WO2012128449A1 - 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매 - Google Patents

고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매 Download PDF

Info

Publication number
WO2012128449A1
WO2012128449A1 PCT/KR2011/009822 KR2011009822W WO2012128449A1 WO 2012128449 A1 WO2012128449 A1 WO 2012128449A1 KR 2011009822 W KR2011009822 W KR 2011009822W WO 2012128449 A1 WO2012128449 A1 WO 2012128449A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
mixed refrigerant
explosive
boil
explosive mixed
Prior art date
Application number
PCT/KR2011/009822
Other languages
English (en)
French (fr)
Inventor
정승교
정제헌
최동규
이정한
문영식
유진열
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to US14/006,083 priority Critical patent/US20140069117A1/en
Priority to CN201180070989.8A priority patent/CN103547788A/zh
Priority to EP11861567.3A priority patent/EP2693034A4/en
Priority to JP2014500982A priority patent/JP2014517849A/ja
Publication of WO2012128449A1 publication Critical patent/WO2012128449A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0287Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/06Apparatus for de-liquefying, e.g. by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0097Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/13Inert gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/90Mixing of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention is a non-explosive mixed refrigerant used in the reliquefaction apparatus of the fuel supply system for compressing and reliquefying the evaporated gas generated in the liquefied natural gas storage tank to medium pressure, and then compressed and vaporized to a high pressure natural gas injection engine It is about.
  • Liquefied gas such as LNG (Liquefied Natural Gas) and LPG (Liquefied Petroleum Gas)
  • LNG Liquefied Natural Gas
  • LPG Liquefied Petroleum Gas
  • the liquefied gas is transported in a gas state through a gas pipe on land or sea, or transported to a distant consumer while stored in a liquefied gas carrier in a liquefied state.
  • Liquefied gas such as LNG or LPG is obtained by cooling natural gas or petroleum gas to cryogenic temperature (approximately -163 °C in case of LNG), and its volume is greatly reduced than in gas state, so it is very suitable for long distance transportation by sea. .
  • Liquefied gas carriers are used to load liquefied gas into the sea and unload this liquefied gas to land requirements.
  • a liquefied gas carrier includes a storage tank (commonly referred to as a cargo hold) that can withstand the cryogenic temperature of liquefied gas. do.
  • Examples of offshore structures equipped with storage tanks for storing cryogenic liquefied gas are vessels such as LNG RV (Regasification Vessel), LNG Floating Storage and Regasification Unit (FSRU), LNG FPSO (Floating, Production, Structures such as storage and off-loading).
  • LNG RV Registered Vessel
  • FSRU LNG Floating Storage and Regasification Unit
  • LNG FPSO Floating, Production, Structures such as storage and off-loading
  • LNG RV is the installation of LNG regasification facilities on liquefied gas carriers that can be self-driving and floating.
  • LNG FSRU stores liquefied natural gas, which is unloaded from LNG carriers, in the storage tank after liquefaction as needed.
  • It is an offshore structure that vaporizes natural gas and supplies it to land demand.
  • LNG FPSO is a marine structure that is used to directly purify mined natural gas from the sea and liquefy directly to store it in a storage tank, and to transfer LNG stored in the storage tank to an LNG carrier if necessary.
  • the offshore structure is a concept including not only vessels such as liquefied gas carriers and LNG RVs but also structures such as LNG FPSO and LNG FSRU.
  • the liquefaction temperature of natural gas is about -163 ° C at ambient pressure, so LNG is evaporated even if its temperature is slightly higher than -163 ° C at normal pressure.
  • the LNG storage tank of the LNG carrier is insulated, but since the external heat is continuously transmitted to the LNG, LNG is transported while the LNG carrier is transporting the LNG.
  • Boil-off gas (BOG) is generated in the LNG storage tank by continuously vaporizing it in the LNG storage tank.
  • the generated boil-off gas increases the pressure in the storage tank and accelerates the flow of the liquefied gas in response to the fluctuation of the vessel, it may cause structural problems, so it is necessary to suppress the generation of the boil-off gas.
  • the boil-off gas inside the storage tank is discharged to the outside of the storage tank in order to maintain an appropriate pressure in the storage tank and re-liquefied through the re-liquefaction device.
  • the boil-off gas is compressed to a low pressure of approximately 4 to 8 bara and fed to the reliquefaction apparatus.
  • the compressed boil-off gas is liquefied through heat exchange with nitrogen cooled to cryogenic temperatures in a reliquefaction apparatus including a nitrogen refrigeration cycle and then returned to the storage tank.
  • the boil-off gas In order to increase the efficiency of reliquefaction of the boil-off gas, it is preferable to compress the boil-off gas to a high pressure.
  • the LNG stored in the storage tank is maintained at a normal pressure, if the pressure of the re-liquefied liquefied liquefied gas is too high, it may return to the storage tank.
  • flash gas flash gas
  • the re-liquefaction efficiency is low, there is a problem in that the boil-off gas can be compressed at a low pressure of about 4 to 8 bara.
  • a nitrogen refrigeration cycle In addition, conventionally, a nitrogen refrigeration cycle, a mixed refrigerant cycle, and the like are used to reliquefy the boil-off gas.
  • the nitrogen refrigeration cycle has a problem of low liquefaction efficiency using nitrogen gas (N 2 ) as a refrigerant. Since a refrigerant in which nitrogen and a hydrocarbon gas, etc. are mixed as the refrigerant is used, there is a problem that the stability is inferior.
  • a turbo expander-type nitrogen reverse Brayton cycle was implemented to reliquefy the boil-off gas, and a mixed refrigerant in a land LNG liquefaction plant.
  • a Joule-Thompson refrigeration cycle was implemented to liquefy natural gas. Nitrogen reverse Brayton cycles used for marine use are advantageous in ships or offshore structures where space is limited due to their relatively simple configuration, but have low efficiency.
  • the mixed refrigerant Joule-Thomson refrigeration cycles used for land use are relatively Although the efficiency is high, due to the characteristics of the mixed refrigerant, there is a problem in that the device configuration is complicated, such as the use of a separator to separate when a gas-liquid state exists at the same time.
  • the present invention is to solve the conventional problems as described above, by compressing and reliquefying the evaporated gas generated in the liquefied natural gas storage tank to medium pressure, it can be supplied to a high-pressure natural gas injection engine by compressing and vaporizing to high pressure In the fuel supply system, it is to provide a non-explosive mixed refrigerant that can improve the reliquefaction efficiency of the reliquefaction apparatus.
  • the fuel supply system is a storage tank for storing liquefied gas
  • An evaporation gas compression unit that compresses the evaporated gas generated from the storage tank, compresses the evaporated gas generated from the storage tank, compresses the evaporated gas supplied from the evaporative gas compression unit, and compresses the evaporated gas liquefied by the reliquefaction apparatus.
  • Non-explosive mixed refrigerant is made by mixing a plurality of non-explosive refrigerants having different boiling points, respectively The boiling point of the non-explosive refrigerant is provided with a non-explosive mixture refrigerant used in the re-liquefaction apparatus of the high-pressure gas injection engine fuel supply systems, characterized in that present between the liquid over the temperature and the room temperature of the natural gas.
  • the series V is composed of R236fa and R245fa, it is preferable to select and mix one or more refrigerants in each series.
  • composition ratio of the plurality of non-explosive refrigerants is preferably determined such that the temperature difference between the high-temperature fluid and the low-temperature fluid in the heat exchanger in which the heat exchange between the non-explosive mixed refrigerant and the boil-off gas is performed is kept constant.
  • the non-explosive mixed refrigerant is preferably formed by mixing Ar, R14, R23, R410a, and R245fa.
  • the non-explosive mixed refrigerant is evaporated when heat-exchanged with the evaporated gas compressed to 12 to 45 bara (absolute pressure) in the evaporative gas compression unit after being discharged from the storage tank and before being heat-exchanged with the non-explosive mixed refrigerant. It is desirable to have a freezing point of temperature that does not freeze even when the gas is reliquefied.
  • the non-explosive mixed refrigerant used for the liquefaction of natural gas is a boil-off gas through heat exchange with the boil-off gas generated and discharged in the storage tank for storing LNG
  • a non-explosive mixed refrigerant is provided which has a temperature which does not freeze even when the boil-off gas is reliquefied.
  • a non-explosive mixed refrigerant used for liquefaction of natural gas is a plurality of non-explosive refrigerant having different boiling points It is made by mixing, the boiling point of each non-explosive refrigerant is provided with a non-explosive mixed refrigerant, characterized in that present between the liquefaction temperature and natural temperature of the natural gas.
  • the re-liquefaction apparatus of the reliquefaction apparatus Non-explosive mixed refrigerant can be provided that can improve the liquefaction efficiency.
  • the fuel supply system using the non-explosive mixed refrigerant of the present invention instead of compressing the boil-off gas to a low pressure of about 4 to 8 bara, it can be compressed to a medium pressure of about 12 to 45 bara and then re-liquefied. As the pressure of the boil-off gas is increased, the liquefied energy is reduced, thereby reducing the liquefied energy required for reliquefaction.
  • the use of a non-explosive mixed refrigerant in the reliquefaction apparatus for reliquefaction of the boil-off gas enables efficient reliquefaction than the conventional nitrogen cycle and more stable than the conventional mixed refrigerant cycle.
  • the liquefaction point of the boil-off gas rises and the thermal stress received by the heat exchanger for re-liquefaction This reduces and reduces the heat duty of the high pressure vaporizer, thereby reducing the size of the equipment.
  • FIG. 1 is a block diagram showing a fuel supply system for a high-pressure natural gas injection engine according to a first embodiment of the present invention
  • Figure 2a is a graph showing the freezing point and boiling point of the components contained in the non-explosive mixed refrigerant of the present invention
  • Figure 2b is a graph showing the freezing point and boiling point of the components contained in the hydrocarbon mixed refrigerant
  • Figure 2c is a graph showing the liquefaction temperature according to the pressurized pressure of natural gas
  • Figure 3 is a graph showing the boiling point of the refrigerant components for constituting the non-explosive mixed refrigerant
  • Figure 4 is a graph comparing the power consumption when using a non-explosive mixed refrigerant refrigeration cycle and nitrogen gas refrigeration cycle in the reliquefaction apparatus of the boil-off gas
  • FIG. 5 is a block diagram showing a fuel supply system for a high-pressure natural gas injection engine according to a second embodiment of the present invention
  • FIG. 6 is a block diagram showing a fuel supply system for a high pressure natural gas injection engine according to a third embodiment of the present invention.
  • FIG. 7 is a block diagram showing a fuel supply system for a high pressure natural gas injection engine according to a fourth embodiment of the present invention.
  • Such ME-GI engines are marine structures such as LNG carriers for storing and transporting LNG (Liquefied Natural Gas) in cryogenic storage tanks (including marine vessels, LNG carriers, LNG RV, etc.) It can be installed in a marine plant such as LNG FPSO and LNG FSRU.)
  • LNG Liquefied Natural Gas
  • cryogenic storage tanks including marine vessels, LNG carriers, LNG RV, etc.
  • LNG FPSO and LNG FSRU natural gas
  • high pressure about 150 ⁇ 400 bara (absolute pressure) depending on the load. Gas supply pressure is required.
  • the ME-GI engine will use Boil Off Gas (BOG) as a fuel if additional liquefaction equipment is installed if necessary, depending on changes in gas and fuel oil prices and the degree of regulation of emissions. Or you can choose whether to re-liquefy the boil-off gas to the storage tank and use heavy fuel oil (HFO) .In particular, you can easily vaporize LNG to use as fuel when passing through certain regulated waters.
  • BOG Boil Off Gas
  • HFO heavy fuel oil
  • 1 is a block diagram showing a fuel supply system of a marine structure, in particular a liquefied natural gas carrier, having a high-pressure natural gas injection engine, such as a ME-GI engine, according to a first embodiment of the present invention.
  • 1 shows an example in which a fuel supply system for a high pressure natural gas injection engine of the present invention is applied to an LNG carrier equipped with a ME-GI engine capable of using natural gas as a fuel, but for a high pressure natural gas injection engine of the present invention
  • the fuel supply system can be applied to all types of offshore structures with liquefied gas storage tanks, namely ships such as LNG carriers, LNG RVs, as well as offshore plants such as LNG FPSOs and LNG FSRUs.
  • the boil-off gas (NBOG) generated and discharged from the liquefied gas storage tank 11, the boil-off gas compression unit 13 ) Is compressed to a medium pressure of about 12 to 45 bara (absolute pressure) and then supplied to the reliquefaction apparatus 20.
  • the liquefied liquefied gas (LBOG) which is supplied with liquefied energy, that is, cold heat from the reliquefaction apparatus 20, is compressed to a high pressure of about 150 to 400 bara by a high pressure pump 33, and then, to the high pressure vaporizer 37. Supplied.
  • the boil-off gas vaporized in the high pressure vaporizer 37 is subsequently supplied as fuel to a high pressure natural gas injection engine, such as a ME-GI engine.
  • the pressure range of the high pressure means a pressure of about 150 to 400 bara, which is a fuel supply pressure required by the high pressure natural gas injection engine
  • the pressure range of the medium pressure means the evaporation in the evaporation gas compression unit 13.
  • the pressure ranges from about 12 to 45 bara to compress the gas
  • the low pressure means the pressure range from about 4 to 8 bara to compress to supply the boil-off gas to the reliquefaction apparatus in the prior art.
  • Storage tanks are equipped with sealed and insulated barriers to store liquefied gases, such as LNG, in cryogenic conditions, but they cannot completely block heat from the outside. Accordingly, the liquefied gas is continuously evaporated in the storage tank 11, and the evaporated gas is discharged through the evaporated gas discharge line L1 to maintain the pressure of the evaporated gas at an appropriate level. Let's do it.
  • the discharged boil-off gas is supplied to the boil-off gas compression unit 13 through the boil-off gas discharge line L1.
  • the boil-off gas compressor 13 includes one or more boil-off gas compressors 14 and one or more intermediate coolers 15 for cooling the boil-off gas whose temperature has risen while being compressed by the boil-off gas compressor 14.
  • FIG. 1 a five-stage compressed boil-off gas compression unit 13 including five boil-off gas compressors 14 and five intermediate coolers 15 is illustrated.
  • the boil-off gas compressed by the boil-off gas compression unit 13 is supplied to the reliquefaction apparatus 20 through the boil-off gas supply line L2.
  • the boil-off gas supplied to the reliquefaction apparatus 20 is cooled by the refrigerant and reliquefied while passing through the cold box 21 of the reliquefaction apparatus 20.
  • any structure can be used as long as it can liquefy evaporated gas generated from liquefied gas such as LNG.
  • the reliquefaction apparatus 20 illustrated in FIG. 1 includes a cold box 21 for reliquefaction of the boil-off gas by heat exchange between the refrigerant and the boil-off gas, and a refrigerant partially heated and vaporized in the cold box 21.
  • At least one refrigerant gas-liquid separator 22 for separating gaseous and liquid refrigerants
  • at least one refrigerant compressor 23 for compressing the gaseous refrigerant separated from the refrigerant gas-liquid separator 22
  • a refrigerant cooler 24 for cooling the refrigerant compressed by the refrigerant compressor 23, and a refrigerant expansion valve 25 for expanding the refrigerant cooled in the refrigerant cooler 24 after being compressed by the refrigerant compressor 23 to lower the temperature.
  • a refrigerant pump 26 for supplying the refrigerant in the liquid state separated from the refrigerant gas-liquid separator 22 to the refrigerant expansion valve 25.
  • the refrigerant supplied to the refrigerant expansion valve 25 through the refrigerant pump 26 is mixed with the refrigerant supplied to the refrigerant expansion valve 25 after passing through the refrigerant cooler 24 upstream of the refrigerant expansion valve 25. It is preferable.
  • the refrigerant supplied to the refrigerant expansion valve 25 may be configured to exchange heat with the refrigerant in the cryogenic state after expansion while passing through the cold box 21 before expansion.
  • the refrigerant cooled in the refrigerant cooler 24 may be supplied to another refrigerant gas-liquid separator to be processed into a refrigerant in a gas state and a refrigerant in a liquid state.
  • the reliquefaction apparatus 20 of FIG. 1 is illustrated as including two refrigerant gas-liquid separators 22, a refrigerant compressor 23, a refrigerant cooler, and a refrigerant pump 26, respectively. It is not limited and the number of installations can be added or subtracted as needed in the design.
  • a non-explosive mixed refrigerant containing R14 is used, unlike the conventional art.
  • the non-explosive mixed refrigerant formed by mixing a plurality of non-explosive refrigerants has a mixed composition ratio such that the non-explosive mixed refrigerant does not condense even at the liquefaction temperature when re-liquefying the compressed boil-off gas at medium pressure.
  • the refrigeration cycle using the phase change of the mixed refrigerant is more efficient than the nitrogen gas refrigeration cycle using only nitrogen as a refrigerant.
  • Conventional mixed refrigerants have a problem in safety due to the mixing of explosive refrigerant, but the non-explosive mixed refrigerant of the present invention is high in stability because it is a mixture of non-explosive refrigerant.
  • the non-explosive mixed refrigerant of the present invention it is possible to apply the mixed refrigerant Joule-Thomson refrigeration cycle to the marine LNG reliquefaction apparatus.
  • this mixed refrigerant is a hydrocarbon (Hydro-Carbon; hereinafter referred to as "HC”) mixed refrigerant and has difficulty in handling.
  • the non-explosive mixed refrigerant of the present invention is composed of argon, hydrofluorocarbon (hereinafter referred to as "HFC”) refrigerant, and fluorocarbon (hereinafter referred to as "FC”) refrigerant, which is explosive There is no
  • HFC / FC refrigerant those shown in Table 1 may be used.
  • Table 1 also shows the argon.
  • the freezing point is higher than the general temperature of LNG ( ⁇ 163 ° C.) and thus cannot be used as a refrigerant during LNG reliquefaction.
  • the inventors pay attention to the fact that the liquefaction (or reliquefaction) temperature rises as the pressure of natural gas (or evaporated gas) increases, as shown in FIG. 2C, and thus a highly efficient and safe HFC / FC mixed refrigerant.
  • a non-explosive mixed refrigerant has been developed to reliquefy the boil-off gas from LNG storage tanks in offshore structures by Joule-Thomson refrigeration cycle.
  • the boil-off gas before the reliquefaction of the boil-off gas by pressurizing to a medium pressure of 12 to 45 bara, the boil-off gas at a temperature higher than the temperature of the boil-off liquid reliquefaction at normal pressure, that is, higher than the freezing point of the non-explosive mixed refrigerant Allow reliquefaction of
  • Non-explosive mixed refrigerant of the present invention the boiling point is evenly distributed between natural gas liquefaction temperature (or evaporation gas reliquefaction temperature) and room temperature is made by mixing the refrigerant of various components to use a wide phase change section. It is preferable to classify the refrigerants having similar boiling points into five series, and to select one or more components from each series to constitute the non-explosive mixed refrigerant of the present invention. That is, the non-explosive mixed refrigerant of the present invention is made by selecting and mixing at least one component from each of five series.
  • Series I includes Ar having the lowest boiling point among refrigerants
  • Series II includes R14
  • Series III includes R23, R116, and R41
  • Series IV includes R32, R410A , R410B, R125, R143a, R507, R407B, R404A, R407A, R407C, R407E, R407D, R161, R218, R134a, R152a, and R227ea
  • Series V include R236fa and R245fa.
  • the non-explosive mixed refrigerant of the present invention in which at least one refrigerant is selected from each of these five series has a component and a composition as shown in the following Table 1 in view of ease of supply of refrigerant, cost, and the like.
  • the composition ratio of the non-explosive mixed refrigerant is a temperature difference between the heat exchanger that exchanges heat with the boil-off gas, that is, the hot fluid (ie, the boil-off gas) in the cold box 21 and the low-temperature fluid (that is, the non-explosive mixed refrigerant). It is desirable in terms of efficiency to be determined to be as constant as possible.
  • power consumption that is, power (kW) can be reduced as compared to when the evaporated gas is reliquefied using nitrogen gas refrigerant as in the prior art, thereby improving reliquefaction efficiency.
  • the present invention compresses and reliquefies the evaporated gas to a medium pressure of about 12 to 45 bara, which is a relatively high pressure, compared to the evaporated gas pressure used in the conventional reliquefaction apparatus, when reliquefying It is possible to reduce the power required, wherein the pressure range according to the present invention (ie 12 to 45 bara) is determined due to the characteristics of the non-explosive mixed refrigerant of the composition used as the refrigerant in the reliquefaction apparatus. That is, when using the non-explosive mixed refrigerant of the composition, it is possible to maintain the best re-liquefaction efficiency in the reliquefaction apparatus when the boil-off gas preferably has a pressure of about 12 to 45 bara.
  • the reliquefaction temperature is about -130 ° C
  • the temperature of the non-explosive mixed refrigerant is lowered to about -155 ° C in order to cool the boil-off gas to this temperature. Since the non-explosive mixed refrigerant having the composition may cause freezing at -155 ° C. or lower, a refrigeration cycle using the non-explosive mixed refrigerant is difficult to configure when the pressure of the boil-off gas is lower than 12 bara.
  • the critical pressure of the boil-off gas whose main component is methane is about 46 bara, and there is no phase above this critical pressure, the meaning of liquefaction becomes meaningless, and the upper limit of the boil-off gas pressure is preferably set to about 45 bara.
  • the above-mentioned of the present invention compared to the conventional reliquefaction apparatus using a nitrogen gas refrigerant It can be seen that the reliquefaction apparatus using the non-explosive mixed refrigerant having the composition as described above saves power by approximately 10 to 20%.
  • FIG. 4 (b) shows the conditions of the reliquefaction apparatus according to the prior art (i.e., when the refrigerant used in the reliquefaction apparatus is nitrogen gas (N2) and the pressure of the boil-off gas supplied to the reliquefaction apparatus is 8 bara).
  • Power requirements and the conditions of the reliquefaction apparatus using the non-explosive mixed refrigerant (NFMR) according to the present invention i.e., the refrigerant used in the reliquefaction apparatus is a non-explosive mixed refrigerant (NFMR) and evaporation supplied to the reliquefaction apparatus.
  • a graph comparing the power requirement at the pressure of the gas is shown.
  • the reliquefaction apparatus of the present invention can operate with only about 50 to 80% of the power Able to know.
  • the generator capacity can be reduced and the generator can be miniaturized.
  • the reliquefaction apparatus of the present invention uses a Joule Thomson valve as an expansion means of the refrigerant, so that the entire system is simpler and more economical than the conventional N2 compander using an expander. You can get the advantage.
  • non-explosive mixed refrigerant of the present invention may contain a small amount of non-explosive refrigerant components other than those shown in Table 1.
  • the evaporated gas re-liquefied through heat exchange in the cold box 21 is separated into a gas and a liquid state in the buffer tank 31, and only the liquid liquefied evaporation gas in the liquid state is supplied to the high pressure pump 33 through the fuel supply line L3. Is supplied.
  • the high pressure pump 33 may be provided in plural, for example two in parallel.
  • liquefied evaporation gas is pressurized to a fuel supply pressure required by a high pressure natural gas injection engine (for example, a ME-GI engine) and sent out.
  • the liquefied evaporation gas sent from the high pressure pump 33 has a high pressure of about 150 to 400 bara (absolute pressure).
  • FIG. 5 is a block diagram showing a fuel supply system of a marine structure, in particular a liquefied natural gas carrier, having a high-pressure natural gas injection engine, such as a ME-GI engine, according to a second embodiment of the present invention.
  • the fuel supply system of the second embodiment shown in FIG. 5 differs from each other only in that it is preheated before compressing the boil-off gas as compared with the fuel supply system of the first embodiment described above.
  • a fuel supply system of the second embodiment shown in FIG. 5 differs from each other only in that it is preheated before compressing the boil-off gas as compared with the fuel supply system of the first embodiment described above.
  • a high-pressure natural gas injection engine such as a ME-GI engine
  • the boil-off gas (NBOG) generated and discharged from the liquefied gas storage tank 11, the boil-off gas compression unit 13 ) Is compressed to a medium pressure of about 12 to 45 bara (absolute pressure) and then supplied to the boil-off gas preheater 41 installed upstream of the boil-off gas compressor 13 before being supplied to the reliquefaction apparatus 20.
  • the boil-off gas compressed to about 12 to 45 bara in the boil-off gas compression unit 13 and cooled to about 40 ° C. through the intermediate cooler 15 is cryogenically discharged from the liquefied gas storage tank 11 in the boil-off gas preheater 41. It is cooled by heat exchange with the boil-off gas and then supplied to the reliquefaction apparatus 20.
  • the temperature of the boil-off gas to be supplied to the reliquefaction apparatus 20 can be lowered through the boil-off gas preheater 41, thereby reducing the heat load in the cold box 21.
  • the cryogenic gas supplied to the boil-off gas compression unit 13 and the boil-off gas having a relatively high temperature compressed by the boil-off gas compression unit 13 are located upstream of the boil-off gas compression unit 13.
  • the boil-off gas which has been compressed by the boil-off gas compression section 13 and passed through the boil-off gas preheater 41, is supplied to the reliquefaction apparatus 20 as in the fuel supply system of the first embodiment described above. Subsequently, the liquefied liquefied gas (LBOG) supplied with liquefied energy, that is, cold heat from the reliquefaction apparatus 20 is compressed to a high pressure of about 150 to 400 bara by the high pressure pump 33, and then a high pressure vaporizer ( 37). The boil-off gas vaporized in the high pressure vaporizer 37 is subsequently supplied as fuel to a high pressure natural gas injection engine, such as a ME-GI engine.
  • a high pressure natural gas injection engine such as a ME-GI engine.
  • FIG. 6 is a block diagram illustrating a fuel supply system of a marine structure, particularly a LNG carrier, having a high pressure natural gas injection engine, for example, a ME-GI engine, according to a third embodiment of the present invention.
  • the fuel supply system of the third embodiment shown in FIG. 6 has a means for treating surplus boil-off gas, that is, a fuel for heterogeneous fuel engine (DFDE) and a stable fuel supply, as compared with the fuel supply system of the second embodiment described above. Since the LNG supply line is different from each other only in that it is added, the following description focuses on differences from the second embodiment.
  • DFDE fuel for heterogeneous fuel engine
  • the excess liquefied evaporation gas The LBOG is depressurized through the LBOG expansion valve 51 installed at the LBOG return line L4 branching from the fuel supply line L3 at the rear end of the buffer tank 31, and includes flash gas generated in the depressurization process. After the LBOG is separated into a liquid component (LBOG) and a gas component (flash gas) through a gas-liquid separator, only the liquid component is returned to the storage tank 11 through the LBOG return line (L4).
  • LBOG liquid component
  • flash gas flash gas
  • the LBOG containing the flash gas reduced in pressure by the LBOG expansion valve 51 is supplied to the LBOG gas-liquid separator 53 and separated into a liquid component and a gas component, and the gas component separated by the LBOG gas-liquid separator 53.
  • gas component separated by the LBOG gas-liquid separator 53 is supplied as fuel to a heterogeneous fuel engine DFDE that can be installed in an offshore structure for power generation or the like through the fuel gas supply line L6.
  • the pressure of the fuel gas supplied to the heterogeneous fuel engine can be adjusted by a pressure regulating valve installed downstream of the LBOG gas-liquid separator 53 in the middle of the fuel gas supply line L6, and also the fuel gas supply line ( In the fuel gas heater 55 installed in the middle of L6), the temperature of the fuel gas may be heated to a temperature required by the heterogeneous fuel engine.
  • the liquid component separated in the LBOG gas-liquid separator 53 is returned to the storage tank through the LBOG return line (L4).
  • the pressure of the liquid component separated in the LBOG gas-liquid separator 53 may still be higher than the normal pressure.
  • the liquid component separated from the LBOG gas-liquid separator 53 i.e., LBOG
  • LBOG liquid component separated from the LBOG gas-liquid separator 53
  • another LBOG gas-liquid separator 54 is further depressurized through another LBOG expansion valve 52, and is then supplied to another LBOG gas-liquid separator 54 to supply the liquid component ( After separating into LBOG) and a gas component (flash gas), only the liquid component of normal pressure is returned to the storage tank 11 through the LBOG return line L4.
  • the gaseous components separated in another LBOG gas-liquid separator 54 may be consumed by being fed to and combusted with a Gas Combustion Unit (GCU).
  • GCU Gas Combustion Unit
  • the fuel supplied to the heterogeneous fuel engine is insufficient, the fuel is diverted from the fuel supply line L3 supplying the fuel to the high pressure natural gas injection engine (ie, ME-GI) to supply fuel to the heterogeneous fuel engine (ie, DFDE).
  • Fuel may be additionally supplied to the heterogeneous fuel engine through the branch line L5 connected to the fuel gas supply line L6.
  • the branch line (L5) is provided with a valve for the pressure drop.
  • the boil-off gas reliquefaction apparatus when the boil-off gas reliquefaction apparatus does not operate or the amount of the boil-off gas generated in the storage tank 11 is small, it is stored through the LNG supply pump 57 and the LNG supply line L7 installed in the storage tank 11. Fuel can be supplied by supplying LNG accommodated in the tank 11 to the buffer tank 31.
  • the heterogeneous fuel engine functions as a flash gas treating means capable of treating flash gas generated from the LBOG on the way back to the storage tank 11 due to the pressure difference.
  • the gas component separated in the LBOG gas-liquid separator 53 may be supplied to a consumer such as a gas turbine, a boiler, etc., instead of a heterogeneous fuel engine, and may be used as fuel.
  • this gas component can be supplied to and treated by a gas discharge device for releasing natural gas into the atmosphere, or a gas combustion device (for example, a flare tower) for burning in the atmosphere.
  • a heterogeneous fuel engine, a gas turbine, a boiler, a gas discharge device, a flare tower, and the like are included in the flash gas treating means, and the gas component supplied to the flash gas treating means may be heated in the fuel gas heater 55.
  • the flash gas treatment means as described above since the flash gas treatment means as described above is provided, the boil-off gas supplied to the reliquefaction apparatus can be compressed and supplied to a medium pressure of about 12 to 45 bara, and thus the energy during reliquefaction The consumption can be reduced.
  • FIG. 7 is a block diagram illustrating a fuel supply system of a marine structure, particularly a LNG carrier, having a high pressure natural gas injection engine, for example, a ME-GI engine, according to a fourth embodiment of the present invention.
  • the fuel supply system of the fourth embodiment shown in FIG. 7 provides a means for treating surplus boil-off gas, that is, a gas combustion unit (GCU) and a stable fuel supply, as compared with the fuel supply system of the second embodiment described above.
  • GCU gas combustion unit
  • Means to add LNG supply lines, and to divert some of the boil-off gas prior to reliquefaction so that it does not generate excess boil-off gas that is, a heterogeneous fuel engine (DFDE) or gas turbine. Since only points are different from each other, the following description focuses on differences from the second embodiment.
  • DFDE heterogeneous fuel engine
  • the load of the high pressure natural gas injection engine is reduced or the amount of generated evaporated gas is large, so that the excess liquefied evaporation gas (LBOG) If is expected to occur, the boil-off gas compressed in the boil-off gas compression section 13 or branched through the branch line is used in the boil-off gas consumption means.
  • LBOG liquefied evaporation gas
  • the surplus evaporation gas may be configured to be supplied to the heterogeneous fuel engine DFDE through the second branch line L8 branching in the middle of the evaporation gas compression unit 13.
  • the temperature of the boil-off gas in the intermediate cooler 15 included in the boil-off gas compression unit 13 is cooled to about 40 ° C., a separate heater or the like for controlling the temperature of the boil-off gas supplied to the different fuel engine is May be omitted.
  • the excess boil-off gas may be configured to be supplied to the gas turbine through a third branch line L9 branching from the rear end of the boil-off gas compression unit 13.
  • a separate device for controlling the temperature of the boil-off gas supplied to the gas turbine may be omitted.
  • the excess evaporated gas is depressurized through the LBOG expansion valve 51 installed in the LBOG return line L4 branching from the fuel supply line L3 at the rear end of the buffer tank 31, and is generated during the depressurization process.
  • the LBOG containing the flash gas is separated into a liquid component (LBOG) and a gas component (flash gas) through the LBOG gas-liquid separator 53, and then only the liquid component is returned to the storage tank 11 through the LBOG return line L4. do.
  • the gas component (that is, flash gas) separated by the LBOG gas-liquid separator 53 is supplied as fuel to the gas combustion unit GCU via the fuel gas supply line L6.
  • the excess evaporated gas is branched from the fuel supply line (L3) for supplying fuel to the high-pressure natural gas injection engine (ie, ME-GI) and connected to the fuel gas supply line (L6). It can be supplied in addition to the GCU.
  • the branch line (L5) is provided with a valve for the pressure drop.
  • the LNG supply pump 57 installed in the storage tank 11 and Fuel may be supplied by supplying LNG contained in the storage tank 11 to the buffer tank 31 through the LNG supply line L7.
  • devices such as DFDE (third embodiment) and GCU (fourth embodiment) described as means for treating the generated flash gas, and flash gas are not generated.
  • the apparatuses such as the DFDE (fourth embodiment) and the gas turbine (fourth embodiment) described as means for preconsuming excess evaporated gas before reliquefaction are all capable of suppressing the generation of flash gas. It may be referred to collectively as flash gas suppressing means.
  • the fuel supply system of the offshore structure having a high pressure natural gas injection engine according to the first to fourth embodiments of the present invention as described above has the following advantages over the prior art.
  • the liquefied gas is re-liquefied by the reliquefaction apparatus and returned to the storage tank, and since the LNG stored in the storage tank is maintained at atmospheric pressure, the pressure of the reliquefied liquefied liquefied gas is too high to return to the storage tank.
  • the reliquefaction efficiency was low, but the boil-off gas was compressed at a low pressure of about 4 to 8 bara.
  • the boil-off gas discharged from the storage tank is used as a fuel in a high-pressure natural gas injection engine, the boil-off gas is compressed and re-liquefied by compressing the boil-off gas to a higher pressure than in the prior art without having to worry about generating a flash gas.
  • the liquefaction efficiency can be improved.
  • the reliquefied evaporated gas is supplied as a fuel to a high-pressure natural gas injection engine, for example, a ME-GI engine, it is not necessary to return the reliquefied evaporated gas to the storage tank for restoring. It is possible to prevent the generation of flash gas, which can be generated upon return to the furnace, and suppresses the generation of flash gas, thereby compressing the pressure of the boil-off gas to a higher pressure than conventionally, that is, 12 to 45 bara before the reliquefaction. To reliquefy.
  • the reliquefaction efficiency by the non-explosive mixed refrigerant can be greatly increased as compared with the use of a nitrogen gas refrigerant as in the prior art. That is, the reliquefaction apparatus of the present invention using a non-explosive mixed refrigerant compared to the conventional nitrogen gas refrigerant can be used to re-liquefy the boil-off gas using a very small amount of energy to supply the engine as fuel.
  • the fuel supply system and method of the present invention has been described as an example applied to offshore structures such as LNG carriers, but the fuel supply system and method of the present invention is applied to fuel supply for high pressure natural gas injection engines on land. Of course it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

본 발명은 액화천연가스 저장탱크에서 발생한 증발가스를 중압으로 압축하고 재액화한 다음, 고압으로 압축하고 기화시켜 고압 천연가스 분사 엔진에 공급하는 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매에 관한 것이다. 본 발명에 따르면, 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매로서, 상기 연료 공급 시스템은, 액화가스를 저장하는 저장탱크 내에서 발생한 증발가스를 상기 저장탱크로부터 공급받아 압축하는 증발가스 압축부와, 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시키는 재액화 장치와, 상기 재액화 장치에서 액화된 증발가스를 압축시키는 고압 펌프와, 상기 고압 펌프에서 압축된 액화증발가스를 기화시켜 상기 고압 천연가스 분사 엔진에 공급하기 위한 고압 기화기를 포함하며, 상기 재액화 장치에서 증발가스와의 열교환을 통해 증발가스를 냉각시키는 비폭발성 혼합냉매는 비등점이 서로 다른 복수의 비폭발성 냉매를 혼합하여 이루어지되, 각각의 비폭발성 냉매의 비등점은 천연가스의 액화온도와 상온 사이에 걸쳐 존재하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매가 제공된다.

Description

고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매
본 발명은 액화천연가스 저장탱크에서 발생한 증발가스를 중압으로 압축하고 재액화한 다음, 고압으로 압축하고 기화시켜 고압 천연가스 분사 엔진에 공급하는 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매에 관한 것이다.
근래, LNG(Liquefied Natural Gas)나 LPG(Liquefied Petroleum Gas) 등의 액화가스의 소비량이 전 세계적으로 급증하고 있는 추세이다. 액화가스는, 육상 또는 해상의 가스배관을 통해 가스 상태로 운반되거나, 또는, 액화된 상태로 액화가스 운반선에 저장된 채 원거리의 소비처로 운반된다. LNG나 LPG 등의 액화가스는 천연가스 혹은 석유가스를 극저온(LNG의 경우 대략 -163℃)으로 냉각하여 얻어지는 것으로 가스 상태일 때보다 그 부피가 대폭적으로 감소되므로 해상을 통한 원거리 운반에 매우 적합하다.
액화가스 운반선은, 액화가스를 싣고 바다를 운항하여 육상 소요처에 이 액화가스를 하역하기 위한 것이며, 이를 위해, 액화가스의 극저온에 견딜 수 있는 저장탱크(흔히, '화물창'이라 함)를 포함한다.
이와 같이 극저온 상태의 액화가스를 저장할 수 있는 저장탱크가 마련된 해상 구조물의 예로서는 액화가스 운반선 이외에도 LNG RV (Regasification Vessel)와 같은 선박이나 LNG FSRU (Floating Storage and Regasification Unit), LNG FPSO (Floating, Production, Storage and Off-loading)와 같은 구조물 등을 들 수 있다.
LNG RV는 자력 항해 및 부유가 가능한 액화가스 운반선에 LNG 재기화 설비를 설치한 것이고, LNG FSRU는 육상으로부터 멀리 떨어진 해상에서 LNG 수송선으로부터 하역되는 액화 천연가스를 저장탱크에 저장한 후 필요에 따라 액화 천연가스를 기화시켜 육상 수요처에 공급하는 해상 구조물이다. 그리고, LNG FPSO는 채굴된 천연가스를 해상에서 정제한 후 직접 액화시켜 저장탱크 내에 저장하고, 필요시 이 저장탱크 내에 저장된 LNG를 LNG 수송선으로 옮겨싣기 위해 사용되는 해상 구조물이다. 본 명세서에서 해상 구조물이란, 액화가스 운반선, LNG RV 등의 선박을 비롯하여, LNG FPSO, LNG FSRU 등의 구조물까지도 모두 포함하는 개념이다.
천연가스의 액화온도는 상압에서 약 -163℃의 극저온이므로, LNG는 그 온도가 상압에서 -163℃ 보다 약간만 높아도 증발된다. 종래의 LNG 운반선의 경우를 예를 들어 설명하면, LNG 운반선의 LNG 저장탱크는 단열처리가 되어 있기는 하지만, 외부의 열이 LNG에 지속적으로 전달되므로, LNG 운반선에 의해 LNG를 수송하는 도중에 LNG가 LNG 저장탱크 내에서 지속적으로 기화되어 LNG 저장 탱크 내에 증발가스(BOG; Boil-Off Gas)가 발생한다.
발생된 증발가스는 저장탱크 내의 압력을 증가시키며 선박의 요동에 따라 액화가스의 유동을 가속시켜 구조적인 문제를 야기시킬 수 있기 때문에, 증발가스의 발생을 억제할 필요가 있다.
종래, 액화가스 운반선의 저장탱크 내에서의 증발가스를 억제하기 위해, 증발가스를 저장탱크의 외부로 배출시켜 소각해 버리는 방법, 증발가스를 저장탱크의 외부로 배출시켜 재액화 장치를 통해 재액화시킨 후 다시 저장탱크로 복귀시키는 방법, 선박의 추진기관에서 사용되는 연료로서 증발가스를 사용하는 방법, 저장탱크의 내부압력을 높게 유지함으로써 증발가스의 발생을 억제하는 방법 등이 단독으로 혹은 복합적으로 사용되고 있었다.
증발가스 재액화 장치가 탑재된 부유식 구조물의 경우, 저장탱크의 적정 압력 유지를 위해 저장탱크 내부의 증발가스를 저장탱크 외부로 배출시켜 재액화 장치를 통해 재액화시키게 되는데, 재액화 작업이 이루어지기 전에 증발가스를 대략 4 내지 8 bara 정도의 저압으로 압축시켜 재액화 장치로 공급한다. 압축된 증발가스는 질소 냉동 사이클을 포함하는 재액화 장치에서 초저온으로 냉각된 질소와의 열교환을 통해 재액화된 후 저장탱크로 복귀된다.
증발가스의 재액화 효율을 높이기 위해서는 증발가스를 높은 압력으로 압축시키는 것이 바람직하지만, 저장탱크에 저장된 LNG는 상압 상태를 유지하고 있기 때문에 재액화된 액화증발가스의 압력이 지나치게 높으면 저장탱크에 복귀할 때 플래시 가스(flash gas)가 발생하게 된다. 따라서, 재액화 효율은 낮지만 상기한 4 내지 8 bara 정도의 저압으로 증발가스를 압축할 수밖에 없다는 문제가 있다.
또한, 증발가스의 재액화를 위하여 종래에는 질소 냉동 사이클, 혼합냉매 사이클 등이 이용되는데, 질소 냉동 사이클은 냉매로서 질소가스(N2)를 사용하여 액화 효율이 낮은 문제가 있고, 혼합냉매 사이클은 냉매로서 질소와 탄화수소 가스 등이 혼합된 냉매를 사용하기 때문에 안정성이 떨어지는 문제가 있다.
더욱 상세하게는, 종래의 선박이나 해상 플랜트 등의 해상용 LNG 재액화 장치에서는 터보 팽창기(tubo expander) 방식의 질소 역브레이튼 사이클을 구현하여 증발가스를 재액화하였고, 육상용 LNG 액화 플랜트에서는 혼합냉매를 이용하는 줄-톰슨 냉동 사이클을 구현하여 천연가스를 액화시켰다. 해상용으로 사용하던 질소 역브레이튼 사이클은 상대적으로 장치의 구성이 단순하여 공간이 한정된 선박이나 해상 구조물에서 유리하지만 효율이 낮은 문제가 있고, 육상용으로 사용하던 혼합냉매 줄-톰슨 냉동 사이클은 상대적으로 효율이 높지만 혼합냉매의 특성상 기액상태가 동시에 존재할 때 이를 분리하기 위한 세퍼레이터를 사용해야 하는 등 장치 구성이 복잡해지는 문제가 있다.
그 밖에도 LNG 등의 액화가스를 저장하는 저장탱크를 구비한 해상 구조물에 대하여, 저장탱크에서 지속적으로 발생하는 증발가스를 효율적으로 처리하되, 플래시 가스의 발생을 억제할 수 있는 방법에 대한 연구 개발이 계속해서 이루어질 필요가 있다.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로서, 액화천연가스 저장탱크에서 발생한 증발가스를 중압으로 압축하고 재액화한 다음, 고압으로 압축하고 기화시켜 고압 천연가스 분사 엔진에 공급할 수 있는 연료 공급 시스템에 있어서, 재액화 장치의 재액화 효율을 향상시킬 수 있는 비폭발성 혼합냉매를 제공하고자 하는 것이다.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매로서, 상기 연료 공급 시스템은, 액화가스를 저장하는 저장탱크 내에서 발생한 증발가스를 상기 저장탱크로부터 공급받아 압축하는 증발가스 압축부와, 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시키는 재액화 장치와, 상기 재액화 장치에서 액화된 증발가스를 압축시키는 고압 펌프와, 상기 고압 펌프에서 압축된 액화증발가스를 기화시켜 상기 고압 천연가스 분사 엔진에 공급하기 위한 고압 기화기를 포함하며, 상기 재액화 장치에서 증발가스와의 열교환을 통해 증발가스를 냉각시키는 비폭발성 혼합냉매는 비등점이 서로 다른 복수의 비폭발성 냉매를 혼합하여 이루어지되, 각각의 비폭발성 냉매의 비등점은 천연가스의 액화온도와 상온 사이에 걸쳐 존재하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매가 제공된다.
상기 비폭발성 혼합냉매는, 계열 I은 Ar으로 이루어지고; 계열 II는 R14로 이루어지고; 계열 III은 R23, R116, 및 R41로 이루어지고; 계열 IV는 R32, R410A, R410B, R125, R143a, R507, R407B, R404A, R407A, R407C, R407E, R407D, R161, R218, R134a, R152a, 및 R227ea로 이루어지고; 계열 V는 R236fa 및 R245fa로 이루어질 때, 각각의 계열에서 하나 이상의 냉매를 선택하여 혼합함으로써 이루어지는 것이 바람직하다.
복수의 상기 비폭발성 냉매의 조성 비율은, 상기 비폭발성 혼합냉매와 증발가스 사이의 열교환이 이루어지는 열교환기에서의 고온 유체와 저온 유체 사이의 온도차가 일정하게 유지되도록 정해지는 것이 바람직하다.
상기 비폭발성 혼합냉매는 Ar, R14, R23, R410a, 및 R245fa를 혼합하여 이루어지는 것이 바람직하다.
상기 비폭발성 혼합냉매는, 상기 저장탱크에서 발생되어 배출된 후 상기 비폭발성 혼합냉매와 열교환되기 전에 상기 증발가스 압축부에서 12 내지 45 bara(절대압력)로 압축된 증발가스와 열교환될 때, 증발가스가 재액화되더라도 동결되지 않는 온도의 어는점을 가지는 것이 바람직하다.
또한, 본 발명의 다른 측면에 따르면, 천연가스의 액화에 사용되는 비폭발성 혼합냉매로서, 상기 비폭발성 혼합냉매는 LNG를 저장하는 저장탱크에서 발생되어 배출되는 증발가스와의 열교환을 통해 상기 증발가스를 재액화하며, 상기 비폭발성 혼합냉매의 어는점은, 상기 저장탱크에서 발생되어 배출된 후 상기 비폭발성 혼합냉매와 열교환되기 전에 압축수단에 의해 12 내지 45 bara(절대압력)로 압축된 증발가스와 열교환될 때, 증발가스가 재액화되더라도 동결되지 않는 온도를 가지는 것을 특징으로 하는 비폭발성 혼합냉매가 제공된다.
또한, 본 발명의 또 다른 측면에 따르면, 천연가스의 액화에 사용되는 비폭발성 혼합냉매로서, 열교환기에서의 열교환을 통해 천연가스를 액화시키는 비폭발성 혼합냉매는 비등점이 서로 다른 복수의 비폭발성 냉매를 혼합하여 이루어지되, 각각의 비폭발성 냉매의 비등점은 천연가스의 액화온도와 상온 사이에 걸쳐 존재하는 것을 특징으로 하는 비폭발성 혼합냉매가 제공된다.
본 발명에 따르면, 액화천연가스 저장탱크에서 발생한 증발가스를 중압으로 압축하고 재액화한 다음, 고압으로 압축하고 기화시켜 고압 천연가스 분사 엔진에 공급할 수 있는 연료 공급 시스템에 있어서, 재액화 장치의 재액화 효율을 향상시킬 수 있는 비폭발성 혼합냉매가 제공될 수 있다.
본 발명의 비폭발성 혼합냉매를 사용하는 연료 공급 시스템에 의하면, 증발가스를 종래의 4 내지 8 bara 정도의 저압으로 압축시키는 대신에 12 내지 45 bara 정도의 중압으로 압축시킨 후 재액화시킬 수 있으며, 증발가스의 압력이 높아지면 액화 에너지가 감소하므로, 재액화시 소요되는 액화 에너지를 절감할 수 있게 된다.
또한, 본 발명에 의하면, 증발가스의 재액화를 위한 재액화 장치에 비폭발성 혼합냉매를 이용함으로써 종래의 질소 사이클보다 효율적이고 종래의 혼합냉매 사이클보다 안정적인 재액화가 가능하게 된다.
또한, 본 발명의 비폭발성 혼합냉매를 사용하는 연료 공급 시스템에 의하면, 재액화시 증발가스의 압력이 종래보다 높은 중압 상태이므로, 증발가스의 액화점이 상승하여 재액화를 위한 열교환기에서 받는 열응력이 감소하고 고압 기화기의 히트 듀티(heat duty)가 감소하여 장비의 크기를 줄일 수 있다.
도 1은 본 발명의 제1 실시예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 2a는 본 발명의 비폭발성 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 2b는 탄화수소 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 2c는 천연가스의 가압 압력에 따른 액화 온도를 나타내는 그래프,
도 3은 비폭발성 혼합냉매를 구성하기 위한 냉매 성분들의 끓는점을 나타내는 그래프,
도 4는 증발가스의 재액화 장치에서 비폭발성 혼합냉매 냉동사이클을 사용한 경우와 질소가스 냉동 사이클을 사용한 경우의 소모동력을 비교한 그래프들,
도 5는 본 발명의 제2 실시예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 6은 본 발명의 제3 실시예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도, 그리고
도 7은 본 발명의 제4 실시예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도이다.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 또한 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
일반적으로, 선박에서 배출되는 폐기가스 중 국제 해사 기구(International Maritime Organization)의 규제를 받고 있는 것은 질소산화물(NOx)과 황산화물(SOx)이며, 이산화탄소(CO2)의 배출도 규제하려 하고 있다. 특히, 질소산화물(NOx)과 황산화물(SOx)의 경우, 1997년 해상오염 방지협약(MARPOL; The Prevention of Marine Pollution from Ships) 의정서를 통하여 제기되고, 8년이라는 긴 시간이 소요된 후 2005년 5월에 발효요건을 만족하여 현재 강제규정으로 이행되고 있다.
따라서, 이러한 규정을 충족시키기 위하여 질소산화물(NOx) 배출량을 저감하기 위하여 다양한 방법들이 소개되고 있는데, 이러한 방법 중에서 LNG 운반선을 위하여 고압 천연가스 분사 엔진, 예를 들어 ME-GI 엔진이 개발되어 사용되고 있다.
이와 같은 ME-GI 엔진은 LNG(Liquefied Natural Gas)를 극저온에 견디는 저장탱크에 저장하여 운반하도록 하는 LNG 운반선 등과 같은 해상 구조물(본 명세서에서 해상 구조물이란, LNG 운반선, LNG RV 등의 선박을 비롯하여, LNG FPSO, LNG FSRU 등의 해상 플랜트까지도 모두 포함하는 개념이다.)에 설치될 수 있으며, 이 경우 천연가스를 연료로 사용하게 되며, 그 부하에 따라 대략 150 ∼ 400 bara(절대압력) 정도의 고압의 가스 공급 압력이 요구된다.
ME-GI 엔진은 필요시 재액화(liquefaction) 장치가 추가로 설치될 경우, 가스와 연료유 가격의 변화와 배출가스의 규제 정도에 따라 증발가스(Boil Off Gas; BOG)를 연료로 사용할 것인지, 아니면 증발가스를 재액화하여 저장탱크로 보내고 중유(Heavy Fuel Oil; HFO)를 사용할 것인지 선택할 수 있는 장점이 있으며, 특히, 특정규제를 받는 해역을 통과시 간편하게 LNG를 기화시켜서 연료로 사용할 수 있으며, 차세대 친환경적인 엔진으로서 효율이 50%에 육박하여 향후에는 LNG 운반선의 메인 엔진으로서 사용될 수 있다.
도 1은 본 발명의 제1 실시예에 따른 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 갖는 해상 구조물, 특히 액화천연가스 운반선의 연료 공급 시스템을 도시한 구성도이다. 도 1에는, 천연가스를 연료로 사용할 수 있는 ME-GI 엔진을 설치한 LNG 운반선에 본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템이 적용된 예가 도시되어 있지만, 본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템은 액화가스 저장탱크가 설치된 모든 종류의 해상 구조물, 즉 LNG 운반선, LNG RV와 같은 선박을 비롯하여, LNG FPSO, LNG FSRU와 같은 해상 플랜트에 적용될 수 있다.
본 발명의 제1 실시예에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 액화가스 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(13)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(20)에 공급된다. 재액화 장치(20)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(33)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(37)에 공급된다. 고압 기화기(37)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
본 명세서에 있어서, 고압이 의미하는 압력범위는 고압 천연가스 분사 엔진에서 요구하는 연료 공급 압력인 대략 150 내지 400 bara 정도의 압력이고, 중압이 의미하는 압력범위는 증발가스 압축부(13)에서 증발가스를 압축하는 대략 12 내지 45 bara 정도의 압력이고, 저압이 의미하는 압력범위는 종래 기술에서 증발가스를 재액화 장치로 공급하기 위해 압축하는 대략 4 내지 8 bara 정도의 압력이다.
저장탱크는 LNG 등의 액화가스를 극저온 상태로 저장할 수 있도록 밀봉 및 단열 방벽을 갖추고 있지만, 외부로부터 전달되는 열을 완벽하게 차단할 수는 없다. 그에 따라 저장탱크(11) 내에서는 액화가스의 증발이 지속적으로 이루어지며, 증발가스의 압력을 적정한 수준으로 유지하기 위해 증발가스 배출라인(L1)을 통하여 저장탱크(11) 내부의 증발가스를 배출시킨다.
배출된 증발가스는 증발가스 배출라인(L1)을 통해 증발가스 압축부(13)에 공급된다. 증발가스 압축부(13)는 하나 이상의 증발가스 압축기(14)와, 이 증발가스 압축기(14)에서 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기(15)를 포함한다. 도 1에서는 5개의 증발가스 압축기(14)와 5개의 중간 냉각기(15)를 포함하는 5단 압축의 증발가스 압축부(13)가 예시되어 있다.
증발가스 압축부(13)에서 압축된 증발가스는 증발가스 공급라인(L2)을 통하여 재액화 장치(20)에 공급된다. 재액화 장치(20)에 공급된 증발가스는 재액화 장치(20)의 콜드 박스(21)를 통과하면서 냉매에 의해 냉각되어 재액화된다. 재액화 장치(20)로서는, LNG 등의 액화가스로부터 발생하는 증발가스 등을 액화시킬 수 있는 것이라면 어떠한 구성의 것이라도 사용될 수 있다.
도 1에 예시된 재액화 장치(20)는, 냉매와 증발가스의 열교환에 의해 증발가스를 재액화시키기 위한 콜드 박스(21)와, 이 콜드 박스(21)에서 가열되어 부분적으로 기화된 냉매를 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 하나 이상의 냉매 기액분리기(22)와, 이 냉매 기액분리기(22)에서 분리된 기체 상태의 냉매를 압축시키기 위한 하나 이상의 냉매 압축기(23)와, 냉매 압축기(23)에서 압축된 냉매를 냉각시키기 위한 냉매 냉각기(24)와, 냉매 압축기(23)에서 압축된 후 냉매 냉각기(24)에서 냉각된 냉매를 팽창시켜 온도를 낮추는 냉매 팽창밸브(25)와, 냉매 기액분리기(22)에서 분리된 액체 상태의 냉매를 냉매 팽창밸브(25)에 공급하기 위한 냉매 펌프(26)를 포함한다.
냉매 펌프(26)를 통하여 냉매 팽창밸브(25)에 공급되는 냉매는 냉매 팽창밸브(25)의 상류측에서 냉매 냉각기(24)를 통과한 후 냉매 팽창밸브(25)에 공급되는 냉매와 혼합되는 것이 바람직하다.
한편, 냉매 팽창밸브(25)에 공급되는 냉매는 팽창 전에 콜드 박스(21)를 통과하면서 팽창 후의 극저온 상태의 냉매와 열교환될 수 있도록 구성되어도 좋다.
또한, 냉매 냉각기(24)에서 냉각된 냉매는 또 다른 냉매 기액분리기에 공급되어 기체 상태의 냉매와 액체 상태의 냉매로 분리되어 처리될 수 있다. 이를 위해 도 1의 재액화 장치(20)는 각각 2개씩의 냉매 기액분리기(22), 냉매 압축기(23), 냉매 냉각기, 및 냉매 펌프(26)를 포함하는 것으로 예시되어 있지만, 이는 본 발명을 한정하지 않으며 설계시 필요에 따라 설치 개수는 가감될 수 있다.
본 발명에 따르면, 재액화 장치(20) 내에서 순환하는 냉매로서는 종래와는 달리 R14를 포함하는 비폭발성 혼합냉매가 사용된다. 복수의 비폭발성 냉매를 혼합하여 이루어지는 비폭발성 혼합냉매는 중압으로 압축된 증발가스를 재액화할 때의 액화온도에서도 응결되지 않는 특성을 가지도록 하는 혼합 조성비를 갖는다.
혼합냉매의 상변화를 이용한 냉동 사이클은 질소만을 냉매로 하는 질소가스 냉동 사이클보다 효율이 높다. 종래의 혼합냉매는 폭발성 냉매가 혼합되어 안전성에 문제가 있었지만, 본 발명의 비폭발성 혼합냉매는 비폭발성 냉매를 혼합한 냉매이므로 안정성이 높다.
본 발명의 비폭발성 혼합냉매에 의해, 혼합냉매 줄-톰슨 냉동 사이클을 해상용 LNG 재액화 장치에 적용하는 것이 가능해질 수 있다. 한편, 종래 육상용 LNG 액화 플랜트에서 혼합냉매를 사용하는 것이 알려져 있었지만, 이 혼합냉매는 탄화수소(Hydro-Carbon; 이하, "HC" 라 함) 혼합냉매로서 폭발성을 가져 취급에 어려움이 있었다. 본 발명의 비폭발성 혼합냉매는 아르곤, 하이드로플루오르카본(Hydro-Fluoro-Carbon; 이하, "HFC" 라 함) 냉매, 및 플루오르카본(Fluoro-Carbon; 이하, "FC" 라 함) 냉매로 이루어져 폭발성이 없다.
HFC/FC 냉매로서는 다음 표 1과 같은 것이 사용될 수 있다. 표 1에는 아르곤을 함께 표시하였다.
표 1
냉매번호 화학식 Mole. weight 끓는점(NBP)(℃)
Ar Ar 39.95 -185.9
R14 CF4 88 -128.1
R23 CHF3 70.01 -82.1
R116 CF3CF3 138.01 -78.2
R41 CH3F 34.03 -78.1
R32 CH2F2 52.02 -51.7
R125 CHF2CF3 120.02 -48.1
R143a CH3CF3 84.04 -47.2
R161 CH3CHF2 48.06 -37.1
R218 CF3CF2CF3 188.02 -36.6
R134a CH2FCF3 102.03 -26.1
R152a CH3CHF2 66.05 -24
R227ea CF3CHFCF3 170.03 -15.6
R236fa CF3CH2CF3 152.04 -1.4
R245fa CHF2CH2CF3 134.05 15.1
표 1에 나타낸 냉매 이외에도, 이러한 냉매들을 2 이상 혼합하여 별도의 냉매 번호(R400 및 R500 계열)를 붙여 사용하기도 한다. 이러한 HFC/FC 혼합냉매는 표 2에 표시하였다.
표 2
냉매번호 화학식(mass ratio) Mole. weight 끓는점(NBP)(℃)
R410A R32/125(50/50) 72.58 -51.6
R410B R32/125(45/55) 75.57 -51.5
R507 R125/143a(50/50) 98.86 -47.1
R407B R32/125/134a(10/70/20) 102.94 -46.8
R404A R125/143a/134a(44/52/4) 97.6 -46.6
R407A R32/125/134a(20/40/40) 90.11 -45.2
R407C R32/125/134a(23/25/52) 86.2 -43.8
R407E R32/125/134a(25/15/60) 83.78 -42.8
R407D R32/125/134a(15/15/70) 90.96 -39.4
다만, 도 2a 및 도 2b에 도시된 바와 같이, HFC/FC 냉매의 경우 어는점이 LNG의 일반적인 온도(-163℃)보다 높아 LNG의 재액화시 냉매로서 사용할 수 없다. 그러나, 본 발명자들은, 도 2c에 도시된 바와 같이, 천연가스(혹은 증발가스)의 압력이 높아질수록 액화(혹은 재액화) 온도가 상승하는 점에 착안하여, 효율이 높고 안전한 HFC/FC 혼합냉매(즉, 비폭발성 혼합냉매) 줄-톰슨 냉동 사이클에 의해 해상 구조물에서의 LNG 저장탱크로부터 발생하는 증발가스를 재액화할 수 있는 재액화 장치를 개발하였다. 다시 말해서, 본 발명에 따르면, 증발가스를 재액화하기 전에 12 내지 45 bara의 중압으로 가압함으로써, 상압에서의 증발가스 재액화 온도보다 높은 온도, 즉 비폭발성 혼합냉매의 어는점보다 높은 온도에서 증발가스의 재액화가 가능해지도록 한다.
본 발명의 비폭발성 혼합냉매는, 비등점이 천연가스 액화온도(혹은 증발가스 재액화온도)와 상온 사이에 골고루 분포되어 넓은 상변화 구간을 이용할 수 있도록 다양한 성분의 냉매를 혼합하여 만들어진다. 끓는점이 서로 유사한 냉매들을 5개의 계열로 분류하여, 각각의 계열에서 하나 이상의 성분을 선택하여 본 발명의 비폭발성 혼합냉매를 구성하는 것이 바람직하다. 즉, 본 발명의 비폭발성 혼합냉매는 5개의 계열에서 각각 적어도 하나의 성분을 선택하여 혼합함으로써 만들어진다.
도 3에 도시된 바와 같이, 계열 I에는 냉매들 중 끓는점이 가장 낮은 Ar이 포함되고, 계열 II에는 R14가 포함되고, 계열 III에는 R23, R116, 및 R41이 포함되고, 계열 IV에는 R32, R410A, R410B, R125, R143a, R507, R407B, R404A, R407A, R407C, R407E, R407D, R161, R218, R134a, R152a, 및 R227ea가 포함되고, 계열 V에는 R236fa 및 R245fa가 포함된다.
이들 5개의 계열에서 각각 하나 이상의 냉매를 선택하여 이루어지는 본 발명의 비폭발성 혼합냉매는, 냉매 수급의 용이함, 비용 등을 감안하여 볼 때, 다음 표 1과 같은 구성성분과 조성을 가지는 것이 바람직하다. 비폭발성 혼합냉매의 조성 비율은, 증발가스와의 열교환이 이루어지는 열교환기, 즉 콜드박스(21)에서의 고온 유체(즉, 증발가스)와 저온 유체(즉, 비폭발성 혼합냉매) 사이의 온도차가 가능한 한 일정하게 유지되도록 정해지는 것이 효율면에서 바람직하다.
표 3
구성성분 조성(% mole)
Ar 20 내지 55
R14 15 내지 30
R23 5 내지 15
R410a 10 내지 15
R245fa 15 내지 20
비폭발성 혼합냉매를 사용할 경우, 종래기술에서와 같이 질소가스 냉매를 사용하여 증발가스를 재액화할 때에 비하여 소모되는 동력, 즉 전력(kW)을 절감할 수 있어 재액화 효율을 향상시킬 수 있다.
더욱 상세하게는, 본 발명은 종래의 재액화 장치에서 사용되는 재액화시 증발가스 압력에 비해 상대적으로 높은 압력인 12 내지 45 bara 정도의 중압으로 증발가스를 압축시켜 재액화하고 있기 때문에 재액화시 소요되는 동력을 절감할 수 있는 것이며, 여기에서 본 발명에 따른 압력범위(즉, 12 내지 45 bara)는 재액화 장치에서 냉매로 사용하는 상기 조성의 비폭발성 혼합냉매의 특성으로 인해 정해진 것이다. 즉, 상기 조성의 비폭발성 혼합냉매를 사용할 경우, 증발가스가 바람직하게는 12 내지 45 bara 정도의 압력을 가질 때 재액화 장치에서의 재액화 효율을 가장 양호하게 유지할 수 있게 된다.
또한, 증발가스의 압력이 12 bara일 때의 재액화 온도는 약 -130℃이고, 이 온도까지 증발가스를 냉각시키기 위해서 비폭발성 혼합냉매의 온도는 약 -155℃ 로 낮아진다. 상기 조성의 비폭발성 혼합냉매는 -155℃ 이하에서 동결이 발생할 우려가 있으므로, 증발가스의 압력이 12 bara보다 낮은 경우에는 비폭발성 혼합냉매를 사용하는 냉동사이클이 구성되기 어렵다.
또한, 주성분이 메탄인 증발가스의 임계압력이 약 46 bara 정도이며 이 임계압력 이상에서는 상이 존재하지 않아 액화의 의미가 없어지므로, 증발가스 압력의 상한은 45 bara 정도로 정해지는 것이 바람직하다.
도 4의 (a)를 참조하면, 중압, 즉 12 내지 45 bara의 압력범위(증발가스 4.3 ton/h 기준)에 있어서, 질소가스 냉매를 사용하는 종래의 재액화 장치에 비해 본 발명의 상기한 바와 같은 조성을 갖는 비폭발성 혼합냉매를 사용하는 재액화 장치가 대략 10 내지 20% 정도 동력이 절감됨을 알 수 있다.
도 4의 (b)에는, 종래기술에 따른 재액화 장치의 조건(즉, 재액화 장치에서 사용되는 냉매는 질소가스(N2)이고 재액화 장치에 공급되는 증발가스의 압력은 8bara인 경우)에서의 동력 필요량과, 본 발명에 따른 비폭발성 혼합냉매(NFMR)를 사용하는 재액화 장치의 조건(즉, 재액화 장치에서 사용되는 냉매는 비폭발성 혼합냉매(NFMR)이고 재액화 장치에 공급되는 증발가스의 압력은 12 내지 45bara인 경우)에서의 동력 필요량을 비교한 그래프가 도시되어 있다. 도 4의 (b)를 참조하면, 질소 냉매를 사용하는 종래의 재액화 장치(냉동 사이클)에서 소모되는 동력에 비해 본 발명의 재액화 장치는 대략 50 내지 80% 정도의 동력만으로도 운전이 가능함을 알 수 있다. 이와 같이 본 발명은 종래에 비해 상당히 적은 동력으로 운전이 가능하기 때문에, 발전기 용량을 감소시킬 수 있어 발전기의 소형화가 가능하게 된다.
한편, 본 발명의 재액화 장치는 냉매의 팽창 수단으로서 줄-톰슨 밸브(Joule Thomson valve)를 사용하므로, 팽창기(expander)를 사용하는 종래의 질소 컴팬더(N2 compander)보다 전체 시스템이 단순해져 경제적이라는 장점을 얻을 수 있다.
또한 표 1에는 기재하지 않았지만, 본 발명의 비폭발성 혼합냉매는 표 1에 기재된 성분 이외의 비폭발성 냉매 성분을 미소량 함유할 수 있다.
콜드 박스(21)에서의 열교환을 통해 재액화된 증발가스는 버퍼 탱크(31)에서 기체와 액체 상태로 분리되며, 액체 상태의 액화증발가스만이 연료 공급라인(L3)을 통해 고압 펌프(33)에 공급된다. 고압 펌프(33)는 복수개, 예를 들어 2개가 병렬로 설치될 수 있다.
고압 펌프(33)에서는 액화증발가스를 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)에서 요구하는 연료 공급 압력까지 가압하여 송출한다. 고압 펌프(33)에서 송출되는 액화증발가스는 대략 150 ∼ 400 bara(절대압력) 정도의 고압을 갖는다.
도 5는 본 발명의 제2 실시예에 따른 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 갖는 해상 구조물, 특히 액화천연가스 운반선의 연료 공급 시스템을 도시한 구성도이다. 도 5에 도시된 제2 실시예의 연료 공급 시스템은, 전술한 제1 실시예의 연료 공급 시스템에 비하여 증발가스를 압축시키기 전에 예열한다는 점에서만 서로 상이하므로, 이어지는 설명에서는 제1 실시예와의 차이점을 위주로 설명한다.
본 발명의 제2 실시예에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 액화가스 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(13)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(20)에 공급되기 전에 증발가스 압축부(13)의 상류측에 설치된 증발가스 예열기(41)에 공급된다. 증발가스 압축부(13)에서 대략 12 내지 45 bara로 압축되고 중간 냉각기(15)를 통해 대략 40℃ 정도로 냉각된 증발가스는 증발가스 예열기(41)에서 액화가스 저장탱크(11)에서 배출된 극저온의 증발가스와 열교환됨으로써 냉각된 후 재액화 장치(20)에 공급된다.
제2 실시예에 따르면 재액화 장치(20)에 공급될 증발가스의 온도를 증발가스 예열기(41)를 통해 낮출 수 있어 콜드 박스(21)에서의 열부하를 감소시킬 수 있다. 또한, 증발가스 압축부(13)에 공급되는 극저온 상태의 증발가스와, 증발가스 압축부(13)에서 압축된 상대적으로 온도가 높은 증발가스를, 증발가스 압축부(13)의 상류측에 위치한 증발가스 예열기(41)에서 열교환함으로써, 증발가스 압축부에 공급되는 증발가스의 온도를 상승시키고 증발가스 압축부(즉, 증발가스 압축기)의 입구온도를 일정하게 유지할 수 있게 된다.
증발가스 압축부(13)에서 압축된 후 증발가스 예열기(41)를 통과한 증발가스는 전술한 제1 실시예의 연료 공급 시스템과 마찬가지로 재액화 장치(20)에 공급된다. 계속해서, 재액화 장치(20)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(33)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(37)에 공급된다. 고압 기화기(37)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
도 6은 본 발명의 제3 실시예에 따른 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 갖는 해상 구조물, 특히 액화천연가스 운반선의 연료 공급 시스템을 도시한 구성도이다. 도 6에 도시된 제3 실시예의 연료 공급 시스템은, 전술한 제2 실시예의 연료 공급 시스템에 비하여 잉여 증발가스를 처리하기 위한 수단, 즉 이종연료엔진(DFDE)과 안정적인 연료 공급을 위한 수단, 즉 LNG 공급라인이 추가되었다는 점에서만 서로 상이하므로, 이어지는 설명에서는 제2 실시예와의 차이점을 위주로 설명한다.
본 발명의 제3 실시예에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 고압 천연가스 분사 엔진의 부하가 줄어들거나 발생된 증발가스의 양이 많을 경우, 잉여의 액화증발가스(LBOG)는 버퍼 탱크(31)의 후단에서 연료 공급라인(L3)으로부터 분기하는 LBOG 복귀라인(L4)에 설치되는 LBOG 팽창밸브(51)를 통하여 감압되고, 감압 과정에서 발생하는 플래시 가스를 포함한 LBOG는 기액분리기를 통해 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 액체 성분만이 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다.
더욱 상세하게는, LBOG 팽창밸브(51)에서 감압되어 플래시 가스를 포함하는 LBOG는 LBOG 기액분리기(53)로 공급되어 액체 성분과 기체 성분으로 분리되며, LBOG 기액분리기(53)에서 분리된 기체 성분(즉, 플래시 가스)은, 연료가스 공급라인(L6)을 통하여, 발전 등을 위해 해상 구조물 내에 설치될 수 있는 이종연료엔진(DFDE)에 연료로서 공급된다. 이종연료엔진에 공급되는 연료가스의 압력은 연료가스 공급라인(L6)의 도중에 있어서의 LBOG 기액분리기(53)의 하류측에 설치되는 압력조절밸브에 의해 조절될 수 있으며, 역시 연료가스 공급라인(L6)의 도중에 설치되는 연료가스 히터(55)에서 연료가스의 온도는 이종연료엔진에서 요구하는 온도까지 가열될 수 있다. 또한, LBOG 기액분리기(53)에서 분리된 액체 성분은 LBOG 복귀라인(L4)을 통해 저장탱크로 복귀된다.
이때, 이종연료엔진에 대한 연료가스 공급압력은 일반적으로 5 내지 8 bara 정도이므로, LBOG 기액분리기(53)에서 분리된 액체 성분의 압력이 여전히 상압보다 높을 수 있다. 이 경우, LBOG 기액분리기(53)에서 분리된 액체 성분(즉, LBOG)은 또 다른 LBOG 팽창밸브(52)를 통하여 추가적으로 감압되고, 계속해서 또 다른 LBOG 기액분리기(54)에 공급되어 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 상압의 액체 성분만이 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다. 또 다른 LBOG 기액분리기(54)에서 분리된 기체 성분은 가스 연소 유닛(GCU; Gas Combustion Unit)에 공급되어 연소됨으로써 소비될 수 있다.
한편, 이종연료엔진에 공급되는 연료가 부족하면, 고압 천연가스 분사 엔진(즉, ME-GI)에 연료를 공급하는 연료 공급라인(L3)으로부터 분기되어 이종연료엔진(즉, DFDE)에 연료를 공급하는 연료가스 공급라인(L6)에 연결되는 분기라인(L5)을 통하여 이종연료엔진에 연료가 추가로 공급될 수 있다. 분기라인(L5)에는 압력강하를 위해 밸브가 설치된다.
또한, 증발가스 재액화 장치가 작동하지 않거나 저장탱크(11)에서 발생하는 증발가스의 양이 적은 경우, 저장탱크(11) 내에 설치된 LNG 공급펌프(57)와 LNG 공급라인(L7)을 통해 저장탱크(11)에 수용된 LNG를 버퍼 탱크(31)에 공급함으로써 연료를 공급할 수 있다.
이와 같이 이종연료엔진은 압력 차이로 인하여 저장탱크(11)에 복귀되는 도중의 LBOG로부터 발생할 수 있는 플래시 가스를 처리할 수 있는 플래시 가스 처리수단으로서 기능하게 된다.
한편, 도 7에는 도시하지 않았지만, LBOG 기액분리기(53)에서 분리된 기체성분은 이종연료엔진 대신에 가스터빈이나, 보일러 등과 같은 소비처로 공급되어 연료로서 사용될 수 있다. 또한, 이 기체성분은, 대기중에 천연가스를 방출하는 가스 방출장치나, 대기중에서 연소시키는 가스 연소장치(예컨대 플레어 타워) 등에 공급되어 처리될 수 있다. 이때 이종연료엔진, 가스터빈, 보일러, 가스 방출장치나 플레어 타워 등은 플래시 가스 처리수단에 포함되며, 이와 같은 플래시 가스 처리수단에 공급되는 기체성분은 연료가스 히터(55)에서 가열될 수 있다.
증발가스 압축부(13)에서 12 내지 45 bara 정도의 중압으로 압축된 후 재액화 장치(20)에서 액화된 증발가스를 ME-GI 엔진과 같은 고압 천연가스 분사 엔진에서 모두 소비하지 못하는 경우에는, 중압 상태의 액화된 증발가스를 저장탱크(11)에 복귀시킬 필요가 있다. 본 발명자들은, 저장탱크(11)의 압력은 상압 상태이므로, 액화된 증발가스를 저장탱크에 공급하기 전에 압력을 낮출 필요가 있으나, 압력을 낮추는 과정에서 플래시 가스가 발생한다는 점을 인식하여 플래시 가스를 처리할 수 있는 수단을 갖춘 연료 공급 시스템을 발명하였다. 이와 같이 본 발명에 따르면 상기된 바와 같은 플래시 가스 처리수단이 구비되어 있기 때문에, 재액화 장치에 공급되는 증발가스를 12 내지 45 bara 정도의 중압으로 압축하여 공급할 수 있으며, 그에 따라 재액화시의 에너지 소모량을 절감할 수 있게 된다.
도 7은 본 발명의 제4 실시예에 따른 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 갖는 해상 구조물, 특히 액화천연가스 운반선의 연료 공급 시스템을 도시한 구성도이다. 도 7에 도시된 제4 실시예의 연료 공급 시스템은, 전술한 제2 실시예의 연료 공급 시스템에 비하여 잉여 증발가스를 처리하기 위한 수단, 즉 가스 연소 유닛(GCU; Gas Combustion Unit)과 안정적인 연료 공급을 위한 수단, 즉 LNG 공급라인이 추가되었다는 점과, 잉여 증발가스가 발생하지 않도록 증발가스 중 일부를 재액화 이전에 분기시켜 소비하기 위한 수단, 즉 이종연료엔진(DFDE) 혹은 가스터빈 등을 가진다는 점에서만 서로 상이하므로, 이어지는 설명에서는 제2 실시예와의 차이점을 위주로 설명한다.
본 발명의 제4 실시예에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 고압 천연가스 분사 엔진의 부하가 줄어들거나 발생된 증발가스의 양이 많아 잉여의 액화증발가스(LBOG)가 발생할 것으로 예상될 경우에는, 증발가스 압축부(13)에서 압축된 혹은 압축되고 있는 도중의 증발가스를 분기라인을 통해 분기시켜 증발가스 소비수단에서 사용한다.
즉, 잉여 증발가스를 증발가스 압축부(13)의 도중에서 분기하는 제2 분기라인(L8)을 통해 이종연료엔진(DFDE)에 공급하여 사용하도록 구성할 수 있다. 이때 증발가스 압축부(13)에 포함된 중간 냉각기(15)에서 증발가스의 온도를 대략 40℃로 냉각시키기 때문에 이종연료엔진에 공급되는 증발가스의 온도를 조절하기 위한 별도의 히터 등의 장치는 생략될 수 있다.
또는, 잉여 증발가스를 증발가스 압축부(13)의 후단에서 분기하는 제3 분기라인(L9)을 통해 가스터빈에 공급하여 사용하도록 구성할 수 있다. 마찬가지로 이때에도 가스터빈에 공급되는 증발가스의 온도를 조절하기 위한 별도의 장치는 생략될 수 있다.
한편, 상기된 바와 같이 재액화 장치(20)에 공급되는 증발가스의 양을 감소시켰음에도 불구하고 고압 천연가스 분사 엔진에서 요구하는 증발가스의 양보다 공급되는 연료로서의 증발가스의 양이 많은 경우에는, 잉여의 증발가스를, 전술한 제3 실시예에서와 마찬가지로 처리한다.
즉, 잉여의 증발가스는, 버퍼 탱크(31)의 후단에서 연료 공급라인(L3)으로부터 분기하는 LBOG 복귀라인(L4)에 설치되는 LBOG 팽창밸브(51)를 통하여 감압되고, 감압 과정에서 발생하는 플래시 가스를 포함한 LBOG는 LBOG 기액분리기(53)를 통해 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 액체 성분만이 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다. LBOG 기액분리기(53)에서 분리된 기체 성분(즉, 플래시 가스)은, 연료가스 공급라인(L6)을 통하여, 가스 연소 유닛(GCU)에 연료로서 공급된다.
한편, 고압 천연가스 분사 엔진(즉, ME-GI)에 연료를 공급하는 연료 공급라인(L3)으로부터 분기되어 연료가스 공급라인(L6)에 연결되는 분기라인(L5)을 통하여 잉여의 증발가스가 GCU에 추가로 공급될 수 있다. 분기라인(L5)에는 압력강하를 위해 밸브가 설치된다.
또한, 전술한 제3 실시예와 마찬가지로, 증발가스 재액화 장치가 작동하지 않거나 저장탱크(11)에서 발생하는 증발가스의 양이 적은 경우, 저장탱크(11) 내에 설치된 LNG 공급펌프(57)와 LNG 공급라인(L7)을 통해 저장탱크(11)에 수용된 LNG를 버퍼 탱크(31)에 공급함으로써 연료를 공급할 수 있다.
지금까지 설명한 제3 및 제4 실시예에 있어서, 발생된 플래시 가스를 처리하기 위한 수단으로 설명된 DFDE(제3 실시예), GCU(제4 실시예) 등의 장치와, 플래시 가스가 발생하지 않도록 잉여의 증발가스를 재액화 이전에 미리 소비하는 수단으로 설명된 DFDE(제4 실시예), 가스터빈(제4 실시예) 등의 장치는, 모두 플래시 가스의 발생을 억제하할 수 있는 것이므로 플래시 가스 억제수단으로 통칭할 수 있다.
상기된 바와 같은 본 발명의 제1 내지 제4 실시예에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템은 종래에 비해 다음과 같은 장점을 갖는다.
일반적으로, 증발가스의 재액화 효율을 높이기 위해서는 증발가스를 높은 압력으로 압축시키는 것이 바람직하다. 그러나 종래에는 증발가스를 재액화 장치에 의해 재액화하여 저장탱크로 복귀시켰으며, 저장탱크에 저장된 LNG는 상압 상태를 유지하고 있기 때문에, 재액화된 액화증발가스의 압력이 지나치게 높아 저장탱크에 복귀할 때 플래시 가스(flash gas)가 발생하지 않도록, 재액화 효율은 낮지만 4 내지 8 bara 정도의 저압으로 증발가스를 압축할 수밖에 없었다.
그에 비해 본 발명에 의하면, 저장탱크로부터 배출된 증발가스를 고압 천연가스 분사 엔진에서 연료로서 사용하기 때문에, 플래시 가스 발생을 우려할 필요 없이 증발가스를 종래에 비해 높은 압력으로 압축시켜 재액화시킴으로써 재액화 효율을 높일 수 있다.
이와 같이 본 발명에 의하면, 재액화된 증발가스를 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급하기 때문에 재액화된 증발가스를 저장탱크로 재저장을 위해 복귀시킬 필요가 없어 저장탱크로의 복귀시 발생될 수 있는 플래시 가스의 발생을 방지할 수 있고, 플래시 가스의 발생이 억제됨으로써 재액화 이전에 증발가스의 압력을 종래에 비해 높은 압력, 즉 12 내지 45 bara 정도의 중압으로 압축시켜 재액화할 수 있다. 이러한 중압으로 증발가스를 압축시켜 재액화함에 따라 비폭발성 혼합냉매에 의한 재액화 효율을 종래와 같이 질소가스 냉매를 사용하는 것에 비해 크게 증대시킬 수 있다. 즉, 종래의 질소가스 냉매를 사용하는 것에 비해 비폭발성 혼합냉매를 사용하는 본 발명의 재액화 장치는 상당히 적은 에너지만을 사용하여 증발가스를 재액화해서 엔진에 연료로서 공급하는 것이 가능하게 된다.
이상에서는 본 발명의 연료 공급 시스템 및 방법이 LNG 운반선 등의 해상 구조물에 적용된 것을 예로 들어 설명이 이루어졌지만, 본 발명의 연료 공급 시스템 및 방법은 육상에서의 고압 천연가스 분사 엔진에 대한 연료 공급에 적용될 수 있음은 물론이다.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.

Claims (7)

  1. 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매로서,
    상기 연료 공급 시스템은, 액화가스를 저장하는 저장탱크 내에서 발생한 증발가스를 상기 저장탱크로부터 공급받아 압축하는 증발가스 압축부와, 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시키는 재액화 장치와, 상기 재액화 장치에서 액화된 증발가스를 압축시키는 고압 펌프와, 상기 고압 펌프에서 압축된 액화증발가스를 기화시켜 상기 고압 천연가스 분사 엔진에 공급하기 위한 고압 기화기를 포함하며,
    상기 재액화 장치에서 증발가스와의 열교환을 통해 증발가스를 냉각시키는 비폭발성 혼합냉매는 비등점이 서로 다른 복수의 비폭발성 냉매를 혼합하여 이루어지되, 각각의 비폭발성 냉매의 비등점은 천연가스의 액화온도와 상온 사이에 걸쳐 존재하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매.
  2. 청구항 1에 있어서,
    상기 비폭발성 혼합냉매는, 계열 I은 Ar으로 이루어지고; 계열 II는 R14로 이루어지고; 계열 III은 R23, R116, 및 R41로 이루어지고; 계열 IV는 R32, R410A, R410B, R125, R143a, R507, R407B, R404A, R407A, R407C, R407E, R407D, R161, R218, R134a, R152a, 및 R227ea로 이루어지고; 계열 V는 R236fa 및 R245fa로 이루어질 때, 각각의 계열에서 하나 이상의 냉매를 선택하여 혼합함으로써 이루어지는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매.
  3. 청구항 1에 있어서,
    복수의 상기 비폭발성 냉매의 조성 비율은, 상기 비폭발성 혼합냉매와 증발가스 사이의 열교환이 이루어지는 열교환기에서의 고온 유체와 저온 유체 사이의 온도차가 일정하게 유지되도록 정해지는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매.
  4. 청구항 1에 있어서,
    상기 비폭발성 혼합냉매는 Ar, R14, R23, R410a, 및 R245fa를 혼합하여 이루어지는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매.
  5. 청구항 1에 있어서,
    상기 비폭발성 혼합냉매는, 상기 저장탱크에서 발생되어 배출된 후 상기 비폭발성 혼합냉매와 열교환되기 전에 상기 증발가스 압축부에서 12 내지 45 bara(절대압력)로 압축된 증발가스와 열교환될 때, 증발가스가 재액화되더라도 동결되지 않는 온도의 어는점을 가지는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매.
  6. 천연가스의 액화에 사용되는 비폭발성 혼합냉매로서,
    상기 비폭발성 혼합냉매는 LNG를 저장하는 저장탱크에서 발생되어 배출되는 증발가스와의 열교환을 통해 상기 증발가스를 재액화하며,
    상기 비폭발성 혼합냉매의 어는점은, 상기 저장탱크에서 발생되어 배출된 후 상기 비폭발성 혼합냉매와 열교환되기 전에 압축수단에 의해 12 내지 45 bara(절대압력)로 압축된 증발가스와 열교환될 때, 증발가스가 재액화되더라도 동결되지 않는 온도를 가지는 것을 특징으로 하는 비폭발성 혼합냉매.
  7. 천연가스의 액화에 사용되는 비폭발성 혼합냉매로서,
    열교환기에서의 열교환을 통해 천연가스를 액화시키는 비폭발성 혼합냉매는 비등점이 서로 다른 복수의 비폭발성 냉매를 혼합하여 이루어지되, 각각의 비폭발성 냉매의 비등점은 천연가스의 액화온도와 상온 사이에 걸쳐 존재하는 것을 특징으로 하는 비폭발성 혼합냉매.
PCT/KR2011/009822 2011-03-22 2011-12-20 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매 WO2012128449A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/006,083 US20140069117A1 (en) 2011-03-22 2011-12-20 Non-explosive mixed refrigerant for re-liquefying device in system for supplying fuel to high-pressure natural gas injection engine
CN201180070989.8A CN103547788A (zh) 2011-03-22 2011-12-20 用于向高压天然气喷射发动机供给燃料的系统中的再液化装置的无爆炸性混合制冷剂
EP11861567.3A EP2693034A4 (en) 2011-03-22 2011-12-20 NON-EXPLOSIVE REFRIGERANT MIXTURE FOR A RECYCLING DEVICE IN A SYSTEM FOR FUEL SUPPLY OF A HIGH-PRESSURE GAS INJECTION MOTOR
JP2014500982A JP2014517849A (ja) 2011-03-22 2011-12-20 高圧天然ガス噴射エンジン用燃料供給システムの再液化装置に使用される非爆発性混合冷媒

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110025397 2011-03-22
KR10-2011-0025397 2011-03-22
KR1020110033331A KR101106088B1 (ko) 2011-03-22 2011-04-11 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매
KR10-2011-0033331 2011-04-11

Publications (1)

Publication Number Publication Date
WO2012128449A1 true WO2012128449A1 (ko) 2012-09-27

Family

ID=45614323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009822 WO2012128449A1 (ko) 2011-03-22 2011-12-20 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매

Country Status (6)

Country Link
US (1) US20140069117A1 (ko)
EP (1) EP2693034A4 (ko)
JP (1) JP2014517849A (ko)
KR (7) KR101106088B1 (ko)
CN (1) CN103547788A (ko)
WO (1) WO2012128449A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103696884A (zh) * 2013-11-21 2014-04-02 武汉三江航天远方科技有限公司 共用气化器式lng供气系统
JP2015500759A (ja) * 2012-10-24 2015-01-08 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド 船舶用エンジンのハイブリッド燃料供給システム及び方法
CN104736829A (zh) * 2012-10-24 2015-06-24 大宇造船海洋株式会社 用于船只的液化气处理系统
EP3015357A4 (en) * 2013-06-26 2017-01-11 Daewoo Shipbuilding & Marine Engineering Co., Ltd. System and method for treating boil-off gas in ship

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356004B1 (ko) * 2012-10-24 2014-02-05 대우조선해양 주식회사 선박의 증발가스 처리 방법
KR20130139150A (ko) * 2012-12-11 2013-12-20 대우조선해양 주식회사 해상 구조물의 증발가스 처리 시스템 및 처리 방법
KR101350808B1 (ko) * 2012-10-24 2014-01-16 대우조선해양 주식회사 선박용 엔진의 하이브리드 연료공급 시스템 및 방법
KR101439942B1 (ko) * 2012-10-24 2014-09-12 대우조선해양 주식회사 선박용 엔진의 하이브리드 연료공급 방법
KR101356003B1 (ko) * 2012-10-24 2014-02-05 대우조선해양 주식회사 선박의 증발가스 처리 시스템
KR101707501B1 (ko) * 2012-12-11 2017-02-16 대우조선해양 주식회사 증발가스 재액화 시스템 및 방법
WO2014092368A1 (ko) 2012-12-11 2014-06-19 대우조선해양 주식회사 선박의 액화가스 처리 시스템
KR101722597B1 (ko) * 2012-12-11 2017-04-03 대우조선해양 주식회사 증발가스 재액화 시스템 및 방법
KR20140076482A (ko) * 2012-12-11 2014-06-20 대우조선해양 주식회사 증발가스 재액화 시스템 및 방법
KR101534237B1 (ko) * 2012-12-11 2015-07-06 대우조선해양 주식회사 해상 구조물의 증발가스 처리 시스템
KR20140075574A (ko) * 2012-12-11 2014-06-19 대우조선해양 주식회사 선박의 증발가스 부분재액화 시스템
KR101525664B1 (ko) * 2013-06-12 2015-06-03 현대중공업 주식회사 액화가스 처리 시스템 및 방법
KR101519541B1 (ko) * 2013-06-26 2015-05-13 대우조선해양 주식회사 증발가스 처리 시스템
KR20150005036A (ko) * 2013-07-04 2015-01-14 대우조선해양 주식회사 선박의 증발가스 처리 시스템 및 방법
KR101524430B1 (ko) * 2013-09-24 2015-05-28 삼성중공업 주식회사 증발가스 재액화장치
KR101707500B1 (ko) * 2013-10-31 2017-02-16 대우조선해양 주식회사 증발가스 처리 시스템 및 방법
KR101739458B1 (ko) 2013-11-21 2017-05-24 대우조선해양 주식회사 냉매 순환 시스템
KR101722598B1 (ko) * 2014-02-17 2017-04-03 대우조선해양 주식회사 가스공정을 테스트하기 위한 가스공급 시스템 및 방법
KR101788749B1 (ko) * 2014-02-24 2017-10-20 대우조선해양 주식회사 증발가스 처리 시스템 및 방법
KR101726668B1 (ko) * 2014-02-24 2017-04-13 대우조선해양 주식회사 증발가스 처리 시스템 및 방법
KR101559251B1 (ko) * 2014-07-11 2015-10-14 서울대학교산학협력단 유기 랭킨 사이클 시스템 및 그 제어 방법
KR101623161B1 (ko) * 2015-01-13 2016-05-23 대우조선해양 주식회사 선박용 부분재액화장치 성능 시험 설비
WO2016114515A1 (ko) * 2015-01-13 2016-07-21 삼성중공업 주식회사 선박 및 연료가스 공급방법
US10654552B2 (en) * 2015-01-30 2020-05-19 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Fuel supply system and method for ship engine
WO2016126025A1 (ko) * 2015-02-03 2016-08-11 삼성중공업 주식회사 선박의 연료가스 공급시스템
KR101511214B1 (ko) * 2015-02-04 2015-04-17 대우조선해양 주식회사 선박용 증발가스 재액화 장치 및 방법
WO2016126037A1 (ko) * 2015-02-04 2016-08-11 삼성중공업 주식회사 선박의 증발가스 처리장치 및 처리방법
KR20160098953A (ko) * 2015-02-11 2016-08-19 대우조선해양 주식회사 선박
CN107922036A (zh) 2015-06-02 2018-04-17 大宇造船海洋株式会社 船舶
JP6741691B2 (ja) * 2015-06-02 2020-08-19 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド 船舶
WO2016195233A1 (ko) * 2015-06-02 2016-12-08 대우조선해양 주식회사 선박
KR101802599B1 (ko) * 2015-06-09 2017-11-28 현대중공업 주식회사 가스 처리 시스템
KR102179195B1 (ko) * 2015-06-09 2020-11-16 현대중공업 주식회사 가스 처리 시스템을 포함하는 선박
KR101711951B1 (ko) * 2015-06-26 2017-03-03 삼성중공업 주식회사 연료가스 공급시스템
KR101711944B1 (ko) * 2015-06-26 2017-03-03 삼성중공업 주식회사 연료가스 공급시스템
KR101767551B1 (ko) * 2015-09-07 2017-08-11 대우조선해양 주식회사 선박의 증발가스 재액화 장치
KR101784842B1 (ko) * 2015-10-07 2017-10-12 삼성중공업 주식회사 연료가스 공급시스템
KR101824430B1 (ko) * 2015-11-03 2018-02-02 삼성중공업 주식회사 소형 부유식 액화천연가스 생산설비
JP6703837B2 (ja) 2016-01-07 2020-06-03 株式会社神戸製鋼所 ボイルオフガス供給装置
ES2743317T3 (es) * 2016-01-18 2020-02-18 Cryostar Sas Sistema para licuar un gas
US20190112008A1 (en) * 2016-03-31 2019-04-18 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Boil-off gas re-liquefying device and method for ship
KR102548329B1 (ko) * 2016-09-23 2023-06-27 삼성중공업 주식회사 연료공급시스템
KR102548330B1 (ko) * 2016-10-21 2023-06-27 삼성중공업 주식회사 연료공급시스템
KR101751860B1 (ko) * 2016-10-24 2017-06-28 대우조선해양 주식회사 증발가스 재액화 시스템 및 방법
KR101767560B1 (ko) * 2017-01-18 2017-08-11 대우조선해양 주식회사 증발가스 재액화 시스템 및 방법
KR101867037B1 (ko) * 2017-01-26 2018-07-19 대우조선해양 주식회사 Lng 선의 증발가스 재액화 방법 및 시스템
CN110402329B (zh) * 2017-03-16 2021-06-29 沃尔沃卡车集团 用于内燃发动机的燃料系统
KR101979348B1 (ko) 2017-08-23 2019-05-16 한국생산기술연구원 Lng 액화플랜트의 이동식 냉매공급시스템
CN107630770A (zh) * 2017-11-03 2018-01-26 黄帮义 液化气汽车供气系统
CN107891742B (zh) * 2017-11-03 2020-06-05 黄帮义 液化气汽车供气保温系统
DE102017222926A1 (de) * 2017-12-15 2019-06-19 Robert Bosch Gmbh Kraftstofffördereinrichtung für eine Brennkraftmaschine
US20210148632A1 (en) * 2018-10-09 2021-05-20 Chart Energy & Chemicals, Inc. Dehydrogenation Separation Unit with Mixed Refrigerant Cooling
FR3089282B1 (fr) * 2018-11-30 2023-02-24 Gaztransport Et Technigaz Systeme de traitement de gaz d’un terminal de reception equipe d’une unite de regazeification et procede de traitement de gaz correspondant
KR102246344B1 (ko) * 2018-12-04 2021-04-29 한국조선해양 주식회사 가스 처리 시스템 및 선박
JP7163853B2 (ja) * 2019-04-11 2022-11-01 株式会社豊田自動織機 改質システム及びエンジンシステム
KR102315029B1 (ko) * 2019-11-20 2021-10-20 대우조선해양 주식회사 Lng 재기화 시스템 및 방법
KR102276362B1 (ko) * 2019-12-31 2021-07-12 대우조선해양 주식회사 증발가스 재액화 시스템 및 방법
KR20210104537A (ko) * 2020-02-17 2021-08-25 한국조선해양 주식회사 가스 처리 시스템 및 이를 포함하는 선박
KR102388256B1 (ko) * 2020-08-25 2022-04-21 한국기계연구원 액체수소 플랜트

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000142563A (ja) * 1998-11-18 2000-05-23 Kawasaki Heavy Ind Ltd 液化ガス運搬船の蒸発ガス処理制御装置および方法
US20090133674A1 (en) * 2007-05-08 2009-05-28 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Fuel gas supply system and method of an lng carrier
KR20110018181A (ko) * 2009-08-17 2011-02-23 삼성중공업 주식회사 연료가스 공급시스템
KR20110023856A (ko) * 2008-05-08 2011-03-08 함보르티 가스 시스템즈 아에스 가스 엔진용 가스 공급 시스템

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2764489B2 (ja) * 1991-10-29 1998-06-11 株式会社荏原製作所 冷凍装置用冷媒及び該冷媒を用いる冷凍装置
JPH06159928A (ja) * 1992-11-20 1994-06-07 Chiyoda Corp 天然ガス液化方法
JP3868033B2 (ja) * 1996-07-05 2007-01-17 三菱重工業株式会社 Lngボイルオフガスの再液化方法及びその装置
US6076372A (en) * 1998-12-30 2000-06-20 Praxair Technology, Inc. Variable load refrigeration system particularly for cryogenic temperatures
US6881354B2 (en) * 1998-12-30 2005-04-19 Praxair Technology, Inc. Multicomponent refrigerant fluids for low and cryogenic temperatures
US6308531B1 (en) * 1999-10-12 2001-10-30 Air Products And Chemicals, Inc. Hybrid cycle for the production of liquefied natural gas
KR20010077227A (ko) * 2000-02-01 2001-08-17 윤상국 액화천연가스의 냉열을 이용한 천연가스증기의 재액화장치및 방법
WO2002001120A1 (en) * 2000-06-28 2002-01-03 Igc Polycold Systems, Inc. Nonflammable mixed refrigerants (mr) for use with very low temperature throttle-cycle refrigeration systems
US6293108B1 (en) * 2000-06-30 2001-09-25 Vortex Aircon Regenerative refrigeration system with mixed refrigerants
US6427483B1 (en) * 2001-11-09 2002-08-06 Praxair Technology, Inc. Cryogenic industrial gas refrigeration system
US6591632B1 (en) * 2002-11-19 2003-07-15 Praxair Technology, Inc. Cryogenic liquefier/chiller
EA008337B1 (ru) * 2003-06-05 2007-04-27 Флуор Корпорейшн Установка для регазификации сжиженного природного газа (варианты)
US7127914B2 (en) * 2003-09-17 2006-10-31 Air Products And Chemicals, Inc. Hybrid gas liquefaction cycle with multiple expanders
US7114347B2 (en) * 2003-10-28 2006-10-03 Ajay Khatri Closed cycle refrigeration system and mixed component refrigerant
JP4488755B2 (ja) * 2004-01-30 2010-06-23 三井造船株式会社 ボイルオフガス処理方法
JP4936750B2 (ja) * 2006-03-15 2012-05-23 中国電力株式会社 燃料供給システム
ES2766767T3 (es) * 2006-04-07 2020-06-15 Waertsilae Gas Solutions Norway As Procedimiento y aparato para precalentar gas evaporado de GNL a temperatura ambiente antes de su compresión en un sistema de relicuefacción
KR20080057461A (ko) * 2006-12-20 2008-06-25 신영중공업주식회사 Lng bog 재액화 장치 및 방법
US20100107686A1 (en) * 2007-04-04 2010-05-06 Eduard Coenraad Bras Method and apparatus for separating one or more c2+ hydrocarbons from a mixed phase hydrocarbon stream
KR20080097141A (ko) * 2007-04-30 2008-11-04 대우조선해양 주식회사 인-탱크 재응축 수단을 갖춘 부유식 해상 구조물 및 상기부유식 해상 구조물에서의 증발가스 처리방법
US20080276627A1 (en) * 2007-05-08 2008-11-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Fuel gas supply system and method of a ship
BRPI0813637B1 (pt) * 2007-07-09 2019-07-09 Lng Technology Pty Ltd Processo e sistema para a produção de gás natural liquefeito
KR101076266B1 (ko) * 2007-07-19 2011-10-26 대우조선해양 주식회사 Lng 운반선의 연료용 가스 공급 장치
JP5148319B2 (ja) * 2008-02-27 2013-02-20 三菱重工業株式会社 液化ガス再液化装置、これを備えた液化ガス貯蔵設備および液化ガス運搬船、並びに液化ガス再液化方法
CA2718840A1 (en) * 2008-04-11 2009-10-15 Fluor Technologies Corporation Methods and configuration of boil-off gas handling in lng regasification terminals
KR20090110965A (ko) * 2008-04-21 2009-10-26 대우조선해양 주식회사 메탄 팽창 사이클, 혼합냉매 사이클 및 질소 팽창 사이클을이용한 천연가스 액화방법 및 장치
JP5403649B2 (ja) * 2008-07-23 2014-01-29 ジャパンマリンユナイテッド株式会社 液化ガス燃料船及びそのバンカリング方法
JP5167158B2 (ja) * 2009-01-29 2013-03-21 三菱重工業株式会社 液化燃料運搬船およびその推進システム
KR101187532B1 (ko) * 2009-03-03 2012-10-02 에스티엑스조선해양 주식회사 재액화 기능을 가지는 전기추진 lng 운반선의 증발가스 처리장치
US20100281915A1 (en) * 2009-05-05 2010-11-11 Air Products And Chemicals, Inc. Pre-Cooled Liquefaction Process
KR20100136691A (ko) * 2009-06-19 2010-12-29 삼성중공업 주식회사 선박의 연료가스 공급장치 및 방법
CN101881549B (zh) * 2010-06-25 2014-02-12 华南理工大学 一种液化天然气接收站蒸发气体再冷凝回收系统及其回收方法
CN101975335B (zh) * 2010-09-26 2012-08-22 上海交通大学 液化天然气汽车加气站蒸发气体的再液化装置
KR101106089B1 (ko) * 2011-03-11 2012-01-18 대우조선해양 주식회사 고압 천연가스 분사 엔진을 위한 연료 공급 방법
JP5611476B2 (ja) * 2011-03-11 2014-10-22 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド 再液化装置及び高圧天然ガス噴射エンジンを有する海上構造物の燃料供給システム
WO2012128448A1 (ko) * 2011-03-22 2012-09-27 대우조선해양 주식회사 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000142563A (ja) * 1998-11-18 2000-05-23 Kawasaki Heavy Ind Ltd 液化ガス運搬船の蒸発ガス処理制御装置および方法
US20090133674A1 (en) * 2007-05-08 2009-05-28 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Fuel gas supply system and method of an lng carrier
KR20110023856A (ko) * 2008-05-08 2011-03-08 함보르티 가스 시스템즈 아에스 가스 엔진용 가스 공급 시스템
KR20110018181A (ko) * 2009-08-17 2011-02-23 삼성중공업 주식회사 연료가스 공급시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2693034A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015500759A (ja) * 2012-10-24 2015-01-08 デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド 船舶用エンジンのハイブリッド燃料供給システム及び方法
CN104736829A (zh) * 2012-10-24 2015-06-24 大宇造船海洋株式会社 用于船只的液化气处理系统
US9447751B2 (en) 2012-10-24 2016-09-20 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Hybrid fuel supply system and method for engine of vessel
RU2602714C2 (ru) * 2012-10-24 2016-11-20 Дэу Шипбилдинг Энд Марин Инджиниринг Ко., Лтд. Система и способ подачи гибридного топлива для двигателя судна
CN104736829B (zh) * 2012-10-24 2017-06-06 大宇造船海洋株式会社 用于船只的液化气处理系统
US9739420B2 (en) 2012-10-24 2017-08-22 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied gas treatment system for vessel
EP3015357A4 (en) * 2013-06-26 2017-01-11 Daewoo Shipbuilding & Marine Engineering Co., Ltd. System and method for treating boil-off gas in ship
US10518859B2 (en) 2013-06-26 2019-12-31 Daewoo Shipbuilding & Marine Engineering Co., Ltd. System and method for treating boil-off gas in ship
CN103696884A (zh) * 2013-11-21 2014-04-02 武汉三江航天远方科技有限公司 共用气化器式lng供气系统

Also Published As

Publication number Publication date
JP2014517849A (ja) 2014-07-24
KR20120107887A (ko) 2012-10-04
KR20120107886A (ko) 2012-10-04
EP2693034A1 (en) 2014-02-05
KR101106088B1 (ko) 2012-01-18
KR101298626B1 (ko) 2013-08-26
KR20120107851A (ko) 2012-10-04
US20140069117A1 (en) 2014-03-13
KR20120107885A (ko) 2012-10-04
KR101298624B1 (ko) 2013-08-26
KR101298625B1 (ko) 2013-08-26
EP2693034A4 (en) 2016-07-06
KR20120107837A (ko) 2012-10-04
KR101298623B1 (ko) 2013-08-26
KR20120107888A (ko) 2012-10-04
CN103547788A (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
WO2012128449A1 (ko) 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매
KR101115466B1 (ko) 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템
KR101106089B1 (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 방법
EP2685077B1 (en) Method for driving system for supplying fuel to marine structure having re-liquefying device and high-pressure natural gas injection engine
US20140069118A1 (en) Method and system for supplying fuel to high-pressure natural gas injection engine
US20140053600A1 (en) System for supplying fuel to high-pressure natural gas injection engine having excess evaporation gas consumption means
KR20110118604A (ko) 가스 공급 장치
KR20120107831A (ko) 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템
KR20120107832A (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 및 방법
KR20120107835A (ko) 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템
KR20120103413A (ko) 고압 천연가스 분사 엔진을 위한 연료 공급 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500982

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011861567

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011861567

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14006083

Country of ref document: US