected in series, and the temperature of the heating medium in the downstream dissolution tank is equal to or lower than the heating medium temperature of the upstream dissolution tank.
  • composition switching step of changing the weight fraction of the compound to all dihydroxy compounds to a different weight fraction;
  • the polycarbonate resin production method of the present invention makes it possible to efficiently and stably produce a polycarbonate resin excellent in transparency, hue, heat resistance, thermal stability, mechanical strength, and the like.
  • the thermal deterioration of the dihydroxy compound in the raw material preparation step is suppressed, so that the reaction state in the polycondensation step is stabilized, and the polycarbonate resin having a uniform molecular weight and color tone. Can be obtained.
  • FIG. 1 is a process diagram showing a raw material preparation process in the production method of the present invention.
  • FIG. 2 is a process diagram showing a polycondensation process in the production method of the present invention.
  • a dihydroxy compound (A) having a site represented by the following formula (1) in a part of the structure and a carbonic acid diester are continuously supplied to a reactor in a liquid state.
  • the dihydroxy compound (A) used for the production of the polycarbonate resin of the present invention has a site represented by the following formula (1).
  • the dihydroxy compound may be referred to as “the dihydroxy compound (A) of the present invention”.
  • dihydroxy compound (A) of the present invention examples include oxyalkylene glycols, dihydroxy compounds having an ether group bonded to an aromatic group in the main chain, and dihydroxy compounds having a cyclic ether structure.
  • Examples of the oxyalkylene glycols include diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, and polypropylene glycol.
  • Examples of the dihydroxy compound having an ether group bonded to the aromatic group in the main chain include 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and 9,9-bis (4- (2-hydroxypropoxy).
  • Phenyl) fluorene 9,9-bis (4- (2-hydroxyethoxy) -3-methylphenyl) fluorene, 9,9-bis (4- (2-hydroxypropoxy) -3-methylphenyl) fluorene, 9 , 9-bis (4- (2-hydroxyethoxy) -3-isopropylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-isobutylphenyl) fluorene, 9,9-bis (4 -(2-hydroxyethoxy) -3-tert-butylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) 3-cyclohexylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy
  • dihydroxy compound having a cyclic ether structure examples include a dihydroxy compound represented by the following formula (2), a spiro glycol represented by the following formula (3) and the following formula (4), and the like.
  • a dihydroxy compound having a plurality of cyclic ether structures is preferable from the viewpoint of easy availability, handling, reactivity during polycondensation, and hue of the obtained polycarbonate resin, and is represented by the following formula (2). More preferred are dihydroxy compounds and dihydroxy compounds having two cyclic ether structures such as spiroglycol represented by the following formula (3), and sugar-derived cyclic ether structures such as dihydroxy compounds represented by the following formula (2). Anhydrosugar alcohol which is a dihydroxy compound having two is particularly preferable.
  • dihydroxy compounds it is preferable to use a dihydroxy compound having no aromatic ring structure from the viewpoint of the light resistance of the polycarbonate resin, and among them, it is abundant as a plant-derived resource and is produced from various easily available starches.
  • Anhydrosugar alcohols such as dihydroxy compounds represented by the following formula (2) obtained by dehydrating and condensing sorbitol produced are easy to obtain and manufacture, light resistance, optical properties, moldability, heat resistance, carbon neutral From the viewpoint of
  • cyclic ether structure of the above “dihydroxy compound having a cyclic ether structure” means a structure having an ether group in the cyclic structure and a structure in which the carbon constituting the cyclic chain is an aliphatic carbon. To do.
  • dihydroxy compound represented by the above formula (2) examples include isosorbide (ISB), isomannide and isoidet which are in a stereoisomeric relationship, and these may be used alone or in combination of two or more. You may use it in combination.
  • the polycarbonate resin of the present invention may contain a structural unit derived from a dihydroxy compound (B) other than the dihydroxy compound (A) of the present invention, and the dihydroxy compound (B) includes a linear aliphatic hydrocarbon.
  • the dihydroxy compound (B) includes a linear aliphatic hydrocarbon. Examples include dihydroxy compounds, dihydroxy compounds of alkyl branched aliphatic hydrocarbons, dihydroxy compounds of alicyclic hydrocarbons, and aromatic bisphenols.
  • Examples of the straight-chain aliphatic hydrocarbon dihydroxy compound include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,3-butanediol, and 1,2-butane.
  • Examples include diol, 1,5-heptanediol, 1,6-hexanediol, 1,10-decanediol, 1,12-dodecanediol, and the like.
  • dihydroxy compound of the linear branched aliphatic hydrocarbon examples include neopentyl glycol and hexylene glycol.
  • Examples of the alicyclic hydrocarbon dihydroxy compound include 1,2-cyclohexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, Pentacyclopentadecane dimethanol, 2,6-decalin dimethanol, 1,5-decalin dimethanol, 2,3-decalin dimethanol, 2,3-norbornane dimethanol, 2,5-norbornane dimethanol, 1,3- And dihydroxy compounds derived from terpene compounds such as adamantanedimethanol and limonene.
  • aromatic bisphenol examples include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and 2,2-bis (4-hydroxy). -3,5-diethylphenyl) propane, 2,2-bis (4-hydroxy- (3,5-diphenyl) phenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis (4-hydroxyphenyl) pentane, 2,4′-dihydroxy-diphenylmethane, bis (4-hydroxyphenyl) methane, bis (4-hydroxy-5-nitrophenyl) methane, 1,1-bis ( 4-hydroxyphenyl) ethane, 3,3-bis (4-hydroxyphenyl) pentane, 1,1-bis (4-hydroxyphenyl) Cyclohexane, bis (4-hydroxyphenyl) sulfone, 2,4′-dihydroxydiphenylsulfone, bis (4-hydroxyphenyl) sulf
  • a dihydroxy compound having no aromatic ring structure in the molecular structure that is, an aliphatic hydrocarbon dihydroxy compound or an alicyclic hydrocarbon dihydroxy compound is preferable. May be.
  • Examples of the aliphatic hydrocarbon dihydroxy compound include 1,3-propanediol, 1,4-butanediol, 1,5-heptanediol, 1,6-hexanediol and the like having 3 to 6 carbon atoms at both ends.
  • a straight-chain aliphatic hydrocarbon dihydroxy compound having a hydroxy group is preferred.
  • Examples of the alicyclic hydrocarbon dihydroxy compound include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, and 1,4-cyclohexanedimethyl.
  • Methanol and tricyclodecane dimethanol are preferred, and more preferred are dihydroxy compounds having a cyclohexane structure such as 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, most 1,4-cyclohexane is preferred It is methanol.
  • the ratio of the structural unit derived from the dihydroxy compound (A) having the site represented by the formula (1) to the number of moles of the structural unit derived from all the dihydroxy compounds is preferably 10 mol% or more, more preferably Is 20 mol% or more, particularly preferably 30 mol% or more. On the other hand, it is preferably 90 mol% or less, more preferably 85 mol% or less, and particularly preferably 80 mol% or less.
  • the dihydroxy compound (A) of the present invention may contain a stabilizer such as a reducing agent, antioxidant, oxygen scavenger, light stabilizer, antacid, pH stabilizer, heat stabilizer, etc.
  • a stabilizer such as a reducing agent, antioxidant, oxygen scavenger, light stabilizer, antacid, pH stabilizer, heat stabilizer, etc.
  • the dihydroxy compound of the present invention is likely to be altered, so that it preferably contains a basic stabilizer.
  • Basic stabilizers include hydroxides, carbonates, phosphates, phosphites, and hypophosphites of Group 1 or Group 2 metals in the long-period periodic table (Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005).
  • dihydroxy containing said stabilizer is included. It is preferable to add a stabilizer so that the pH of the aqueous solution of the compound (A) is 7 or more. If the amount is too small, the effect of preventing the alteration of the dihydroxy compound (A) of the present invention may not be obtained. If the amount is too large, the modification of the dihydroxy compound (A) of the present invention may be caused. Is 0.0001% by weight to 1% by weight, preferably 0.001% by weight to 0.1% by weight, based on the dihydroxy compound (A).
  • the dihydroxy compound (A) of the present invention containing these basic stabilizers is used as a raw material for the production of polycarbonate resin
  • the basic stabilizer itself becomes a polycondensation catalyst, making it difficult to control the polycondensation rate and quality. Therefore, it is preferable to remove the basic stabilizer by ion exchange resin or distillation before using it as a raw material for the production of polycarbonate resin.
  • the content is 10 ppm by volume or less with respect to the dihydroxy compound of the invention, it does not affect the polycondensation reactivity and product quality, and therefore can be used in the reaction without adding a purification operation such as distillation. If the operation of distillation can be omitted, it is possible to reduce the number of steps handled in the molten state, so that improvement in the quality of the polycarbonate resin obtained can be expected.
  • the dihydroxy compound (A) of the present invention is gradually oxidized by oxygen, in order to prevent decomposition due to oxygen during storage and handling during production, water should not be mixed, and an oxygen scavenger It is important to use a nitrogen atmosphere.
  • isosorbide is oxidized, decomposition products such as formic acid are generated.
  • a polycarbonate resin is produced using isosorbide containing these decomposition products, not only the resulting polycarbonate resin is colored, but also the physical properties are remarkably deteriorated. A condensate may not be obtained, which is not preferable.
  • the polycarbonate resin of the present invention can be obtained by a polycondensation reaction using the above-described dihydroxy compound containing the dihydroxy compound (A) of the present invention and a carbonic acid diester as raw materials.
  • Examples of the carbonic acid diester used include those represented by the following formula (5). These carbonic acid diesters may be used alone or in combination of two or more.
  • a 1 and A 2 are each a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 18 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon group, and A 1 and A 2 May be the same or different.
  • a preferable example of A 1 and A 2 is a substituted or unsubstituted aromatic hydrocarbon group, and a more preferable example is an unsubstituted aromatic hydrocarbon group.
  • substituent of the aliphatic hydrocarbon group include an ester group, an ether group, a carboxylic acid, an amide group, and a halogen atom.
  • substituent of the aromatic hydrocarbon group include alkyl groups such as a methyl group and an ethyl group. Groups.
  • Examples of the carbonic acid diester represented by the formula (5) include diphenyl carbonate (hereinafter sometimes referred to as “DPC”), substituted diphenyl carbonate such as ditolyl carbonate, dimethyl carbonate, diethyl carbonate, and di-t-butyl.
  • Examples of the carbonate include diphenyl carbonate and substituted diphenyl carbonate, and particularly preferred is diphenyl carbonate.
  • Carbonic acid diesters may contain impurities such as chloride ions, which may inhibit the polycondensation reaction or deteriorate the hue of the resulting polycarbonate resin. It is preferable to use a purified one.
  • the mixing temperature is preferably 80 ° C. or higher, preferably 90 ° C. or higher, and the upper limit thereof is preferably 250 ° C. or lower, preferably 200 ° C. or lower, more preferably 150 ° C. or lower. Among these, 100 ° C. or higher and 130 ° C. or lower is preferable. If the mixing temperature is too low, the dissolution rate may be slow or the solubility may be insufficient, often causing problems such as solidification, and if the mixing temperature is too high, the dihydroxy compound may be thermally deteriorated. As a result, the hue of the polycarbonate resin obtained may be deteriorated.
  • the carbonic acid diester may be used in a molar ratio of 0.90 to 1.20, preferably 0.95 to 1.10, based on all dihydroxy compounds including the dihydroxy compound of the present invention used in the reaction. More preferably, it is 0.97 to 1.03, and particularly preferably 0.99 to 1.02.
  • this molar ratio is decreased, the terminal hydroxyl group of the produced polycarbonate resin is increased, the thermal stability of the polymer is deteriorated, coloring occurs during molding, the rate of transesterification reaction is reduced, and the desired high molecular weight. The body may not be obtained.
  • this molar ratio increases, the rate of transesterification may decrease, and it may be difficult to produce a polycarbonate having a desired molecular weight.
  • the decrease in the transesterification reaction rate may increase the thermal history during the polymerization reaction and may deteriorate the hue of the resulting polycarbonate resin.
  • the concentration of the carbonic acid diester remaining in the polycarbonate resin pellet or film obtained by the method of the present invention is preferably 200 ppm by weight or less, more preferably 100 ppm by weight or less, particularly preferably 60 ppm by weight or less, especially 30 ppm by weight or less. Is preferred.
  • the polycarbonate resin of the present invention is produced by polycondensation reaction of the dihydroxy compound containing the dihydroxy compound (A) of the present invention and the carbonic acid diester represented by the above formula (5) as described above. More specifically, it can be obtained by polycondensation reaction and removing by-product monohydroxy compounds and the like out of the system. In this case, the polycondensation reaction is usually performed in the presence of a polycondensation reaction catalyst.
  • the polycondensation reaction catalyst (hereinafter sometimes simply referred to as catalyst or polycondensation catalyst) that can be used in the production of the polycarbonate resin of the present invention can have a very large influence on the reaction rate and the color tone of the polycarbonate resin.
  • the catalyst used is not limited as long as it can satisfy the transparency, hue, heat resistance, thermal stability, and mechanical strength of the produced polycarbonate resin.
  • Examples include basic compounds such as metal compounds of group (hereinafter simply referred to as “Group 1” and “Group 2”), basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds.
  • Group 1 and Group 2 metal compounds of group
  • Group 1 metal compound and Group 2 metal compound are used.
  • at least one metal compound selected from the group consisting of Group 2 metals and lithium is more preferable.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, and an amine compound in combination with at least one of the group 1 metal compound and the group 2 metal compound.
  • a basic compound such as a basic boron compound, a basic phosphorus compound, a basic ammonium compound, and an amine compound
  • at least one metal compound selected from the group consisting of Group 2 metals and lithium is particularly preferable.
  • group 1 metal compound and the group 2 metal compound are usually used in the form of a hydroxide or a salt such as a carbonate, a carboxylate, or a phenol salt, but are easily available and easy to handle. From the viewpoints of hue and polycondensation activity, acetates are preferred.
  • Group 1 metal compound examples include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate, cesium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium carbonate, Cesium carbonate, sodium acetate, potassium acetate, lithium acetate, cesium acetate, sodium stearate, potassium stearate, lithium stearate, cesium stearate, sodium borohydride, potassium borohydride, lithium borohydride, cesium borohydride , Sodium borohydride, potassium borohydride, lithium phenide boron, cesium phenide boron, sodium benzoate, potassium benzoate, lithium benzoate, cesium benzoate, 2 sodium hydrogen phosphate , 2 potassium hydrogen phosphate, 2 lithium hydrogen phosphate, 2 cesium hydrogen phosphate, 2 sodium phenyl phosphate, 2 potassium phenyl phosphate, 2 lithium phenyl phosphate, 2 cesium pheny
  • Examples of the Group 2 metal compound include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, calcium carbonate, barium carbonate, magnesium carbonate, Strontium carbonate, calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, strontium stearate, etc., among which magnesium compounds, calcium compounds, barium compounds are preferred. From the viewpoint of the hue of the obtained polycarbonate resin, a magnesium compound and / or a calcium compound is more preferable, and a calcium compound is most preferable.
  • Examples of basic boron compounds include tetramethyl boric acid, tetraethyl boric acid, tetrapropyl boric acid, tetrabutyl boric acid, trimethylethyl boric acid, trimethylbenzyl boric acid, trimethylphenyl boric acid, triethylmethyl boric acid, triethylbenzyl.
  • Sodium salt, potassium salt, lithium salt such as boric acid, triethylphenyl boric acid, tributylbenzyl boric acid, tributylphenyl boric acid, tetraphenyl boric acid, benzyltriphenyl boric acid, methyltriphenyl boric acid, butyltriphenyl boric acid , Calcium salt, barium salt, magnesium salt, or strontium salt.
  • Examples of the basic phosphorus compound include triethylphosphine, tri-n-propylphosphine, triisopropylphosphine, tri-n-butylphosphine, triphenylphosphine, tributylphosphine, and quaternary phosphonium salts.
  • Examples of the basic ammonium compound include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylphenylammonium hydroxide, Triethylmethylammonium hydroxide, triethylbenzylammonium hydroxide, triethylphenylammonium hydroxide, tributylbenzylammonium hydroxide, tributylphenylammonium hydroxide, tetraphenylammonium hydroxide, benzyltriphenylammonium hydroxide, methyltriphenylammonium hydride Kishido, butyl triphenyl ammonium hydroxide, and the like.
  • amine compounds include 4-aminopyridine, 2-aminopyridine, N, N-dimethyl-4-aminopyridine, 4-diethylaminopyridine, 2-hydroxypyridine, 2-methoxypyridine, 4-methoxypyridine, 2 -Dimethylaminoimidazole, 2-methoxyimidazole, imidazole, 2-mercaptoimidazole, 2-methylimidazole, aminoquinoline, guanidine and the like.
  • the amount of the polycondensation catalyst used is usually 0.1 ⁇ mol to 300 ⁇ mol, preferably 0.5 ⁇ mol to 100 ⁇ mol, based on 1 mol of all dihydroxy compounds used for polycondensation.
  • the amount of metal is usually 0.1 ⁇ mol or more, preferably 0, per 1 mol of the total dihydroxy compound. .3 ⁇ mol or more, particularly preferably 0.5 ⁇ mol or more.
  • the upper limit is usually 20 ⁇ mol, preferably 10 ⁇ mol, more preferably 3 ⁇ mol, particularly preferably 1.5 ⁇ mol.
  • the amount of the catalyst is too small, the polycondensation rate becomes slow, so when trying to obtain a polycarbonate resin having a desired molecular weight, the polycondensation temperature has to be increased, and the hue of the obtained polycarbonate resin is deteriorated,
  • the unreacted raw material may volatilize during the polycondensation, and the molar ratio of the dihydroxy compound and the carbonic acid diester may collapse, and the desired molecular weight may not be reached.
  • the amount of the polycondensation catalyst used is too large, undesirable side reactions may occur, which may lead to deterioration of the hue of the resulting polycarbonate resin and coloration of the resin during molding.
  • the total amount of these in the polycarbonate resin is usually 2 ⁇ mol or less, preferably 1 ⁇ mol or less, more preferably 0.5 ⁇ mol or less, per 1 mol of the total dihydroxy compound as a metal amount.
  • ⁇ Raw material preparation process> In the reaction by melt polycondensation, it is necessary to strictly control the molar ratio of the dihydroxy compound and the carbonic acid diester in order to control the reaction rate and the quality of the polycarbonate resin constant. Since it is difficult to obtain the required quantitative accuracy by a method of supplying a solid, a dihydroxy compound and a carbonic acid diester used as a raw material for a polycarbonate resin are usually batch-type under an atmosphere of an inert gas such as nitrogen or argon. It is treated as a melt using a semi-batch or continuous stirring tank type apparatus.
  • the dihydroxy compound (A) of the present invention is particularly susceptible to heat and oxygen among the generally known dihydroxy compounds, and deteriorates during handling in the molten state in the raw material preparation process, resulting in a reduced reaction rate or obtained.
  • the polycarbonate resin tends to be colored.
  • the dihydroxy compound (A) of the present invention is usually in a solid state at room temperature, and there is a possibility that air is entrained between the solids when supplied to the dissolution tank. It is practically impossible to make the oxygen concentration in the dissolution tank zero, and in order to minimize the deterioration due to oxygen, it is important to minimize the time until it is supplied to the reactor. Furthermore, it is preferable to lower the temperature at which the dihydroxy compound is liquefied.
  • the reaction is performed after liquefying the dihydroxy compound (A) of the present invention while minimizing the temperature at the time of melting. It is important to minimize the time until it is supplied to the reactor, and to minimize the elapsed time between the mixing of the dihydroxy compound (A) of the present invention and the carbonic acid diester and supplying it to the reactor. .
  • the residence time from the liquefaction of the dihydroxy compound (A) of the present invention to the supply to the reactor is within 10 hours, preferably within 8 hours, more preferably It is within 6 hours, and particularly preferably within 4.5 hours.
  • the dihydroxy compound of the present invention is liquefied in a short time, it must be heated to a high temperature, which tends to cause deterioration of the raw material.
  • the raw material melted in the dissolution tank is not stored to some extent, if some trouble occurs and the raw material supply is stopped, it will cause a situation that the reaction process must be stopped, The raw material is lost. Therefore, the lower limit of the residence time is 0.1 hour or longer, preferably 0.3 hour or longer, more preferably 0.5 hour or longer.
  • the reactor in the present invention is defined as a container in which a monohydroxy compound (phenol when diphenyl carbonate is used as a carbonic acid diester) generated by a polycondensation reaction is generated by 5% or more of the theoretical production amount.
  • the reactivity of the dihydroxy compound (A) of the present invention decreases due to thermal degradation, but it is difficult to completely suppress degradation as long as it is stored in a molten state.
  • the degree of deterioration can be kept constant, the subsequent polycondensation step can be stabilized. Therefore, it is preferable that the residence time from liquefying to supplying to the reactor is constant.
  • the residence time can be kept constant.
  • the residence time of the dihydroxy compound of the present invention is preferably adjusted within a range of ⁇ 20% of the set time, and more preferably within ⁇ 10%.
  • the liquefaction temperature is preferably adjusted within a range of ⁇ 10 ° C. of the set temperature, and more preferably adjusted within a range of ⁇ 5 ° C. or less.
  • the dihydroxy compound (A) of the present invention has high hydrophilicity, the solution causes phase separation when mixed with a carbonic acid diester or a dihydroxy compound with low polarity.
  • isosorbide has a melting point of about 60 ° C., but when mixed with diphenyl carbonate, a phase separation temperature appears at about 120 ° C.
  • a phase separation temperature appears at about 170 ° C.
  • a liquid having a non-uniform composition may be sent and the reaction may not proceed to a desired molecular weight.
  • the dihydroxy compound (A) and the carbonic acid diester of the present invention are separately supplied to the reactor or mixed immediately before the reactor and supplied to the reactor.
  • the dihydroxy compound (A) and the carbonic acid diester of the present invention are separately supplied to the reactor or mixed immediately before the reactor and supplied to the reactor.
  • the elapsed time from the mixing of the dihydroxy compound (A) of the present invention and the carbonic acid diester to the supply to the reactor is usually less than 5 hours, It is preferable to supply continuously to the reactor so that it is preferably less than 2 hours, more preferably less than 30 minutes, or to supply them independently without mixing them.
  • the elapsed time is too long, the color tone of the obtained polycarbonate resin tends to be inferior.
  • the dihydroxy compound (A) of the present invention is spiroglycol
  • the mixed raw material liquid in which spiroglycol is mixed with diphenyl carbonate at a temperature lower than the melting point is maintained for a long time.
  • the elapsed time is preferably 20 minutes or less, more preferably 10 minutes or less, and particularly preferably 5 minutes or less when the dihydroxy compound of the present invention is a compound represented by the formula (2).
  • a method of liquefying (dissolving or melting) the dihydroxy compound (A) of the present invention a method of adding it to a dissolution tank in a lump and melting the dihydroxy compound (A) of the present invention in advance, The method of supplying and liquefying the solid dihydroxy compound (A) of this invention to the dissolution tank which has a molten liquid is mentioned.
  • the time for liquefaction can be minimized.
  • the dihydroxy compound (A) of the present invention is previously melted, and the solid dihydroxy compound (A) of the present invention is continuously supplied to the dissolution tank having the melt, and at the same time, the dihydroxy liquefied from the dissolution tank
  • the time for liquefaction can be minimized, and the dihydroxy compound melted continuously and at a constant rate can be discharged.
  • the dihydroxy compound (A) of the present invention is spiroglycol
  • the spiroglycol since the spiroglycol has a relatively high melting point, mixing with a carbonic acid diester having a lower melting point rather than melting alone results in a melting temperature and a melting retention temperature. Can be lowered. Therefore, if a method of continuously supplying a solid dihydroxy compound and a carbonic acid diester to the dissolution tank at a constant flow rate and simultaneously discharging the mixed solution from the dissolution tank at the same time, a heat history for liquefaction and maintaining the molten state is adopted. Can be minimized, and the residence time for dissolution can be made constant. Thermal degradation of the raw materials is completely unavoidable, but by keeping the residence time constant, raw materials of constant quality can be supplied to the reactor, operation of the polycondensation process and stabilization of the quality of the polycarbonate resin Leads to.
  • an apparatus through which a liquid containing the dihydroxy compound passes from when the dihydroxy compound is liquefied to when it is supplied to the reactor is classified into a dissolution tank and a transfer pipe (including a static mixer and a filter). And (1) the time required for all of the steps of liquefying (dissolving or melting) the dihydroxy compound, mixing the dihydroxy compound and carbonic acid diester, and storing the raw material melt in the dissolution tank, and (2) transfer
  • the actual residence time is the sum of the time required to move through the pipe and pass through the static mixer and the filter.
  • the time required for all the stages moving in the transfer pipe is negligibly small compared to the time required for all the stages in the dissolution tank, in the present invention, the time required for all the stages in the dissolution tank. Is defined as the residence time T.
  • the residence time T can be described as the total residence time T i in the dissolution tank i.
  • dwell time T i in the dissolution vessel i in, as detailed below, four residence times of the components (states) that are classified by the outflow of material from the inflow and dissolution vessel i of a substance to dissolution vessel i It can be decomposed into a combination of T x. Therefore, the residence time T i in the dissolution vessel i in accordance with the liquefaction process of dihydroxy compounds represented by the sum of the residence time of the following elements.
  • the transesterification reaction is continuous, and the flow rate supplied to the reactor is constant. Therefore, at least the flow rate of the mixed liquid discharged from the dissolution tank at the final stage is constant.
  • T i 1 t i (10)
  • T i 1 Residence time [hr] as element 1 of dissolution tank i t i (10)
  • T i 1 Residence time [hr] as element 1 of dissolution tank i t i (10)
  • element 1 include the time required for heating and stirring the solid in the dissolution tank, the time for mixing the dihydroxy compound and the carbonic acid diester in a batch system, and the time for storing the raw material melt. The time for discharging the solution from the dissolution tank is classified as element 2 described later.
  • T i 2 W i / F i (11)
  • T i 2 Residence time [hr] as element 2 of dissolution tank i
  • W i Amount of substance present in dissolution tank i [kg]
  • F i Flow rate of substance discharged from dissolution tank i [kg / hr]
  • the residence time in the discharge from the batch type dissolution tank corresponds.
  • T i 3 W i / F i (12)
  • T i 3 Residence time [hr] as element 3 of dissolution tank i
  • W i Amount of substance present in dissolution tank i [kg]
  • F i Flow rate of substance discharged from dissolution tank i [kg / hr]
  • An example of element 3 is the time for mixing the dihydroxy compound and the carbonic acid diester in a continuous manner.
  • T i 4 T i max (13)
  • T i 4 Residence time [hr] as the element 4 of the dissolution tank i
  • T i max longest residence time of the substance in dissolution tank i [hr]
  • An example of the element 4 is a residence time in a batch-type melting device, an intermittent mixing device, or the like.
  • the method from the liquefaction of the dihydroxy compound to the supply to the reactor includes the following method, but is not limited thereto, and any method may be used.
  • Method 1 A method in which a solid dihydroxy compound is dissolved in a molten carbonic acid diester and liquefied.
  • Method 2 A method in which the remainder of a predetermined amount of dihydroxy compound is added to a molten mixture of a predetermined amount of dihydroxy compound and a carbonic acid diester and dissolved.
  • Method 3) A method in which a liquid dihydroxy compound and a liquid carbonic acid diester are mixed in a dissolution tank. This method includes a step of heating and melting a solid dihydroxy compound alone to liquefy it.
  • Method 4 A method in which a mixture of a solid dihydroxy compound and a solid carbonic acid diester is heated to melt and liquefied.
  • the dihydroxy compound may be completely dissolved in the second dissolution tank.
  • T T 1 + T 2 (14)
  • T Residence time of the dihydroxy compound from the time when the raw material is charged into the first dissolution tank to the time when the mixed melt is discharged from the second dissolution tank [hr]
  • T 1 Residence time [hr] of the dihydroxy compound in the first dissolution tank
  • T 2 Residence time [hr] of the dihydroxy compound in the second dissolution tank
  • both the first dissolution tank and the second dissolution tank are continuous, the amount of the substance present in each dissolution tank is constant, and the flow rate of the substance discharged from each dissolution tank is constant.
  • T T 1 3 + T 2 3 (14)
  • T 1 3 W 1 / F 1 (15)
  • T 1 3 Residence time [hr] of the dihydroxy compound in the first dissolution tank
  • W 1 Amount of substance present in the first dissolution tank [kg]
  • F 1 Flow rate of substance discharged from the first dissolution tank [kg / hr]
  • T 2 3 W 2 / F 2 (16)
  • T 2 3 Residence time of dihydroxy compound in second dissolution tank [hr]
  • W 2 amount of substance present in the second dissolution tank [kg]
  • F 2 Flow rate of the substance discharged from the second dissolution tank [kg / hr]
  • T T 1 + T 2 (18)
  • T Residence time [hr] of the dihydroxy compound from the time when the dihydroxy compound is charged into the first dissolution tank to the time when the mixed liquid of the liquefied dihydroxy compound and carbonic acid diester is discharged from the second dissolution tank
  • T 1 Residence time [hr] of the dihydroxy compound in the first dissolution tank
  • T 2 Residence time [hr] of the dihydroxy compound in the second dissolution tank
  • the first dissolution tank corresponds batchwise, the residence time T 1 of the first dissolution tank is located at a residence time up to the time of starting the discharge from the time of starting the heating (time required for stirring)
  • the residence time corresponds to the element 1 and is expressed as T 1 1
  • the residence time in the discharge stage corresponds to the element 2 and is expressed as T 1 2 .
  • T 1 Residence time [hr] of the liquid containing the dihydroxy compound in the first dissolution tank
  • T 1 1 Time required for stirring the liquid containing the dihydroxy compound in the first dissolution tank [hr]
  • T 1 2 Time required for discharging the liquid containing the dihydroxy compound in the first dissolution tank [hr]
  • t 1 Time required for stirring in the first dissolution tank [hr]
  • W 1 Amount of substance present in the first dissolution tank [kg]
  • F 1 Flow rate of substance discharged from the first dissolution tank [kg / hr]
  • the discharge time W 1 / F 1 may be ignored.
  • a solid dihydroxy compound is charged into the first dissolution tank, heated and melted, the melt is fed to the second dissolution tank, and continuously mixed with the liquid carbonic acid diester in the second dissolution tank.
  • the first dissolution tank is a batch-type heat melting of the raw material
  • the second dissolution tank is a continuous mixing.
  • the time from the start of heating after the dihydroxy compound is charged to the time when the raw material mixture is discharged from the second dissolution tank outlet is defined as a residence time T in the dissolution tank.
  • T T 1 + T 2 (22)
  • T Residence time [hr] of the dihydroxy compound from the time when heating was started after the dihydroxy compound was charged in the first dissolution tank to the time when the raw material mixture was discharged from the outlet of the second dissolution tank
  • T 1 Residence time [hr] of the dihydroxy compound in the first dissolution tank
  • T 2 Residence time [hr] of the dihydroxy compound in the second dissolution tank
  • the residence time from the time when heating is started to the time when discharge is started and the residence time in the discharge stage can be divided, and the sum thereof is the residence time T in the first dissolution tank.
  • the following formula is established.
  • T 1 1 Residence time [hr] of the dihydroxy compound in the first dissolution tank from the start of heating to the start of discharge
  • T 1 2 Residence time [hr] of the dihydroxy compound in the dissolution tank in the discharge stage t 1 : Time required for stirring in the first dissolution tank [hr]
  • W 1 amount of dihydroxy compound in the first dissolution tank [kg]
  • F 1 Flow rate of dihydroxy compound discharged from the first dissolution tank [kg / hr]
  • the residence time T 2 in the second dissolution tank is therefore corresponds to a continuous mixing of the elements 3, the residence time T 2 are made in the following equation.
  • T 2 3 Residence time [hr] of the dihydroxy compound in the second dissolution tank
  • W 2 amount of dihydroxy compound in the second dissolution tank [kg]
  • F 2 Flow rate of dihydroxy compound discharged from the second dissolution tank [kg / hr]
  • the residence time in the storage stage of the molten mixture of dihydroxy compound and carbonic acid diester previously stored in the first dissolution tank, and a predetermined amount of the remaining solid dihydroxy compound are dissolved in the first dissolution tank Since the residence time in the stage of performing does not discharge from the dissolution tank, it corresponds to the element 1 and is collectively treated as T 1 1 .
  • T 1 1 t 1 (26)
  • T 1 1 A predetermined amount of a dihydroxy compound and a carbonic acid diester in a predetermined amount stored in the first dissolution tank, and a predetermined amount of the remaining solid dihydroxy compound are supplied to the first dissolution tank.
  • Residence time [hr] t 1 time required for the molten mixture to be stored in the first dissolution tank in advance, and time required for supplying a predetermined amount of the remaining solid dihydroxy compound to the first dissolution tank for dissolution [hr]
  • T From the time when a predetermined amount of a molten mixture of a dihydroxy compound and a carbonic acid diester is charged in the first dissolution tank, a predetermined amount of the remaining solid dihydroxy compound is supplied, and then the raw material from the outlet of the first dissolution tank Residence time [hr] of the dihydroxy compound until the mixed solution is discharged
  • the residence time at the stage of extracting the dihydroxy compound from the first dissolution tank corresponds to the element 2.
  • T 1 2 W 1 / F 1 (28)
  • T 1 2 Residence time [hr] of the dihydroxy compound in the extraction stage from the first dissolution tank
  • W 1 Total amount of the mixed solution existing in the first dissolution tank [kg]
  • F 1 Flow rate of the mixed solution discharged from the first dissolution tank [kg / hr]
  • Isosorbide which is one of the dihydroxy compounds (A) of the present invention, has a relatively large heat of fusion among the crystalline compounds, and the amount of heat at the time of melting increases, so when trying to heat and melt a solid, Since it is necessary to heat to high temperature, it is easy to cause thermal degradation. Therefore, the method of supplying and liquefying solid isosorbide in a liquid in which isosorbide has been previously melted is particularly preferable because there is less risk of applying an excessive amount of heat.
  • the dihydroxy compound (A) of the present invention in a solid state is added and dissolved in the dissolution tank holding the dihydroxy compound (A) of the present invention in a liquefied state
  • the dihydroxy of the present invention is continuously added from the dissolution tank.
  • the case where the compound (A) is discharged corresponds to the element 2 described above.
  • the weight of the dihydroxy compound (A) of the present invention held in the dissolution tank is A [kg] and the discharge flow rate of the dihydroxy compound (A) is B [kg / hr]
  • the residence time of the dihydroxy compound (A) of the invention is represented by A / B [hr].
  • the dihydroxy compound (A) of the present invention when the dihydroxy compound (A) of the present invention is continuously supplied to the dissolution tank and continuously discharged at the same time, the dihydroxy compound (A) of the present invention is initially melted in advance in a steady state. Since the time taken is not taken into consideration, the flow rate of the material inflow into the dissolution tank and the flow rate of the material outflow from the dissolution tank are equal and constant. Therefore, it corresponds to the element 3, and the residence time of the dihydroxy compound (A) of the present invention in the dissolution tank is represented by A / B [hr]. In both cases, the amount A [kg] of the dihydroxy compound (A) of the present invention in the dissolution tank may contain a solid dihydroxy compound.
  • the residence time in the dissolution tank is preferably within 5 hours, more preferably within 4 hours, and most preferably within 3 hours.
  • the time required for liquefying isosorbide which is a typical example of the dihydroxy compound (A) of the present invention, is actually 0.05 hours or more, preferably 0.1 hours, more preferably 0.5 hours. Necessary. On the other hand, if the supply rate of the solid is too high, it is difficult to maintain the temperature of the melt, and there is a possibility that it will solidify in the dissolution tank or the transfer pipe and cause clogging. Therefore, it is preferable that the elapsed time A / B in the dissolution tank for supplying solid isosorbide is a condition represented by the following formula (I). 0.05 ⁇ A / B ⁇ 5 (I)
  • the dihydroxy compound (A) of the present invention is a highly hygroscopic compound, and if stored in a solid state, large lumps are likely to be formed by compaction.
  • a large lump is supplied to the dissolution tank, it takes an extra melting time, so it is preferable to supply it to the dissolution tank as finely as possible.
  • a commonly known crusher is used for the operation of crushing the lump.
  • the solid dihydroxy compound supplied to the dissolution tank after pulverization preferably contains 10 or less lump bodies having a major axis (maximum length) of 3 cm or more, more preferably 5 or less per kg, most preferably Preferably, no lump is included.
  • the dissolution tank used for liquefying the dihydroxy compound (A) of the present invention is preferably equipped with a heat exchanger through which a heating medium flows because it is necessary to heat the dihydroxy compound. Moreover, in order to shorten melting time and to suppress deterioration due to local overheating of the dihydroxy compound at the contact surface with the heating medium, it is preferable to stir using a stirrer.
  • the temperature at which the dihydroxy compound (A) of the present invention is liquefied or the temperature at which the molten state is maintained is preferably (the melting point of the dihydroxy compound + 50 ° C.) or less. It is more preferably (melting point of the dihydroxy compound + 40 ° C.) or less, particularly preferably (melting point of the dihydroxy compound + 30 ° C.) or less. That is, the difference between the internal temperature of the dissolution tank and the heating medium temperature is preferably 50 ° C. or less, more preferably 40 ° C. or less, and particularly preferably 30 ° C. or less.
  • the liquefaction temperature of isosorbide is preferably 120 ° C. or lower, more preferably 110 ° C. or lower, particularly preferably 100 ° C. or lower, and most preferably 90 ° C. or lower. That is, the internal temperature of the dissolution tank is preferably 120 ° C. or less, more preferably 110 ° C. or less, and particularly preferably 100 ° C. or less. If the internal temperature of the dissolution tank is higher than 120 ° C., the color of isosorbide itself may be caused, and further, the reactivity may be lowered. In addition, the lower limit of the temperature of the dissolution tank is preferably 70 ° C, and more preferably 75 ° C. If it is lower than 70 ° C., there is a possibility that isosorbide will crystallize and cause problems such as blockage of piping.
  • the liquefaction temperature of spiroglycol is usually 210 ° C or lower, but preferably 200 ° C or lower.
  • the melting point of spiroglycol is about 200 ° C., but it is possible to dissolve at 200 ° C. or less by adding solid spiroglycol to the carbonic acid diester and mixing it. That is, the internal temperature of the dissolution tank is preferably 200 ° C. or lower, more preferably 190 ° C. or lower, and particularly preferably 185 ° C. or lower.
  • the internal temperature of the dissolution tank is higher than 210 ° C.
  • spiroglycol itself may cause a ring-opening reaction, and the resin may be cross-linked and gelled.
  • the minimum of the temperature of a dissolution tank is 170 degreeC or more, and 175 degreeC or more is still more preferable.
  • the temperature is lower than 170 ° C, spiroglycol may crystallize and the piping may be clogged.
  • the melting point of the dihydroxy compound It is determined appropriately in consideration of the phase separation temperature when mixed with the carbonic acid diester.
  • the difference between the internal temperature of the dissolution tank and the temperature of the heating medium is preferably 50 ° C. or less. Note that there may be no difference between the internal temperature of the dissolution tank and the heating medium temperature, and the lower limit of this difference may be 0 ° C.
  • the heating medium temperature may be lower than the internal temperature.
  • the contact area of the heating medium is small with respect to the volume of the dihydroxy compound inside the dissolution tank, the heat transfer efficiency will deteriorate, so the heating medium temperature must be increased. In that case, the liquid in the portion that is in contact with the heating medium is subject to local overheating, which easily causes thermal degradation.
  • an internal heat exchanger is provided in the dissolution tank as necessary, so that the heat transfer efficiency is improved and the dissolution can be completed at a lower temperature and in a shorter time. .
  • V / S is preferably 0.3 or less. Is preferably 0.25 or less, particularly preferably 0.21 or less.
  • the lower limit of V / S is preferably 0.1, and preferably 0.15. If it is less than 0.1, an excessive number of internal heat exchangers are installed in the dissolution tank, and a necessary volume cannot be secured, which is not realistic.
  • the dihydroxy compound (A) of the present invention is preferably liquefied using two or more dissolution tanks connected in series. Since the dihydroxy compound supplied to the first dissolution tank is usually supplied at a temperature of about room temperature, a heating medium temperature higher than the temperature at which the molten state can be maintained is required to raise the temperature to the melting temperature. It becomes. In that case, since the part where the melting is completed continues to be exposed to a high temperature, thermal degradation tends to occur. By transferring the liquid melted to some extent to the second tank, it is not necessary to supply a large amount of heat in the second tank, so that melting can be completed at a lower temperature than in the first tank.
  • the heating medium temperature of the downstream melting tank is set to be equal to or lower than the heating medium temperature of the upstream melting tank.
  • the temperature difference in this case is not particularly limited, but is preferably 20 ° C. or higher, more preferably 30 ° C. or higher.
  • the inside of the apparatus for the raw material preparation step and the polycondensation step is preferably maintained in an inert gas atmosphere such as nitrogen or argon.
  • an inert gas atmosphere such as nitrogen or argon.
  • nitrogen is used industrially.
  • the inside of the container that received the dihydroxy compound is depressurized or pressurized.
  • the oxygen concentration inside the dissolution tank is preferably maintained at 1000 volume ppm or less, more preferably 500 volume ppm or less.
  • an inert gas containing 10 ppm by volume or less of oxygen into the dihydroxy compound solution held in the dissolution tank.
  • the oxygen content of the inert gas is preferably 5 ppm by volume or less, but the lower limit is preferably 0 ppm by volume.
  • a dihydroxy compound (B) other than the dihydroxy compound (A) of the present invention having a part represented by the above formula (1) in a part of the structure (referred to as other dihydroxy compound (B)) is used as a raw material. It may be used.
  • the melting temperature When mixing and melting a plurality of types of dihydroxy compounds, the melting temperature must be set according to the dihydroxy compound having a high melting point, and therefore a monomer having a low melting point is subjected to an excessive heat load.
  • the dihydroxy compound (A) of the present invention is preferably liquefied in a separate dissolution tank from the other dihydroxy compound (B).
  • dihydroxy compound (A) of the present invention it is preferable that other dihydroxy compounds (B) also suppress thermal degradation as much as possible in the raw material preparation step.
  • the melting point of the other dihydroxy compound (B) is higher than the melting point of the carbonic acid diester, by supplying the solid dihydroxy compound to a liquid in which the carbonic acid diester is previously melted, the temperature is not higher than the melting point of the dihydroxy compound. It becomes possible to liquefy, and the heat load given to the raw material can be reduced.
  • the liquefaction temperature or the temperature at which the liquefied state is maintained is preferably set to a temperature between the melting point of the dihydroxy compound and the carbonic acid diester.
  • the dihydroxy compound and carbonic acid diester used in the reaction are mixed in advance so as to have a predetermined molar ratio, and the raw material preparation liquid is stored in a molten state.
  • the dihydroxy compound (A) of the present invention has high hydrophilicity, the solution may cause phase separation when mixed with a carbonic acid diester or a dipolar compound with low polarity.
  • Isosorbide has a melting point of about 60 ° C., but when mixed with diphenyl carbonate, a phase separation temperature appears at about 120 ° C.
  • the dihydroxy compound (A) of the present invention and the other dihydroxy compound (B) are separately supplied to the reactor, or mixed in a pipe immediately before the reactor and supplied to the reactor. It is preferred that By supplying each to a reactor with a metering pump individually, it is not necessary to provide the tank for mixing a raw material, and an extra residence time can be reduced. When multiple pipes are connected to the reactor, it becomes difficult to control the pressure of the reactor, so all dihydroxy compounds and carbonic acid diesters used in the reaction are mixed in the pipes by a static mixer before being supplied to the reactor. It is particularly preferable.
  • the raw material preparation liquid may cause phase separation
  • An antioxidant may be added when the raw material is melted. It can be obtained by adding hindered phenolic antioxidants and phosphoric antioxidants that are generally known to improve the storage stability of raw materials in the raw material preparation process and to suppress coloring during polycondensation. The hue of the resin can be improved.
  • the molten raw material is filtered through a filter and then supplied to the reactor. More preferably, all dihydroxy compounds and carbonic acid diesters used in the reaction are filtered through a filter before being charged into the reactor, and after all ingredients are mixed before being fed into the reactor, Since equipment can be simplified, it is more preferable. That is, since a plurality of raw materials are used, it is possible to mix all the raw materials and pass them through one filter, instead of installing a filter in each raw material line. For this reason, only one filter is required, and when a filter is used, it is necessary to monitor an increase in pressure or the like. However, it is only necessary to monitor one filter, and operation management is facilitated. Moreover, in the manufacturing method of this invention, the reaction liquid in the middle of a polycondensation reaction can also be filtered with a filter.
  • the shape of the filter at that time may be any type such as basket type, disc type, leaf disc type, tube type, flat cylindrical type, pleated cylindrical type, etc.
  • a pleated type that can be taken is preferred.
  • the filter medium constituting the filter may be any of metal wind, laminated metal mesh, metal nonwoven fabric, porous metal plate, etc., but from the viewpoint of filtration accuracy, a laminated metal mesh or metal nonwoven fabric is preferred, and metal nonwoven fabric is particularly preferred.
  • a sintered and fixed type is preferred.
  • the material of the filter there are no particular restrictions on the material of the filter, and metal, resin ceramic, etc. can be used. From the viewpoint of heat resistance and color reduction, a metal filter having an iron content of 80% or less is preferable. Of these, stainless steel such as SUS304, SUS316, SUS316L, and SUS310S is preferable.
  • the filter openings in the upstream unit are preferably C ⁇ m, and the downstream side of the filter is downstream.
  • C is preferably larger than D (C> D) in at least one combination.
  • the opening of the filter is not particularly limited, but in at least one filter, it is preferably 10 ⁇ m or less as a filtration accuracy of 99.9%, and preferably in the most upstream side when a plurality of filters are arranged. Is 8 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less on the most downstream side.
  • the opening of the filter referred to here is also determined in accordance with the above-mentioned ISO16889.
  • the temperature of the raw material fluid when the raw material is passed through the filter is not limited, but if it is too low, the raw material solidifies, and if it is too high, there is a problem such as thermal decomposition. More preferably, it is 100 ° C to 150 ° C.
  • the polycondensation catalyst is preferably supplied to the raw material immediately before being charged into the reactor in order to suppress undesirable side reactions.
  • the polycondensation catalyst to be used is usually prepared as an aqueous solution in advance.
  • the concentration of the catalyst aqueous solution is not particularly limited, and is adjusted to an arbitrary concentration according to the solubility of the catalyst in water. Moreover, it can replace with water and other solvents, such as acetone, alcohol, toluene, and phenol, can also be selected. Specific examples of the polycondensation catalyst will be described later.
  • the properties of water used for dissolving the catalyst are not particularly limited as long as the type and concentration of impurities contained are constant, but usually distilled water, deionized water, and the like are preferably used.
  • the heat resistance, mechanical properties, optical properties, etc. of the resulting polycarbonate resin can be adjusted by changing the composition ratio of each dihydroxy compound. Therefore, it may be necessary to make different polycarbonate resins having different compositions depending on the intended use.
  • the composition ratio of the dihydroxy compounds is different when the raw material mixture is prepared by mixing the dihydroxy compound and the carbonic acid diester.
  • shifting to the production of the polycarbonate resin it takes time until the composition of the raw material preparation tank is switched, so it takes time until the composition of the obtained polycarbonate resin is completely switched.
  • the composition of the dihydroxy compound supplied to the reactor can be instantaneously switched by changing the flow rate of a separately provided metering pump. Therefore, the time until the product is switched can be significantly shortened, and the yield and productivity of the product can be improved by reducing the loss of raw materials and the transition period.
  • switching the composition means performing a step of changing the weight fraction of any one dihydroxy compound to all dihydroxy compounds among the raw material compositions supplied to the reactor to a different weight fraction,
  • the difference in weight fraction before and after the switching step is 1 wt% or more.
  • the difference in the weight fraction is smaller than 1 wt%, it is within a range that varies sufficiently due to the accuracy of the raw material charging ratio, and is not regarded as composition switching in the present invention.
  • the above switching method is particularly effective when the weight fraction is changed by 2 wt% or more.
  • the dihydroxy compound and the carbonic acid diester are usually reacted in the presence of a polycondensation catalyst (melt polycondensation) in a multistage process of two or more stages using at least two reactors. A polycarbonate resin is produced.
  • a polycondensation catalyst melt polycondensation
  • the first reactor is the first reactor
  • the second reactor is the second reactor
  • the third reactor is the third reactor.
  • the polycondensation process is divided into two stages, a pre-stage reaction and a post-stage reaction.
  • the first stage reaction is usually carried out at a temperature of 130 to 270 ° C., preferably 150 to 230 ° C. for 0.1 to 10 hours, preferably 0.5 to 3 hours to distill off the by-produced monohydroxy compound to produce an oligomer.
  • the pressure of the reaction system is gradually lowered from the previous stage reaction, the reaction temperature is gradually raised, and simultaneously the monohydroxy compound generated at the same time is removed from the reaction system.
  • a polycondensation reaction is performed under a temperature range of 200 to 280 ° C., preferably 210 to 260 ° C., to produce a polycarbonate resin.
  • the pressure in this specification points out what is called an absolute pressure represented on the basis of the vacuum.
  • At least two reactors are used in this polycondensation step, and the reactants exiting from the first reactor are those entering the second reactor.
  • the number of reactors to be connected is not particularly limited, but 2 to 7 devices are preferable, 3 to 5 devices are more preferable, and 3 to 4 devices are more preferable.
  • the type of the reactor is not particularly limited, however, it is preferable that one or more vertical stirring reactors are used for the first stage reaction reactor and one or more horizontal stirring reactors are used for the second stage reaction reactor.
  • the reaction conditions of the horizontal stirring reactor in the final stage can have an important influence not only from the quality of the resin obtained, but also from various viewpoints such as the production yield and the amount of foreign matter in the resin.
  • the temperature is increased stepwise for each reactor and the pressure is decreased stepwise.
  • the connection between the reactor and the next reactor may be performed directly or via a preheater or the like, if necessary.
  • the pipe is preferably a double pipe type that can transfer the reaction liquid without cooling and solidifying, has no gas phase on the polymer side, and does not cause a dead space.
  • the upper limit temperature of the heating medium for heating each of the reactors is usually 300 ° C., preferably 270 ° C., and particularly preferably 260 ° C. If the temperature of the heating medium is too high, thermal deterioration on the reactor wall surface is promoted, and problems such as an increase in heterogeneous structures, decomposition products, and deterioration in color tone may be caused.
  • the lower limit temperature is not particularly limited as long as the reaction temperature can be maintained.
  • Any known reactor may be used in the present invention.
  • a jacket type reactor using hot oil or steam as a heating medium or a reactor having a coiled heat transfer tube inside may be used.
  • a dihydroxy compound containing a dihydroxy compound having a site represented by the formula (1) such as isosorbide (ISB) and a carbonic acid diester such as diphenyl carbonate (DPC) are respectively melted.
  • Preparing a raw material mixed melt (raw material preparation step), and subjecting these compounds to a polycondensation reaction in multiple stages using a plurality of reactors in the molten state in the presence of a polycondensation catalyst Is done by.
  • DPC is used, phenol is by-produced as a monohydroxy compound. Therefore, the reaction is carried out under reduced pressure, and the phenol is removed from the reaction system to advance the reaction, thereby producing a polycarbonate resin.
  • the reaction system may be any of a batch system, a continuous system, or a combination of a batch system and a continuous system, but a continuous system is preferable from the viewpoint of productivity and the quality of the product to be obtained.
  • a plurality of vertical stirring reactors and at least one horizontal stirring reactor following this are used as the reactor. Usually, these reactors are installed in series and processed continuously.
  • the step of devolatilizing and removing unreacted raw materials and reaction by-products in the resin the step of adding a heat stabilizer, a release agent, a colorant, etc., and filtering the molten resin
  • a step of removing foreign matters by filtering, a step of extracting the molten resin into a strand shape and forming it into pellets having a predetermined particle diameter, and the like may be added as appropriate.
  • the generated monohydroxy compound such as phenol is preferably collected in a tank, and is purified and collected as necessary from the viewpoint of effective resource utilization, and then reused as a raw material such as DPC and bisphenol A.
  • the purification method of the by-product monohydroxy compound is not particularly limited, but a distillation method is preferably used.
  • Pre-stage reaction process First, the mixture of the above-mentioned dihydroxy compound and carbonic acid diester is supplied to a vertical reactor while being melted, and a polycondensation reaction is usually carried out at a temperature of 130 ° C. to 270 ° C.
  • This reaction is usually carried out continuously in a multi-tank system of 1 tank or more, preferably 2 to 6 tanks, and it is preferable to distill 40% to 95% of the monohydroxy compound by-produced.
  • the reaction temperature is usually 130 ° C. to 270 ° C., preferably 150 ° C. to 240 ° C., and the pressure is 40 kPa to 1 kPa.
  • the temperature of each tank is sequentially increased within the above range, and the pressure of each tank is sequentially decreased within the above range.
  • the average residence time is usually 0.1 to 10 hours, preferably 0.5 to 5 hours, more preferably 0.5 to 3 hours.
  • the temperature is too high, thermal deterioration is accelerated, the generation of different structures and colored components increases, and the quality of the resin may be deteriorated. On the other hand, if the temperature is too low, the reaction rate is lowered, and thus productivity may be lowered.
  • the pressure is preferably 1 kPa or more and 40 kPa or less, more preferably 5 kPa or more and 30 kPa or less. If the pressure is too high, the monohydroxy compound will not distill and the reactivity will decrease, and if it is too low, raw materials such as unreacted dihydroxy compound and carbonic acid diester will be distilled, so the molar ratio of the raw materials will shift to the desired molecular weight. It is difficult to control the reaction such as not reaching, and the raw material basic unit may be deteriorated.
  • the oligomer obtained in the preceding polycondensation step is supplied to a horizontal stirring reactor, and a polycondensation reaction is performed at a temperature of 200 ° C. to 280 ° C. to obtain a polycarbonate resin.
  • This reaction is usually carried out continuously in one or more horizontal stirring reactors, preferably 1 to 3 horizontal stirring reactors.
  • the reaction temperature is preferably 210 to 270 ° C., more preferably 220 to 260 ° C.
  • the pressure is usually 13.3 kPa to 10 Pa, preferably 1 kPa to 50 Pa.
  • the average residence time is usually 0.1 to 10 hours, preferably 0.5 to 5 hours, more preferably 0.5 to 2 hours.
  • ⁇ Reactor> When the polycondensation step is performed in a multi-tank system, usually, a plurality of reactors including a vertical stirring reactor are provided to increase the average molecular weight (reduced viscosity) of the polycarbonate resin.
  • examples of the reactor include a vertical stirring reactor and a horizontal stirring reactor.
  • Specific examples include a stirring tank reactor, a thin film reactor, a centrifugal thin film evaporation reactor, and a surface renewal type biaxial kneading.
  • Examples include reactors, biaxial horizontal stirring reactors, wet wall reactors, perforated plate reactors that allow polycondensation while dropping freely, perforated plate reactors with wire that polycondensate while dropping along wires, etc. It is done.
  • the vertical stirring reactor includes a vertical rotation shaft and a stirring blade attached to the vertical rotation shaft.
  • the stirring blade include turbine blades, paddle blades, fouler blades, Anchor wing, full zone wing (manufactured by Shinko Pantech Co., Ltd.), sun meller wing (manufactured by Mitsubishi Heavy Industries, Ltd.), max blend wing (manufactured by Sumitomo Heavy Industries, Ltd.), helical ribbon wing, twisted lattice wing (corporation) ) Manufactured by Hitachi, Ltd.).
  • the horizontal stirring reactor has a stirring blade having a horizontal (horizontal) rotating shaft, and has discontinuous stirring blades attached to the horizontal rotating shaft almost at right angles.
  • a single-shaft type stirring blade such as a disk type or a paddle type, HVR, SCR, N-SCR (manufactured by Mitsubishi Heavy Industries, Ltd.), Vivolac (manufactured by Sumitomo Heavy Industries, Ltd.), or Examples thereof include a biaxial stirring blade such as a spectacle blade and a lattice blade (manufactured by Hitachi, Ltd.).
  • L / D is 1 to 15, preferably 2 to 10, where L is the length of the horizontal rotation axis of the horizontal reactor and D is the rotation diameter of the stirring blade.
  • the surface of a part in contact with the raw material monomer or polycondensation liquid of components constituting the reaction apparatus, piping and the like
  • the material accounts for at least 90% or more of the total surface area of the wetted part, and is one or more of stainless steel, glass, nickel, tantalum, chromium, and Teflon (registered trademark) with a nickel content of 10% by weight or more. It is preferable that it is comprised from these.
  • the surface material of the wetted part is composed of the above-mentioned substance, and a bonding material composed of the above-mentioned substance and another substance or a material obtained by plating the above substance on another substance is used as the surface material. Can be used.
  • the polycarbonate resin of the present invention is filtered through a filter while passing through a filter in a molten state.
  • the resin obtained by polycondensation is introduced into the extruder, and then the resin discharged from the extruder is filtered. It is preferable to filter using.
  • the method of filtering the polycarbonate resin using a filter is to extract from the final polycondensation reactor in a molten state using a gear pump, a screw, etc. in order to generate the pressure required for filtration, and filter through the filter.
  • the resin is fed from the final polycondensation reactor into a single or twin screw extruder, melt extruded, filtered through a filter, cooled and solidified in the form of a strand, and pelletized with a rotary cutter, etc.
  • the resin is supplied from a final polycondensation reactor to a uniaxial or biaxial extruder in a molten state, melt-extruded, and then cooled and solidified in the form of a strand to be pelletized, and the pellet is extruded again.
  • a filter filtered with a filter, cooled and solidified in the form of strands, pelletized, melted from the final polycondensation reactor Extracted, cooled and solidified in the form of a strand without passing through an extruder, once pelletized, then fed to a single or twin screw extruder, melt extruded, filtered through a filter, and in the form of a strand
  • the method of making it solidify by cooling and pelletizing etc. is mentioned.
  • resin is supplied from the final polycondensation reactor to a uniaxial or biaxial extruder in a molten state and melted.
  • a method of directly filtering with a filter, cooling and solidifying in the form of a strand, and pelletizing with a rotary cutter or the like is preferable.
  • the form of the extruder is not limited, but a uniaxial or biaxial extruder is usually used.
  • a twin screw extruder is preferable for improving the devolatilization performance described later and for uniform kneading of the additive.
  • the rotation direction of the shaft may be different or the same, but the same direction is preferable from the viewpoint of kneading performance.
  • the use of an extruder can stabilize the supply of polycarbonate resin to the filter.
  • Low molecular weight compounds such as monohydroxy compounds and polycarbonate oligomers remain, but these are removed by devolatilization using an extruder having a vent port, preferably by reducing the pressure from the vent port using a vacuum pump or the like. It is also possible to do.
  • volatile liquids, such as water can be introduce
  • the number of vent ports may be one or plural, but preferably two or more.
  • heat stabilizers, neutralizers, UV absorbers, mold release agents, colorants, antistatic agents, lubricants, lubricants, plasticizers, compatibilizers, flame retardants, etc. that are usually known in extruders Can be added and kneaded.
  • the polycarbonate resin in the case of stranding or pelletization in which the polycarbonate resin is in direct contact with the outside air, in order to prevent foreign matter from entering from the outside air, it is preferably class 7 as defined in JIS B9920 (2002), more preferably It is desirable to carry out in a clean room with higher cleanliness than class 6.
  • the polycarbonate resin filtered through a filter is cooled and solidified, and pelletized with a rotary cutter or the like, but it is preferable to use a cooling method such as air cooling or water cooling when pelletizing.
  • a cooling method such as air cooling or water cooling when pelletizing.
  • air cooling it is desirable to use air from which foreign substances in the air have been removed in advance with a hepa filter or the like to prevent reattachment of foreign substances in the air.
  • water cooling it is desirable to use water from which metal in water has been removed with an ion exchange resin or the like, and foreign matter in water has been removed with a filter.
  • the opening of the filter to be used is preferably 10 to 0.45 ⁇ m in terms of filtration accuracy with 99.9% removal.
  • FIG. 1 and 2 are diagrams showing an example of a manufacturing apparatus used in the method of the present invention.
  • FIG. 1 shows a raw material preparation process in which a dihydroxy compound and a carbonic acid diester are melted, mixed with a polycondensation catalyst, and sent to a reactor.
  • FIG. 2 shows a polycondensation step in which these raw materials are polycondensed in a molten state using a plurality of reactors.
  • ISB is charged into the hopper 1b from the flexible container 1a, and when a lump is formed by compaction, the ISB is pulverized to a size of 2 cm or less by the crusher 1c. Subsequently, the ISB is supplied to the melting tank 1d and melted. The ISB discharged from the bottom of the tank is subsequently supplied to 1 g of the dissolution tank. The ISB supply amount and discharge amount of the dissolution tank 1d and dissolution tank 1g, and the liquid level of each dissolution tank are kept constant. The ISB discharged from the bottom of the dissolution tank 1g by the ISB constant supply pump 2d is mixed in CHDM, DPC and piping separately melted, and supplied to the reactor through the static mixer 5a and the raw material filter 5b. .
  • the melting tank 1d is provided with an internal heat exchanger 1e so that the heat medium temperature does not become excessively high because the amount of heat supplied may be particularly large. Further, an upper paddle lower anchor type stirring blade 1f is used in the dissolution tank 1d in order to perform stirring more efficiently.
  • CHDM heats the drum 2a to lower the viscosity, and is then transferred to the CHDM dissolution tank 2c by the CHDM supply pump 2b.
  • the CHDM constant amount supply pump 2d continuously mixes ISB and DPC separately melted in a pipe, and supplies them to the reactor through the static mixer 5a and the raw material filter 5b.
  • the DPC is continuously mixed in the piping with ISB and CHDM separately melted from the DPC supply line 3a by the DPC constant supply pump 3b, and supplied to the reactor through the static mixer 5a and the raw material filter 5b.
  • the raw material preparation liquid is supplied to the reactor through the static mixer 5a and the raw material filter 5b, and the polymerization catalyst converted into an aqueous solution in front of the reactor is supplied from the catalyst tank 4a by the catalyst quantitative supply pump 4b and mixed.
  • a first vertical stirring reactor 6a, a second vertical stirring reactor 6b, a third vertical stirring reactor 6c, and a fourth horizontal stirring reactor 6d are provided in series. It is done.
  • the liquid level is kept constant, polycondensation reaction is performed, and the polycondensation reaction liquid discharged from the bottom of the first vertical stirring reactor 6a continues to the second vertical stirring reactor 6b. Then, the polycondensation reaction proceeds successively by sequentially supplying the third vertical stirring reactor 6c to the fourth horizontal stirring reactor 6d.
  • the reaction conditions in each reactor are preferably set so as to become high temperature, high vacuum, and low stirring speed as the polycondensation reaction proceeds.
  • the first vertical stirring reactor 6a, the second vertical stirring reactor 6b, and the third vertical stirring reactor 6c are provided with Max Blend blades 7a, 7b, 7c, respectively.
  • the fourth horizontal stirring reactor 6d is provided with a biaxial glasses-type stirring blade 7d.
  • Gear pumps 9a and 9b are provided after the third vertical stirring reactor 6c and the fourth horizontal stirring reactor 6d because the transferred reaction liquid has a high viscosity.
  • the amount of heat supplied may be particularly large, so that the internal heat exchangers 8a and 8b are respectively provided so that the heat medium temperature does not become excessively high. Is provided.
  • distilling pipes 12a, 12b, 12c, and 12d for discharging by-products generated by the polycondensation reaction are attached to these four reactors, respectively.
  • reflux condensers 10a and 10b and reflux pipes 11a and 11b are provided in order to return a part of the distillate to the reaction system.
  • the reflux ratio can be controlled by appropriately adjusting the pressure of the reactor and the heat medium temperature of the reflux condenser.
  • the distillation pipes 12a, 12b, 12c, and 12d are connected to condensers 13a, 13b, 13c, and 13d, respectively, and each reactor is maintained in a predetermined reduced pressure state by the decompression devices 14a, 14b, 14c, and 14d. Be drunk.
  • By-products such as phenol (monohydroxy compound) are continuously sent to the distillate collection tank 15a from the condensers 13a, 13b, 13c, and 13d attached to each reactor, and are liquefied and collected. Further, cold traps (not shown) are provided downstream of the condensers 13c and 13d attached to the third vertical stirring reactor 6c and the fourth horizontal stirring reactor 6d, respectively, so that by-products are continuously present. Solidified and recovered.
  • the reaction liquid raised to a predetermined molecular weight is withdrawn from the fourth horizontal stirring reactor 6d, transferred by the gear pump 9b, and pelletized into a product.
  • An extruder or a polymer filter may be provided before pelletization. It is transferred to the extruder. By providing a vacuum vent in the extruder, residual low molecular components in the polycarbonate resin are removed, and an antioxidant, a light stabilizer, a colorant, a release agent, and the like are added as necessary.
  • Foreign materials are filtered by passing the polymer filter while the polycarbonate resin is in a molten state. The molten resin is extracted in a strand form from the die head, cooled with water, and then pelletized with a strand cutter. In this case, the heat history given to the polycarbonate resin can be minimized by processing with an extruder or a polymer filter without solidifying the reaction solution.
  • polycondensation based on a polycondensation reaction between a dihydroxy compound and a carbonic acid diester is started according to the following procedure.
  • first vertical stirring reactor 6a second vertical stirring reactor 6b, third vertical stirring reactor 6c,
  • the 4-horizontal stirring reactor 6d is set in advance to a predetermined internal temperature and pressure, respectively.
  • the internal temperature, the heat medium temperature, and the pressure of each reactor are not particularly limited, but are preferably set as follows.
  • a melt of a dihydroxy compound and a carbonic acid diester is prepared by the steps described above. After the internal temperature and pressure of the four reactors described above reach within the range of ⁇ 5% of the respective set values, each quantitative supply is performed so that the dihydroxy compound and the carbonic acid diester have a predetermined molar ratio.
  • the flow rate of the pump is adjusted and continuously supplied to the reactor at a constant flow rate. Simultaneously with the start of the supply of the raw material mixed melt, the catalyst is continuously supplied from the catalyst fixed amount supply pump 4b to start the polycondensation reaction.
  • the liquid level of the polycondensation reaction liquid is kept constant so as to have a predetermined average residence time.
  • a valve (not shown) provided in a polymer discharge line at the bottom of the tank while detecting the liquid level with a liquid level gauge or the like.
  • a method for controlling the opening degree may be mentioned.
  • the polycondensation reaction liquid is discharged from the tank bottom of the first vertical stirring reactor 6a, discharged to the second vertical stirring reactor 6b, and subsequently discharged from the tank bottom of the second vertical stirring reactor 6b. , And sequentially supplied to the third vertical stirring reactor 6c.
  • 50% to 95% of the theoretical amount of phenol produced as a by-product is distilled off to produce oligomers.
  • the oligomer obtained in the previous reaction step is transferred by a gear pump 9a, and has a horizontal rotating shaft and mutually discontinuous stirring blades mounted substantially at right angles to the horizontal rotating shaft, and is rotated horizontally.
  • the shaft length is L
  • the rotating diameter of the stirring blade is D
  • the L / D is supplied to the fourth horizontal stirring reactor 6d having a value of 1 to 15 for the subsequent reaction as described later.
  • the by-produced phenol and partially unreacted monomer are removed out of the system through the distillation pipe 12d to produce a polycarbonate resin.
  • This horizontal stirring reactor has one or more horizontal rotating shafts, and one type of stirring blades such as a disk type, a wheel type, a saddle type, a rod type, and a window frame type is provided on the horizontal rotating shaft.
  • it is a horizontal type high-viscosity liquid processing apparatus in which at least two or more stages are installed per rotation shaft in combination of two or more types, and the surface of the reaction liquid is renewed by scooping up or spreading the reaction liquid with this stirring blade.
  • reaction liquid surface renewal means that the reaction liquid on the liquid surface is replaced with the reaction liquid below the liquid surface.
  • the horizontal stirring reactor used in the present invention is an apparatus having a horizontal axis and mutually discontinuous stirring blades mounted substantially at right angles to the horizontal axis. Unlike the extruder, the horizontal stirring reactor has a screw portion. Not done. In the method of the present invention, it is preferable to use at least one such horizontal stirring reactor.
  • the reaction temperature in the latter reaction step is usually 200 to 280 ° C., preferably 210 to 260 ° C.
  • the reaction pressure is usually 13.3 kPa to 10 Pa, preferably 2 kPa to 20 Pa, more preferably 1 kPa to 50 Pa. is there.
  • the residence time of the reaction liquid can be set appropriately, and the shear heating is generated.
  • the temperature can be lowered, and it becomes possible to obtain a polycarbonate resin having improved mechanical properties and excellent mechanical properties.
  • the raw material mixed melt and the catalyst are passed through the preheater.
  • the melt polycondensation based on the polycondensation reaction is started.
  • the average residence time of the polycondensation reaction liquid in each reactor is equivalent to that during steady operation immediately after the start of melt polycondensation.
  • the polycondensation reaction liquid does not receive an excessive heat history, and foreign matters such as gels or burns generated in the obtained polycarbonate resin are reduced. Also, the color tone is good.
  • the molecular weight of the polycarbonate resin of the present invention thus obtained can be represented by a reduced viscosity, and the reduced viscosity is usually 0.20 dL / g or more, preferably 0.30 dL / g or more, On the other hand, it is usually 1.20 dL / g or less, preferably 1.00 dL / g or less, and more preferably 0.80 dL / g or less. If the reduced viscosity of the polycarbonate resin is too low, the mechanical strength of the molded product may be reduced. If it is too high, the fluidity at the time of molding tends to be lowered, and the productivity and moldability tend to be lowered.
  • the reduced viscosity is measured using a Ubbelohde viscometer at a temperature of 20.0 ° C. ⁇ 0.1 ° C. with a precise adjustment to a polycarbonate resin concentration of 0.6 g / dL using methylene chloride as a solvent.
  • the polycarbonate resin of the present invention can be formed into a molded product by a generally known method such as an injection molding method, an extrusion molding method, or a compression molding method.
  • the method for molding the polycarbonate resin is not particularly limited, but an appropriate molding method is selected according to the shape of the molded product.
  • the extrusion molding method is preferable, and the injection molding method provides a degree of freedom of the molded product.
  • the polycarbonate resin of the present invention is, as necessary, before performing various moldings, heat stabilizer, neutralizer, ultraviolet absorber, mold release agent, colorant, antistatic agent, lubricant, lubricant, Additives such as plasticizers, compatibilizers, and flame retardants can also be mixed with a tumbler, super mixer, floater, V-type blender, nauter mixer, Banbury mixer, extruder or the like.
  • the polycarbonate resin of the present invention includes, for example, aromatic polycarbonate resin, aromatic polyester resin, aliphatic polyester resin, polyamide resin, polystyrene resin, polyolefin resin, acrylic resin, amorphous polyolefin resin, synthetic resin such as ABS and AS, poly It can also be used as a polymer alloy by kneading with one or more of biodegradable resins such as lactic acid and polybutylene succinate and rubber.
  • ISB color tone (solution YI)
  • solution YI A sample of 20 g was weighed in a beaker and dissolved by adding 20 g of demineralized water. The sample was placed in a glass cell having an optical path length of 2 cm and measured in a transmission mode with a spectrocolorimeter CM-5 (manufactured by Konica Minolta Co., Ltd.), and the yellow index (YI) value of the solution was measured. A smaller YI value indicates less yellowishness.
  • L * was 99.40 ⁇ 0.05, a * was 0.03 ⁇ 0.01, b * was ⁇ 0.43 ⁇ 0.01, and YI was ⁇ . It was confirmed to be 0.58 ⁇ 0.01.
  • the pellets were measured by packing them into a cylindrical glass container having an inner diameter of 30 mm and a height of 50 mm to a depth of about 40 mm. The operation of taking out the pellet from the glass container and then performing the measurement again was repeated twice, and the average value of the measurement values of three times in total was used. The smaller the YI value, the less yellow the resin is, and the better the color tone.
  • Table 1 shows various analysis values before dissolution of ISB used in Examples.
  • Example 1 A mixed solution of ISB, CHDM and DPC was prepared by the raw material preparation step shown in FIG.
  • the ISB packaged in the flexible container was introduced from the hopper 1b.
  • a melting tank 1d (comprising an internal heat exchanger 1e in which a lump produced by compaction using a crusher 1c is crushed into a size having a maximum diameter of 2 cm or less and an upper paddle lower anchor type stirring blade 1f and a heating medium are circulated.
  • the first dissolution tank was transferred. Nitrogen was circulated in the crusher 1c and a pipe connecting the crusher 1c to the dissolution tank 1d.
  • the temperature of the heat medium is adjusted so that the internal temperature becomes 80 ° C., and the amount of liquid is adjusted by controlling the opening of a valve (not shown) provided in the discharge line at the bottom of the tank.
  • the time was 1.5 hours.
  • a nitrogen introduction tube (not shown) was attached inside the dissolution tank 1d, and nitrogen having an oxygen concentration of 5 volume ppm or less was bubbled into the liquid in the dissolution tank 1d.
  • the oxygen concentration inside the dissolution tank 1d was less than 500 ppm by volume in a steady state.
  • ISB discharged from the bottom of the dissolution tank 1d was supplied to the dissolution tank 1g (second dissolution tank).
  • the internal temperature of 1 g of the dissolution tank was adjusted to 70 ° C.
  • the residence time was adjusted to 1.5 hours.
  • the residence time of the raw material in the transfer piping from 1 g of the dissolution tank to the reactor was within 3 minutes. Therefore, the time from mixing ISB and DPC to feeding to the reactor is within 3 minutes.
  • the dissolution tank 2c was kept at an internal temperature of 70 ° C., continuously discharged from the bottom by the CHDM constant supply pump 2d, and mixed with ISB and DPC.
  • the DPC used was a chloride ion concentration reduced to 10 ppb or less by distillation purification (not shown). Molten DPC was supplied by the DPC constant supply pump 3b.
  • the raw material preparation liquid was supplied to the reactor through the static mixer 5a and the raw material filter 5b.
  • calcium acetate monohydrate as a polycondensation catalyst was supplied from the catalyst fixed amount supply pump 4b so as to be 1.5 ⁇ mol with respect to 1 mol of all dihydroxy compounds.
  • the ISB melt was sampled from a valve attached after the ISB constant supply pump 1h, and the raw material preparation liquid was sampled from a valve attached in front of the raw material filter 5b, and the above-described various analyzes were performed.
  • the raw material preparation liquid was sent to the polycondensation step shown in FIG. 2, and a polycarbonate resin was produced under the following conditions using a continuous production apparatus having 3 vertical stirring reactors and 1 horizontal stirring reactor.
  • each reactor was previously set to an internal temperature and pressure according to the reaction conditions.
  • the first vertical stirring reaction in which ISB, CHDM, DPC, and polycondensation catalyst mixed at a constant molar ratio in the raw material preparation step are controlled within a range of ⁇ 5% of the predetermined temperature and pressure described above.
  • the liquid level was kept constant while controlling the opening of a valve (not shown) provided in the polymer discharge line at the bottom of the tank so that the average residence time was 80 minutes. .
  • the liquid level of each reactor was controlled so that the average residence time shown in Table 2 was obtained.
  • the reaction liquid extracted from the fourth horizontal stirring reactor 6d was transferred by a gear pump 9b, extracted in a strand shape by a pelletizing step, and pelletized by a cutter (not shown).
  • the reduced viscosity at the outlet of the fourth horizontal stirring reactor was adjusted to be in the range of 0.44 to 0.47 by adjusting the pressure of the fourth horizontal stirring reactor 6d.
  • the pressure adjustment range when operated for 24 hours was 0.4 kPa to 0.5 kPa, and the pellet YI varied in the range of 8.5 to 9.1.
  • a polycarbonate resin with little variation in molecular weight and color tone was obtained by operation under almost constant reaction conditions. The results are shown in Table 3.
  • Example 2 The same procedure as in Example 1 was performed except that nitrogen bubbling in the dissolution tank 1d was stopped when ISB was dissolved.
  • the oxygen concentration inside the dissolution tank 1d was 1500 ppm by volume in a steady state.
  • the sampled ISB analysis values show that the content of formic acid and furfural increases, the pH decreases and the degree of coloring increases, and the color tone of the raw material preparation liquid also deteriorates slightly. From this, it was suggested that the deterioration was progressing during the dissolution process.
  • the polycondensation step was performed in the same manner as in Example 1.
  • the obtained polycarbonate resin was slightly deteriorated in color tone as compared with Example 1.
  • the results are shown in Table 3.
  • Example 3 When ISB was dissolved, it was dissolved using only one tank 1d. When the residence time of the dissolution tank 1d was set to 1.5 hours and the internal temperature of the dissolution tank was adjusted so that undissolved ISB did not remain, it was necessary to raise the temperature to 100 ° C. Compared with Example 1, the ISB analysis value shows that the content of formic acid and furfural is increased, the pH is lowered and the degree of coloring is increased, and the color tone of the raw material preparation liquid is slightly deteriorated. It was suggested that deterioration progressed during the dissolution process. Using the raw materials prepared as described above, the polycondensation step was performed in the same manner as in Example 1. As a result, the obtained polycarbonate resin was slightly deteriorated in color tone as compared with Example 1. The results are shown in Table 3.
  • the raw material preparation solution prepared as described above was sent to the polycondensation step, and a polycarbonate resin was produced in the same manner as in Example 1.
  • the raw materials were newly mixed in the first dissolution tank and supplied to the second dissolution tank.
  • the residence time continued to be extended until a new raw material was supplied, and the longest residence time in the second dissolution tank in this comparative example was 12 hours.
  • the time from mixing ISB and DPC to supplying to the reactor was 720 minutes.
  • the polycarbonate resin obtained as described above not only deteriorated in color tone as compared with Example 1, but also adjusted the pressure of the fourth horizontal stirring reactor 6d to keep the molecular weight within a certain range. The fluctuation range was wider than 1. Furthermore, the fluctuation width of the color tone of the obtained polycarbonate resin was widened. The results are shown in Table 3.
  • Example 2 Various conditions were carried out in the same manner as in Example 1 except that the various conditions were as shown in Table 3 so that the residence time in the dissolution tank 1d was 6 hours and the residence time in the dissolution tank 1g was 5 hours.
  • the ISB analysis value shows that the content of formic acid and furfural is increased, the pH is lowered and the degree of coloring is increased, and the color tone of the raw material preparation liquid is slightly deteriorated. It was suggested that deterioration progressed during the dissolution process.
  • the polycondensation step was performed in the same manner as in Example 1. As a result, the obtained polycarbonate resin deteriorated in color tone as compared with Example 1. The results are shown in Table 3.
  • Example 4 A mixed solution of SPG, CHDM, and DPC was prepared by the raw material preparation step shown in FIG. DPC previously melted was introduced into the dissolution tank 1d (DPC supply line to the dissolution tank 1d is not shown), and the internal temperature was maintained at 180 ° C. When the internal temperature was lower than 170 ° C., SPG was separated from DPC, crystals were precipitated, and dissolution was difficult. SPG packed in flexible container is put in from hopper 1b, the inside of the hopper is replaced with nitrogen, weighed with a measuring feeder (not shown) so that SPG and DPC have a predetermined molar ratio, and put into dissolving tank 1d did.
  • a nitrogen introduction tube (not shown) was attached inside the dissolution tank 1d, and nitrogen having an oxygen concentration of 5 volume ppm or less was bubbled into the liquid in the dissolution tank 1d.
  • the amount of liquid is adjusted while controlling the opening of a valve (not shown) provided in the discharge line at the bottom of the tank, and at the same time molten DPC and solid SPG are mixed.
  • the liquid level was adjusted so that the residence time was 1.5 hours.
  • the mixed solution of SPG and DPC discharged from the bottom of the dissolution tank 1d was supplied to the dissolution tank 1g (second dissolution tank).
  • the internal temperature of the dissolution tank 1 g was adjusted to 175 ° C.
  • the raw material preparation liquid was supplied to the reactor through the static mixer 5a and the raw material filter 5b.
  • calcium acetate monohydrate as a polycondensation catalyst was supplied from the catalyst fixed amount supply pump 4b so as to be 30 ⁇ mol with respect to 1 mol of all dihydroxy compounds. Subsequently, the raw material preparation liquid was sent to the polycondensation step shown in FIG.
  • the reduced viscosity at the outlet of the fourth horizontal stirring reactor was adjusted to be in the range of 0.70 to 0.73.
  • the pressure adjustment range when operated for 24 hours was 0.3 kPa to 0.4 kPa, and the pellet YI varied in the range of 3 to 5.
  • a polycarbonate resin with little variation in molecular weight and color tone was obtained by operation under almost constant reaction conditions. The results are shown in Table 5.
  • Example 3 Although it carried out similarly to Example 4 except having set the residence time of the dissolution tank 1d and the dissolution tank 1g to 6 hours, respectively by setting the liquid quantity of the dissolution tank 1d and the dissolution tank 1g as shown in Table 5, respectively.
  • the molten resin was entangled with the stirring blade, making it difficult to extract the resin, and pelletization was not possible.
  • the obtained resin was insoluble in methylene chloride, and it was impossible to measure the reduced viscosity. It is considered that the SPG that had been stored in a molten state for a long time caused a ring-opening reaction, so that the resin was cross-linked to form a gel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 本発明は構造の一部に所定の部位を有するジヒドロキシ化合物(A)と、炭酸ジエステルとを、液体状態で連続的に反応器に供給して溶融重縮合する工程を含むポリカーボネート樹脂の製造方法であって、ジヒドロキシ化合物を液化してから、反応器に供給するまでの滞留時間が0.1時間以上10時間以下とする。

Description

ポリカーボネート樹脂の製造方法
 本発明は、透明性、色調、耐熱性、成形性、機械的強度などに優れたポリカーボネート樹脂を安定的に製造するためのポリカーボネート樹脂の製造方法に関するものである。
 ポリカーボネート樹脂は一般的にビスフェノール類をモノマー成分とし、透明性、耐熱性、機械的強度等の優位性を生かし、電気・電子部品、自動車用部品、光学記録媒体、レンズ等の光学分野等でいわゆるエンジニアリングプラスチックとして広く利用されている。
 従来のポリカーボネート樹脂は、石油資源から誘導される原料を用いて製造されるが、近年、石油資源の枯渇が危惧されており、植物などのバイオマス資源から得られる原料を用いたポリカーボネート樹脂の提供が求められている。また、二酸化炭素排出量の増加、蓄積による地球温暖化が気候変動などをもたらすことが危惧されていることからも、使用後に廃棄処分をしてもカーボンニュートラルな植物由来モノマーを原料としたポリカーボネート樹脂の開発が求められている。かかる状況下、バイオマス資源から得られるジヒドロキシ化合物であるイソソルビド(以下、「ISB」と称することがある)をモノマー成分とし、炭酸ジエステルとのエステル交換により、副生するモノヒドロキシ化合物を減圧下で留去しながら、ポリカーボネート樹脂を得る方法が提案されている(例えば特許文献1~3参照)。
 上記のISBのようなエーテル結合を分子内に有するジヒドロキシ化合物は、一般的に熱安定性や酸素に対する安定性が低く、高温下で反応を行うエステル交換反応では得られるポリカーボネート樹脂が着色したり、所望の分子量まで反応が到達しないなどの問題があった。これらの問題に対して、反応工程における熱負荷を低減する方法により、得られるポリカーボネート樹脂の色調が改善される方法が報告されている(例えば、特許文献4参照)。また、上記のような不安定な化合物の保存方法に関する検討(特許文献5参照)や、ジヒドロキシ化合物と炭酸ジエステルからなる原料調製液を適切に処理することによって、得られるポリカーボネート樹脂の品質向上を狙った検討もなされている(特許文献6参照)。
 さらに、用いられるジヒドロキシ化合物の構造は異なるが、脂環式ジヒドロキシ化合物と芳香族ジヒドロキシ化合物との共重合ポリカーボネート樹脂の製造方法において、ジヒドロキシ化合物を別々に溶解させる方法が提案されている(特許文献7参照)。芳香族ジヒドロキシ化合物は溶解するのに比較的高い温度を要するために、熱安定性に劣る脂環式ジヒドロキシ化合物を混合してしまうと熱劣化を受けてしまう問題があったが、別々に溶解することで、脂環式ジヒドロキシ化合物をより低温で保存しておけるために、得られるポリカーボネート樹脂の品質が向上された。
国際公開第2004/111106号 日本国特開2006-232897号公報 日本国特開2008-24919号公報 日本国特開2009-161745号公報 国際公開第2009/120235号 日本国特開2010-150540号公報 日本国特開2003-327683号公報
 ところで、本発明者らの検討によると、本発明で用いるジヒドロキシ化合物は溶融状態で長時間保存されると、得られるポリカーボネート樹脂の色調に影響を及ぼすだけでなく、反応性にも影響を及ぼすことが明らかとなった。特に生産性や品質の観点から工業的にポリカーボネート樹脂を製造するために有用である連続重合プロセスでは、原料の反応性が変化すると一定の反応条件でポリカーボネート樹脂を生産することができなくなり、製造の歩留まりが悪化したり、製品品質が安定しないなどの問題を招く。従来の方法では、原料調製液の調製方法がバッチ式であったために、原料を溶融するのに時間を要することや、溶融してから反応に用いるまでの時間が変化することが反応性の振れる要因と考えられる。
 さらに、本発明者らの検討によると、固体粒子間に抱き込まれた酸素を完全に除くのは難しく、たとえ減圧脱気後、不活性ガスによる置換を繰り返しても、完全に酸素を取り除くことは困難であるために、本発明で用いる上述のジヒドロキシ化合物は溶融温度を低下させても劣化を完全に抑制することは難しいことが分かった。
 一方で、エステル交換法でポリカーボネート樹脂を得ようとする場合には、重合速度や品質に影響を及ぼす末端基濃度を所定の値に制御することが重要であり、そのためにはモノマーであるジヒドロキシ化合物と炭酸ジエステルの仕込みモル比を厳密に制御する必要があるが、固体の原料を定量的に供給することは難しく、要求される仕込み精度を達成するには固体モノマーを溶融させて液体として扱う必要がある。このような事情から、本発明で用いられる上述のジヒドロキシ化合物を溶融させる工程を必須としながら、品質を維持し、重縮合反応に用いる方法が求められている。
 本発明者らが上記課題を解決するために鋭意検討を重ねた結果、後述の式(1)で表される部位を有するジヒドロキシ化合物と炭酸ジエステルを重縮合してポリカーボネート樹脂を製造する方法において、ジヒドロキシ化合物を液化してから、反応器に供給するまでの滞留時間を所定範囲内とすることにより、透明性、色相、耐熱性、熱安定性、機械的強度などに優れたポリカーボネート樹脂、効率的かつ安定に製造することが可能であることを見出し、本発明を完成するに至った。即ち、本発明の要旨は、下記[1]~[24]に存する。
[1]
 構造の一部に下記式(1)で表される部位を有するジヒドロキシ化合物(A)と、炭酸ジエステルとを、液体状態で連続的に反応器に供給して溶融重縮合する工程を含むポリカーボネート樹脂の製造方法であって、前記ジヒドロキシ化合物(A)を液化してから、反応器に供給するまでの滞留時間が0.1時間以上10時間以下であるポリカーボネート樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000004
(但し、上記式(1)で表される部位が-CH-OHの一部を構成する部位である場合を除く。)
[2]
 前記ジヒドロキシ化合物(A)と炭酸ジエステルとを、これらを混合してからの経過時間が5時間未満となるように反応器へ連続的に供給するか、または、これらを混合せずに独立に反応器へ連続的に供給する上記[1]に記載のポリカーボネート樹脂の製造方法。
[3]
 前記ジヒドロキシ化合物(A)が、環状エーテル構造を有する化合物である上記[1]又は[2]に記載のポリカーボネート樹脂の製造方法。
[4]
 前記ジヒドロキシ化合物(A)をあらかじめ溶融させた液を有する溶解槽に、固体の前記ジヒドロキシ化合物(A)を供給して液化される上記[1]乃至[3]のいずれか1に記載のポリカーボネート樹脂の製造方法。
[5]
 前記ジヒドロキシ化合物(A)が、下記式(2)で表される化合物である上記[1]乃至[4]のいずれか1に記載のポリカーボネート樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000005
[6]
 前記溶解槽の内温が120℃以下であり、かつ、内温と加熱媒体温度との差が50℃以下である上記[4]又は[5]に記載のポリカーボネート樹脂の製造方法。
[7]
 前記ジヒドロキシ化合物(A)と炭酸ジエステルとを、これらを混合してからの経過時間が30分未満となるように反応器へ連続的に供給する上記[2]乃至[6]のいずれか1に記載のポリカーボネート樹脂の製造方法。
[8]
 前記ジヒドロキシ化合物(A)が、下記式(3)又は(4)で表される化合物である上記[1]乃至[3]のいずれか1に記載のポリカーボネート樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000006
[9]
 前記炭酸ジエステルをあらかじめ溶融させた液を有する溶解槽に、固体の前記式(3)又は(4)で表される化合物を供給して液化される上記[8]に記載のポリカーボネート樹脂の製造方法。
[10]
 前記溶解槽の内温が200℃以下であり、かつ、内温と加熱媒体温度との差が50℃以下である上記[8]又は[9]に記載のポリカーボネート樹脂の製造方法。
[11]
 前記溶解槽に前記固体のジヒドロキシ化合物(A)を連続的に供給し、同時に前記溶解槽から液化したジヒドロキシ化合物(A)を連続的に排出する上記[4]乃至[10]のいずれか1に記載のポリカーボネート樹脂の製造方法。
[12]
 前記溶解槽内部に保有しているジヒドロキシ化合物(A)の重量をA[kg]、前記ジヒドロキシ化合物(A)の排出流量をB[kg/hr]とした時、下記式(I)満たす上記[11]に記載のポリカーボネート樹脂の製造方法。
 0.05 ≦ A/B ≦ 5 (I)
[13]
 前記溶解槽に供給される前記固体のジヒドロキシ化合物(A)が、最大長3cm以上の塊状物を1kg当たり10個以下含有する上記[4]乃至[12]のいずれか1に記載のポリカーボネート樹脂の製造方法。
[14]
 前記溶解槽が攪拌機と、加熱媒体が流通する熱交換器を具備する上記[4]乃至[13]のいずれか1に記載のポリカーボネート樹脂の製造方法。
[15]
 前記溶解槽内部に保有されるジヒドロキシ化合物(A)の容積をV[m]、前記ジヒドロキシ化合物(A)と熱交換機との接触面積をS[m]とした時に、下記式(II)を満たす上記[4]乃至[14]のいずれか1に記載のポリカーボネート樹脂の製造方法。
 V/S ≦ 0.3 (II)
[16]
 前記ジヒドロキシ化合物(A)が、直列に連結された2つ以上の前記溶解槽を用いて液化され、下流側の溶解槽の前記加熱媒体の温度が上流側の溶解槽の加熱媒体温度以下である上記[4]乃至[15]のいずれか1に記載のポリカーボネート樹脂の製造方法。
[17]
 前記溶解槽内部の酸素濃度が1000体積ppm以下である上記[4]乃至[16]のいずれか1に記載のポリカーボネート樹脂の製造方法。
[18]
 前記溶解槽に保有されるジヒドロキシ化合物(A)の液中に、酸素を10体積ppm以下含有する不活性ガスを吹き込む上記[4]乃至[17]のいずれか1に記載のポリカーボネート樹脂の製造方法。
[19]
 前記ジヒドロキシ化合物(A)と、前記ジヒドロキシ化合物(A)以外のジヒドロキシ化合物(B)とを原料に用い、
 前記ジヒドロキシ化合物(B)を、前記ジヒドロキシ化合物(A)を液化する溶解槽とは別の溶解槽で液化する上記[4]乃至[18]のいずれか1に記載のポリカーボネート樹脂の製造方法。
[20]
 前記ジヒドロキシ化合物(B)の融点が炭酸ジエステルの融点よりも高い場合、炭酸ジエステルをあらかじめ溶融させた液に、固体の前記ジヒドロキシ化合物(B)を供給して液化させる上記[19]に記載のポリカーボネート樹脂の製造方法。
[21]
 反応に用いられる全てのジヒドロキシ化合物と炭酸ジエステルとが、反応器に供給される前にスタティックミキサーにより混合される上記[1]乃至[20]のいずれか1に記載のポリカーボネート樹脂の製造方法。
[22]
 反応に用いられるすべてのジヒドロキシ化合物と炭酸ジエステルを、反応器に投入される前にフィルターで濾過する上記[1]乃至[21]のいずれか1に記載のポリカーボネート樹脂の製造方法。
[23]
 前記溶融重縮合が、長周期型周期表第2族の金属およびリチウムからなる群より選ばれる少なくとも1種の金属の化合物の存在下で行われる上記[1]乃至[22]のいずれか1に記載のポリカーボネート樹脂の製造方法。
[24]
 前記ジヒドロキシ化合物(A)と、前記ジヒドロキシ化合物(B)とを原料に用いて、連続的にポリカーボネート樹脂を製造する方法であって、反応器に供給される原料組成のうち、少なくとも1種のジヒドロキシ化合物の全ジヒドロキシ化合物に対する重量分率を、異なる重量分率に変更する組成切り替え工程を有し、
 前記組成切り替え工程前後における重量分率の差は、1wt%以上である上記[19]乃至[23]のいずれか1に記載のポリカーボネート樹脂の製造方法。
 本発明のポリカーボネート樹脂の製造方法により、透明性、色相、耐熱性、熱安定性、機械的強度などに優れたポリカーボネート樹脂を、効率的かつ安定に製造することができる。特に本発明のポリカーボネート樹脂の製造方法によれば、原料調製工程でのジヒドロキシ化合物の熱劣化が抑制されることにより、重縮合工程における反応状態が安定し、分子量や色調が均一な品質のポリカーボネート樹脂を得ることができる。
図1は、本発明の製造方法における原料調製工程を示す工程図である。 図2は、本発明の製造方法における重縮合工程を示す工程図である。
 以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。
 なお、本明細書において、「~」という表現を用いた場合、その前後の数値または物理値を含む意味で用いることとする。
 本発明のポリカーボネート樹脂の製造方法は、構造の一部に下記式(1)で表される部位を有するジヒドロキシ化合物(A)と、炭酸ジエステルとを、液体状態で連続的に反応器に供給して溶融重縮合するポリカーボネート樹脂の製造方法であって、該ジヒドロキシ化合物を液化してから、反応器に供給するまでの滞留時間が0.1時間以上10時間以下であるポリカーボネート樹脂の製造方法である。
Figure JPOXMLDOC01-appb-C000007
(但し、上記式(1)で表される部位が-CH-OHの一部を構成する部位である場合を除く。)
<原料と触媒>
 以下、本発明のポリカーボネート樹脂に使用可能な原料、触媒について説明する。
(ジヒドロキシ化合物)
 本発明のポリカーボネート樹脂の製造に用いられるジヒドロキシ化合物(A)は、下記式(1)で表される部位を有するものである。以下、該ジヒドロキシ化合物を「本発明のジヒドロキシ化合物(A)」と称する場合がある。
Figure JPOXMLDOC01-appb-C000008
(但し、上記式(1)で表される部位が-CH-OHの一部を構成する部位である場合を除く。)
 本発明のジヒドロキシ化合物(A)としては、具体的には、オキシアルキレングリコール類、芳香族基に結合したエーテル基を主鎖に有するジヒドロキシ化合物、環状エーテル構造を有するジヒドロキシ化合物等が挙げられる。
 前記オキシアルキレングリコール類としては、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。
 前記芳香族基に結合したエーテル基を主鎖に有するジヒドロキシ化合物としては、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシプロポキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシプロポキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチル-6-メチルフェニル)フルオレン、9,9-ビス(4-(3-ヒドロキシ-2,2-ジメチルプロポキシ)フェニル)フルオレン等のフルオレン骨格を有する化合物;2,2-ビス(4-(2-ヒドロキシエトキシ)フェニル)プロパン、2,2-ビス(4-(2-ヒドロキシプロポキシ)フェニル)プロパン、1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、4,4’-ビス(2-ヒドロキシエトキシ)ビフェニル、ビス(4-(2-ヒドロキシエトキシ)フェニル)スルホン等が挙げられる。
 前記環状エーテル構造を有するジヒドロキシ化合物としては、下記式(2)で表されるジヒドロキシ化合物、下記式(3)や下記式(4)で表されるスピログリコール等が挙げられる。
 これらの中でも、入手のし易さ、ハンドリング、重縮合時の反応性、得られるポリカーボネート樹脂の色相の観点から、複数の環状エーテル構造を有するジヒドロキシ化合物が好ましく、下記式(2)で表されるジヒドロキシ化合物や下記式(3)で表されるスピログリコール等の環状エーテル構造を2つ有するジヒドロキシ化合物がさらに好ましく、下記式(2)で表されるジヒドロキシ化合物等の、糖由来の環状エーテル構造を2つ有するジヒドロキシ化合物である無水糖アルコールが特に好ましい。
 これらのジヒドロキシ化合物のうち、芳香環構造を有しないジヒドロキシ化合物を用いることがポリカーボネート樹脂の耐光性の観点から好ましく、中でも植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られる下記式(2)で表されるジヒドロキシ化合物等の無水糖アルコールが、入手及び製造のし易さ、耐光性、光学特性、成形性、耐熱性、カーボンニュートラルの面から最も好ましい。
 これらは得られるポリカーボネート樹脂の要求性能に応じて、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、上記の「環状エーテル構造を有するジヒドロキシ化合物」の「環状エーテル構造」とは、環状構造中にエーテル基を有し、環状鎖を構成する炭素が脂肪族炭素である構造からなるものを意味する。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 上記式(2)で表されるジヒドロキシ化合物としては、立体異性体の関係にある、イソソルビド(ISB)、イソマンニド、イソイデットが挙げられ、これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明のポリカーボネート樹脂は、本発明のジヒドロキシ化合物(A)以外のジヒドロキシ化合物(B)に由来する構造単位を含んでいてもよく、該ジヒドロキシ化合物(B)としては、直鎖脂肪族炭化水素のジヒドロキシ化合物、アルキル分岐脂肪族炭化水素のジヒドロキシ化合物、脂環式炭化水素のジヒドロキシ化合物、芳香族ビスフェノール類等が挙げられる。
 前記の直鎖脂肪族炭化水素のジヒドロキシ化合物としては、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、1,5-ヘプタンジオール、1,6-ヘキサンジオール、1,10-デカンジオール、1,12-ドデカンジオール等が挙げられる。
 前記の直鎖分岐脂肪族炭化水素のジヒドロキシ化合物としては、ネオペンチルグリコール、ヘキシレングリコール等が挙げられる。
 前記の脂環式炭化水素のジヒドロキシ化合物としては、1,2-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6-デカリンジメタノール、1,5-デカリンジメタノール、2,3-デカリンジメタノール、2,3-ノルボルナンジメタノール、2,5-ノルボルナンジメタノール、1,3-アダマンタンジメタノール、リモネンなどのテルペン化合物から誘導されるジヒドロキシ化合物等が挙げられる。
 前記の芳香族ビスフェノール類としては、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-(3,5-ジフェニル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,4’-ジヒドロキシ-ジフェニルメタン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-5-ニトロフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン、2,4’-ジヒドロキシジフェニルスルホン、ビス(4-ヒドロキシフェニル)スルフィド、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジクロロジフェニルエーテル、9,9-ビス(4-(2-ヒドロキシエトキシ-2-メチル)フェニル)フルオレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-2-メチルフェニル)フルオレン等が挙げられる。
 これらは得られるポリカーボネート樹脂の要求性能に応じて、単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、ポリカーボネート樹脂の耐光性の観点からは、分子構造内に芳香環構造を有しないジヒドロキシ化合物、即ち脂肪族炭化水素のジヒドロキシ化合物や、脂環式炭化水素のジヒドロキシ化合物が好ましく、これらを併用してもよい。
 この脂肪族炭化水素のジヒドロキシ化合物としては、特に1,3-プロパンジオール、1,4-ブタンジオール、1,5-ヘプタンジオール、1,6-ヘキサンジオール等の炭素数3~6で両末端にヒドロキシ基を有する直鎖脂肪族炭化水素のジヒドロキシ化合物が好ましく、脂環式炭化水素のジヒドロキシ化合物としては、特に1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノールが好ましく、より好ましいのは、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノールなどのシクロヘキサン構造を有するジヒドロキシ化合物であり、最も好ましいのは1,4-シクロヘキサンジメタノールである。
 その他のジヒドロキシ化合物(B)を用いることにより、ポリカーボネート樹脂の柔軟性の改善、耐熱性の向上、成形性の改善などの効果を得ることも可能であるが、その他のジヒドロキシ化合物(B)に由来する構造単位の含有割合が多過ぎると、機械的物性の低下や、耐熱性の低下を招くことがある。そのため、全てのジヒドロキシ化合物に由来する構造単位のモル数に対する、前記式(1)で表される部位を有するジヒドロキシ化合物(A)に由来する構造単位の割合は、好ましくは10mol%以上、更に好ましくは20mol%以上、特に好ましくは30mol%以上である。一方、好ましくは90mol%以下、更に好ましくは85mol%以下、特に好ましくは80mol%以下である。
 本発明のジヒドロキシ化合物(A)は、還元剤、抗酸化剤、脱酸素剤、光安定剤、制酸剤、pH安定剤、熱安定剤等の安定剤を含んでいてもよく、特に酸性下で本発明のジヒドロキシ化合物は変質しやすいことから、塩基性安定剤を含むことが好ましい。塩基性安定剤としては、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations2005)における1族または2族の金属の水酸化物、炭酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、硼酸塩、脂肪酸塩や、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド、ブチルトリフェニルアンモニウムヒドロキシド等の塩基性アンモニウム化合物、ジエチルアミン、ジブチルアミン、トリエチルアミン、モルホリン、N-メチルモルホリン、ピロリジン、ピペリジン、3-アミノ-1-プロパノール、エチレンジアミン、N-メチルジエタノールアミン、ジエチルエタノールアミン、4-アミノピリジン、2-アミノピリジン、N,N-ジメチル-4-アミノピリジン、4-ジエチルアミノピリジン、2-ヒドロキシピリジン、2-メトキシピリジン、4-メトキシピリジン、2-ジメチルアミノイミダゾール、2-メトキシイミダゾール、イミダゾール、2-メルカプトイミダゾール、2-メチルイミダゾール、アミノキノリン等のアミン系化合物、ジ-(tert-ブチル)アミン、2,2,6,6-テトラメチルピペリジン等のヒンダードアミン系化合物が挙げられる。これらの安定剤の中でも、テトラメチルアンモニウムヒドロキシド、モルホリン、イミダゾール、ヒンダードアミン系化合物が好ましい。
 これら塩基性安定剤の本発明のジヒドロキシ化合物(A)中の含有量に特に制限はないが、本発明のジヒドロキシ化合物(A)は酸性状態では不安定であるので、上記の安定剤を含むジヒドロキシ化合物(A)の水溶液のpHが7以上となるように安定剤を添加することが好ましい。少なすぎると本発明のジヒドロキシ化合物(A)の変質を防止する効果が得られない可能性があり、多すぎると本発明のジヒドロキシ化合物(A)の変性を招く場合があるので、通常、本発明のジヒドロキシ化合物(A)に対して、0.0001重量%~1重量%、好ましくは0.001重量%~0.1重量%である。
 これら塩基性安定剤を含有した本発明のジヒドロキシ化合物(A)をポリカーボネート樹脂の製造原料として用いると、塩基性安定剤自体が重縮合触媒となり、重縮合速度や品質の制御が困難になるだけでなく、樹脂色相の悪化を招くため、ポリカーボネート樹脂の製造原料として使用する前に塩基性安定剤をイオン交換樹脂や蒸留等で除去することが好ましいが、アミン系安定剤を窒素元素量として、本発明のジヒドロキシ化合物に対して10体積ppm以下含有する場合、重縮合反応性や製品品質への影響を与えないため、蒸留などの精製操作を加えることなく、反応に用いることが可能となる。蒸留の操作を省略できると、溶融状態で取り扱う工程を削減できるため、得られるポリカーボネート樹脂の品質の向上が期待できる。
 本発明のジヒドロキシ化合物(A)は、酸素によって徐々に酸化されやすいので、保管や、製造時の取り扱いの際には、酸素による分解を防ぐため、水分が混入しないようにし、また、脱酸素剤を用いたり、窒素雰囲気下にしたりすることが肝要である。イソソルビドが酸化されると、蟻酸をはじめとする分解物が発生する。例えば、これら分解物を含むイソソルビドを用いてポリカーボネート樹脂を製造すると、得られるポリカーボネート樹脂の着色を招いたり、物性を著しく劣化させたりするだけでなく、重縮合反応に影響を与え、高分子量の重縮合体が得られないこともあり、好ましくない。
(炭酸ジエステル)
 本発明のポリカーボネート樹脂は、上述した本発明のジヒドロキシ化合物(A)を含むジヒドロキシ化合物と炭酸ジエステルとを原料として、重縮合反応により得ることができる。
 用いられる炭酸ジエステルとしては、通常、下記式(5)で表されるものが挙げられる。これらの炭酸ジエステルは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
Figure JPOXMLDOC01-appb-C000012
 (式(5)において、AおよびAは、それぞれ置換もしくは無置換の炭素数1~18の脂肪族炭化水素基または置換もしくは無置換の芳香族炭化水素基であり、AとAとは同一であっても異なっていてもよい。)
 AおよびAの好ましいものは置換もしくは無置換の芳香族炭化水素基であり、より好ましいのは無置換の芳香族炭化水素基である。尚、脂肪族炭化水素基の置換基としては、エステル基、エーテル基、カルボン酸、アミド基、ハロゲン原子が挙げられ、芳香族炭化水素基の置換基としては、メチル基、エチル基等のアルキル基が挙げられる。
 前記式(5)で表される炭酸ジエステルとしては、例えば、ジフェニルカーボネート(以下「DPC」と称することがある)、ジトリルカーボネート等の置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート及びジ-t-ブチルカーボネート等が例示されるが、好ましくはジフェニルカーボネート、置換ジフェニルカーボネートであり、特に好ましくはジフェニルカーボネートである。なお、炭酸ジエステルは、塩化物イオンなどの不純物を含む場合があり、重縮合反応を阻害したり、得られるポリカーボネート樹脂の色相を悪化させたりする場合があるため、必要に応じて、蒸留などにより精製したものを使用することが好ましい。
 原料であるジヒドロキシ化合物と炭酸ジエステルは、反応器に独立に投下してもエステル交換反応をさせることは可能であるが、エステル交換反応前に均一に混合することもできる。この混合の温度は80℃以上がよく、好ましくは90℃以上であり、その上限は250℃以下がよく、好ましくは200℃以下、更に好ましくは150℃以下である。中でも100℃以上130℃以下が好適である。混合の温度が低すぎると溶解速度が遅かったり、溶解度が不足したりする可能性があり、しばしば固化等の不具合を招き、混合の温度が高すぎるとジヒドロキシ化合物の熱劣化を招く場合があり、結果的に得られるポリカーボネート樹脂の色相が悪化する可能性がある。
 本発明において、炭酸ジエステルは、反応に用いる本発明のジヒドロキシ化合物を含む全ジヒドロキシ化合物に対して、0.90~1.20のモル比率で用いるとよく、好ましくは、0.95~1.10、更に好ましくは0.97~1.03、特に好ましくは0.99~1.02である。このモル比率が小さくなると、製造されたポリカーボネート樹脂の末端水酸基が増加して、ポリマーの熱安定性が悪化し、成形時に着色を招いたり、エステル交換反応の速度が低下したり、所望する高分子量体が得られない可能性がある。一方、このモル比率が大きくなると、エステル交換反応の速度が低下したり、所望とする分子量のポリカーボネートの製造が困難となる場合がある。エステル交換反応速度の低下は、重合反応時の熱履歴を増大させ、結果的に得られたポリカーボネート樹脂の色相を悪化させる可能性がある。
 更には、本発明のジヒドロキシ化合物(A)を含む全ジヒドロキシ化合物に対して、炭酸ジエステルのモル比率が増大すると、得られるポリカーボネート樹脂中の残存炭酸ジエステル量が増加し、これが成形時にガスとなり成形不良を招いたり、製品からブリードアウトしたりする場合があり、好ましくない。本発明の方法で得られるポリカーボネート樹脂ペレットまたはフィルムに残存する炭酸ジエステルの濃度は、好ましくは200重量ppm以下、更に好ましくは100重量ppm以下、特に好ましくは60重量ppm以下、中でも30重量ppm以下が好適である。
(重縮合反応触媒)
 本発明のポリカーボネート樹脂は、上述のように本発明のジヒドロキシ化合物(A)を含むジヒドロキシ化合物と前記式(5)で表される炭酸ジエステルとを重縮合反応させてポリカーボネート樹脂を製造する。より詳細には、重縮合反応させ、副生するモノヒドロキシ化合物等を系外に除去することによって得られる。この場合、通常、重縮合反応触媒存在下で重縮合反応を行う。
 本発明のポリカーボネート樹脂の製造時に使用し得る重縮合反応触媒(以下、単に触媒、重縮合触媒と言うことがある)は、反応速度やポリカーボネート樹脂の色調に非常に大きな影響を与え得る。
 用いられる触媒としては、製造されたポリカーボネート樹脂の透明性、色相、耐熱性、熱安定性、及び機械的強度を満足させ得るものであれば限定されないが、長周期型周期表における1族または2族(以下、単に「1族」、「2族」と表記する。)の金属化合物、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物が挙げられる。好ましくは1族金属化合物及び2族金属化合物のうち少なくとも一方が使用される。それらの中でも、2族の金属およびリチウムからなる群より選ばれる少なくとも1種の金属の化合物がより好ましい。
 1族金属化合物及び2族金属化合物のうち少なくとも一方と共に、補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物を併用することも可能であるが、1族金属化合物及び2族金属化合物のうち少なくとも一方のみを使用することが特に好ましい。中でも2族の金属及びリチウムからなる群より選ばれる少なくとも1種の金属化合物であることが特に好ましい。
 また、1族金属化合物及び2族金属化合物の形態としては通常、水酸化物、又は炭酸塩、カルボン酸塩、フェノール塩といった塩の形態で用いられるが、入手のし易さ、取扱いの容易さから、水酸化物、炭酸塩、酢酸塩が好ましく、色相と重縮合活性の観点からは酢酸塩が好ましい。
 1族金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸水素セシウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、酢酸セシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸セシウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化ホウ素セシウム、フェニル化ホウ素ナトリウム、フェニル化ホウ素カリウム、フェニル化ホウ素リチウム、フェニル化ホウ素セシウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、安息香酸セシウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、リン酸水素2セシウム、フェニルリン酸2ナトリウム、フェニルリン酸2カリウム、フェニルリン酸2リチウム、フェニルリン酸2セシウム、ナトリウム、カリウム、リチウム、セシウムのアルコレート、フェノレート、ビスフェノールAの2ナトリウム塩、2カリウム塩、2リチウム塩、2セシウム塩等が挙げられ、中でもリチウム化合物が好ましい。
 2族金属化合物としては、例えば、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸水素ストロンチウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウム等が挙げられ、中でもマグネシウム化合物、カルシウム化合物、バリウム化合物が好ましく、重縮合活性と得られるポリカーボネート樹脂の色相の観点から、マグネシウム化合物及び/又はカルシウム化合物が更に好ましく、最も好ましくはカルシウム化合物である。
 塩基性ホウ素化合物としては、例えば、テトラメチルホウ酸、テトラエチルホウ酸、テトラプロピルホウ酸、テトラブチルホウ酸、トリメチルエチルホウ酸、トリメチルベンジルホウ酸、トリメチルフェニルホウ酸、トリエチルメチルホウ酸、トリエチルベンジルホウ酸、トリエチルフェニルホウ酸、トリブチルベンジルホウ酸、トリブチルフェニルホウ酸、テトラフェニルホウ酸、ベンジルトリフェニルホウ酸、メチルトリフェニルホウ酸、ブチルトリフェニルホウ酸等のナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、バリウム塩、マグネシウム塩、あるいはストロンチウム塩等が挙げられる。
 塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ-n-プロピルホスフィン、トリイソプロピルホスフィン、トリ-n-ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィン、あるいは四級ホスホニウム塩等が挙げられる。
 塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリエチルメチルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリブチルベンジルアンモニウムヒドロキシド、トリブチルフェニルアンモニウムヒドロキシド、テトラフェニルアンモニウムヒドロキシド、ベンジルトリフェニルアンモニウムヒドロキシド、メチルトリフェニルアンモニウムヒドロキシド、ブチルトリフェニルアンモニウムヒドロキシド等が挙げられる。
 アミン系化合物としては、例えば、4-アミノピリジン、2-アミノピリジン、N,N-ジメチル-4-アミノピリジン、4-ジエチルアミノピリジン、2-ヒドロキシピリジン、2-メトキシピリジン、4-メトキシピリジン、2-ジメチルアミノイミダゾール、2-メトキシイミダゾール、イミダゾール、2-メルカプトイミダゾール、2-メチルイミダゾール、アミノキノリン、グアニジン等が挙げられる。
 上記重縮合触媒の使用量は、通常、重縮合に使用した全ジヒドロキシ化合物1mol当たり0.1μmol~300μmol、好ましくは0.5μmol~100μmolであり、中でもリチウム及び長周期型周期表における2族からなる群より選ばれた少なくとも1種の金属化合物を用いる場合、特にはマグネシウム化合物及び/またはカルシウム化合物を用いる場合は、金属量として、前記全ジヒドロキシ化合物1mol当たり、通常、0.1μmol以上、好ましくは0.3μmol以上、特に好ましくは0.5μmol以上とする。また上限としては、通常20μmol、好ましくは10μmol、さらに好ましくは3μmol、特に好ましくは1.5μmolが好適である。
 触媒量が少なすぎると、重縮合速度が遅くなるため、所望の分子量のポリカーボネート樹脂を得ようとすると、重縮合温度を高くせざるを得なくなり、得られたポリカーボネート樹脂の色相が悪化したり、また、未反応の原料が重縮合途中で揮発してジヒドロキシ化合物と炭酸ジエステルのモル比率が崩れ、所望の分子量に到達しない可能性がある。一方、重縮合触媒の使用量が多すぎると、好ましくない副反応を併発し、得られるポリカーボネート樹脂の色相の悪化や成形加工時の樹脂の着色を招く可能性がある。
 また、1族金属、中でもナトリウム、カリウム、セシウムは、ポリカーボネート樹脂中に多く含まれると色相に悪影響を及ぼす可能性があり、該金属は使用する触媒からのみではなく、原料や反応装置から混入する場合があるため、ポリカーボネート樹脂中のこれらの合計量は、金属量として、前記全ジヒドロキシ化合物1mol当たり、通常2μmol以下、好ましくは1μmol以下、より好ましくは0.5μmol以下である。
<原料調製工程>
 溶融重縮合による反応は、反応速度やポリカーボネート樹脂の品質を一定に制御するために、ジヒドロキシ化合物と炭酸ジエステルとのモル比を厳密に制御する必要がある。要求される定量精度を得るには固体を供給する方法では難しいため、ポリカーボネート樹脂の原料として使用するジヒドロキシ化合物、および炭酸ジエステルは、通常、窒素、アルゴン等の不活性ガスの雰囲気下、バッチ式、半回分式または連続式の攪拌槽型の装置を用いて溶融液として扱われる。
 本発明のジヒドロキシ化合物(A)は、通常知られるジヒドロキシ化合物の中でも、特に熱や酸素の影響を受けやすく、原料調製工程において溶融状態で取り扱う間に劣化し、反応速度が低下したり、得られるポリカーボネート樹脂の着色を招きやすい。さらに、本発明のジヒドロキシ化合物(A)は通常、室温で固体状態であり、溶解槽に供給する際に、空気を固体間に巻き込んでしまうおそれがある。溶解槽における酸素濃度をゼロにすることは実質的に不可能であり、酸素による劣化を最小に抑えるためには、反応器に供給されるまでの時間を最短にすることが肝要である。さらにはジヒドロキシ化合物を液化させる温度を低くすることが好ましい。溶融状態を保持するのに必要最低限の温度においても劣化が進行してしまうため、溶融させる際の温度を最低限に抑えた上で、本発明のジヒドロキシ化合物(A)を液化させてから反応器に供給されるまでの時間を最短にすることや、本発明のジヒドロキシ化合物(A)と炭酸ジエステルを混合してから反応器へ供給する間での経過時間を最短にすることが重要である。
 本発明においては、いずれの事例においても、本発明のジヒドロキシ化合物(A)を液化してから反応器に供給するまでの滞留時間は、10時間以内であり、好ましくは8時間以内、さらに好ましくは6時間以内であり、特に好ましくは4.5時間以内である。一方、本発明のジヒドロキシ化合物を短時間で液化させようとすると、高温に加熱しなければならなくなるため、かえって原料の劣化を招きやすくなる。また、溶解槽で溶融した原料をある程度蓄えておかないと、何らかのトラブルが発生して原料供給が停止した場合に、反応工程まで停止しなければならない事態を招き、再度反応を立ち上げるために大幅に原料がロスされる。そのため、滞留時間の下限は、0.1時間以上であり、好ましくは0.3時間以上、さらに好ましくは0.5時間以上である。
 なお、本発明における反応器は、重縮合反応によって生成するモノヒドロキシ化合物(炭酸ジエステルとしてジフェニルカーボネートを用いる場合はフェノール)が理論生成量の5%以上生成する容器と定義される。
 さらに、本発明のジヒドロキシ化合物(A)は熱劣化により反応性が低下してしまうが、溶融状態で保存する以上、完全に劣化を抑制することは困難である。しかし、その劣化の程度を一定の状態に保つことができれば、後の重縮合工程を安定化させることが可能となる。そのために、液化してから反応器に供給するまでの滞留時間が一定であることが好ましい。後述の通り、溶解槽への原料の供給量と溶解槽からの原料の排出量とを同じにすることで内容液の液量(kg)が一定になり、加えて前記溶解槽からの原料の排出量(kg/hr)を一定とすることで、滞留時間を一定に保つことが可能となる。この時、原料の供給量本発明のジヒドロキシ化合物の滞留時間は、設定時間の±20%以内の範囲に調節することが好ましく、さらに±10%以内に調節することが好ましい。また、液化温度も設定温度の±10℃以内の範囲に調節することが好ましく、さらには±5℃以下の範囲に調節することが好ましい。
 一方、溶融重縮合によるポリカーボネート樹脂の製造には、一般に、反応に用いるジヒドロキシ化合物と炭酸ジエステルは事前に所定のモル比となるように混合し、その原料調製液を溶融状態で貯蔵する方法が用いられていた。しかし、本発明のジヒドロキシ化合物(A)は親水性が高いため、炭酸ジエステルや極性の低いジヒドロキシ化合物と混合すると、溶液が相分離を起こす。例えば、イソソルビドは融点が約60℃であるが、ジフェニルカーボネートと混合すると、約120℃に相分離温度が現れる。又、スピログリコールをスピログリコールの融点より低い温度でジフェニルカーボネートと混合すると、約170℃に相分離温度が現れる。このような状況になると、均一にするには相分離温度以上の温度まで上げる必要があり、必要以上の熱負荷がかかってしまうことになる。原料溶融液が相分離した状態では、反応器に原料を供給する際に不均一な組成の液が送られて、所望の分子量まで反応が進行しなくなるおそれがある。
 上記の観点から、本発明では、本発明のジヒドロキシ化合物(A)と炭酸ジエステルをそれぞれ別々に反応器に供給させるか、反応器の直前に混合して反応器に供給されることが好ましい。それぞれ個別に定量ポンプにより反応器に供給することで、原料を混合するための槽を設ける必要がなく、余計な滞留時間を削減することができる。さらに混合液の相分離によって不均一な液が反応器に投入されることもなくなるため、各成分ごとに溶融温度を最適に設定することが可能となる。
 反応器に配管を複数つなげると、反応器の圧力の制御が難しくなるため、反応器に供給される前に配管内ですべての原料が混合されることが特に好ましい。前述のとおり、原料調製液が相分離を起こす可能性がある場合は、原料を混合する際にスタティックミキサーを使用して、液を均一に分散させることが好ましい。
 又、原料を反応器に供給する方法によらず、本発明のジヒドロキシ化合物(A)と炭酸ジエステルとを、これらを混合してから反応器へ供給される迄の経過時間が通常5時間未満、好ましくは2時間未満、更に好ましくは30分未満となるように反応器へ連続的に供給するか、又はこれらを混合せずに独立に反応器に供給することが好ましい。該経過時間が長すぎると、得られるポリカーボネート樹脂の色調が劣る傾向がある。又、本発明のジヒドロキシ化合物(A)がスピログリコールである場合、スピログリコールを該融点より低い温度でジフェニルカーボネートと混合した混合原料液は、長時間溶液のまま保持されると、スピログリコール自体の開環反応を招き、得られた樹脂が架橋しゲル化するという問題点を生ずるおそれがある。
 尚、上記経過時間は、本発明のジヒドロキシ化合物が前記式(2)で表される化合物である場合、好ましくは20分以下、更に好ましくは10分以下、特に好ましくは5分以下である。
 尚、本発明のジヒドロキシ化合物(A)を液化(溶解または溶融)する方法としては、一括して溶解槽に添加して溶融する方法や、本発明のジヒドロキシ化合物(A)をあらかじめ溶融させ、その溶融液を有する溶解槽に、本発明の固体のジヒドロキシ化合物(A)を供給して液化する方法が挙げられる。
 これらのなかでも、後者の方法を採用すると、液化する時間を最短にすることができる。このため、本発明のジヒドロキシ化合物(A)をあらかじめ溶融させ、その溶融液を有する溶解槽に、本発明の固体のジヒドロキシ化合物(A)を連続的に供給し、同時に該溶解槽から液化したジヒドロキシ化合物を連続的に排出する方法を採用すると、液化する時間を最短にすることができるとともに、連続的にかつ一定速度で溶融されたジヒドロキシ化合物を排出することが可能となる。
 本発明のジヒドロキシ化合物(A)がスピログリコールである場合、スピログリコールは比較的融点が高いため、単独で溶融させるよりも、より融点の低い炭酸ジエステルと混合することにより、溶解温度や溶融保持温度を低くできる。従って、固体のジヒドロキシ化合物と炭酸ジエステルを連続して溶解槽に一定流量で供給し、同時に該溶解槽から混合液を連続的に排出する方法を採用すると、液化と溶融状態の保持にかかる熱履歴を最小にすることができるとともに、溶解にかかる滞留時間を一定にすることが可能となる。原料の熱劣化は完全には避けられないが、滞留時間を一定に保つことで、一定の品質の原料を反応器に供給することができ、重縮合工程の運転やポリカーボネート樹脂の品質の安定化につながる。
 以下、本発明の滞留時間について説明する。
 まず、本発明において、ジヒドロキシ化合物を液化してから反応器に供給するまでに該ジヒドロキシ化合物を含む液が通過する装置を、溶解槽と移送配管(スタティックミキサーやフィルターを含む)とに区別する。そして、(1)溶解槽において、ジヒドロキシ化合物を液化(溶解または溶融)する段階、ジヒドロキシ化合物と炭酸ジエステルを混合する段階、及び原料溶融液を貯蔵する段階の全てに要する時間と、(2)移送配管内を移動し、スタティックミキサーやフィルターを通過する段階の全てに要する時間とを足し合わせた時間が現実の滞留時間となる。但し、移送配管内を移動する全ての段階に要する時間は、溶解槽における全ての段階に要する時間に対して、無視できるほど小さいことから、本発明においては、溶解槽における全ての段階に要する時間の合計を滞留時間Tと定義する。
 本発明において、前記滞留時間Tは、溶解槽iにおける滞留時間Tの総和として記述できる。ここで溶解槽iにおける滞留時間Tは、以下に詳述するとおり、溶解槽iへの物質の流入及び溶解槽iからの物質の流出によって分類される4種類の要素(状態)の滞留時間Tの組み合わせに分解できる。従って、溶解槽iにおける滞留時間Tはジヒドロキシ化合物の液化方法に従って、下記の要素の滞留時間の合計で表される。なお、本発明においては、エステル交換反応は連続式であり、反応器に供給する流量が一定であるため、少なくとも最終段の溶解槽から排出する混合液の流量は一定である。
(要素1)溶解槽から物質の流出がない状態
 この場合、溶解槽iから物質の流出がない事を指し、溶解槽iの中で物質が静置されているか、攪拌されているかは問わない。溶解槽iの要素1としての滞留時間T [hr]は溶解槽iに物質が保持されている時間t[hr]となる。
=t    (10)
 T :溶解槽iの要素1としての滞留時間[hr]
 t:溶解槽iに物質が保持されている時間[hr]
 要素1の例としては、溶解槽で固体を加熱攪拌するのに要する時間、バッチ式でジヒドロキシ化合物と炭酸ジエステルを混合する時間、原料溶融液を貯蔵する時間等が該当する。なお、溶解槽から溶液を排出する時間は後述の要素2に分類される。
(要素2)溶解槽への物質流入がなく、溶解槽からの物質流出の流量が一定の状態
 溶解槽iの要素2としての滞留時間T [hr]は、溶解槽i内部に存在する物質の総量W[kg]と溶解槽iから該物質が流出する流量F[kg/hr]とから次のように求まる。
=W/F    (11)
 T :溶解槽iの要素2としての滞留時間[hr]
 W:溶解槽i内部に存在する物質の量[kg]
 F:溶解槽iから排出する物質の流量[kg/hr]
 要素2の例としては、バッチ式の溶解槽からの排出における滞留時間が該当する。
(要素3)溶解槽への物質流入の流量と溶解槽からの物質流出の流量が一定、かつ等しい状態
 溶解槽i内部に存在する物質の量W[kg]は一定であるので、要素3としての滞留時間T [hr]は、前記Wと、溶解槽iから該物質が流出する流量F[kg/hr]とから次のように求まる。
=W/F    (12)
 T :溶解槽iの要素3としての滞留時間[hr]
 W:溶解槽i内部に存在する物質の量[kg]
 F:溶解槽iから排出する物質の流量[kg/hr]
 要素3の例としては、連続式でジヒドロキシ化合物と炭酸ジエステルを混合する時間が該当する。
(要素4)溶解槽への物質流入の流量又は該溶解槽からの物質流出の流量が一定でない、もしくは物質流入の流量と物質流出の流量が均衡しない状態
 この場合、溶解槽i内部に存在する物質の量W[kg]の変化が一律ではないので、該物質を排出する時、滞留時間に差が生じる。そこで、溶解槽iの要素4としての滞留時間T [hr]は、溶解槽iにおける物質の最長滞留時間T max[hr]とする。
=T max    (13)
 T :溶解槽iの要素4としての滞留時間[hr]
 T max:溶解槽iにおける物質の最長滞留時間[hr]
 要素4の例としては、バッチ式溶解装置や間欠式混合装置等における滞留時間等が該当する。
 本発明において、ジヒドロキシ化合物を液化してから反応器に供給するまでの方法としては、下記のような方法があるが、これに限定されずいずれの方法を用いても良い。
(方法1)固体のジヒドロキシ化合物を溶融した炭酸ジエステル中に溶解して液化する方法。
(方法2)所定量のジヒドロキシ化合物の一部と炭酸ジエステルの溶融混合液に、所定量のジヒドロキシ化合物の残部を添加し溶解する方法。
(方法3)液体のジヒドロキシ化合物と液体の炭酸ジエステルを溶解槽で混合する方法。この方法においては、固体のジヒドロキシ化合物を単独で加熱融解して液化する工程を含む。
(方法4)固体のジヒドロキシ化合物と固体の炭酸ジエステルの混合物を加熱融解して液化する方法。
 尚、第1溶解槽において未溶解の固体ジヒドロキシ化合物を含んでいる場合は、第1溶解槽の排出液を第2溶解槽に送液後、第2溶解槽においてジヒドロキシ化合物を完全溶解すればよい。
以下、本発明においてジヒドロキシ化合物を液化してから反応器に供給するまでの代表例について、前記定義に基づく滞留時間Tの計算式を記述する。
(代表例1)第1溶解槽において、液体の炭酸ジエステルと固体のジヒドロキシ化合物とをそれぞれ連続的に投入して混合し、該混合液を第2溶解槽へ連続的に送液し、第2溶解槽で完全溶解した後、連続的に排出する場合
 この例では、ジヒドロキシ化合物が第1溶解槽に投入された時点から、液化したジヒドロキシ化合物と炭酸ジエステルの混合溶融液を第2溶解槽から排出する時点までを溶解槽内の滞留時間Tとする。上述の通り、溶解槽同士、又は溶解槽と反応器を接続する配管の影響は考慮しない。
T=T+T    (14)
 T:第1溶解槽に原料を投入した時点から、第2溶解槽から混合溶融液を排出する時点までのジヒドロキシ化合物の滞留時間[hr]
 T:第1溶解槽におけるジヒドロキシ化合物の滞留時間[hr]
 T:第2溶解槽におけるジヒドロキシ化合物の滞留時間[hr]
 ここで、第1溶解槽、第2溶解槽とも連続式であり、それぞれの溶解槽内部に存在する物質の量は一定で、かつ、それぞれの溶解槽から排出する物質の流量は一定であるから、第1溶解槽、第2溶解槽ともに前記要素3を適用する。
T=T +T     (14)
=W/F    (15)
 T :第1溶解槽におけるジヒドロキシ化合物の滞留時間[hr]
 W:第1溶解槽内部に存在する物質の量[kg]
 F:第1溶解槽から排出する物質の流量[kg/hr]
=W/F    (16)
 T :第2溶解槽におけるジヒドロキシ化合物の滞留時間[hr]
 W:第2溶解槽内部に存在する物質の量[kg]
 F:第2溶解槽から排出する物質の流量[kg/hr]
 従って、式(14)は下記の通り記述される。
T=T +T =W/F+W/F    (17)
(代表例2)第1溶解槽でジヒドロキシ化合物と炭酸ジエステルの混合液を調製後、第2溶解槽に一度に供給し、完全溶解する場合
 この例においても、ジヒドロキシ化合物が第1溶解槽に投入された時点から、液化したジヒドロキシ化合物と炭酸ジエステルの混合液を第2溶解槽から排出する時点までを溶解槽内の滞留時間Tとする。上述の通り、溶解槽同士、又は溶解槽と反応器を接続する配管の影響は考慮しない。
T=T+T    (18)
 T:ジヒドロキシ化合物が第1溶解槽に投入された時点から、液化したジヒドロキシ化合物と炭酸ジエステルの混合液が第2溶解槽から排出された時点までのジヒドロキシ化合物の滞留時間[hr]
 T:第1溶解槽におけるジヒドロキシ化合物の滞留時間[hr]
 T:第2溶解槽におけるジヒドロキシ化合物の滞留時間[hr]
 この例では、第1溶解槽はバッチ式に相当するので、第1溶解槽の滞留時間Tは、加熱を開始した時点から排出を開始した時点までの滞留時間(攪拌に要する時間)であり、該滞留時間は前記要素1に該当するのでT と表記し、排出段階における滞留時間は上記要素2に該当するのでT と表記する。第1溶解槽におけるジヒドロキシ化合物の滞留時間は次式で記述される。
=T +T =t+W/F   (19)
 T:第1溶解槽におけるジヒドロキシ化合物を含む液の滞留時間[hr]
 T :第1溶解槽におけるジヒドロキシ化合物を含む液の攪拌に要する時間[hr]
 T :第1溶解槽におけるジヒドロキシ化合物を含む液の排出に要する時間[hr]
 t:第1溶解槽で攪拌に要する時間[hr]
 W:第1溶解槽内部に存在する物質の量[kg]
 F:第1溶解槽から排出する物質の流量[kg/hr]
但し、第1溶解槽の排出時間が第1溶解槽で攪拌に要する時間よりきわめて短い場合は、排出時間W/Fを無視してもかまわない。
 一方、第2溶解槽において、ジヒドロキシ化合物と炭酸ジエステルの混合液の量が変動し、第2溶解槽における混合液の滞留時間にばらつきが生じるため、第2溶解槽の滞留時間Tは、前記要素4に従い、最も長い滞留時間T maxとする。
=T max    (20)
 T :第2溶解槽におけるジヒドロキシ化合物の滞留時間[hr]
 T max:第2溶解槽における混合液の最長の滞留時間[hr]
従って、この例における滞留時間Tは次式となる。
T=T +T =t+W/F+T max    (21)
(代表例3)第1溶解槽に固体のジヒドロキシ化合物を投入し、加熱融解し、該溶融液を第2溶解槽に送液し、第2溶解槽で連続的に液体の炭酸ジエステルと混合し、排出する場合
 この例では、第1溶解槽はバッチ式による原料の加熱融解であり、第2溶解槽は連続式混合である。第1溶解槽において、ジヒドロキシ化合物を投入後、加熱を開始した時点から、第2溶解槽出口から原料混合液を排出した時点までを溶解槽内の滞留時間Tとする。
T=T+T    (22)
 T:第1溶解槽において、ジヒドロキシ化合物を投入後、加熱を開始した時点から、第2溶解槽出口から原料混合液を排出した時点までのジヒドロキシ化合物の滞留時間[hr]
 T:第1溶解槽におけるジヒドロキシ化合物の滞留時間[hr]
 T:第2溶解槽におけるジヒドロキシ化合物の滞留時間[hr]
 この例においても、第1溶解槽において、加熱を開始した時点から排出を開始した時点までの滞留時間と、排出段階における滞留時間に分割でき、それらの和を第1溶解槽内の滞留時間Tとするので、代表例2の第1溶解槽の場合と同様、次式である。
=T +T =t+W/F    (23)
 T :加熱を開始した時点から排出を開始した時点までの第1溶解槽内のジヒドロキシ化合物の滞留時間[hr]
 T :排出段階における溶解槽内のジヒドロキシ化合物の滞留時間[hr]
 t:第1溶解槽で攪拌に要する時間[hr]
 W:第1溶解槽内のジヒドロキシ化合物の量[kg]
 F:第1溶解槽から排出するジヒドロキシ化合物の流量[kg/hr]
 一方、第2溶解槽における滞留時間Tは、上記要素3の連続混合に該当するので、滞留時間Tは次式になる。
=T =W/F    (24)
 T :第2溶解槽内のジヒドロキシ化合物の滞留時間[hr]
 W:第2溶解槽内のジヒドロキシ化合物の量[kg]
 F:第2溶解槽から排出するジヒドロキシ化合物の流量[kg/hr]
 以上をまとめると、この例における滞留時間Tは、次式の通り記述される。
T=T+T=t+W/F+W/F    (25)
(代表例4)第1溶解槽にあらかじめ所定量の一部のジヒドロキシ化合物と炭酸ジエステルの溶融混合液を蓄えておき、所定量の残部の固体のジヒドロキシ化合物を供給して完全溶解する場合
 この例では、所定量の一部のジヒドロキシ化合物と炭酸ジエステルの溶融混合液をあらかじめ第1溶解槽に蓄えている貯留段階、第1溶解槽に所定量の残部の固体のジヒドロキシ化合物を供給して溶解する段階、及び第1溶解槽からジヒドロキシ化合物を抜き出す段階に分割することができる。ここで、あらかじめ第1溶解槽に蓄えられているジヒドロキシ化合物と炭酸ジエステルとの溶融混合液の貯留段階の滞留時間と、第1溶解槽に所定量の残部の固体のジヒドロキシ化合物を供給して溶解する段階における滞留時間は、溶解槽からの排出がないため、前記要素1に該当し、まとめてT として扱う。
=t    (26)
 T :第1溶解槽にあらかじめ蓄えられている所定量の一部のジヒドロキシ化合物と炭酸ジエステルの溶融混合液の滞留時間及び、第1溶解槽に所定量の残部の固体のジヒドロキシ化合物を供給して溶解する段階における滞留時間[hr]
 t:第1溶解槽にあらかじめ上記溶融混合液が蓄えられている時間と、第1溶解槽に所定量の残部の固体のジヒドロキシ化合物を供給して溶解する段階の所要時間[hr]
 本代表例における滞留時間Tは、第1溶解槽における前記要素1の滞留時間の合計T 、及び、第1溶解槽からの排出段階での滞留時間T の和であり、次式(27)となる。
T=T +T =t+T     (27)
 T:第1溶解槽において、所定量の一部のジヒドロキシ化合物と炭酸ジエステルの溶融混合液を投入した時点から、所定量の残部の固体のジヒドロキシ化合物の供給を経て、第1溶解槽出口から原料混合液を排出した時点までのジヒドロキシ化合物の滞留時間[hr]
 ここで、第1溶解槽からジヒドロキシ化合物を抜き出す段階の滞留時間は前記要素2に該当する。
=W/F    (28)
 T :第1溶解槽からの抜き出し段階におけるジヒドロキシ化合物の滞留時間[hr]
 W:第1溶解槽内部に存在する混合液の全量[kg]
 F:第1溶解槽から排出する混合液の流量[kg/hr]
 以上をまとめると次式(29)になる。
T=T +T =t+W/F    (29)
 本発明のジヒドロキシ化合物(A)の1種であるイソソルビドは、結晶性化合物の中でも比較的、融解熱が大きく、溶融させる際の熱量が大きくなるため、固体を加熱して溶融させようとすると、高温に加熱する必要があるため、熱劣化を招きやすい。そのため、前記した、あらかじめイソソルビドを溶融させた液の中に固体のイソソルビドを供給して液化させる方法が、過剰な熱量を与えるおそれが少なくなるため、特に好ましい。
 液化状態の本発明のジヒドロキシ化合物(A)を保有する溶解槽に、固体状態の本発明のジヒドロキシ化合物(A)を添加して溶解させた後、前記溶解槽から、連続的に本発明のジヒドロキシ化合物(A)が排出される場合は、前記要素2に相当する。ここで溶解槽内部に保有している本発明のジヒドロキシ化合物(A)の重量をA[kg]、該ジヒドロキシ化合物(A)の排出流量をB[kg/hr]とした時、溶解槽における本発明のジヒドロキシ化合物(A)の滞留時間はA/B[hr]で表される。
 又、本発明のジヒドロキシ化合物(A)が溶解槽に連続的に供給され、同時に連続的に排出される場合は、定常状態においては初期に本発明のジヒドロキシ化合物(A)をあらかじめ溶融させる際にかかった時間は考慮しないので、溶解槽への物質流入の流量と、該溶解槽からの物質流出の流量が等しく、かつ一定である。従って、前記要素3に相当し、溶解槽における本発明のジヒドロキシ化合物(A)の滞留時間はA/B[hr]で表される。なお、両方の場合とも溶解槽内の本発明のジヒドロキシ化合物(A)の量A[kg]には、固体状のジヒドロキシ化合物を含んでいてもよい。
 この時、溶解槽における滞留時間は、5時間以内が好ましく、さらに好ましくは4時間以内であり、最も好ましくは3時間以内である。また、本発明のジヒドロキシ化合物(A)の代表例であるイソソルビドを液化させるための所要時間として、現実的には0.05時間以上、好ましくは0.1時間、更に好ましくは0.5時間が必要となる。また、固体の供給速度が速すぎると、溶融液の温度を保持することが困難となり、溶解槽や移送配管内で固化して閉塞を招くおそれがある。したがって、固体のイソソルビドを供給する溶解槽における経過時間A/Bは、下記式(I)で示される条件となるのが好ましい。
  0.05 ≦ A/B ≦ 5 (I)
 本発明のジヒドロキシ化合物(A)、特にイソソルビドは吸湿性の高い化合物であり、固体状態で保存しておくと、圧密により大きな塊が生成しやすい。溶解槽に大きな塊が供給されると溶融時間が余計にかかるため、できる限り細かく砕いた状態で溶解槽に供給されることが好ましい。塊を砕く操作には通常知られている解砕機が用いられる。解砕後前記溶解槽に供給される固体のジヒドロキシ化合物には、長径(最大長)が3cm以上の塊状物を1kg当たり10個以下含有することが好ましく、さらに好ましくは1kg当たり5個以下、最も好ましくは塊状物が含まれないことである。細かく砕きすぎると、潮解するおそれや、固体が空気を巻き込んで、溶解槽に空気が混入するおそれがあるため、長径が1mm以下の塊は含まれないことが好ましい。
 本発明のジヒドロキシ化合物(A)を液化するために用いられる溶解槽は、ジヒドロキシ化合物を加温する必要があるため、加熱媒体が流通する熱交換器を具備していることが好ましい。また、溶融時間を短縮し、該ジヒドロキシ化合物が加熱媒体との接触面において局所過熱されることによる劣化を抑制するために、攪拌機を用いて攪拌されることが好ましい。
 本発明のジヒドロキシ化合物(A)を液化する温度、あるいは溶融状態を維持する温度は、(該ジヒドロキシ化合物の融点+50℃)以下が好ましい。さらに好ましくは(該ジヒドロキシ化合物の融点+40℃)以下、特に好ましくは(該ジヒドロキシ化合物の融点+30℃)以下である。すなわち、溶解槽の内温と加熱媒体温度との差は、50℃以下であることが好ましく、さらに好ましくは40℃以下、特に好ましくは30℃以下である。
 本発明のジヒドロキシ化合物としてイソソルビドを使用する場合、イソソルビドの液化温度は、120℃以下が好ましく、さらには110℃以下が好ましく、特には100℃以下が好ましく、最も好ましくは90℃以下である。すなわち、溶解槽の内温は、120℃以下が好ましく、さらに好ましくは110℃以下、特に好ましくは100℃以下である。
 溶解槽の内温が120℃より高いと、イソソルビド自体の着色を招き、さらには反応性が低下するという問題点を生ずるおそれがある。なお、溶解槽の温度の下限は、70℃が好ましく、75℃が更に好ましい。70℃より低いと、イソソルビドが結晶化して配管などが閉塞する問題点を生じるおそれがある。
 又、本発明のジヒドロキシ化合物としてスピログリコールを使用する場合、スピログリコールの液化温度は通常210℃以下であるが、200℃以下であることが好ましい。スピログリコールの融点は約200℃であるが、炭酸ジエステルに固体のスピログリコールを投入して混合することにより200℃以下での溶解が可能となる。すなわち、溶解槽の内温は、200℃以下が好ましく、さらに好ましくは190℃以下、特に好ましくは185℃以下である。
 溶解槽の内温が210℃より高いと、スピログリコール自体の開環反応を招き、樹脂が架橋しゲル化するおそれがある。なお、溶解槽の温度の下限は、170℃以上が好ましく、175℃以上が更に好ましい。170℃より低いと、スピログリコールが結晶化して配管などが閉塞するおそれがある
 本発明のジヒドロキシ化合物(A)としてイソソルビドやスピログリコール以外のジヒドロキシ化合物を使用する場合は、該ジヒドロキシ化合物の融点や、炭酸ジエステルと混合したときの相分離温度等を考慮して適宜決定する。
 さらに、溶解槽の内温と加熱媒体温度との差が50℃より大きいと、熱交換器との接触面において局所的に加熱されて、本発明のジヒドロキシ化合物(A)が劣化しやすくなる問題点を生ずるおそれがある。したがって、溶解槽の内温と加熱媒体温度との差が50℃以下であることが好ましい。なお、溶解槽の内温と加熱媒体温度との差はなくてもよく、この差の下限は、0℃でも構わない。加熱媒体温度が内温よりも低くてもよい。
 溶解槽内部のジヒドロキシ化合物の容積に対して、加熱媒体の接触面積が小さいと、伝熱の効率が悪くなるため、熱媒温度を高くする必要がある。その場合、加熱媒体に接触している部分の液が局所過熱を受けて、熱劣化を起こしやすくなる。ジヒドロキシ化合物と加熱媒体との接触面積を広げるために、必要に応じて溶解槽内に内部熱交換器を設けることで、伝熱効率が向上し、より低温・短時間で溶解を完了することができる。
 溶解槽内部のジヒドロキシ化合物の容積をV[m]、ジヒドロキシ化合物と熱交換器との接触面積をS[m]とした時に、V/Sが0.3以下となるのが好ましく、さらには0.25以下が好ましく、特には0.21以下が好ましい。なお、V/Sの下限は、0.1がよく、0.15が好ましい。0.1未満になると過度な数の内部熱交換器を溶解槽内に設置することになり、必要な容積を確保できなくなるため、現実的ではない。
 本発明のジヒドロキシ化合物(A)は直列に連結された2つ以上の前記溶解槽を用いて液化されることが好ましい。1槽目の溶解槽に供給されるジヒドロキシ化合物は通常、室温程度の温度のものが供給されるために、溶融温度まで昇温するために溶融状態を維持できる温度よりも高い熱媒温度が必要となる。その場合、溶融が完了した部分も高い温度にさらされ続けるために、熱劣化が起きやすくなる。ある程度溶融させた液を2槽目に移送することで、2槽目では大きな熱量を供給する必要がないため、1槽目よりも低温で溶融を完了させることが可能となる。さらに熱劣化を抑制させるためには、下流側の溶解槽の加熱媒体温度を上流側の溶解槽の加熱媒体温度以下に設定することが好ましい。この場合の温度差は特に限定されないが、好ましくは20℃以上、更に好ましくは30℃以上である。
 本発明のジヒドロキシ化合物(A)は酸化劣化を受けやすいために、原料調製工程や重縮合工程の装置内は窒素やアルゴンなどの不活性ガス雰囲気に保たれることが好ましい。通常、工業的に用いられるのは窒素である。固体の化合物を装置内に投入する場合、空気が固体に巻き込まれて混入するおそれがあるため、固体のジヒドロキシ化合物を溶解槽に投入する前に、ジヒドロキシ化合物を受け入れた容器内を減圧や加圧して、不活性ガスに置換する方法や、溶解槽に不活性ガスを吹き込む方法を用いることで、空気の混入を防ぐことができる。上記のような方法により、溶解槽内部の酸素濃度が1000体積ppm以下に保たれることが好ましく、更に500体積ppm以下が好ましい。
 さらに、前記した酸化劣化を防ぐため、溶解槽に保有されるジヒドロキシ化合物の液中に、酸素を10体積ppm以下含有する不活性ガスを吹き込むことも好ましい。不活性ガスの酸素含有量は好ましくは5体積ppm以下であるが、下限は0体積ppmが好ましい。
 本発明では、構造の一部に前記式(1)で表される部位を有する本発明のジヒドロキシ化合物(A)以外のジヒドロキシ化合物(B)(その他のジヒドロキシ化合物(B)と称する)を原料に用いてもよい。
 複数種のジヒドロキシ化合物を混合して溶融させる場合、融点の高いジヒドロキシ化合物に合わせて溶融温度を設定しなければならないため、融点の低いモノマーは必要以上に熱負荷がかかることになる。上記の問題から、本発明のジヒドロキシ化合物(A)は、その他のジヒドロキシ化合物(B)とは別の溶解槽で液化されることが好ましい。
 本発明のジヒドロキシ化合物(A)と同様、その他のジヒドロキシ化合物(B)も原料調製工程において、極力、熱劣化を抑制することが好ましい。
 その他のジヒドロキシ化合物(B)の融点が炭酸ジエステルの融点よりも高い場合は、炭酸ジエステルをあらかじめ溶融させた液に、固体の該ジヒドロキシ化合物を供給することで、該ジヒドロキシ化合物の融点以下の温度で液化することが可能となり、原料に与えられる熱負荷を低減することができる。液化温度、あるいは液化状態を維持する温度は、ジヒドロキシ化合物の融点と炭酸ジエステルの間の温度に設定されるのが好ましい。
 前述のとおり、溶融重縮合によるポリカーボネート樹脂の製造には、一般に、反応に用いるジヒドロキシ化合物と炭酸ジエステルは事前に所定のモル比となるように混合し、その原料調製液を溶融状態で貯蔵する方法が用いられる。しかし、本発明のジヒドロキシ化合物(A)は親水性が高いため、炭酸ジエステルや極性の低いジヒドロキシ化合物と混合すると、溶液が相分離を起こす場合がある。イソソルビドは融点が約60℃であるが、ジフェニルカーボネートと混合すると、約120℃に相分離温度が現れる。このような状況になると、均一にするには相分離温度以上の温度まで上げる必要があり、必要以上の熱負荷がかかってしまうことになる。原料溶融液が相分離した状態では、反応器に原料を供給する際に不均一な組成の液が送られて、所望の分子量まで反応が進行しなくなるおそれがある。
 上記の観点から、本発明では、本発明のジヒドロキシ化合物(A)とその他のジヒドロキシ化合物(B)は別々に反応器に供給させるか、反応器の直前に配管内で混合して反応器に供給されることが好ましい。それぞれ個別に定量ポンプにより反応器に供給することで、原料を混合するための槽を設ける必要がなく、余分な滞留時間を削減することができる。反応器に配管を複数つなげると、反応器の圧力の制御が難しくなるため、反応に用いられる全てのジヒドロキシ化合物と炭酸ジエステルとが、反応器に供給される前に配管内でスタティックミキサーにより混合されることが特に好ましい。前述のとおり、原料調製液が相分離を起こす可能性がある場合は、原料を混合する際にスタティックミキサーを使用して、液を均一に分散させることが好ましい。このようにして、原料を反応器に供給する前に、原料液を均一に分散させることが好ましい。
 原料を溶融させる際に酸化防止剤を添加してもよい。通常知られるヒンダードフェノール系酸化防止剤やリン系酸化防止剤を添加することで、原料調製工程での原料の保存安定性の向上や、重縮合中での着色を抑制することにより、得られる樹脂の色相を改善することができる。
 原料由来の異物の製品への混入を防ぐため、溶融した原料はフィルターで濾過してから反応器に供給されることが好ましい。反応に用いられるすべてのジヒドロキシ化合物と炭酸ジエステルを、反応器に投入される前にフィルターで濾過することがより好ましく、反応器に供給させる前にすべての原料が混合された後にフィルターで濾過すると、設備を簡略化できるため、更に好ましい。すなわち、複数の原料を使用するため、各原料のライン一つ一つにフィルターを設置するのではなく、すべての原料を混合してから一つのフィルターに通すことが可能となる。このため、フィルターの個数が一つで済み、また、フィルターを使用する場合、圧力上昇などを監視する必要があるが、一つのフィルターを監視すればよく、運転管理も容易となる。また、本発明の製造法においては、重縮合反応の途中の反応液をフィルターで濾過することもできる。
 その際のフィルターの形状としては、バスケットタイプ、ディスクタイプ、リーフディスクタイプ、チューブタイプ、フラット型円筒タイプ、プリーツ型円筒タイプ等のいずれの型式であってもよいが、中でもコンパクトで濾過面積が大きく取れるプリーツタイプのものが好ましい。また、該フィルターを構成する濾材としては、金属ワインド、積層金属メッシュ、金属不織布、多孔質金属板等のいずれでもよいが、濾過精度の観点から積層金属メッシュまたは金属不織布が好ましく、中でも金属不織布を焼結して固定したタイプのものが好ましい。
 該フィルターの材質についての制限は特になく、金属製、樹脂製セラミック製等を使用することができるが、耐熱性や着色低減の観点からは、鉄含有量80%以下である金属製フィルターが好ましく、中でもSUS304、SUS316、SUS316L、SUS310S等のステンレス鋼製が好ましい。
 原料モノマーの濾過の際には、濾過性能を確保しながらフィルターの寿命を延ばすために、複数のフィルターユニットを用いることが好ましく、中でも上流側のユニット中のフィルターの目開きをCμm、下流側のユニット中のフィルターの目開きをDμmとした場合に、少なくとも1つの組み合わせにおいて、CはDより大きい(C>D)ことが好ましい。この条件を満たした場合は、フィルターがより閉塞しにくくなり、フィルターの交換頻度の低減を図ることができる。
 フィルターの目開きは特に制限はないが、少なくとも1つのフィルターにおいては、99.9%の濾過精度として10μm以下であることが好ましく、フィルターが複数配置されている場合には、最上流側において好ましくは8μm以上、更に好ましくは10μm以上であり、その最下流側において好ましくは2μm以下、更に好ましくは1μm以下である。
 尚、ここで言うフィルターの目開きも、上述した、ISO16889に準拠して決定されるものである。
 本発明において、原料をフィルターに通過させる際の原料流体の温度に制限はないが、低すぎると原料が固化し、高すぎると熱分解等の不具合があるため、好ましくは100℃~200℃、さらに好ましくは100℃~150℃である。
 重縮合触媒は好まざる副反応を抑制するために、反応器に投入される直前に原料に供給されるのがよい。使用する重縮合触媒は、通常、予め水溶液として準備される。触媒水溶液の濃度は特に限定されず、触媒の水に対する溶解度に応じて任意の濃度に調整される。また、水に代えて、アセトン、アルコール、トルエン、フェノール等の他の溶媒を選択することもできる。なお、重縮合触媒の具体例については、後記する。触媒の溶解に使用する水の性状は、含有される不純物の種類ならびに濃度が一定であれば特に限定されないが、通常、蒸留水や脱イオン水等が好ましく用いられる。
 又、複数種のジヒドロキシ化合物を用いて、共重合ポリカーボネート樹脂を製造する場合、各ジヒドロキシ化合物の組成比を変更することで、得られるポリカーボネート樹脂の耐熱性や機械物性、光学特性などを調節することが可能であるため、使用用途に応じて、異なる組成のポリカーボネート樹脂を作り分ける必要が生じる可能性がある。
 複数種のジヒドロキシ化合物を用いて、重縮合反応を連続的に行い、ポリカーボネート樹脂を製造する場合、ジヒドロキシ化合物と炭酸ジエステルとを混合して、原料混合液を調製すると、ジヒドロキシ化合物の組成比が異なるポリカーボネート樹脂の製造に移行する場合に、原料調製槽の組成が切り替わるまでに時間がかかるため、得られるポリカーボネート樹脂の組成が完全に切り替わるまでに時間を要する。これに対して、ジヒドロキシ化合物を別々に溶解して反応器に供給する方法では、個別に設けた定量ポンプの流量を変更することで、反応器に供給されるジヒドロキシ化合物の組成を瞬時に切り替えられるため、製品が切り替わるまでの時間を大幅に短縮でき、原料のロスや移行期間の短縮により、製品の歩留まりや生産性を向上することが可能となる。
 すなわち、本発明のジヒドロキシ化合物(A)と、その他のジヒドロキシ化合物(B)とを原料に用いて連続的に重縮合を行い、ポリカーボネート樹脂を製造する場合、これらの複数のジヒドロキシ化合物を別々に溶解して、個別に設けた定量ポンプを用いて反応器に供給することにより、反応器に供給される原料組成のうち、少なくとも1種のジヒドロキシ化合物の全ジヒドロキシ化合物に対する重量分率を、異なる重量分率に変更する組成切り替え工程を有することができる。このため、個別に設けた定量ポンプを用いて反応器に供給すると、個別に設けた定量ポンプの流量を変更することにより、短時間で得られるポリカーボネート樹脂の組成を切り替えることができ、製品のロスを最小に抑えることができる。
 本発明において組成を切り替えるとは、反応器に供給される原料組成のうち、いずれか1種のジヒドロキシ化合物の全ジヒドロキシ化合物に対する重量分率を、異なる重量分率に変更する工程を行い、上記組成切り替え工程前後における重量分率の差が、1wt%以上となることをいう。重量分率の差が1wt%より小さい場合は、原料仕込み比の精度の問題から十分に変動する範囲であるため、本発明においては組成切り替えとは見なさない。重量分率を2wt%以上変更する場合は上記切り替え方法が特に有効である。
<ポリカーボネート樹脂製造工程の概要>
 本発明の方法においては、少なくとも2器の反応器を用いる2段階以上の多段工程で、上記ジヒドロキシ化合物と炭酸ジエステルとを、通常、重縮合触媒の存在下で反応させる(溶融重縮合)ことによりポリカーボネート樹脂が製造される。
 なお、以下において、複数器の反応器を用いる場合において、1器目の反応器を第1反応器、2器目の反応器を第2反応器、3器目の反応器を第3反応器、……と称する。
 重縮合工程は前段反応と後段反応の2段階に分けられる。前段反応は通常130~270℃、好ましくは150~230℃の温度で0.1~10時間、好ましくは0.5~3時間実施され、副生するモノヒドロキシ化合物を留出させ、オリゴマーを生成させる。後段反応は、反応系の圧力を前段反応から徐々に下げ、反応温度も徐々に上げていき、同時に発生するモノヒドロキシ化合物を反応系外へ除きながら、最終的には反応系の圧力が2kPa以下で、通常200~280℃、好ましくは210~260℃の温度範囲のもとで重縮合反応を行い、ポリカーボネート樹脂を生成させる。なお、本明細書における圧力とは、真空を基準に表した、いわゆる絶対圧力を指す。
 この重縮合工程で用いる反応器は、上記のとおり、少なくとも2器が連結されたものであり、第1反応器の出口から出た反応物は第2反応器に入るものが用いられる。連結する反応器の数は特に限定されないが、2器~7器が好ましく、3~5器がより好ましく、3~4器が更に好ましい。反応器の種類も特に限定されないが、前段反応の反応器は竪型攪拌反応器が1器以上、後段反応の反応器は横型攪拌反応器が1器以上であることが好ましい。本発明の方法においては、最終段の横型攪拌反応器の反応条件が、得られる樹脂の品質だけでなく、製造の歩留りや樹脂中の異物量など様々な観点から重要な影響を与え得る。
 反応器を複数設置する場合は、反応器毎に段階的に温度を上昇させ、段階的に圧力を減少させた設定とすることが好ましい。
 前記の反応器と次の反応器との連結は、直接でも、必要に応じて、予熱器等を介して行ってもよい。配管は二重管式等で反応液を冷却固化させることなく移送ができ、ポリマー側に気相がなく、かつデッドスペースを生じないものが好ましい。
 前記のそれぞれの反応器を加熱する加熱媒体の上限温度は、通常300℃、好ましくは270℃、中でも260℃が好適である。加熱媒体の温度が高すぎると、反応器壁面での熱劣化が促進され、異種構造や分解生成物の増加、色調の悪化等の不具合を招くことがある。下限温度は、上記反応温度が維持可能な温度であれば特に制限されない。
 本発明で使用する反応器は公知のいかなるものでもよい。例えば、熱油あるいはスチームを加熱媒体とした、ジャケット形式の反応器あるいは内部にコイル状の伝熱管を有する反応器等が挙げられる。
 次に、本発明の方法について、さらに具体的に説明する。本発明の方法は、原料モノマーとして、イソソルビド(ISB)等の式(1)で表される部位を有するジヒドロキシ化合物を含むジヒドロキシ化合物と、ジフェニルカーボネート(DPC)等の炭酸ジエステルをそれぞれ溶融状態にて、原料混合溶融液を調製し(原料調製工程)、これらの化合物を、重縮合触媒の存在下、溶融状態で複数の反応器を用いて多段階で重縮合反応をさせる(重縮合工程)ことによって行われる。DPCを用いた場合、モノヒドロキシ化合物としてフェノールが副生するため、減圧下で反応を行い、このフェノールを反応系から除去することにより、反応を進行させ、ポリカーボネート樹脂を生成させる。
 反応方式は、バッチ式、連続式、又はバッチ式と連続式の組合せのいずれでもよいが、生産性と得られる製品の品質の観点から連続式が好ましい。本発明の方法では、反応器は、複数器の竪型攪拌反応器、およびこれに続く少なくとも1器の横型攪拌反応器が用いられる。通常、これらの反応器は直列に設置され、連続的に処理が行われる。
 重縮合工程後、樹脂中の未反応原料や反応副生物であるモノヒドロキシ化合物を脱揮除去する工程や、熱安定剤、離型剤、色剤等を添加する工程、溶融状態の樹脂をフィルターにより濾過して異物を除去する工程、溶融状態の樹脂をストランド状に抜き出して、所定の粒径のペレットに形成する工程等を適宜追加してもよい。
 発生したフェノール等のモノヒドロキシ化合物は、タンクに収集しておき、資源有効活用の観点から、必要に応じ精製を行って回収した後、DPCやビスフェノールA等の原料として再利用することが好ましい。本発明の製造方法において、副生モノヒドロキシ化合物の精製方法に特に制限はないが、蒸留法を用いることが好ましい。
 次に、製造方法の各工程について説明する。
<前段反応工程>
 先ず、上記ジヒドロキシ化合物と炭酸ジエステルとの混合物を、溶融下に、竪型反応器に供給して、通常、温度130℃~270℃で重縮合反応を行う。
 この反応は、通常1槽以上、好ましくは2槽~6槽の多槽方式で連続的に行われ、副生するモノヒドロキシ化合物の40%から95%を留出させることが好ましい。反応温度は、通常130℃~270℃、好ましくは150℃~240℃であり、圧力は40kPa~1kPaである。多槽方式の連続反応の場合、各槽の温度を、上記範囲内で順次上げ、各槽の圧力を、上記範囲内で順次下げることが好ましい。平均滞留時間は、通常0.1~10時間、好ましくは0.5~5時間、より好ましくは0.5~3時間である。
 温度が高すぎると熱劣化が促進され、異種構造や着色成分の生成が増加し、樹脂の品質の悪化を招くことがある。一方、温度が低すぎると反応速度が低下するために生産性が低下するおそれがある。
 溶融重縮合反応は平衡反応であるため、副生するモノヒドロキシ化合物を反応系外に除去することで反応が促進されるため、減圧状態にすることが好ましい。圧力は1kPa以上40kPa以下であることが好ましく、より好ましくは5kPa以上、30kPa以下である。圧力が高すぎるとモノヒドロキシ化合物が留出しないために反応性が低下し、低すぎると未反応のジヒドロキシ化合物や炭酸ジエステルなどの原料が留出するため、原料モル比がずれて所望の分子量まで到達しないなど、反応の制御が難しくなり、また、原料原単位が悪化してしまうおそれがある。
<後段反応工程>
 次に、前段の重縮合工程で得られたオリゴマーを横型攪拌反応器に供給して、温度200℃~280℃で重縮合反応を行い、ポリカーボネート樹脂を得る。この反応は通常1器以上、好ましくは1~3器の横型攪拌反応器で連続的に行われる。
 反応温度は、好ましくは210~270℃、より好ましくは220~260℃である。圧力は、通常13.3kPa~10Pa、好ましくは1kPa~50Paである。平均滞留時間は、通常0.1~10時間、好ましくは0.5~5時間、より好ましくは0.5~2時間である。
<反応器>
 重縮合工程を多槽方式で行う場合は、通常、竪型攪拌反応器を含む複数器の反応器を設けて、ポリカーボネート樹脂の平均分子量(還元粘度)を増大させる。
 ここで、反応器としては、竪型攪拌反応器や横型撹拌反応器があげられ、具体例としては、攪拌槽型反応器、薄膜反応器、遠心式薄膜蒸発反応器、表面更新型二軸混練反応器、二軸横型攪拌反応器、濡れ壁式反応器、自由落下させながら重縮合する多孔板型反応器、ワイヤーに沿わせて落下させながら重縮合するワイヤー付き多孔板型反応器等が挙げられる。
 前記の竪型攪拌反応器とは、垂直回転軸と、この垂直回転軸に取り付けられた攪拌翼とを具備しており、攪拌翼の形式としては、例えば、タービン翼、パドル翼、ファウドラー翼、アンカー翼、フルゾーン翼(神鋼パンテック(株)製)、サンメラー翼(三菱重工業(株)製)、マックスブレンド翼(住友重機械工業(株)製)、ヘリカルリボン翼、ねじり格子翼((株)日立製作所製)等が挙げられる。
 また、前記の横型攪拌反応器とは、攪拌翼の回転軸が横型(水平方向)で、この水平回転軸にほぼ直角に取り付けられた相互に不連続な攪拌翼を有するものであり、攪拌翼の形式としては、例えば、円板型、パドル型等の一軸タイプの攪拌翼やHVR、SCR、N-SCR(三菱重工業(株)製)、バイボラック(住友重機械工業(株)製)、あるいはメガネ翼、格子翼((株)日立製作所製)等の二軸タイプの攪拌翼が挙げられる。また、横型反応器の水平回転軸の長さをLとし、攪拌翼の回転直径をDとしたときにL/Dが1~15、好ましくは2~10である。
 本発明における反応装置においては、ポリカーボネート樹脂の色調の観点から、反応装置を構成する機器、配管などの構成部品の原料モノマーまたは重縮合液に接する部分(以下「接液部」と称する)の表面材料は、接液部の全表面積の少なくとも90%以上を占める割合で、ニッケル含有量10重量%以上のステンレス、ガラス、ニッケル、タンタル、クロム、テフロン(登録商標)のうち1種または2種以上から構成されていることが好ましい。本発明においては、接液部の表面材料が上記物質から構成されていればよく、上記物質と他の物質とからなる張り合わせ材料、あるいは上記物質を他の物質にメッキした材料などを表面材料として用いることができる。
<重縮合反応以降の工程>
 本発明のポリカーボネート樹脂は、上述の重縮合反応を行った後、溶融状態のまま、フィルターに通して異物を濾過する。中でも樹脂中に含まれる低分子量成分の除去や、熱安定剤等の添加混練を実施するため、重縮合で得られた樹脂を押出機に導入し、次いで押出機から排出された樹脂を、フィルターを用いて濾過することが好ましい。
 本発明の方法において、フィルターを用いてポリカーボネート樹脂を濾過する方法は、濾過に必要な圧力を発生させるために、最終重縮合反応器からギヤポンプやスクリュー等を用いて溶融状態で抜き出し、フィルターで濾過する方法、最終重縮合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出した後、フィルターで濾過し、ストランドの形態で冷却固化させて、回転式カッター等でペレット化する方法、又は、最終重縮合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、一旦ストランドの形態で冷却固化させてペレット化し、該ペレットを再度押出機に導入してフィルターで濾過し、ストランドの形態で冷却固化させて、ペレット化する方法、最終重縮合反応器から溶融状態で抜き出し、押出機を通さずにストランドの形態で冷却固化させて一旦ペレット化させた後に、一軸または二軸の押出機にペレットを供給し、溶融押出しした後、フィルターで濾過し、ストランドの形態で冷却固化させてペレット化させる方法等が挙げられる。中でも熱履歴を最小限に抑え、色相の悪化や分子量の低下等、熱劣化を抑制するためには、最終重縮合反応器から溶融状態で一軸または二軸の押出機に樹脂を供給し、溶融押出しした後、直接フィルターで濾過し、ストランドの形態で冷却固化させて、回転式カッター等でペレット化する方法が好ましい。
 本発明において押出機の形態は限定されるものではないが、通常一軸または二軸の押出機が用いられる。中でも後述の脱揮性能の向上や添加剤の均一な混練のためには二軸の押出機が好ましい。この場合、軸の回転方向は異方向であっても同方向であってもよいが、混練性能の観点からは同方向が好ましい。押出機の使用によりフィルターへのポリカーボネート樹脂の供給を安定させることができる。
 また、上記の通り重縮合させて得られたポリカーボネート樹脂中には、通常、色相や熱安定性、さらにはブリードアウト等により製品に悪影響を与える可能性のある原料モノマー、重縮合反応で副生するモノヒドロキシ化合物、ポリカーボネートオリゴマー等の低分子量化合物が残存しているが、ベント口を有する押出機を用い、好ましくはベント口から真空ポンプ等を用いて減圧にすることにより、これらを脱揮除去することも可能である。また、押出機内に水等の揮発性液体を導入して、脱揮を促進することもできる。ベント口は1つであっても複数であってもよいが、好ましくは2つ以上である。
 さらに、押出機中で通常知られている、熱安定剤、中和剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、難燃剤等を添加、混練することも出来る。
 本発明において、ポリカーボネート樹脂が直接外気と触れるストランド化、ペレット化の際には、外気からの異物混入を防止するために、好ましくはJIS B9920(2002年)に定義されるクラス7、更に好ましくはクラス6より清浄度の高いクリーンルーム中で実施することが望ましい。
 フィルターで濾過されたポリカーボネート樹脂は、冷却固化させ、回転式カッター等でペレット化されるが、そのペレット化の際、空冷、水冷等の冷却方法を使用するのが好ましい。空冷の際に使用する空気は、へパフィルター等で空気中の異物を事前に取り除いた空気を使用し、空気中の異物の再付着を防ぐのが望ましい。水冷を使用する際は、イオン交換樹脂等で水中の金属分を取り除き、さらにフィルターにて、水中の異物を取り除いた水を使用することが望ましい。用いるフィルターの目開きは、99.9%除去の濾過精度として10~0.45μmであることが好ましい。
<製造装置の一例>
 次に図1を用いて、本実施の形態が適用される本発明の方法の一例を具体的に説明する。以下に説明する製造装置や原料、触媒は本発明の実施態様の一例であり、本発明は以下に説明する例に限定されるものではない。
 図1と図2は、本発明の方法で用いる製造装置の一例を示す図である。図1はジヒドロキシ化合物と炭酸ジエステルを溶融させ、重縮合触媒と混合して反応器に送る原料調製工程を示す。図2はこれらの原料を溶融状態で複数の反応器を用いて重縮合反応させる重縮合工程を示す。
 以下は、原料のジヒドロキシ化合物としてISBと1,4-シクロヘキサンジメタノール(CHDM)と、原料の炭酸ジエステルとしてDPCをそれぞれ用いた場合を例示して説明する。
 ISBはフレコン1aからホッパー1bへ投入され、圧密により塊が生じている場合は解砕機1cにより、最大径が2cm以下の大きさに粉砕される。続いて、ISBは溶解槽1dに供給され、溶融される。槽底部から排出されたISBは続いて溶解槽1gに供給される。溶解槽1dと溶解槽1gのISBの供給量と排出量、および各溶解槽の液面は一定に保持される。溶解槽1gの槽底部からISB定量供給ポンプ2dにより、排出されたISBは、別途溶融させたCHDMとDPCと配管中で混合され、スタティックミキサー5aと原料フィルター5bを通って反応器に供給される。
 溶解槽1dは、供給熱量が特に大きくなることがあるため、熱媒温度が過剰に高温にならないように、内部熱交換器1eが設けられる。また、溶解槽1dには、撹拌をより効率的に行うため、上部パドル下部アンカー型攪拌翼1fが用いられる。
 CHDMはドラム缶2aを加熱し、粘度を低下させてから、CHDM供給ポンプ2bにより、CHDM溶解槽2cに移送される。槽底部からCHDM定量供給ポンプ2dにより連続的に、別途溶融させたISBとDPCと配管中で混合され、スタティックミキサー5aと原料フィルター5bを通って反応器に供給される。
 DPCは、DPC供給ライン3aからDPC定量供給ポンプ3bにより、連続的に、別途溶融させたISBとCHDMと配管中で混合され、スタティックミキサー5aと原料フィルター5bを通って反応器に供給される。
 原料調製液はスタティックミキサー5aと原料フィルター5bを通して反応器に供給され、反応器の前で水溶液とした重合触媒を触媒タンク4aから触媒定量供給ポンプ4bにより供給され、混合される。
 図2の製造装置の重縮合工程においては、第1竪型攪拌反応器6a、第2竪型攪拌反応器6b、第3竪型攪拌反応器6c、第4横型攪拌反応器6dが直列に設けられる。各反応器では液面レベルを一定に保ち、重縮合反応が行われ、第1竪型攪拌反応器6aの槽底より排出された重縮合反応液は第2竪型攪拌反応器6bへ、続いて、第3竪型攪拌反応器6cへ、第4横型攪拌反応器6dへと順次連続供給され、重縮合反応が進行する。各反応器における反応条件は、重縮合反応の進行とともに高温、高真空、低攪拌速度となるようにそれぞれ設定することが好ましい。
 第1竪型攪拌反応器6a、第2竪型攪拌反応器6b及び第3竪型攪拌反応器6cには、マックスブレンド翼7a、7b、7cがそれぞれ設けられる。また、第4横型攪拌反応器6dには、2軸メガネ型攪拌翼7dが設けられる。第3竪型攪拌反応器6cと第4横型攪拌反応器6dの後には移送する反応液が高粘度になるため、ギヤポンプ9aと9bが設けられる。
 第1竪型攪拌反応器6aと第2竪型攪拌反応器6bは、供給熱量が特に大きくなることがあるため、熱媒温度が過剰に高温にならないように、それぞれ内部熱交換器8a、8bが設けられる。
 なお、これらの4器の反応器には、それぞれ、重縮合反応により生成する副生物等を排出するための留出管12a、12b、12c、12dが取り付けられる。第1竪型攪拌反応器6aと第2竪型攪拌反応器6bについては留出液の一部を反応系に戻すために、還流冷却器10a、10bと還流管11a、11bがそれぞれ設けられる。還流比は反応器の圧力と、還流冷却器の熱媒温度とをそれぞれ適宜調整することにより制御可能である。
 留出管12a、12b、12c、12dは、それぞれ凝縮器13a、13b、13c、13dに接続し、また、各反応器は、減圧装置14a、14b、14c、14dにより、所定の減圧状態に保たれる。
 各反応器にそれぞれ取り付けられた凝縮器13a、13b、13c、13dから、フェノール(モノヒドロキシ化合物)等の副生物が連続的に留出液回収タンク15aに送られ、液化回収される。また、第3竪型攪拌反応器6cと第4横型攪拌反応器6dにそれぞれ取り付けられた凝縮器13c、13dの下流側にはコールドトラップ(図示せず)が設けられ、副生物が連続的に固化回収される。
 所定の分子量まで上昇させた反応液は第4横型攪拌反応器6dから抜き出され、ギヤポンプ9bにより移送され、ペレット化されて製品となる。ペレット化の前に、押出機やポリマーフィルターを設けてもよい。押出機に移送される。押出機には真空ベントを設けることで、ポリカーボネート樹脂中の残存低分子成分が除去され、また、必要に応じて酸化防止剤や光安定剤や着色剤、離型剤などが添加される。ポリカーボネート樹脂を溶融状態のまま、ポリマーフィルターを通すことで、異物が濾過される。溶融樹脂はダイスヘッドからストランド状に抜き出され、水により樹脂を冷却した後、ストランドカッターでペレットにされる。この場合、反応液を固化させることなく、押出機やポリマーフィルターで処理することにより、ポリカーボネート樹脂に与えられる熱履歴を最小限に抑えることができる。
<連続製造装置における溶融重縮合の開始>
 本実施の形態では、ジヒドロキシ化合物と炭酸ジエステルとの重縮合反応に基づく重縮合は、以下の手順に従い開始される。
 先ず、図2に示す連続製造装置において、直列に接続された4器の反応器(第1竪型攪拌反応器6a、第2竪型攪拌反応器6b、第3竪型攪拌反応器6c、第4横型攪拌反応器6d)を、予め、所定の内温と圧力とにそれぞれ設定する。ここで、各反応器の内温、熱媒温度と圧力とは、特に限定されないが、以下のように設定することが好ましい。
 (第1竪型攪拌反応器6a)
 内温:130℃~240℃、圧力:40kPa~10kPa、加熱媒体の温度130℃~260℃ 、還流比0.01~10
(第2竪型攪拌反応器6b)
 内温:150℃~250℃、圧力:40kPa~8kPa、加熱媒体の温度150℃~260℃、還流比0.01~5
(第3竪型攪拌反応器6c)
 内温:170℃~260℃、圧力:10kPa~1kPa、加熱媒体の温度170℃~260℃
(第4横型攪拌反応器6d)
 内温:210℃~260℃、圧力:1kPa~10Pa、加熱媒体の温度210~260℃
 次に、図1の原料調製工程において、前述した工程により、ジヒドロキシ化合物と炭酸ジエステルの溶融液を調製する。前述した4器の反応器の内温と圧力が、それぞれの設定値の±5%の範囲内に達した後に、前記ジヒドロキシ化合物と前記炭酸ジエステルが所定のモル比になるように、各定量供給ポンプの流量を調節し、一定流量で連続的に反応器に供給される。原料混合溶融液の供給開始と同時に、触媒定量供給ポンプ4bから触媒を連続供給し、重縮合反応を開始する。
 重縮合反応が行われる第1竪型攪拌反応器6aでは、重縮合反応液の液面レベルは、所定の平均滞留時間になるように一定に保たれる。第1竪型攪拌反応器6a内の液面レベルを一定に保つ方法としては、通常、液面計等で液レベルを検知しながら槽底部のポリマー排出ラインに設けたバルブ(図示せず)の開度を制御する方法が挙げられる。
 続いて、重縮合反応液は、第1竪型攪拌反応器6aの槽底から排出され、第2竪型攪拌反応器6bへ、続いて第2竪型攪拌反応器6bの槽底から排出され、第3竪型攪拌反応器6cへ逐次連続供給される。この前段反応工程において、副生するフェノールの理論量に対して50%から95%が留出され、オリゴマーが生成する。
 次に、上記前段反応工程で得られたオリゴマーをギヤポンプ9aにより移送し、水平回転軸と、この水平回転軸にほぼ直角に取り付けられた相互に不連続な攪拌翼とを有し、かつ水平回転軸の長さをLとし、攪拌翼の回転直径をDとしたときにL/Dが1~15である第4横型攪拌反応器6dに供給して、後述するような後段反応を行なうのに適した温度・圧力条件下で、副生するフェノールおよび一部未反応モノマーを、留出管12dを介して系外に除去してポリカーボネート樹脂を生成させる。
 この横型攪拌反応器は、1本または2本以上の水平な回転軸を有し、この水平回転軸に円板型、車輪型、櫂型、棒型、窓枠型などの攪拌翼を1種または2種以上組合せて、回転軸当たり少なくとも2段以上設置されており、この攪拌翼により反応液をかき上げ、または押し広げて反応液の表面更新を行なう横型高粘度液処理装置である。
 なお、本明細書中、上記「反応液の表面更新」という語は、液表面の反応液が液表面下部の反応液と入れ替わることを意味する。
 このように本発明で用いられる横型攪拌反応器は、水平軸と、この水平軸にほぼ直角に取り付けられた相互に不連続な攪拌翼とを有する装置であり、押出機と異なりスクリュー部分を有していない。本発明の方法においては、このような横型攪拌反応器を少なくとも1器用いることが好ましい。
 上記後段反応工程における反応温度は、通常200~280℃、好ましくは210~260℃の範囲であり、反応圧力は、通常13.3kPa~10Pa、好ましくは2kPa~20Pa、より好ましくは1kPa~50Paである。
 本発明の方法において、横型攪拌反応器を、装置構造上、2軸ベント式押出機と比較してホールドアップが大きいものを用いることにより、反応液の滞留時間を適切に設定でき、かつ剪断発熱を抑制されることによって温度を下げることができ、より色調の改良された、機械的性質の優れたポリカーボネート樹脂を得ることが可能となる。
 このように、本実施の形態では、図2に示す連続製造装置において、4器の反応器の内温と圧力が所定の数値に達した後に、原料混合溶融液と触媒とが予熱器を介して連続供給され、重縮合反応に基づく溶融重縮合が開始される。
 このため、各反応器における重縮合反応液の平均滞留時間は、溶融重縮合の開始直後から定常運転時と同等となる。その結果、重縮合反応液は必要以上の熱履歴を受けることがなく、得られるポリカーボネート樹脂中に生じるゲルまたはヤケ等の異物が低減する。また色調も良好となる。
 このようにして得られた本発明のポリカーボネート樹脂の分子量は、還元粘度で表すことができ、還元粘度は、通常0.20dL/g以上であり、0.30dL/g以上であることが好ましく、一方、通常1.20dL/g以下であり、1.00dL/g以下であることが好ましく、0.80dL/g以下であることがより好ましい。ポリカーボネート樹脂の還元粘度が低すぎると成形品の機械強度が小さくなる可能性があり、大きすぎると、成形する際の流動性が低下し、生産性や成形性を低下する傾向がある。尚、還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート樹脂濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度計を用いて測定する。
 本発明のポリカーボネート樹脂は、射出成形法、押出成形法、圧縮成形法等の通常知られている方法で成形物にすることができる。ポリカーボネート樹脂の成形方法は特に限定されないが、成形品形状に合わせて適切な成形法が選択される。成形品がフィルムやシートの形状である場合は押出成形法が好ましく、射出成形法では成形品の自由度が得られる。
 また、本発明のポリカーボネート樹脂は、種々の成形を行う前に、必要に応じて、熱安定剤、中和剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、難燃剤等の添加剤を、タンブラー、スーパーミキサー、フローター、V型ブレンダー、ナウターミキサー、バンバリーミキサー、押出機などで混合することもできる。
 また、本発明のポリカーボネート樹脂は例えば、芳香族ポリカーボネート樹脂、芳香族ポリエステル樹脂、脂肪族ポリエステル樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリオレフィン樹脂、アクリル樹脂、アモルファスポリオレフィン樹脂、ABSやASなどの合成樹脂、ポリ乳酸やポリブチレンスクシネートなどの生分解性樹脂、ゴムなどの1種又は2種以上と混練して、ポリマーアロイとしても用いることもできる。
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。
 以下において、反応液と留出液、およびポリカーボネート樹脂の組成分析と物性の評価は次の方法により行った。
 以下の実施例の記載の中で用いた化合物の略号は次の通りである。
・ISB:イソソルビド (ロケットフルーレ社製、商品名:POLYSORB PS)
・CHDM:1,4-シクロヘキサンジメタノール(新日本理化(株)製、商品名:SKY CHDM)
・SPG:スピログリコール (三菱ガス化学(株)製)
・DPC:ジフェニルカーボネート(三菱化学(株)製)
1)ISB中の蟻酸含有量
 10mLメスフラスコに試料約4gを精秤し、脱塩水を加えて溶解した。液体クロマトグラフィーにて所定のピークの面積値から絶対検量線法により蟻酸の定量を行った後、含有量を算出した。
 用いた装置や条件は、次のとおりである。
・装置:島津製作所製
  システムコントローラ:CBM-20A
  ポンプ:LC-10AD
  カラムオーブン:CTO-10ASvp
  検出器:SPD-M20A
  分析カラム:Cadenza CD-18 4.6mmΦ×250mm
  オーブン温度:40℃
・検出波長:220nm
・溶離液:0.1%リン酸水溶液
・流量:1mL/min
・試料注入量:20μL
2)ISB中のフルフラール含有量
 10mLメスフラスコに試料約4gを精秤し、脱塩水を加えて溶解した。液体クロマトグラフィーにて所定のピークの面積値から絶対検量線法によりフルフラールの定量を行った後、含有量を算出した。
用いた装置や条件は、次のとおりである。
・装置:島津製作所製
  システムコントローラ:CBM-20A
  ポンプ:LC-10AD
  カラムオーブン:CTO-10ASvp
  検出器:SPD-M20A
  分析カラム:Cadenza CD-18 4.6mmΦ×250mm
  オーブン温度:40℃
・検出波長:273nm
・溶離液:脱塩水/アセトニトリル/リン酸=70/30/0.1
・流量:1mL/min
・試料注入量:10μL
3)ISBのpH
 ビーカーに試料を15g計量し、脱塩水50gを加えて溶解した。あらかじめpH4、pH7、pH9の標準溶液により校正されたガラス電極GTPH1B(三菱化学アナリテック(株)製)を溶液に浸けて、pHを測定した。
4)ISBの色調(溶液YI)
 ビーカーに試料20gを計量し、脱塩水20gを加えて溶解した。光路長2cmのガラスセルに入れて、分光測色計CM-5(コニカミノルタ(株)製)により透過モードで測定を行い、溶液のイエローインデックス(YI)値を測定した。YI値が小さい程、黄色味が少ないことを示す。
5)原料混合液の色調(溶液YI)
 ビーカーに試料20gを計量し、アセトン20を加えて溶解した。光路長2cmのガラスセルに入れて、分光測色計CM-5(コニカミノルタ(株)製)により透過モードで測定を行い、溶液のイエローインデックス(YI)値を測定した。YI値が小さい程、黄色味が少ないことを示す。
6)還元粘度
 溶媒として塩化メチレンを用い、0.6g/dLの濃度のポリカーボネート樹脂溶液を調製した。森友理化工業(株)製ウベローデ型粘度管を用いて、温度20.0℃±0.1℃で測定を行い、溶媒の通過時間tと溶液の通過時間tから次式より相対粘度ηrelを求め、
ηrel=t/t
 相対粘度から次式より比粘度ηspを求めた。
ηsp=(η-η)/η=ηrel-1
 比粘度を濃度c(g/dL)で割って、還元粘度ηsp/cを求めた。この値が高いほど分子量が大きい。
7)ポリカーボネート樹脂のペレットYI値
 ポリカーボネート樹脂の色相は、ASTM D1925に準拠して、ペレットの反射光におけるYI値(イエローインデックス値)を測定して評価した。装置はコニカミノルタ(株)製分光測色計CM-5を用い、測定条件は測定径30mm、SCEを選択した。シャーレ測定用校正ガラスCM-A212を測定部にはめ込み、その上からゼロ校正ボックスCM-A124をかぶせてゼロ校正を行い、続いて内蔵の白色校正板を用いて白色校正を行った。白色校正板CM-A210を用いて測定を行い、Lが99.40±0.05、aが0.03±0.01、bが-0.43±0.01、YIが-0.58±0.01となることを確認した。ペレットの測定は、内径30mm、高さ50mmの円柱ガラス容器にペレットを40mm程度の深さまで詰めて測定を行った。ガラス容器からペレットを取り出してから再度測定を行う操作を2回繰り返し、計3回の測定値の平均値を用いた。YI値が小さいほど樹脂の黄色味が少なく、色調に優れることを意味する。
 なお、実施例で使用したISBの溶解前の各種分析値を表1に示す。
Figure JPOXMLDOC01-appb-T000013
[実施例1]
 前述した図1に示した原料調製工程により、ISBとCHDMとDPCの混合溶液を調製した。
 フレコンに包装されたISBをホッパー1bから投入した。解砕機1cを使用して圧密により生成した塊を最大径が2cm以下の大きさに砕き、上部パドル下部アンカー型攪拌翼1fと加熱媒体が流通する内部熱交換器1eを具備する溶解槽1d(第一溶解槽)に移送した。解砕機1cと、解砕機1cから溶解槽1dを繋ぐ配管内には窒素を流通させた。溶解槽1dは内温が80℃となるように熱媒温度を調整し、槽底部の排出ラインに設けたバルブ(図示せず)の開度を制御しつつ液量を調節することにより、滞留時間を1.5時間とした。溶解槽1dの内部には窒素導入管を取り付け(図示せず)、溶解槽1dの液中に、酸素濃度が5体積ppm以下である窒素を吹き込んでバブリングさせた。溶解槽1d内部の酸素濃度は定常状態で500体積ppm未満であった。溶解槽1dの底部から排出されたISBは溶解槽1g(第二溶解槽)に供給された。溶解槽1gの内温は70℃、滞留時間は1.5時間に調節した。溶解槽1gの底部から定量供給ポンプ1hにより、溶融したISBを連続的に排出し、別途、溶融させたCHDMとDPCおよび重縮合触媒として酢酸カルシウム1水和物とを一定のモル比(ISB/CHDM/DPC/Ca=0.700/0.300/1.000/1.5×10-6)となるように混合して、反応器に供給した。溶解槽1gから反応器までの移送配管における原料の滞留時間は3分以内であった。従って、ISBとDPCとを混合してから反応器へ供給するまでの時間は3分以内である。
 CHDMはドラム缶を加熱し、CHDMの粘度を低下させてから、CHDM供給ポンプ2bにより、CHDM溶解槽2cに受け入れた。溶解槽2cは内温を70℃に保持し、底部からCHDM定量供給ポンプ2dにより連続的に排出し、ISBとDPCに混合した。DPCは蒸留精製(図示せず)により塩化物イオン濃度を10ppb以下にしたものを使用した。DPC定量供給ポンプ3bにより溶融したDPCを供給した。
 原料調製液はスタティックミキサー5aと原料フィルター5bを通して反応器に供給した。反応器の前で重縮合触媒として酢酸カルシウム1水和物を全ジヒドロキシ化合物1molに対して1.5μmolとなるように触媒定量供給ポンプ4bから供給した。
 ISB定量供給ポンプ1hの後に取り付けられたバルブからISB溶融液を、原料フィルター5bの前に取り付けられたバルブから原料調製液をそれぞれサンプリングし、前述の各種分析を行った。
 続いて、原料調製液は図2に示した重縮合工程に送られ、竪型攪拌反応器3器及び横型攪拌反応器1器を有する連続製造装置により、以下の条件でポリカーボネート樹脂を製造した。
 先ず、各反応器を表2のとおり、予め反応条件に応じた内温・圧力に設定した。
 次に原料調製工程にて一定のモル比で混合されたISBとCHDMとDPC、および重縮合触媒とを、前述した所定温度・圧力の±5%の範囲内に制御した第1竪型攪拌反応器6a内に連続供給し、平均滞留時間が80分になるように、槽底部のポリマー排出ラインに設けたバルブ(図示せず)の開度を制御しつつ、液面レベルを一定に保った。
 第1竪型攪拌反応器6aの槽底から排出された重縮合反応液は、引き続き、第2竪型攪拌反応器6b、第3竪型攪拌反応器6c、第4横型攪拌反応器6d(2軸メガネ翼、L/D=4)に、逐次、連続供給された。重縮合反応の間、表2に示した平均滞留時間となるように各反応器の液面レベルを制御した。第4横型攪拌反応器6dから抜き出された反応液はギヤポンプ9bにより移送され、ペレット化工程によりストランド状に抜き出され、カッターによりペレット化した(図示せず)。
 その後の運転では、第4横型攪拌反応器6dの圧力を調節することにより、第4横型攪拌反応器出口の還元粘度が0.44から0.47の範囲となるように合わせ込んだ。24時間運転を行った際の圧力の調整範囲は0.4kPaから0.5kPaであり、ペレットYIは8.5から9.1の範囲で変動した。ほぼ一定の反応条件での運転で、分子量や色調の変動の少ないポリカーボネート樹脂が得られた。
 この結果を表3に示した。
[実施例2]
 ISBの溶解時に溶解槽1d内の窒素バブリングを停止した以外は実施例1と同様に行った。溶解槽1d内部の酸素濃度は定常状態で1500体積ppmであった。実施例1と比較して、サンプリングしたISBの分析値は蟻酸とフルフラールの含有量が増加し、pHの低下や着色の程度も大きくなっており、また、原料調製液の色調も若干悪化していることから、溶解工程中に劣化が進行していることが示唆された。
 上記のとおり調製された原料を用いて、重縮合工程は実施例1と同様に実施した。得られたポリカーボネート樹脂は実施例1と比較して若干色調が悪化した。この結果を表3に示した。
[実施例3]
 ISBの溶解時に溶解槽1dの1槽のみを用いて溶解させた。溶解槽1dの滞留時間を1.5時間に設定し、未溶解のISBが残らないように溶解槽内温を調節したところ、100℃まで昇温する必要があった。実施例1と比較して、ISB分析値は蟻酸とフルフラールの含有量が増加し、pHの低下や着色の程度も大きくなっており、また、原料調製液の色調も若干悪化していることから、溶解工程中に劣化が進行していることが示唆された。
 上記のとおり調製された原料を用いて、重縮合工程は実施例1と同様に実施したところ、得られたポリカーボネート樹脂は実施例1と比較して若干色調が悪化した。この結果を表3に示した。
[比較例1]
 溶解槽1dと同様の第一溶解槽(図示せず)に溶融したDPCを仕込み、続いて、CHDMとISBを一定のモル比(ISB/CHDM/DPC=0.700/0.300/1.000)となるように供給した。内温を110℃に設定し、1時間攪拌した。槽底部から第二溶解槽(図示せず)に全量移送し、内温110℃で2時間保持した。槽底部から定量供給ポンプ(図示せず)により原料フィルター5bを通した後、重縮合触媒として酢酸カルシウム1水和物を全ジヒドロキシ化合物1molに対して、1.5μmolとなるように供給した。上記のように調製された原料調製液は重縮合工程に送られ、実施例1と同様にしてポリカーボネート樹脂を製造した。
 運転中は第二溶解槽の原料がなくなる前に、新たに第一溶解槽で原料を混合して、第二溶解槽に供給した。第二溶解槽では新たな原料が供給されるまで滞留時間が延び続けることになり、本比較例における第二溶解槽での最長の滞留時間は12時間であった。また、ISBとDPCを混合してから反応器へ供給するまでの時間は720分であった。
 上記のようにして得られたポリカーボネート樹脂は実施例1と比較して色調が悪化しただけでなく、分子量を一定範囲に収めるために第4横型攪拌反応器6dの圧力を調節したところ、実施例1よりも変動幅が広くなった。さらに、得られたポリカーボネート樹脂の色調の振れ幅も広くなった。この結果を表3に示した。
[比較例2]
 溶解槽1dの滞留時間が6時間、溶解槽1gの滞留時間が5時間となるように、各種条件を表3に記載の通りとした以外は実施例1と同様に行った。実施例1と比較して、ISB分析値は蟻酸とフルフラールの含有量が増加し、pHの低下や着色の程度も大きくなっており、また、原料調製液の色調も若干悪化していることから、溶解工程中に劣化が進行していることが示唆された。
 上記のとおり調製された原料を用いて、重縮合工程は実施例1と同様に実施したところ、得られたポリカーボネート樹脂は実施例1と比較して色調が悪化した。この結果を表3に示した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
[実施例4]
 前述した図1に示した原料調製工程により、SPGとCHDMとDPCの混合溶液を調製した。溶解槽1dにあらかじめ溶融させたDPCを投入し(溶解槽1dへのDPC供給ラインは図示せず)、内温を180℃に保持させた。内温が170℃より低い場合はSPGがDPCと分離して結晶が析出して溶解が困難であった。フレコンに包装されたSPGをホッパー1bから投入し、ホッパー内を窒素で置換した後、SPGとDPCが所定のモル比となるように計量フィーダーにより計量し(図示せず)、溶解槽1dに投入した。溶解槽1dの内部には窒素導入管を取り付け(図示せず)、溶解槽1dの液中に、酸素濃度が5体積ppm以下である窒素を吹き込んでバブリングさせた。1時間攪拌してSPGをDPCに溶解させた後、槽底部の排出ラインに設けたバルブ(図示せず)の開度を制御しつつ液量を調節し、同時に溶融DPCと固体のSPGとを所定流量で連続的に供給することで、滞留時間が1.5時間となるように液面を調節した。溶解槽1dの底部から排出されたSPGとDPCの混合液は溶解槽1g(第二溶解槽)に供給された。溶解槽1gの内温は175℃、滞留時間は1.5時間に調節した。溶解槽1gの底部から定量供給ポンプ1hにより、溶融したSPGとDPCを連続的に排出し、別途、溶融させたCHDMと一定のモル比(SPG/CHDM/DPC=0.700/0.300/1.005)となるように混合して、反応器に供給した。
 原料調製液はスタティックミキサー5aと原料フィルター5bを通して反応器に供給した。反応器の前で重縮合触媒として酢酸カルシウム1水和物を全ジヒドロキシ化合物1molに対して30μmolとなるように触媒定量供給ポンプ4bから供給した。
 続いて、原料調製液は図2に示した重縮合工程に送られ、竪型攪拌反応器3器及び横型攪拌反応器1器を有する連続製造装置により、以下の条件でポリカーボネートを製造した。
 先ず、各反応器を表4のとおり、予め反応条件に応じた内温・圧力に設定した。次に原料調製工程にて一定のモル比で混合されたSPGとCHDMとDPC、および重縮合触媒とを、前述した所定温度・圧力の±5%の範囲内に制御した第1竪型攪拌反応器6a内に連続供給し、平均滞留時間が80分になるように、槽底部のポリマー排出ラインに設けたバルブ(図示せず)の開度を制御しつつ、液面レベルを一定に保った。
 第4横型攪拌反応器6dの圧力を調節することにより、第4横型攪拌反応器出口の還元粘度が0.70から0.73の範囲となるように合わせ込んだ。24時間運転を行った際の圧力の調整範囲は0.3kPaから0.4kPaであり、ペレットYIは3から5の範囲で変動した。ほぼ一定の反応条件での運転で、分子量や色調の変動の少ないポリカーボネート樹脂が得られた。
 この結果を表5に示した。
[比較例3]
 溶解槽1dと溶解槽1gの液量をそれぞれ表5のように設定することにより、溶解槽1dと溶解槽1gの滞留時間をそれぞれ6時間とした以外は、実施例4と同様に行ったが、第4横型攪拌反応器6dにて溶融樹脂が攪拌翼に絡みつき、樹脂の抜き出しが困難となり、ペレット化はできなかった。得られた樹脂は塩化メチレンに不溶であり、還元粘度の測定も不可能であった。溶融状態で長時間保存していたSPGが開環反応を起こしたために、樹脂が架橋し、ゲルとなってしまったことが考えられる。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2011年3月30日出願の日本特許出願(特願2011-075386)、及び2011年3月30日出願の日本特許出願(特願2011-075439)に基づくものであり、その内容はここに参照として取り込まれる。
1a:ISBフレコン、SPGフレコン
1b:ISB受入ホッパー、SPG受入ホッパー
1c:解砕機
1d、1g:ISB溶解槽、SPG溶解槽
1e:内部熱交換器
1f:上部パドル下部アンカー型攪拌翼
1h:ISB定量供給ポンプ、SPG/DPC混合液定量供給ポンプ
2a:CHDMドラム缶
2b:CHDM供給ポンプ
2c:CHDM溶解槽
2d:CHDM定量供給ポンプ
3a:DPC供給ライン
3b:DPC定量供給ポンプ
4a:触媒タンク
4b:触媒定量供給ポンプ
5a:スタティックミキサー
5b:原料フィルター
6a:第1竪型攪拌反応器
6b:第2竪型攪拌反応器
6c:第3竪型攪拌反応器
6d:第4横型攪拌反応器
7a、7b、7c:マックスブレンド翼
7d:2軸メガネ型攪拌翼
8a、8b:内部熱交換器
9a、9b:ギヤポンプ
10a、10b:還流冷却器
11a、11b:還流管
12a、12b、12c、12d:留出管
13a、13b、13c、13d:凝縮器
14a、14b、14c、14d:減圧装置
15a:留出液回収タンク

Claims (24)

  1.  構造の一部に下記式(1)で表される部位を有するジヒドロキシ化合物(A)と、炭酸ジエステルとを、液体状態で連続的に反応器に供給して溶融重縮合する工程を含むポリカーボネート樹脂の製造方法であって、前記ジヒドロキシ化合物(A)を液化してから、反応器に供給するまでの滞留時間が0.1時間以上10時間以下であるポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (但し、上記式(1)で表される部位が-CH-OHの一部を構成する部位である場合を除く。)
  2.  前記ジヒドロキシ化合物(A)と炭酸ジエステルとを、これらを混合してからの経過時間が5時間未満となるように反応器へ連続的に供給するか、または、これらを混合せずに独立に反応器へ連続的に供給する請求項1に記載のポリカーボネート樹脂の製造方法。
  3.  前記ジヒドロキシ化合物(A)が、環状エーテル構造を有する化合物である請求項1又は2に記載のポリカーボネート樹脂の製造方法。
  4.  前記ジヒドロキシ化合物(A)をあらかじめ溶融させた液を有する溶解槽に、固体の前記ジヒドロキシ化合物(A)を供給して液化される請求項1~3のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  5.  前記ジヒドロキシ化合物(A)が、下記式(2)で表される化合物である請求項1乃至4のいずれか1項に記載のポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000002
  6.  前記溶解槽の内温が120℃以下であり、かつ、内温と加熱媒体温度との差が50℃以下である請求項4又は5に記載のポリカーボネート樹脂の製造方法。
  7.  前記ジヒドロキシ化合物(A)と炭酸ジエステルとを、これらを混合してからの経過時間が30分未満となるように反応器へ連続的に供給する請求項2乃至6のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  8.  前記ジヒドロキシ化合物(A)が、下記式(3)又は(4)で表される化合物である請求項1乃至3のいずれか1項に記載のポリカーボネート樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000003
  9.  前記炭酸ジエステルをあらかじめ溶融させた液を有する溶解槽に、固体の前記式(3)又は(4)で表される化合物を供給して液化される請求項8に記載のポリカーボネート樹脂の製造方法。
  10.  前記溶解槽の内温が200℃以下であり、かつ、内温と加熱媒体温度との差が50℃以下である請求項8又は9に記載のポリカーボネート樹脂の製造方法。
  11.  前記溶解槽に前記固体のジヒドロキシ化合物(A)を連続的に供給し、同時に前記溶解槽から液化したジヒドロキシ化合物(A)を連続的に排出する請求項4乃至10のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  12.  前記溶解槽内部に保有しているジヒドロキシ化合物(A)の重量をA[kg]、前記ジヒドロキシ化合物(A)の排出流量をB[kg/hr]とした時、下記式(I)満たす請求項11に記載のポリカーボネート樹脂の製造方法。
     0.05 ≦ A/B ≦ 5 (I)
  13.  前記溶解槽に供給される前記固体のジヒドロキシ化合物(A)が、最大長3cm以上の塊状物を1kg当たり10個以下含有する請求項4乃至12のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  14.  前記溶解槽が攪拌機と、加熱媒体が流通する熱交換器を具備する請求項4乃至13のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  15.  前記溶解槽内部に保有されるジヒドロキシ化合物(A)の容積をV[m]、前記ジヒドロキシ化合物(A)と熱交換機との接触面積をS[m]とした時に、下記式(II)を満たす請求項4乃至14のいずれか1項に記載のポリカーボネート樹脂の製造方法。
     V/S ≦ 0.3 (II)
  16.  前記ジヒドロキシ化合物(A)が、直列に連結された2つ以上の前記溶解槽を用いて液化され、下流側の溶解槽の前記加熱媒体の温度が上流側の溶解槽の加熱媒体温度以下である請求項4至15のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  17.  前記溶解槽内部の酸素濃度が1000体積ppm以下である請求項4乃至16のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  18.  前記溶解槽に保有されるジヒドロキシ化合物(A)の液中に、酸素を10体積ppm以下含有する不活性ガスを吹き込む請求項4乃至17のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  19.  前記ジヒドロキシ化合物(A)と、前記ジヒドロキシ化合物(A)以外のジヒドロキシ化合物(B)とを原料に用い、
     前記ジヒドロキシ化合物(B)を、前記ジヒドロキシ化合物(A)を液化する溶解槽とは別の溶解槽で液化する請求項4乃至18のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  20.  前記ジヒドロキシ化合物(B)の融点が炭酸ジエステルの融点よりも高い場合、炭酸ジエステルをあらかじめ溶融させた液に、固体の前記ジヒドロキシ化合物(B)を供給して液化させる請求項19に記載のポリカーボネート樹脂の製造方法。
  21.  反応に用いられる全てのジヒドロキシ化合物と炭酸ジエステルとが、反応器に供給される前にスタティックミキサーにより混合される請求項1乃至20のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  22.  反応に用いられるすべてのジヒドロキシ化合物と炭酸ジエステルを、反応器に投入される前にフィルターで濾過する請求項1乃至21のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  23.  前記溶融重縮合が、長周期型周期表第2族の金属およびリチウムからなる群より選ばれる少なくとも1種の金属の化合物の存在下で行われる請求項1乃至22のいずれか1項に記載のポリカーボネート樹脂の製造方法。
  24.  前記ジヒドロキシ化合物(A)と、前記ジヒドロキシ化合物(B)とを原料に用いて、連続的にポリカーボネート樹脂を製造する方法であって、反応器に供給される原料組成のうち、少なくとも1種のジヒドロキシ化合物の全ジヒドロキシ化合物に対する重量分率を、異なる重量分率に変更する組成切り替え工程を有し、
     前記組成切り替え工程前後における重量分率の差は、1wt%以上である請求項19乃至23のいずれか1項に記載のポリカーボネート樹脂の製造方法。
PCT/JP2012/058735 2011-03-30 2012-03-30 ポリカーボネート樹脂の製造方法 WO2012133851A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137025527A KR101898308B1 (ko) 2011-03-30 2012-03-30 폴리카보네이트 수지의 제조 방법
CN201280016551.6A CN103476828B (zh) 2011-03-30 2012-03-30 聚碳酸酯树脂的制造方法
EP12763109.1A EP2692765B1 (en) 2011-03-30 2012-03-30 Method for producing polycarbonate resin
US14/042,102 US8907048B2 (en) 2011-03-30 2013-09-30 Production method of polycarbonate resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-075439 2011-03-30
JP2011075439 2011-03-30
JP2011075386 2011-03-30
JP2011-075386 2011-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/042,102 Continuation US8907048B2 (en) 2011-03-30 2013-09-30 Production method of polycarbonate resin

Publications (1)

Publication Number Publication Date
WO2012133851A1 true WO2012133851A1 (ja) 2012-10-04

Family

ID=46931543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058735 WO2012133851A1 (ja) 2011-03-30 2012-03-30 ポリカーボネート樹脂の製造方法

Country Status (5)

Country Link
US (1) US8907048B2 (ja)
EP (1) EP2692765B1 (ja)
KR (1) KR101898308B1 (ja)
CN (1) CN103476828B (ja)
WO (1) WO2012133851A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149922A (ja) * 2016-02-19 2017-08-31 宇部興産株式会社 ポリカーボネートポリオール

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3520981B1 (en) 2009-11-30 2022-06-15 Mitsubishi Chemical Corporation Polycarbonate resins and processes for producing the same
KR101897839B1 (ko) * 2011-01-07 2018-10-04 미쯔비시 케미컬 주식회사 폴리카보네이트의 제조 방법
EP2947110B1 (en) * 2014-05-19 2021-03-24 SABIC Global Technologies B.V. Melt filter alignment in a continuous melt polycarbonate production process
CN107001606B (zh) 2014-11-25 2019-03-22 沙特基础工业全球技术有限公司 聚碳酸酯生产过程中的过滤器对准

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327683A (ja) 2002-05-13 2003-11-19 Mitsubishi Gas Chem Co Inc 芳香族―脂肪族共重合ポリカーボネートの製造方法
JP2004111106A (ja) 2002-09-13 2004-04-08 Dowa Mining Co Ltd 導電性粉末及びその製造方法並びにそれを用いた導電性塗料及び導電性塗膜
JP2006232897A (ja) 2005-02-22 2006-09-07 Mitsubishi Gas Chem Co Inc コポリカーボネート樹脂
JP2008024919A (ja) 2006-06-19 2008-02-07 Mitsubishi Chemicals Corp ポリカーボネート共重合体及びその製造方法
JP2009120235A (ja) 2007-11-15 2009-06-04 Yoshino Kogyosho Co Ltd 液体塗布容器
JP2009161745A (ja) 2007-12-13 2009-07-23 Mitsubishi Chemicals Corp ポリカーボネートの製造方法
JP2010150540A (ja) 2008-11-28 2010-07-08 Mitsubishi Chemicals Corp ポリカーボネート原料用ジヒドロキシ化合物の保存方法、ポリカーボネート原料の調製方法及びポリカーボネートの製造方法
JP2011001455A (ja) * 2009-06-18 2011-01-06 Teijin Chem Ltd ポリカーボネート組成物の製造方法、該方法からの組成物、およびその成形品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683471B2 (ja) * 2000-04-26 2005-08-17 三菱化学株式会社 芳香族ポリカーボネートの製造方法
JP2003246853A (ja) * 2002-02-27 2003-09-05 Teijin Ltd 芳香族ポリカーボネートの製造方法、製造装置
JP2004189858A (ja) * 2002-12-10 2004-07-08 Mitsubishi Gas Chem Co Inc 芳香族―脂肪族共重合ポリカーボネートの製造方法
DE602004025240D1 (de) 2003-06-16 2010-03-11 Teijin Ltd Polycarbonat und herstellungsverfahren dafür
JP5245272B2 (ja) * 2007-03-29 2013-07-24 三菱化学株式会社 芳香族ポリカーボネートの製造方法
WO2009120235A1 (en) 2008-03-26 2009-10-01 Sabic Innovative Plastics Ip Bv Monomer solution for producing polycarbonate
EP3520981B1 (en) 2009-11-30 2022-06-15 Mitsubishi Chemical Corporation Polycarbonate resins and processes for producing the same
TWI503349B (zh) 2010-05-27 2015-10-11 Mitsubishi Chem Corp 聚碳酸酯樹脂及由其所構成之透明薄膜
KR101897839B1 (ko) 2011-01-07 2018-10-04 미쯔비시 케미컬 주식회사 폴리카보네이트의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327683A (ja) 2002-05-13 2003-11-19 Mitsubishi Gas Chem Co Inc 芳香族―脂肪族共重合ポリカーボネートの製造方法
JP2004111106A (ja) 2002-09-13 2004-04-08 Dowa Mining Co Ltd 導電性粉末及びその製造方法並びにそれを用いた導電性塗料及び導電性塗膜
JP2006232897A (ja) 2005-02-22 2006-09-07 Mitsubishi Gas Chem Co Inc コポリカーボネート樹脂
JP2008024919A (ja) 2006-06-19 2008-02-07 Mitsubishi Chemicals Corp ポリカーボネート共重合体及びその製造方法
JP2009120235A (ja) 2007-11-15 2009-06-04 Yoshino Kogyosho Co Ltd 液体塗布容器
JP2009161745A (ja) 2007-12-13 2009-07-23 Mitsubishi Chemicals Corp ポリカーボネートの製造方法
JP2010150540A (ja) 2008-11-28 2010-07-08 Mitsubishi Chemicals Corp ポリカーボネート原料用ジヒドロキシ化合物の保存方法、ポリカーボネート原料の調製方法及びポリカーボネートの製造方法
JP2011001455A (ja) * 2009-06-18 2011-01-06 Teijin Chem Ltd ポリカーボネート組成物の製造方法、該方法からの組成物、およびその成形品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149922A (ja) * 2016-02-19 2017-08-31 宇部興産株式会社 ポリカーボネートポリオール

Also Published As

Publication number Publication date
US8907048B2 (en) 2014-12-09
EP2692765B1 (en) 2020-04-29
EP2692765A4 (en) 2014-09-10
KR101898308B1 (ko) 2018-09-12
EP2692765A1 (en) 2014-02-05
KR20140013003A (ko) 2014-02-04
CN103476828A (zh) 2013-12-25
US20140031515A1 (en) 2014-01-30
CN103476828B (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
JP5962148B2 (ja) ポリカーボネートの製造方法およびポリカーボネートペレット
JP5948878B2 (ja) ポリカーボネートの製造方法
JP6019652B2 (ja) ポリカーボネート樹脂の製造方法
JP5857852B2 (ja) ポリカーボネートの製造方法、ポリカーボネートペレットおよび透明フィルム
WO2012133851A1 (ja) ポリカーボネート樹脂の製造方法
KR20140010109A (ko) 폴리카보네이트의 제조 방법 및 투명 필름
JP5987406B2 (ja) ポリカーボネート樹脂の製造方法
JP5906887B2 (ja) ポリカーボネート樹脂の製造方法
JP2015007188A (ja) ポリカーボネートの製造方法
JP5974682B2 (ja) ポリカーボネートの製造方法
JP2014074106A (ja) ポリカーボネート樹脂の製造方法、ポリカーボネート樹脂ペレットおよび延伸フィルム
JP5928120B2 (ja) ポリカーボネートの製造方法
JP5929427B2 (ja) ポリカーボネートの製造方法
JP5939012B2 (ja) ポリカーボネート樹脂の製造方法
JP6089626B2 (ja) ポリカーボネートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763109

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012763109

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137025527

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE