WO2012128307A1 - 固体酸化物形燃料電池用接合材、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュール - Google Patents

固体酸化物形燃料電池用接合材、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュール Download PDF

Info

Publication number
WO2012128307A1
WO2012128307A1 PCT/JP2012/057285 JP2012057285W WO2012128307A1 WO 2012128307 A1 WO2012128307 A1 WO 2012128307A1 JP 2012057285 W JP2012057285 W JP 2012057285W WO 2012128307 A1 WO2012128307 A1 WO 2012128307A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid oxide
layer
fuel cell
oxide fuel
glass ceramic
Prior art date
Application number
PCT/JP2012/057285
Other languages
English (en)
French (fr)
Inventor
喜樹 植田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013505998A priority Critical patent/JP5686182B2/ja
Priority to CN2012800146074A priority patent/CN103443978A/zh
Publication of WO2012128307A1 publication Critical patent/WO2012128307A1/ja
Priority to US14/030,487 priority patent/US20140017587A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell bonding material, a solid oxide fuel cell, and a solid oxide fuel cell module.
  • fuel cells As a new energy source.
  • the fuel cell include a solid oxide fuel cell (SOFC), a molten carbonate fuel cell, a phosphoric acid fuel cell, and a polymer electrolyte fuel cell.
  • SOFC solid oxide fuel cell
  • molten carbonate fuel cell a molten carbonate fuel cell
  • phosphoric acid fuel cell a phosphoric acid fuel cell
  • polymer electrolyte fuel cell a solid oxide fuel cell
  • solid oxide fuel cells do not necessarily require liquid components, and can be reformed internally when using hydrocarbon fuel. For this reason, research and development on solid oxide fuel cells are actively conducted.
  • a joining material is used for joining a power generation element and a separator.
  • this bonding material for example, the following Patent Document 1 describes a bonding material for a solid oxide fuel cell mainly composed of glass.
  • the bonding material described in Patent Document 1 also shrinks in a direction parallel to the bonding interface when heated to bond the members. For this reason, stress is applied to the members to be joined, for example, warping may occur or the joining material may be damaged.
  • an object of the present invention is a solid oxide fuel cell bonding material having a high bonding force and a direction parallel to a bonding interface at the time of bonding.
  • An object of the present invention is to provide a solid oxide fuel cell bonding material with small shrinkage.
  • the solid oxide fuel cell bonding material according to the present invention includes a glass ceramic layer and a constraining layer.
  • the glass ceramic layer includes glass ceramics.
  • the constraining layer is laminated on the glass ceramic layer.
  • the constraining layer is not fired at the firing temperature of the glass ceramic layer.
  • a part of the glass ceramic layer may diffuse and flow into the constraining layer during firing.
  • the constraining layer may contain glass having a softening point lower than the firing temperature.
  • the inorganic material of the constraining layer is densified by the glass component and functions to enhance adhesion with the glass ceramic layer.
  • the constraining layer includes alumina.
  • the constraining layer further includes glass.
  • the content of alumina in the constrained layer is 30% by volume to 90% by volume. According to this structure, it can suppress that the glass component contained in a constrained layer acts as a baking auxiliary agent of alumina. Therefore, the shrinkage suppression effect by the constraining layer can be further enhanced.
  • the constraining layer is a metal plate. In this configuration, the constraining layer does not substantially shrink in the direction parallel to the bonding interface during firing.
  • the glass ceramic includes silica, barium oxide, and alumina.
  • the glass ceramics includes 48 mass% to 75 mass% of Si in terms of SiO 2 and 20 mass% of Ba in terms of BaO. 40% by mass and 5% by mass to 20% by mass in terms of Al 2 O 3 .
  • the thickness of the glass ceramic layer is 10 ⁇ m to 150 ⁇ m.
  • the thickness of the constraining layer is 0.5 ⁇ m to 50 ⁇ m.
  • the glass ceramic layer includes a first glass ceramic layer provided on one main surface of the constraining layer, and a constraining layer. And a second glass ceramic layer provided on the other main surface.
  • the solid oxide fuel cell according to the present invention includes a bonding layer formed by firing the solid oxide fuel cell bonding material according to the present invention.
  • the solid oxide fuel cell further includes a plurality of power generation cells.
  • the power generation cell includes a solid oxide electrolyte layer, an air electrode disposed on one main surface of the solid oxide electrolyte layer, and a fuel electrode disposed on the other main surface of the solid oxide electrolyte layer.
  • Have Adjacent power generation cells are joined by a joining layer.
  • the solid oxide fuel cell module according to the present invention includes a bonding layer obtained by firing the solid oxide fuel cell bonding material according to the present invention.
  • the solid oxide fuel cell module further includes a fuel cell.
  • the fuel cell includes a solid oxide electrolyte layer, an air electrode disposed on one main surface of the solid oxide electrolyte layer, and a fuel electrode disposed on the other main surface of the solid oxide electrolyte layer.
  • a plurality of power generation cells Adjacent power generation cells are joined by a joining layer.
  • the solid oxide fuel cell module further includes a housing and a fuel cell disposed in the housing.
  • the fuel cell and the casing are joined by a joining layer.
  • the present invention is a solid oxide fuel cell bonding material having high bonding strength and small shrinkage in a direction parallel to the bonding interface during bonding, causing warpage and damage to the bonding material. It is possible to provide a solid oxide fuel cell bonding material capable of suppressing the above.
  • FIG. 1 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a second embodiment.
  • FIG. 3 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a third embodiment.
  • FIG. 4 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a fourth embodiment.
  • FIG. 5 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a fifth embodiment.
  • FIG. 6 is a schematic side view of a solid oxide fuel cell module according to a sixth embodiment.
  • FIG. 7 is a schematic exploded perspective view of the power generation cell according to the sixth embodiment.
  • FIG. 8 is a schematic cross-sectional view of the first bonding layer in the sixth embodiment.
  • FIG. 9 is a schematic cross-sectional view of the second bonding layer in the sixth embodiment.
  • FIG. 10 is a schematic cross-sectional view of a sample prepared in the first embodiment.
  • FIG. 11 is a schematic cross-sectional view of a sample prepared in the second embodiment.
  • FIG. 12 is a schematic cross-sectional view of a sample created in the fifth embodiment.
  • FIG. 13 is a schematic cross-sectional view of a sample created in the sixth embodiment.
  • FIG. 14 is a schematic cross-sectional view of a sample created in the seventh embodiment.
  • FIG. 15 is a schematic cross-sectional view of a sample created in the eighth embodiment.
  • FIG. 16 is a schematic cross-sectional view of a sample created in the ninth embodiment.
  • FIG. 17 is a schematic perspective view of a solid oxide fuel cell bonding material according to a tenth modification.
  • FIG. 18 is a schematic perspective view of a solid oxide fuel cell bonding material according to an eleventh modification.
  • FIG. 19 is a schematic perspective view of a solid oxide fuel cell bonding material according to a twelfth modification.
  • FIG. 1 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a first embodiment.
  • the bonding material 1 is a bonding material used for a solid oxide fuel cell. Specifically, the bonding material 1 is used for, for example, a purpose of bonding power generation cells of a solid oxide fuel cell or bonding a casing of a solid oxide fuel cell module and a fuel cell. It is done.
  • the bonding material 1 has a glass ceramic layer 10 and a constraining layer 11.
  • the glass ceramic layer 10 includes glass ceramics.
  • the glass ceramic layer 10 may be made of only glass ceramics or may contain, for example, amorphous glass in addition to the glass ceramics.
  • glass ceramics is a mixed material system of crystallized glass and ceramics.
  • Specific examples of ceramics include cristobalite, forsterite, cordierite, quartz, quartz glass, alumina, magnesia, spinel and the like.
  • the glass ceramic contains silica, barium oxide, and alumina.
  • Si is 48 mass% to 75 mass% in terms of SiO 2
  • Ba is 20 mass% to 40 mass% in terms of BaO
  • Al is 5 mass% to 20 mass% in terms of Al 2 O 3. It is preferable that it is included.
  • the glass ceramic is preferably substantially free of Cr oxide or B oxide. According to this configuration, for example, glass ceramics that can be fired at a temperature of 1100 ° C. or lower can be obtained.
  • the thickness of the glass ceramic layer 10 is not particularly limited, but is preferably, for example, 10 ⁇ m to 150 ⁇ m, and more preferably 20 ⁇ m to 50 ⁇ m.
  • a constraining layer 11 is laminated on the glass ceramic layer 10.
  • the constraining layer 11 and the glass ceramic layer 10 are in direct contact.
  • the constraining layer 11 does not shrink in the plane direction at the firing temperature of the glass ceramic layer 10. That is, the constraining layer 11 has such a property that the glass ceramic layer 10 can be fired in a state where the constraining layer 11 does not substantially contract in the plane direction.
  • the constraining layer 11 is preferably made of, for example, a metal plate or ceramics.
  • the constraining layer 11 preferably contains an inorganic material such as alumina that is not fired at the firing temperature of the glass ceramic.
  • the glass ceramic layer 10 can be fired in a state where the constraining layer 11 does not substantially contract.
  • the constrained layer 11 contains glass.
  • the bonding material 1 when the bonding material 1 is fired, the bonding strength between the constraining layer 11 and the layer formed by firing the glass ceramic layer 10 can be increased.
  • the center particle diameter of an inorganic material is 5 micrometers or less. When the center particle diameter of the inorganic material is larger than 5 ⁇ m, the effect of suppressing shrinkage in the surface direction during firing of the glass ceramic layer is reduced.
  • the volume of the glass is preferably 10 to 70% with respect to the total volume of alumina and glass.
  • the volume of the glass with respect to the total volume of alumina and glass in the constraining layer 11 is less than 10%, the amount of glass in the constraining layer may be insufficient, and these may not be densified.
  • the volume of the glass with respect to the total volume of alumina and glass in the constraining layer 11 exceeds 70%, the effect of suppressing the shrinkage in the surface direction during firing of the glass ceramic layer may be weakened.
  • the glass contained in the constraining layer 11 may be an amorphous glass or a crystalline glass that at least partially crystallizes during firing.
  • the constraining layer 11 preferably further includes glass ceramics.
  • the bonding strength between the constraining layer and the glass ceramic layer or the object to be bonded becomes higher.
  • the thickness of the constraining layer 11 is preferably 0.5 ⁇ m to 50 ⁇ m, and more preferably 1 ⁇ m to 10 ⁇ m. When the thickness of the constraining layer 11 is less than 0.5 ⁇ m, the effect of suppressing shrinkage in the surface direction may be reduced. On the other hand, if the thickness of the constraining layer 11 exceeds 50 ⁇ m, it may be difficult to reduce the height of the solid oxide fuel cell.
  • the thickness of the constraining layer 11 is preferably 0.05 to 0.25 times the thickness of the glass ceramic layer 10.
  • the bonding material is constituted only by a glass ceramic layer. Even in this case, excellent bondability can be realized.
  • the bonding material consisting only of the glass ceramic layer also shrinks in the surface direction during firing. For this reason, a big stress arises in a to-be-joined material and the joining layer by which a glass ceramic layer is baked. Therefore, the material to be bonded may be warped, or a crack or the like may occur in the material to be bonded or the bonding layer. Further, the bonding material is easily peeled off from the material to be bonded. That is, it is difficult to obtain sufficient bonding strength.
  • the glass ceramic layer 10 and the constraining layer 11 are laminated.
  • the constraining layer 11 suppresses shrinkage in the surface direction when the glass ceramic layer 10 is fired, and shrinks mainly in the thickness direction. Therefore, when the bonding material 1 of this embodiment is used, even when the bonding material 1 is baked, the bonding material 1 does not shrink so much in the surface direction. Therefore, it can suppress that a stress is added to a to-be-joined material and a joining layer. As a result, it is possible to suppress warpage of the material to be bonded and occurrence of cracks in the material to be bonded and the bonding layer. Further, the materials to be joined can be joined with high joining strength. That is, the bonding material 1 of the present embodiment has excellent bonding properties and has a small shrinkage during firing.
  • the bonding material is constituted only by the constraining layer, the bonding property is lowered, and the function as the bonding material cannot be sufficiently obtained.
  • the constraining layer 11 is preferably one that does not substantially fire at the firing temperature of the glass ceramic layer 10.
  • the constraining layer 11 preferably contains alumina, and preferably contains 30% by volume or more of alumina.
  • the content rate of the alumina in the constrained layer 11 is 90 mass% or less.
  • FIG. 2 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a second embodiment.
  • FIG. 3 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a third embodiment.
  • FIG. 4 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a fourth embodiment.
  • FIG. 5 is a schematic cross-sectional view of a solid oxide fuel cell bonding material according to a fifth embodiment.
  • a plurality of at least one of the glass ceramic layer 10 and the constraining layer 11 may be provided.
  • a first glass ceramic layer 10a is provided on one main surface of the constraining layer 11, and a second glass ceramic layer 10b is provided on the other main surface. Therefore, both surfaces of the bonding material are constituted by glass ceramic layers. Accordingly, both the bonding strength between the bonding material to be bonded to one main surface of the bonding material and the bonding material, and the bonding strength between the bonding material to be bonded to the other main surface of the bonding material and the bonding material. Can be increased.
  • constraining layers 11 a and 11 b are provided on both sides of the glass ceramic layer 10. That is, the glass ceramic layer 10 is held between the constraining layers 11a and 11b. Therefore, the shrinkage in the surface direction during firing of the glass ceramic layer 10 can be more effectively suppressed.
  • both constraining layers 11a and 11b are arranged between three glass ceramic layers 10a to 10c.
  • both surfaces of the bonding material are constituted by glass ceramic layers. Accordingly, both the bonding strength between the bonding material to be bonded to one main surface of the bonding material and the bonding material, and the bonding strength between the bonding material to be bonded to the other main surface of the bonding material and the bonding material. Can be increased. Further, since the number of constraining layers relative to the number of glass ceramic layers is larger than that of the bonding material shown in FIG. 2, the shrinkage during firing of the glass ceramic layers 10a to 10c can be more effectively suppressed in the plane direction.
  • FIG. 6 is a schematic side view of a solid oxide fuel cell module according to a sixth embodiment.
  • the solid oxide fuel cell module (also referred to as a hot module) 3 includes a housing 3a.
  • a solid oxide fuel cell 2 is disposed inside the housing 3a.
  • the fuel cell 2 has a plurality of power generation cells 20. Specifically, the fuel cell 2 has two power generation cells 20.
  • FIG. 7 is a schematic exploded perspective view of the power generation cell according to the sixth embodiment.
  • the power generation cell 20 includes a first separator 40, a power generation element 46, and a second separator 50.
  • the first separator 40, the power generation element 46, and the second separator 50 are stacked in this order.
  • the power generation element 46 is a portion where the oxidant gas supplied from the oxidant gas manifold 44 and the fuel gas supplied from the fuel gas manifold 45 react to generate power.
  • the oxidant gas can be composed of, for example, an aerobic gas containing air or oxygen.
  • the fuel gas may be a gas containing hydrogen gas, city gas, hydrocarbon gas such as liquefied petroleum gas or vaporized kerosene.
  • the power generation element 46 includes a solid oxide electrolyte layer 47. It is preferable that the solid oxide electrolyte layer 47 has high ionic conductivity.
  • the solid oxide electrolyte layer 47 can be formed of, for example, stabilized zirconia or partially stabilized zirconia. Specific examples of the stabilized zirconia include 10 mol% yttria stabilized zirconia (10YSZ), 11 mol% scandia stabilized zirconia (11ScSZ), and the like. Specific examples of the partially stabilized zirconia include 3 mol% yttria partially stabilized zirconia (3YSZ).
  • the solid oxide electrolyte layer 47 is, for example, Sm and Gd or the like ceria oxides doped, a LaGaO 3 as a host, La 0 the part of the La and Ga was substituted with Sr and Mg, respectively. It can also be formed of a perovskite oxide such as 8 Sr 0.2 Ga 0.8 Mg 0.2 O (3- ⁇ ) .
  • the solid oxide electrolyte layer 47 is sandwiched between the air electrode layer 48 and the fuel electrode layer 49. That is, the air electrode layer 48 is formed on one main surface of the solid oxide electrolyte layer 47, and the fuel electrode layer 49 is formed on the other main surface.
  • the air electrode layer 48 has an air electrode 48a.
  • the air electrode 48a is a cathode. In the air electrode 48a, oxygen takes in electrons and oxygen ions are formed.
  • the air electrode 48a is preferably porous, has high electron conductivity, and does not easily cause a solid-solid reaction with the solid oxide electrolyte layer 47 and the like at a high temperature.
  • the air electrode 48a can be formed of, for example, scandia-stabilized zirconia (ScSZ), Sn-doped indium oxide, PrCoO 3 oxide, LaCoO 3 oxide, LaMnO 3 oxide, or the like.
  • LaMnO 3 -based oxides include, for example, La 0.8 Sr 0.2 MnO 3 (common name: LSM), La 0.8 Sr 0.2 Co 0.2 Fe 0.8 O 3 (common name: LSCF) and La 0.6 Ca 0.4 MnO 3 (common name: LCM).
  • the air electrode 48a may be made of a mixed material obtained by mixing two or more of the above materials.
  • the fuel electrode layer 49 has a fuel electrode 49a.
  • the fuel electrode 49a is an anode. In the fuel electrode 49a, oxygen ions and fuel gas react to emit electrons.
  • the fuel electrode 49a is preferably porous, has high electron conductivity, and does not easily cause a solid-solid reaction with the solid oxide electrolyte layer 47 and the like at a high temperature.
  • the fuel electrode 49a can be composed of, for example, NiO, yttria stabilized zirconia (YSZ) / nickel metal porous cermet, scandia stabilized zirconia (ScSZ) / nickel metal porous cermet, or the like.
  • the fuel electrode layer 49 may be made of a mixed material obtained by mixing two or more of the above materials.
  • the first separator 40 On the air electrode layer 48 of the power generation element 46, the first separator 40 constituted by the first separator body 41 and the first flow path forming member 42 is disposed.
  • the first separator 40 is formed with an oxidant gas passage 43 for supplying an oxidant gas to the air electrode 48a.
  • the oxidant gas flow path 43 extends from the oxidant gas manifold 44 toward the x2 side from the x1 side in the x direction.
  • the constituent material of the first separator 40 is not particularly limited.
  • the first separator 40 can be formed of, for example, stabilized zirconia such as yttria stabilized zirconia, partially stabilized zirconia, or the like.
  • a second separator 50 On the fuel electrode layer 49 of the power generation element 46, a second separator 50 constituted by a second separator body 51 and a second flow path forming member 52 is disposed.
  • the second separator 50 is formed with a fuel gas passage 53 for supplying fuel gas to the fuel electrode 49a.
  • the fuel gas channel 53 extends from the fuel gas manifold 45 toward the y2 side from the y1 side in the y direction.
  • the constituent material of the second separator 50 is not particularly limited.
  • the second separator 50 can be formed of, for example, stabilized zirconia, partially stabilized zirconia, or the like.
  • the two power generation cells 20 are bonded using the bonding material 1 described in the first embodiment.
  • the bonding material 1 is bonded by a first bonding layer 21a formed by firing.
  • FIG. 8 is a schematic cross-sectional view of the first bonding layer in the sixth embodiment.
  • the first bonding layer 21 a is configured by a laminate of the fired layer 22 obtained by firing the glass ceramic layer 10 and the constraining layer 11.
  • the fuel cell 2 is joined to the housing 3a.
  • FIG. The fuel cell 2 and the housing 3a are joined by a second joining layer 21b.
  • FIG. 9 is a schematic cross-sectional view of the second bonding layer in the sixth embodiment.
  • the second bonding layer 21b is also composed of a laminate of the fired layer 22 obtained by firing the glass ceramic layer 10 and the constraining layer 11, like the first bonding layer 21a. Yes.
  • the adjacent power generation cells 20 are joined by the first joining layer 21 a formed by firing the joining material 1.
  • the fuel cell 2 and the housing 3a are joined together by a second joining layer 21b formed by firing the joining material 1. For this reason, it is possible to suppress the warpage of the power generation cell 20 and the generation of cracks in the power generation cell 20.
  • the bonding layers 21a and 21b are obtained by firing the bonding material 1 has been described.
  • the present invention is not limited to this configuration.
  • the bonding layer may be obtained by firing the bonding materials according to the second to fifth embodiments.
  • the solid oxide fuel cell bonding material may be provided in a U shape in plan view. As shown in FIG. 18, the solid oxide fuel cell bonding material may be provided in an L shape in plan view. As shown in FIG. 19, the solid oxide fuel cell bonding material may be provided in an annular shape.
  • Example 1 In Example 1, the sample 31 shown in FIG. 10 was produced. First, a slurry was prepared by adding polyvinyl butyral as a binder, di-n-butyl phthalate as a plasticizer, and toluene and isopropylene alcohol as solvents to a glass ceramic having the composition A shown in Table 1 below. . Using the slurry, a ceramic green sheet of a glass ceramic layer was produced by a doctor blade method. The laminated body obtained by laminating the ceramic green sheets of the glass ceramic layer was pressed at a temperature of 50 ° C. and a pressure of 500 kgf / cm 2 to obtain a glass ceramic 31a. A sample 31 was obtained by interposing the glass ceramic layer 31a between the substrates 30a and 30b mainly composed of zirconia. That is, in the sample 31, the bonding material was constituted only by the glass ceramic layer 31a.
  • Example 2 An alumina powder having a center particle size of 0.5 ⁇ m was used as the inorganic material powder that was not fired at the firing temperature of the glass ceramics, and a borosilicate glass having a center particle size of 1.3 ⁇ m was used as the glass powder.
  • a slurry was prepared by adding polyvinyl butyral as a binder, di-n-butyl phthalate as a plasticizer, and toluene and isopropylene alcohol as solvents. Using the slurry, a ceramic green sheet of a constrained layer was produced by a doctor blade method.
  • a laminate obtained by laminating the ceramic green sheet of the constraining layer and the ceramic green sheet of the ceramic glass layer produced in the same manner as in Example 1 was pressed at a temperature of 50 ° C. and a pressure of 500 kgf / cm 2 , and glass ceramics were obtained.
  • a laminate of the layer 31a and the constraining layer 32a was produced.
  • the above-mentioned borosilicate glass is composed of 55 mol% SiO 2 , 4 mol% Al 2 O 3 , 10 mol% B 2 O 3 , 20 mol% BaO, 5.5 mol% CaO, and MgO. It consists of a composition containing 0.5 mol% and 5 mol% SrO.
  • a sample of a sample is obtained by interposing a laminated body of a glass ceramic layer 31a and a constraining layer 32a between substrates 30a and 30b mainly composed of zirconia in the same manner as in the first embodiment. 32 was obtained.
  • the glass ceramic layer and the constraining layer are separately prepared and laminated to prepare the bonding material.
  • the constraining layer may be formed into a sheet on the glass ceramic layer.
  • the laminated structure of the glass ceramic layer and the constraining layer is not limited to the lamination of sheets, and the same effect can be obtained even by a paste method, a printing method, an aerosol deposition, or the like.
  • Example 3 A sample was produced in the same manner as in Example 2 except that the thickness of the glass ceramic layer 31a and the thickness of the constraining layer 32a were changed to the thicknesses shown in Table 2 below.
  • Example 4 A sample was prepared in the same manner as in Example 2 except that the thickness of the glass ceramic layer 31a and the thickness of the constraining layer 32a were changed to the thicknesses shown in Table 2.
  • Example 5 As shown in FIG. 12, by interposing a laminate in which a constraining layer 32a, a glass ceramic layer 31a, and a constraining layer 32a are laminated in this order between the substrates 30a and 30b mainly composed of zirconia. Sample 33 was produced.
  • Example 6 As shown in FIG. 13, a laminated body in which a glass ceramic layer 31a, a constraining layer 32a, and a glass ceramic layer 31a are laminated in this order is interposed between substrates 30a and 30b mainly composed of zirconia. Thus, a sample 34 was produced.
  • Example 7 As shown in FIG. 14, a stack in which a constraining layer 32a, a glass ceramic layer 31a, a constraining layer 32a, and a glass ceramic layer 31a are stacked in this order between substrates 30a and 30b mainly composed of zirconia. Sample 35 was produced by interposing a body.
  • Example 8 As shown in FIG. 15, a constraining layer 32a, a glass ceramic layer 31a, a constraining layer 32a, a glass ceramic layer 31a, and a constraining layer 32a are arranged in this order between the substrates 30a and 30b mainly composed of zirconia.
  • the sample 36 was produced by interposing the laminated body laminated
  • Example 9 As shown in FIG. 16, a glass ceramic layer 31a, a constraining layer 32a, a glass ceramic layer 31a, a constraining layer 32a, and a glass ceramic layer 31a are disposed between the substrates 30a and 30b mainly composed of zirconia.
  • the sample 37 was produced by interposing the laminated body laminated
  • Example 10 A sample was prepared in the same manner as in Example 2 except that the glass ceramic was changed to the composition B shown in Table 1 below.
  • Example 11 A sample was prepared in the same manner as in Example 2 except that the glass ceramic was changed to the composition C shown in Table 1 below.
  • Example 12 A sample was prepared in the same manner as in Example 2 except that the glass ceramic was changed to the composition D shown in Table 1 below.
  • Example 13 A sample was produced in the same manner as in Example 2 except that the glass ceramic was changed to the composition E shown in Table 1 below.
  • Example 14 A sample was prepared in the same manner as in Example 2 except that the glass ceramic was changed to the composition F shown in Table 1 below.
  • Example 15 A sample was produced in the same manner as in Example 2 except that the glass ceramic was changed to the composition G shown in Table 1 below.
  • Example 16 A sample was prepared in the same manner as in Example 2 except that the glass ceramic was changed to the composition H shown in Table 1 below.
  • Example 17 A sample was prepared in the same manner as in Example 2 except that the glass ceramic was changed to the composition I shown in Table 1 below.
  • Example 18 A sample was prepared in the same manner as in Example 2 except that the glass ceramic was changed to the composition J shown in Table 1 below.
  • Example 1 The samples prepared in each of Examples 1 to 18 were baked at 1000 ° C. for 1 hour. Then, the junction part of a joining material and a board
  • Constituent material of separator 3YSZ (ZrO 2 stabilized with Y 2 O 3 added in 3 mol%) Constituent material of the solid oxide electrolyte layer: ScSZ (addition amount of 10 mol% Sc 2 O 3 , 1 mol% CeO 2 stabilized ZrO 2 ) Air electrode constituent material: La 0.8 Sr 0.2 MnO 3 powder 60% by mass and ScSZ 40% by mass of carbon powder added 30% by mass Fuel electrode constituent material: NiO 65% by mass When the constituent material of the mixture fuel electrode side portion than the middle layer of the fuel electrode side of the interconnector material obtained by adding carbon powder 30% by weight relative to the ScSZ 35 wt%: and NiO 70% by weight, TiO 2 30 Mixture with mass% Constituent material of the portion on the opposite side of the fuel electrode from the intermediate film of the interconnector: Pd—Ag alloy with a Pd content of 30 mass%
  • Example 2 Two power generation cells prepared under the above conditions were prepared, and the bonding material prepared in Example 1 and the conductive paste were interposed between the two power generation cells, and fired at 1000 ° C. for 1 hour while applying a load of 1 kg.
  • a fuel cell was fabricated. N 2 gas was allowed to flow through the fuel gas supply manifold and the oxidant gas supply manifold of the fuel cell at room temperature. The presence or absence of a gas leak when the pressure in the manifold was 10 kPa was evaluated using a leak checker made of a commercially available surfactant to evaluate the sealing performance of the solid oxide fuel cell bonding material. As a result, no gas leak was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

 固体酸化物形燃料電池用接合材であって、高い接合力を有し、且つ接合時における接合界面と平行な方向への収縮が小さい固体酸化物形燃料電池用接合材を提供する。 固体酸化物形燃料電池用接合材1は、ガラスセラミックス層10と、拘束層11とを備えている。ガラスセラミックス層10は、ガラスセラミックスを含む。拘束層11は、ガラスセラミックス層10に積層されている。

Description

固体酸化物形燃料電池用接合材、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュール
 本発明は、固体酸化物形燃料電池用接合材、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュールに関する。
 近年、新たなエネルギー源として、燃料電池に対する注目が大きくなってきている。燃料電池には、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、溶融炭酸塩形燃料電池、リン酸形燃料電池、固体高分子形燃料電池等がある。これらの燃料電池の中でも、固体酸化物形燃料電池では、液体の構成要素を用いる必要が必ずしもなく、炭化水素燃料を用いるときに内部での改質も可能である。このため、固体酸化物形燃料電池に対する研究開発が盛んに行われている。
 固体酸化物形燃料電池では、例えば、発電要素とセパレータとの接合などに接合材が用いられている。この接合材の具体例として、例えば下記の特許文献1には、ガラスを主成分とする固体酸化物形燃料電池用の接合材が記載されている。
特開2011-34874号公報
 しかしながら、特許文献1に記載の接合材は、部材を接合するために加熱した際に接合界面に平行な方向にも収縮する。このため、被接合部材に応力が加わり、例えば反りが発生したり、接合材が損傷したりする場合がある。
 本発明は、斯かる点に鑑みてなされたものであり、その目的は、固体酸化物形燃料電池用接合材であって、高い接合力を有し、且つ接合時における接合界面に平行な方向への収縮が小さい固体酸化物形燃料電池用接合材を提供することにある。
 本発明に係る固体酸化物形燃料電池用接合材は、ガラスセラミックス層と、拘束層とを備えている。ガラスセラミックス層は、ガラスセラミックスを含む。拘束層は、ガラスセラミックス層に積層されている。
 本発明に係る固体酸化物形燃料電池用接合材のある特定の局面では、拘束層は、ガラスセラミックス層の焼成温度において焼成しない。ただし、ガラスセラミックス層の一部は、焼成時に拘束層に拡散・流動してもよい。また、拘束層は、焼成温度よりも低い軟化点を有するガラスを拘束層に含有させてもよい。この場合、拘束層の無機材料はガラス成分によって緻密化されているとともにガラスセラミックス層との固着を高めるように機能する。
 本発明に係る固体酸化物形燃料電池用接合材の他の特定の局面では、拘束層は、アルミナを含む。
 本発明に係る固体酸化物形燃料電池用接合材の別の特定の局面では、拘束層はガラスをさらに含む。
 本発明に係る固体酸化物形燃料電池用接合材のさらに他の特定の局面では、拘束層におけるアルミナの含有率は、30体積%~90体積%である。この構成によれば、拘束層に含まれるガラス成分がアルミナの焼成助剤として作用することを抑制できる。従って、拘束層による収縮抑制効果をさらに高めることができる。
 本発明に係る固体酸化物形燃料電池用接合材のさらに別の特定の局面では、拘束層は、金属板である。この構成では、拘束層は、焼成時に接合界面に平行な方向に実質的に収縮しない。
 本発明に係る固体酸化物形燃料電池用接合材のまた他の特定の局面では、ガラスセラミックスは、シリカ、バリウム酸化物及びアルミナを含む。
 本発明に係る固体酸化物形燃料電池用接合材のさらに別の特定の局面では、ガラスセラミックスは、SiをSiO換算で48質量%~75質量%と、BaをBaO換算で20質量%~40質量%と、AlをAl換算で5質量%~20質量%とを含む。
 本発明に係る固体酸化物形燃料電池用接合材のまた他の特定の局面では、ガラスセラミックス層の厚みは、10μm~150μmである。拘束層の厚みは、0.5μm~50μmである。
 本発明に係る固体酸化物形燃料電池用接合材のまた別の特定の局面では、ガラスセラミックス層は、拘束層の一の主面の上に設けられた第1のガラスセラミックス層と、拘束層の他の主面の上に設けられた第2のガラスセラミックス層とを含む。
 本発明に係る固体酸化物形燃料電池は、上記本発明に係る固体酸化物形燃料電池用接合材が焼成されてなる接合層を備えている。
 本発明に係る固体酸化物形燃料電池のある特定の局面では、固体酸化物形燃料電池は、複数の発電セルをさらに備えている。発電セルは、固体酸化物電解質層と、固体酸化物電解質層の一の主面の上に配された空気極と、固体酸化物電解質層の他の主面の上に配された燃料極とを有する。隣り合う発電セルは、接合層により接合されている。
 本発明に係る固体酸化物形燃料電池モジュールは、上記本発明に係る固体酸化物形燃料電池用接合材が焼成されてなる接合層を備えている。
 本発明に係る固体酸化物形燃料電池モジュールのある特定の局面では、固体酸化物形燃料電池モジュールは、燃料電池をさらに備えている。燃料電池は、固体酸化物電解質層と、固体酸化物電解質層の一の主面の上に配された空気極と、固体酸化物電解質層の他の主面の上に配された燃料極とを有する複数の発電セルを有する。隣り合う発電セルは、接合層により接合されている。
 本発明に係る固体酸化物形燃料電池モジュールの他の特定の局面では、固体酸化物形燃料電池モジュールは、筐体と、筐体内に配置された燃料電池とをさらに備えている。燃料電池と筐体とは、接合層により接合されている。
 本発明によれば、固体酸化物形燃料電池用接合材であって、高い接合力を有し、且つ接合時における接合界面に平行な方向への収縮が小さく、反りの発生や接合材の損傷を抑制できる固体酸化物形燃料電池用接合材を提供することができる。
図1は、第1の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。 図2は、第2の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。 図3は、第3の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。 図4は、第4の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。 図5は、第5の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。 図6は、第6の実施形態に係る固体酸化物形燃料電池モジュールの模式的側面図である。 図7は、第6の実施形態における発電セルの略図的分解斜視図である。 図8は、第6の実施形態における第1の接合層の略図的断面図である。 図9は、第6の実施形態における第2の接合層の略図的断面図である。 図10は、第1の実施例において作成したサンプルの略図的断面図である。 図11は、第2の実施例において作成したサンプルの略図的断面図である。 図12は、第5の実施例において作成したサンプルの略図的断面図である。 図13は、第6の実施例において作成したサンプルの略図的断面図である。 図14は、第7の実施例において作成したサンプルの略図的断面図である。 図15は、第8の実施例において作成したサンプルの略図的断面図である。 図16は、第9の実施例において作成したサンプルの略図的断面図である。 図17は、第10の変形例における固体酸化物形燃料電池用接合材の略図的斜視図である。 図18は、第11の変形例における固体酸化物形燃料電池用接合材の略図的斜視図である。 図19は、第12の変形例における固体酸化物形燃料電池用接合材の略図的斜視図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 《第1の実施形態》
 図1は、第1の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。
 図1に示す固体酸化物形燃料電池用接合材1は、固体酸化物形燃料電池に用いられる接合材である。具体的には、接合材1は、例えば、固体酸化物形燃料電池の発電セル同士を接合したり、固体酸化物形燃料電池モジュールの筐体と燃料電池とを接合したりする用途等に用いられる。
 接合材1は、ガラスセラミックス層10と、拘束層11とを有する。
 ガラスセラミックス層10は、ガラスセラミックスを含む。ガラスセラミックス層10は、ガラスセラミックスのみからなるものであってもよいし、ガラスセラミックスに加えて、例えば、非晶質のガラス等を含んでいてもよい。
 ここで、「ガラスセラミックス」とは、結晶化ガラスとセラミックスとの混合材料系である。セラミックスの具体例としては、例えば、クリストバライト、フォルステライト、コージェライト、クオーツ、石英ガラス、アルミナ、マグネシア、スピネルなどが挙げられる。
 本実施形態において、ガラスセラミックスは、シリカ、バリウム酸化物及びアルミナを含んでいる。ガラスセラミックスは、SiをSiO換算で48質量%~75質量%と、BaをBaO換算で20質量%~40質量%と、AlをAl換算で5質量%~20質量%とを含むものであることが好ましい。ガラスセラミックスは、MnをMnOに換算して2質量%~10質量%、TiをTiOに換算して0.1質量%~10質量%、FeをFeに換算して0.1質量%~10質量%を更に含んでいてもよい。ガラスセラミックスは、実質的にCr酸化物やB酸化物を含まないものであることが好ましい。この構成によれば、例えば、1100℃以下という温度で焼成可能なガラスセラミックスを得ることができる。
 ガラスセラミックス層10の厚みは、特に限定されないが、例えば、10μm~150μmであることが好ましく、20μm~50μmであることがより好ましい。
 ガラスセラミックス層10の上には、拘束層11が積層されている。本実施形態では、拘束層11と、ガラスセラミックス層10とは直接接触している。
 拘束層11は、ガラスセラミックス層10の焼成温度において面方向に収縮しないものである。すなわち、拘束層11は、拘束層11が実質的に面方向に収縮しない状態でガラスセラミックス層10を焼成させることができるような性質を有するものである。拘束層11は、例えば金属板やセラミックスからなるものであることが好ましい。
 拘束層11は、ガラスセラミックスの焼成温度では焼成しない、アルミナなどの無機材料を含むことが好ましい。この場合、拘束層11が実質的に収縮しない状態でガラスセラミックス層10を焼成させることができる。また、拘束層11は、ガラスを含むことが好ましい。この場合、接合材1を焼成した際に拘束層11とガラスセラミックス層10が焼成されてなる層との接合強度を高めることができる。なお、無機材料の中心粒径は、5μm以下であることが好ましい。無機材料の中心粒径が5μmより大きいと、ガラスセラミックス層の焼成時の面方向への収縮を抑制する効果が低減される。
 拘束層11において、アルミナとガラスとの総体積に対し、ガラスの体積が10~70%であることが好ましい。拘束層11におけるアルミナとガラスとの総体積に対するガラスの体積が10%を下回ると、拘束層におけるガラス量が不足して、これらを緻密化することができない場合がある。一方、拘束層11におけるアルミナとガラスとの総体積に対するガラスの体積が70%を上回ると、ガラスセラミックス層の焼成時の面方向への収縮抑制効果が弱くなる場合がある。
 なお、拘束層11に含まれるガラスは、非晶質ガラスであってもよいし、焼成時に少なくとも一部が結晶化する結晶性ガラスであってもよい。
 また、拘束層11は、ガラスセラミックスをさらに含むことが好ましい。この場合、拘束層とガラスセラミックス層や被接合体との接合強度がより高くなる。
 拘束層11の厚みは、0.5μm~50μmであることが好ましく、1μm~10μmであることがより好ましい。拘束層11の厚みが0.5μm未満であると、面方向への収縮抑制効果が低減してしまう場合がある。一方、拘束層11の厚みが50μmを超えると、固体酸化物形燃料電池の低背化が困難になる場合がある。また、拘束層11の厚みは、ガラスセラミックス層10の厚みの0.05倍~0.25倍であることが好ましい。
 ところで、接合材を、ガラスセラミックス層のみにより構成することも考えられる。この場合であっても、優れた接合性を実現することができる。
 しかしながら、ガラスセラミックス層のみからなる接合材は、焼成時に面方向にも収縮する。このため、被接合材や、ガラスセラミックス層が焼成されてなる接合層に大きな応力が生じる。よって、被接合材が反ったり、被接合材や接合層にクラック等が発生したりする場合がある。また、接合材が被接合材から剥離しやすい。すなわち、十分な接合強度が得難い。
 それに対して本実施形態では、ガラスセラミックス層10と拘束層11が積層されている。この拘束層11により、ガラスセラミックス層10の焼成時の面方向への収縮が抑制され、主として厚み方向に収縮する。よって、本実施形態の接合材1を用いた場合は、接合材1の焼成時においても、それほど面方向に収縮しない。従って、被接合材や接合層に応力が加わることを抑制することができる。その結果、被接合材の反りや、被接合材及び接合層にクラックが発生することを抑制することができる。また、被接合材同士を高い接合強度で接合することができる。つまり、本実施形態の接合材1は、優れた接合性を有しており、且つ焼成時における収縮が小さいものである。
 なお、拘束層のみにより接合材を構成した場合は、接合性が低くなり、接合材としての機能が十分に得られなくなる。
 接合材1の焼成時における面方向への収縮をより効果的に抑制する観点からは、拘束層11は、ガラスセラミックス層10の焼成温度において実質的に焼成しないものであることが好ましい。この観点からは、拘束層11は、アルミナを含んでいることが好ましく、アルミナを30体積%以上含んでいることが好ましい。但し、拘束層11におけるアルミナの含有率が高くなりすぎると、拘束層内がガラスセラミックスで緻密化されず、接合材の強度が低下する場合がある。このため、拘束層11におけるアルミナの含有率は、90質量%以下であることが好ましい。
 以下、本発明を実施した好ましい形態の他の例について説明する。以下の説明において、第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 《第2~第5の実施形態》
 図2は、第2の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。図3は、第3の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。図4は、第4の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。図5は、第5の実施形態に係る固体酸化物形燃料電池用接合材の略図的断面図である。
 第1の実施形態では、1層のガラスセラミックス層10と、1層の拘束層11との積層体により接合材1が構成されている例について説明した。但し、本発明は、この構成に限定されない。
 例えば図2~図5に示すように、ガラスセラミックス層10と拘束層11とのうちの少なくとも一方が複数設けられていてもよい。
 図2に示す例では、拘束層11の一の主面に第1のガラスセラミックス層10aが設けられており、他の主面に第2のガラスセラミックス層10bが設けられている。よって、接合材の両表面が、ガラスセラミックス層により構成されている。従って、接合材の一の主面に接合される被接合材と接合材との接合強度と、接合材の他の主面に接合される被接合材と接合材との接合強度との両方をより高めることができる。
 図3に示す例では、ガラスセラミックス層10の両側に拘束層11a、11bが設けられている。すなわち、ガラスセラミックス層10が拘束層11a、11bにより狭持されている。従って、ガラスセラミックス層10の焼成時における面方向の収縮をより効果的に抑制することができる。
 図4に示す例では、3つのガラスセラミックス層10a~10cの間に2つの拘束層11a、11bが配されている。このため、接合材の両表面が、ガラスセラミックス層により構成されている。従って、接合材の一の主面に接合される被接合材と接合材との接合強度と、接合材の他の主面に接合される被接合材と接合材との接合強度との両方をより高めることができる。また、ガラスセラミックス層の数に対する拘束層の数が、図2に示す接合材よりも多いため、ガラスセラミックス層10a~10cの焼成時における収縮をより面方向の効果的に抑制することができる。
 図5に示す例では、2つのガラスセラミックス層10a、10bと、2つの拘束層11a、11bとが交互に積層されている。この接合材であっても、第1の実施形態に係る接合材1と同様の効果が奏される。また、接合材の厚みを調整することも可能である
 《第6の実施形態》
 図6は、第6の実施形態に係る固体酸化物形燃料電池モジュールの模式的側面図である。
 図6に示すように、固体酸化物形燃料電池モジュール(ホットモジュールとも言う。)3は、筐体3aを備えている。筐体3aの内部には、固体酸化物形燃料電池2が配置されている。
 燃料電池2は、複数の発電セル20を有する。具体的には、燃料電池2は、2つの発電セル20を有する。
 図7は、第6の実施形態における発電セルの略図的分解斜視図である。図7に示すように、発電セル20は、第1のセパレータ40と、発電要素46と、第2のセパレータ50とを有する。発電セル20では、第1のセパレータ40と、発電要素46と、第2のセパレータ50とがこの順番で積層されている。
 (発電要素46)
 発電要素46は、酸化剤ガス用マニホールド44から供給される酸化剤ガスと、燃料ガス用マニホールド45から供給される燃料ガスとが反応し、発電が行われる部分である。酸化剤ガスは、例えば、空気や酸素を含む有酸素ガスにより構成することができる。また、燃料ガスは、水素ガス、都市ガス、液化石油ガスや気化灯油などの炭化水素ガス等を含むガスとすることができる。
 (固体酸化物電解質層47)
 発電要素46は、固体酸化物電解質層47を備えている。固体酸化物電解質層47は、イオン導電性が高いものであることが好ましい。固体酸化物電解質層47は、例えば、安定化ジルコニアや、部分安定化ジルコニアなどにより形成することができる。安定化ジルコニアの具体例としては、10mol%イットリア安定化ジルコニア(10YSZ)、11mol%スカンジア安定化ジルコニア(11ScSZ)等が挙げられる。部分安定化ジルコニアの具体例としては、3mol%イットリア部分安定化ジルコニア(3YSZ)、等が挙げられる。また、固体酸化物電解質層47は、例えば、SmやGd等がドープされたセリア系酸化物や、LaGaOを母体とし、LaとGaとの一部をそれぞれSr及びMgで置換したLa0.8Sr0.2Ga0.8Mg0.2(3-δ)などのペロブスカイト型酸化物などにより形成することもできる。
 固体酸化物電解質層47は、空気極層48と燃料極層49とにより挟持されている。すなわち、固体酸化物電解質層47の一主面の上に空気極層48が形成されており、他主面の上に燃料極層49が形成されている。
 (空気極層48)
 空気極層48は、空気極48aを有する。空気極48aは、カソードである。空気極48aにおいては、酸素が電子を取り込んで、酸素イオンが形成される。空気極48aは、多孔質で、電子伝導性が高く、かつ、高温において固体酸化物電解質層47等と固体間反応を起こしにくいものであることが好ましい。空気極48aは、例えば、スカンジア安定化ジルコニア(ScSZ)、Snをドープした酸化インジウム、PrCoO系酸化物、LaCoO系酸化物、LaMnO系酸化物などにより形成することができる。LaMnO系酸化物の具体例としては、例えば、La0.8Sr0.2MnO(通称:LSM)、La0.8Sr0.2Co0.2Fe0.8(通称:LSCF)や、La0.6Ca0.4MnO(通称:LCM)等が挙げられる。空気極48aは、上記材料の2種以上を混合した混合材料により構成されていてもよい。
 (燃料極層49)
 燃料極層49は、燃料極49aを有する。燃料極49aは、アノードである。燃料極49aにおいては、酸素イオンと燃料ガスとが反応して電子を放出する。燃料極49aは、多孔質で、電子伝導性が高く、かつ、高温において固体酸化物電解質層47等と固体間反応を起こしにくいものであることが好ましい。燃料極49aは、例えば、NiO、イットリア安定化ジルコニア(YSZ)・ニッケル金属の多孔質サーメットや、スカンジア安定化ジルコニア(ScSZ)・ニッケル金属の多孔質サーメット等により構成することができる。燃料極層49は、上記材料の2種以上を混合した混合材料により構成されていてもよい。
 (第1のセパレータ40)
 発電要素46の空気極層48の上には、第1のセパレータ本体41と、第1の流路形成部材42とにより構成されている第1のセパレータ40が配置されている。第1のセパレータ40には、空気極48aに酸化剤ガスを供給するための酸化剤ガス流路43が形成されている。この酸化剤ガス流路43は、酸化剤ガス用マニホールド44からx方向のx1側からx2側に向かって延びている。
 第1のセパレータ40の構成材料は、特に限定されない。第1のセパレータ40は、例えば、イットリア安定化ジルコニアなどの安定化ジルコニアや、部分安定化ジルコニア等により形成することができる。
 (第2のセパレータ50)
 発電要素46の燃料極層49の上には、第2のセパレータ本体51と、第2の流路形成部材52とにより構成されている第2のセパレータ50が配置されている。第2のセパレータ50には、燃料極49aに燃料ガスを供給するための燃料ガス流路53が形成されている。この燃料ガス流路53は、燃料ガス用マニホールド45からy方向のy1側からy2側に向かって延びている。
 第2のセパレータ50の構成材料は、特に限定されない。第2のセパレータ50は、例えば、安定化ジルコニアや、部分安定化ジルコニア等により形成することができる。
 本実施形態では、2つの発電セル20は、第1の実施形態において説明した接合材1を用いて接合されている。具体的には、接合材1が焼成されてなる第1の接合層21aによって接合されている。
 図8は、第6の実施形態における第1の接合層の略図的断面図である。図8に示すように、第1の接合層21aは、ガラスセラミックス層10が焼成されてなる焼成層22と、拘束層11との積層体により構成されている。
 図6に示すように、燃料電池2は、筐体3aに接合されている。なお、熱を均等に伝熱するために、均熱板と燃料電池2とを接合した後、筐体3aに設置してもよい。燃料電池2と筐体3aとは、第2の接合層21bによって接合されている。
 図9は、第6の実施形態における第2の接合層の略図的断面図である。図9に示すように、第2の接合層21bも、第1の接合層21aと同様に、ガラスセラミックス層10が焼成されてなる焼成層22と、拘束層11との積層体により構成されている。
 以上説明したように、本実施形態では、隣り合う発電セル20が、接合材1が焼成されてなる第1の接合層21aによって接合されている。また、燃料電池2と筐体3aとは、接合材1が焼成されてなる第2の接合層21bによって接合されている。このため、発電セル20の反りや、発電セル20にクラックが生じることを抑制することができる。
 なお、本実施形態では、接合層21a、21bが、接合材1が焼成されたものである例について説明した。但し、本発明は、この構成に限定されない。接合層は、例えば、第2~第5の実施形態に係る接合材が焼成されたものであってもよい。
 図17に示されるように、固体酸化物形燃料電池用接合材は、平面視U字状に設けられていてもよい。図18に示されるように、固体酸化物形燃料電池用接合材は、平面視L字状に設けられていてもよい。図19に示されるように、固体酸化物形燃料電池用接合材は、環状に設けられていてもよい。
 (実施例1)
 実施例1では、図10に示すサンプル31を作製した。まず、下記の表1に示す組成Aを有するガラスセラミックスに対して、バインダとしてポリビニルブチラールと可塑剤としてジ―n-ブチルフタレートと、溶剤としてトルエンおよびイソプロピレンアルコールとを加えることによりスラリーを作製した。そのスラリーを用いて、ドクターブレード法によりガラスセラミックス層のセラミックスグリーンシートを作製した。そのガラスセラミックス層のセラミックスグリーンシートを積層することにより得た積層体を50℃の温度で500kgf/cmの圧力でプレスし、ガラスセラミックス31aを得た。そのガラスセラミックス層31aをジルコニアを主成分とする基板30a、30bの間に介在させることにより、サンプル31を得た。すなわち、サンプル31では、ガラスセラミックス層31aのみにより接合材を構成した。
 (実施例2)
 ガラスセラミックスの焼成温度では焼成しない無機材料粉末として、中心粒径が0.5μmのアルミナ粉末、ガラス粉末として、中心粒径が1.3μmのホウ珪酸ガラスを用いた。アルミナ粉末とガラス粉末を6:4の体積比で混合した後、バインダとしてポリビニルブチラールと可塑剤としてジ―n-ブチルフタレートと、溶剤としてトルエンおよびイソプロピレンアルコールとを加えることによりスラリーを作製した。そのスラリーを用いて、ドクターブレード法により拘束層のセラミックスグリーンシートを作製した。この拘束層のセラミックスグリーンシートと実施例1と同様に作製したセラミックスガラス層のセラミックスグリーンシートを積層することにより得た積層体を50℃の温度で500kgf/cmの圧力でプレスし、ガラスセラミックス層31aと拘束層32aの積層体を作製した。なお、上述のホウ珪酸ガラスは、SiOが55モル%、Alが4モル%、Bが10モル%、BaOが20モル%、CaOが5.5モル%、MgOが0.5モル%、およびSrOが5モル%含まれる組成からなる。
 次に、図11に示すように、ジルコニアを主成分とする基板30a、30bの間に、上記実施例1と同様にしてガラスセラミックス層31aと拘束層32aの積層体を介在させることにより、サンプル32を得た。
 なお、本実施例ではガラスセラミックス層と拘束層を別々に作製、積層することによって接合材を作製したが、ガラスセラミックス層上で、拘束層をシート成形してもよい。
 また、ガラスセラミックス層と拘束層の積層構造は、シートの積層に限定されるものではなく、ペースト工法、印刷工法、エアロゾルデポジション等であっても同様の効果が得られる。
 (実施例3)
 ガラスセラミックス層31aの厚みと拘束層32aの厚みとを下記の表2に示す厚みにしたこと以外は、実施例2と同様にしてサンプルを作製した。
 (実施例4)
 ガラスセラミックス層31aの厚みと拘束層32aの厚みとを表2に示す厚みにしたこと以外は、実施例2と同様にしてサンプルを作製した。
 (実施例5)
 図12に示すように、ジルコニアを主成分とする基板30a、30bの間に、拘束層32aと、ガラスセラミックス層31aと、拘束層32aとがこの順番で積層された積層体を介在させることにより、サンプル33を作製した。
 (実施例6)
 図13に示すように、ジルコニアを主成分とする基板30a、30bの間に、ガラスセラミックス層31aと、拘束層32aと、ガラスセラミックス層31aとがこの順番で積層された積層体を介在させることにより、サンプル34を作製した。
 (実施例7)
 図14に示すように、ジルコニアを主成分とする基板30a、30bの間に、拘束層32aと、ガラスセラミックス層31aと、拘束層32aと、ガラスセラミックス層31aとがこの順番で積層された積層体を介在させることにより、サンプル35を作製した。
 (実施例8)
 図15に示すように、ジルコニアを主成分とする基板30a、30bの間に、拘束層32aと、ガラスセラミックス層31aと、拘束層32aと、ガラスセラミックス層31aと、拘束層32aとがこの順番で積層された積層体を介在させることにより、サンプル36を作製した。
 (実施例9)
 図16に示すように、ジルコニアを主成分とする基板30a、30bの間に、ガラスセラミックス層31aと、拘束層32aと、ガラスセラミックス層31aと、拘束層32aと、ガラスセラミックス層31aとがこの順番で積層された積層体を介在させることにより、サンプル37を作製した。
 (実施例10)
 ガラスセラミックスを下記の表1に示す組成Bとしたこと以外は、実施例2と同様にしてサンプルを作製した。
 (実施例11)
 ガラスセラミックスを下記の表1に示す組成Cとしたこと以外は、実施例2と同様にしてサンプルを作製した。
 (実施例12)
 ガラスセラミックスを下記の表1に示す組成Dとしたこと以外は、実施例2と同様にしてサンプルを作製した。
 (実施例13)
 ガラスセラミックスを下記の表1に示す組成Eとしたこと以外は、実施例2と同様にしてサンプルを作製した。
 (実施例14)
 ガラスセラミックスを下記の表1に示す組成Fとしたこと以外は、実施例2と同様にしてサンプルを作製した。
 (実施例15)
 ガラスセラミックスを下記の表1に示す組成Gとしたこと以外は、実施例2と同様にしてサンプルを作製した。
 (実施例16)
 ガラスセラミックスを下記の表1に示す組成Hとしたこと以外は、実施例2と同様にしてサンプルを作製した。
 (実施例17)
 ガラスセラミックスを下記の表1に示す組成Iとしたこと以外は、実施例2と同様にしてサンプルを作製した。
 (実施例18)
 ガラスセラミックスを下記の表1に示す組成Jとしたこと以外は、実施例2と同様にしてサンプルを作製した。
 (評価)
 実施例1~18のそれぞれにおいて作製したサンプルを、1000℃で1時間焼成した。その後、接合材と基板との接合部を顕微鏡で観察した。その結果、実施例1では多数のクラックが確認された。実施例2~18では、クラックは観察されなかった。
 (実施例19)
 下記に示す条件で、上記第6の実施形態に係る発電セルと実質的に同様の構成を有する発電セルを下記に示す構成部材を一体焼成することにより作製した。
 セパレータの構成材料:3YSZ(添加量3モル%のYで安定化されたZrO
 固体酸化物電解質層の構成材料:ScSZ(添加量10モル%のSc、1モル%のCeO安定化されたZrO
 空気極の構成材料:La0.8Sr0.2MnO粉末60質量%と、ScSZ40質量%との混合物に対してカーボン粉末を30質量%添加したもの
 燃料極の構成材料:NiO 65質量%と、ScSZ 35質量%との混合物に対してカーボン粉末を30質量%添加したもの
 燃料極側のインターコネクタの中間膜よりも燃料極側の部分の構成材料:NiO 70質量%と、TiO 30質量%との混合物
 インターコネクタの中間膜よりも燃料極とは反対側の部分の構成材料:Pdの含有量が30質量%であるPd-Ag合金
 ビアホールの直径:0.2mm
 中間膜の厚み:30μm
 燃料極の厚み:30μm
 空気極の厚み:30μm
 固体酸化物電解質層の厚み:30μm
 線条凸部の高さ:240μm
 セパレータ本体の厚み:360μm
 焼成前のプレス条件:1000kgf/cm
 焼成温度:1150℃
 上記の条件で作製した発電セルを2つ用意し、2つの発電セルの間に実施例1で作製した接合材および導電性ペーストを介在させ1kg重の荷重をかけながら1000℃で1時間焼成し燃料電池を作製した。燃料電池の燃料ガス供給用マニホールドと酸化剤ガス供給用マニホールドにそれぞれ室温でNガスを流した。マニホールド内の圧力が10kPaのときのガスリークの有無を市販の界面活性剤からなるリークチェッカーを用いて固体酸化物形燃料電池用接合材のシール性を評価した。その結果、ガスリークはみられなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1…固体酸化物形燃料電池用接合材
2…固体酸化物形燃料電池
3a…筐体
10、10a~10c…ガラスセラミックス層
11、11a、11b…拘束層
20…発電セル
21a…第1の接合層
21b…第2の接合層
22…焼成層
40…第1のセパレータ
41…第1のセパレータ本体
42…第1の流路形成部材
43…酸化剤ガス流路
44…酸化剤ガス用マニホールド
45…燃料ガス用マニホールド
46…発電要素
47…固体酸化物電解質層
48…空気極層
48a…空気極
49…燃料極層
49a…燃料極
50…第2のセパレータ
51…第2のセパレータ本体
52…第2の流路形成部材
53…燃料ガス流路

Claims (15)

  1.  ガラスセラミックスを含むガラスセラミックス層と、
     前記ガラスセラミックス層に積層されている拘束層と、
    を備える固体酸化物形燃料電池用接合材。
  2.  前記拘束層は、前記ガラスセラミックス層の焼成温度において焼成しない、請求項1に記載の固体酸化物形燃料電池用接合材。
  3.  前記拘束層は、アルミナを含む、請求項2に記載の固体酸化物形燃料電池用接合材。
  4.  前記拘束層は、ガラスをさらに含む、請求項3に記載の固体酸化物形燃料電池用接合材。
  5.  前記拘束層における前記アルミナの含有率は、30体積%~90体積%である、請求項3または4に記載の固体酸化物形燃料電池用接合材。
  6.  前記拘束層は、金属板である、請求項1に記載の固体酸化物形燃料電池用接合材。
  7.  前記ガラスセラミックスは、シリカ、バリウム酸化物及びアルミナを含む、請求項1~6のいずれか一項に記載の固体酸化物形燃料電池用接合材。
  8.  前記ガラスセラミックスは、SiをSiO換算で48質量%~75質量%と、BaをBaO換算で20質量%~40質量%と、AlをAl換算で5質量%~20質量%とを含む、請求項7に記載の固体酸化物形燃料電池用接合材。
  9.  前記ガラスセラミックス層の厚みは、10μm~150μmであり、前記拘束層の厚みは、0.5μm~50μmである、請求項1~8のいずれか一項に記載の固体酸化物形燃料電池用接合材。
  10.  前記ガラスセラミックス層は、前記拘束層の一の主面の上に設けられた第1のガラスセラミックス層と、前記拘束層の他の主面の上に設けられた第2のガラスセラミックス層とを含む、請求項1~9のいずれか一項に記載の固体酸化物形燃料電池用接合材。
  11.  請求項1~10のいずれか一項に記載の固体酸化物形燃料電池用接合材が焼成されてなる接合層を備える固体酸化物形燃料電池。
  12.  固体酸化物電解質層と、前記固体酸化物電解質層の一の主面の上に配された空気極と、前記固体酸化物電解質層の他の主面の上に配された燃料極とを有する複数の発電セルをさらに備え、
     隣り合う前記発電セルが前記接合層により接合されている、請求項11に記載の固体酸化物形燃料電池。
  13.  請求項1~10のいずれか一項に記載の固体酸化物形燃料電池用接合材が焼成されてなる接合層を備える固体酸化物形燃料電池モジュール。
  14.  固体酸化物電解質層と、前記固体酸化物電解質層の一の主面の上に配された空気極と、前記固体酸化物電解質層の他の主面の上に配された燃料極とを有する複数の発電セルを有し、隣り合う前記発電セルが前記接合層により接合されている燃料電池をさらに備える、請求項13に記載の固体酸化物形燃料電池モジュール。
  15.  筐体と、
     前記筐体内に配置された燃料電池と、
    をさらに備え、
     前記燃料電池と前記筐体とが前記接合層により接合されている、請求項13または14に記載の固体酸化物形燃料電池モジュール。
PCT/JP2012/057285 2011-03-24 2012-03-22 固体酸化物形燃料電池用接合材、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュール WO2012128307A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013505998A JP5686182B2 (ja) 2011-03-24 2012-03-22 固体酸化物形燃料電池用接合材、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュール
CN2012800146074A CN103443978A (zh) 2011-03-24 2012-03-22 固体氧化物燃料电池用接合材料、固体氧化物燃料电池以及固体氧化物燃料电池模块
US14/030,487 US20140017587A1 (en) 2011-03-24 2013-09-18 Solid oxide fuel cell bonding material, solid oxide fuel cell, and solid oxide fuel cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011065708 2011-03-24
JP2011-065708 2011-03-24

Publications (1)

Publication Number Publication Date
WO2012128307A1 true WO2012128307A1 (ja) 2012-09-27

Family

ID=46879448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057285 WO2012128307A1 (ja) 2011-03-24 2012-03-22 固体酸化物形燃料電池用接合材、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュール

Country Status (4)

Country Link
US (1) US20140017587A1 (ja)
JP (1) JP5686182B2 (ja)
CN (1) CN103443978A (ja)
WO (1) WO2012128307A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045986A1 (ja) * 2013-09-24 2015-04-02 株式会社村田製作所 固体酸化物形燃料電池スタック及びその製造方法
US20170162879A1 (en) * 2014-08-27 2017-06-08 Murata Manufacturing Co., Ltd. Fuel cell unit
TWI708747B (zh) * 2019-10-28 2020-11-01 行政院原子能委員會核能研究所 玻璃陶瓷密封薄帶製作與應用方法
US11860038B2 (en) 2017-02-10 2024-01-02 Google Llc Method, apparatus and system for passive infrared sensor framework

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460475B (zh) * 2011-03-25 2016-05-18 株式会社村田制作所 燃料电池
DE102014210262A1 (de) * 2014-05-28 2015-12-03 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzellengehäuse
CN104211303A (zh) * 2014-08-25 2014-12-17 浙江大学 良好光学透过性的含大尺寸微晶相的微晶玻璃及制备方法
CN104505527B (zh) * 2014-11-14 2016-08-17 华中科技大学 一种中温平板式固体氧化物燃料电池堆密封物及其制备方法
JP6766515B2 (ja) * 2016-08-09 2020-10-14 株式会社村田製作所 セラミック電子部品および誘電体磁器組成物
US11626595B2 (en) * 2020-02-11 2023-04-11 Phillips 66 Company Solid oxide fuel cell cathode materials
CN116218298B (zh) * 2022-12-29 2024-05-07 上海交通大学 固体氧化物燃料电池堆的密封涂层和密封方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231784A (ja) * 1992-09-01 1994-08-19 Fuji Electric Co Ltd 固体電解質型燃料電池
JP2002037641A (ja) * 2000-05-16 2002-02-06 Nippon Electric Glass Co Ltd 半導体封入用ガラス、半導体封入用外套管及び半導体素子の封入方法
JP2002141083A (ja) * 2000-10-31 2002-05-17 Mitsubishi Materials Corp 固体酸化物型燃料電池
JP2004506308A (ja) * 2000-08-18 2004-02-26 グローバル サーモエレクトリック インコーポレイテッド 高温ガスシール
JP2005518643A (ja) * 2002-02-20 2005-06-23 イオン アメリカ コーポレーション 固体酸化物燃料電池およびシステム
JP2008513346A (ja) * 2004-09-22 2008-05-01 バッテル メモリアル インスティチュート 固体酸化物燃料電池および他の高温用途のための高強度絶縁接合部ならびにその製造方法
JP2009170342A (ja) * 2008-01-18 2009-07-30 Honda Motor Co Ltd 燃料電池
JP2010511996A (ja) * 2006-12-05 2010-04-15 コーニング インコーポレイテッド 固体酸化物燃料電池シールの破損の解決方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300275C (zh) * 2004-09-06 2007-02-14 中国科学技术大学 中温固体氧化物燃料电池的密封剂
JP5128203B2 (ja) * 2007-08-22 2013-01-23 日本山村硝子株式会社 封着用ガラス組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231784A (ja) * 1992-09-01 1994-08-19 Fuji Electric Co Ltd 固体電解質型燃料電池
JP2002037641A (ja) * 2000-05-16 2002-02-06 Nippon Electric Glass Co Ltd 半導体封入用ガラス、半導体封入用外套管及び半導体素子の封入方法
JP2004506308A (ja) * 2000-08-18 2004-02-26 グローバル サーモエレクトリック インコーポレイテッド 高温ガスシール
JP2002141083A (ja) * 2000-10-31 2002-05-17 Mitsubishi Materials Corp 固体酸化物型燃料電池
JP2005518643A (ja) * 2002-02-20 2005-06-23 イオン アメリカ コーポレーション 固体酸化物燃料電池およびシステム
JP2008513346A (ja) * 2004-09-22 2008-05-01 バッテル メモリアル インスティチュート 固体酸化物燃料電池および他の高温用途のための高強度絶縁接合部ならびにその製造方法
JP2010511996A (ja) * 2006-12-05 2010-04-15 コーニング インコーポレイテッド 固体酸化物燃料電池シールの破損の解決方法
JP2009170342A (ja) * 2008-01-18 2009-07-30 Honda Motor Co Ltd 燃料電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045986A1 (ja) * 2013-09-24 2015-04-02 株式会社村田製作所 固体酸化物形燃料電池スタック及びその製造方法
JPWO2015045986A1 (ja) * 2013-09-24 2017-03-09 株式会社村田製作所 固体酸化物形燃料電池スタック及びその製造方法
US20170162879A1 (en) * 2014-08-27 2017-06-08 Murata Manufacturing Co., Ltd. Fuel cell unit
US10497944B2 (en) * 2014-08-27 2019-12-03 Murata Manufacturing Co., Ltd. Fuel cell unit
US11860038B2 (en) 2017-02-10 2024-01-02 Google Llc Method, apparatus and system for passive infrared sensor framework
TWI708747B (zh) * 2019-10-28 2020-11-01 行政院原子能委員會核能研究所 玻璃陶瓷密封薄帶製作與應用方法

Also Published As

Publication number Publication date
CN103443978A (zh) 2013-12-11
JPWO2012128307A1 (ja) 2014-07-24
US20140017587A1 (en) 2014-01-16
JP5686182B2 (ja) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5686182B2 (ja) 固体酸化物形燃料電池用接合材、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュール
JP5679060B2 (ja) 固体酸化物形燃料電池用電気的接続材、固体酸化物形燃料電池、固体酸化物形燃料電池モジュール及び固体酸化物形燃料電池の製造方法
JP2019185883A (ja) 燃料電池
JP5686190B2 (ja) 固体酸化物形燃料電池用接合材、固体酸化物形燃料電池の製造方法、固体酸化物形燃料電池モジュールの製造方法、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュール
KR101842319B1 (ko) 고체 산화물 연료 전지 및 이의 제조방법
JP5209342B2 (ja) 固体酸化物形燃料電池及びその製造方法
WO2018198352A1 (ja) 固体酸化物電気化学セル及びその製造方法
US9722259B2 (en) Ceramic substrate for electrochemical element, manufacturing method therefore, fuel cell, and fuel cell stack
JP5122777B2 (ja) 固体電解質形燃料電池及びその製造方法
KR101154506B1 (ko) 고체산화물 연료전지용 단위전지 및 이의 제조방법
JP4984802B2 (ja) 固体電解質形燃料電池用セパレータ
JP2008117702A (ja) コネクタ及び固体酸化物形燃料電池
WO2015046331A1 (ja) 燃料電池用アノードおよび燃料電池単セル
JP7330689B2 (ja) 燃料電池および燃料電池スタック
WO2012133087A1 (ja) 固体酸化物形燃料電池用接合材、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュール
WO2012133086A1 (ja) 固体酸化物形燃料電池用接合材、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュール
JP5074004B2 (ja) 固体酸化物形燃料電池及びその製造方法
KR102123721B1 (ko) 애노드, 전극 구조체, 이를 포함하는 연료 전지 및 이의 제조방법
JP2010129267A (ja) 固体酸化物形燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
KR20090029381A (ko) 고체산화물 연료전지용 밀봉재 및 이를 이용한 가스켓 제조 방법
WO2012133044A1 (ja) 燃料電池
JPH0982336A (ja) 中空平板状電極基板およびその製造方法
KR101940712B1 (ko) 고체 산화물 연료 전지 및 이의 제조방법
JP2013077395A (ja) アノード基板、固体酸化物形燃料電池及びアノード基板の製造方法
WO2015037619A1 (ja) 燃料電池単セルおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760862

Country of ref document: EP

Kind code of ref document: A1