WO2012128259A1 - 炉頂燃焼式熱風炉 - Google Patents

炉頂燃焼式熱風炉 Download PDF

Info

Publication number
WO2012128259A1
WO2012128259A1 PCT/JP2012/057051 JP2012057051W WO2012128259A1 WO 2012128259 A1 WO2012128259 A1 WO 2012128259A1 JP 2012057051 W JP2012057051 W JP 2012057051W WO 2012128259 A1 WO2012128259 A1 WO 2012128259A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
burner
gas
air
flow
Prior art date
Application number
PCT/JP2012/057051
Other languages
English (en)
French (fr)
Inventor
典正 前川
航哉 井上
弘志 嶋津
俊治 古谷
直樹 国重
伸浩 大下
Original Assignee
新日鉄エンジニアリング株式会社
日鐵プラント設計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP12760409.8A priority Critical patent/EP2653567B1/en
Application filed by 新日鉄エンジニアリング株式会社, 日鐵プラント設計株式会社 filed Critical 新日鉄エンジニアリング株式会社
Priority to RU2013138451/02A priority patent/RU2539492C1/ru
Priority to ES12760409.8T priority patent/ES2561535T3/es
Priority to CA2820831A priority patent/CA2820831C/en
Priority to KR1020137017089A priority patent/KR101302760B1/ko
Priority to AU2012232150A priority patent/AU2012232150B2/en
Priority to PL12760409T priority patent/PL2653567T3/pl
Priority to UAA201312422A priority patent/UA107163C2/ru
Priority to CN201280012288.3A priority patent/CN103429761B/zh
Priority to US14/005,616 priority patent/US9017068B2/en
Priority to BR112013023987A priority patent/BR112013023987B8/pt
Publication of WO2012128259A1 publication Critical patent/WO2012128259A1/ja
Priority to ZA2013/04468A priority patent/ZA201304468B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/14Preheating the combustion air
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/10Other details, e.g. blast mains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • F23D14/24Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0083Chamber type furnaces with means for circulating the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/21Burners specially adapted for a particular use
    • F23D2900/21001Burners specially adapted for a particular use for use in blast furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B2017/0091Series of chambers, e.g. associated in their use

Definitions

  • the present invention relates to a furnace top combustion type hot air furnace characterized by a burner system.
  • Patent Document 1 discloses a furnace top combustion type hot stove in which a combustion chamber that leads to a burner is provided above the heat storage chamber as a regenerative hot stove that can reduce the equipment cost as compared with the hot stove.
  • a conventional furnace top combustion type hot stove F has a combustion chamber N disposed above a heat storage chamber T, and is supplied from a burner B to the combustion chamber N during so-called combustion (direction X1). ) A mixed gas of fuel gas and combustion air is ignited in the process of passing through the burner duct BD, and burns to become a high-temperature combustion gas and flows into the combustion chamber N.
  • FIG. 8 which is a view taken along arrow VIII-VIII in FIG. 7, the burner duct BD is provided at a plurality of locations (four locations in FIG. 8) when viewed in plan with respect to the combustion chamber N.
  • the combustion gas swirls down in the combustion chamber (X4 direction) and flows downward, and in the process of the combustion gas flowing down the heat storage chamber T (X2 direction), the heat is stored in the heat storage chamber T and passes through the heat storage chamber T.
  • the combustion gas is exhausted through the flue E.
  • the burner B and the burner duct BD are collectively referred to as a burner system in this specification.
  • each of the burner ducts BD leads to the combustion chamber N at an eccentric position where the inflow direction of the combustion gas into the combustion chamber N does not pass through the center O of the combustion chamber N that is circular in plan view.
  • each burner duct BD The combustion gas that has flowed into the combustion chamber N from other adjacent burner ducts BD interferes with the combustion gas that has flowed into the combustion chamber N, and the flow direction of each combustion gas is changed.
  • a gas swirl flow (flow in the X4 direction) is formed.
  • the entire heat storage chamber T is used. It can be a hot air furnace with high hot air generation capability.
  • the shutoff valve V in the burner duct BD is closed and the supply of the fuel gas and the combustion air in the burner system is stopped.
  • air of about 150 ° C. is supplied to the heat storage chamber T, and in the process of the air rising in the heat storage chamber T, for example, hot air of about 1200 ° C. is supplied, and this hot air is supplied to the blast furnace through the hot air tube H. (X3 direction).
  • the burner duct is cooled and cooled.
  • the burner duct communicating with the combustion chamber is heated.
  • the burner duct is repeatedly subjected to cooling during combustion and heating during air blowing alternately, and the refractory material (ceramics such as bricks) that protects the inner wall of the burner duct is easily damaged due to repeated cooling and heating. There is a problem that the life is limited.
  • a burner B having a concentric triple tube structure as shown in FIGS.
  • the burner B distributes combustion air A1 in the central pipeline Ba, fuel gas G in the central pipeline Bb on the outer periphery, and additional combustion air A2 in the outermost pipeline Bc on the outer periphery ( X1 direction), and the swirling flow of combustion air A1, A2 and fuel gas G in the Y1, Y2, and Y3 directions by the swirling blades Ra, Rb, Rc fixed to the pipelines Ba, Bb, Bc, respectively.
  • the mixed gas MG is generated by mixing these swirling flows in the burner duct BD.
  • Patent Document 2 discloses a combustion burner having a structure in which swirling blades are provided on the outermost pipe of a multiple pipe.
  • the mixed gas MG is ignited and burned in the process of circulating while turning in the burner duct BD, and the combustion gas after combustion flows into the combustion chamber N while turning as before combustion.
  • the combustion gases interfere with each other, leading to the formation of a large swirl flow. Therefore, in order to sufficiently mix the fuel gas and the combustion air to form a mixed gas, a large swirling flow of the mixed gas as shown in FIG. 9a, and consequently a swirling flow of the combustion gas after the combustion, is introduced into the burner duct BD.
  • a mixed gas in which fuel gas and combustion air are sufficiently mixed is generated in the burner system, and a sufficient straight component is provided in the combustion gas formed by burning the mixed gas in the burner duct.
  • the inner wall of the burner duct is supplied by repeated cooling and heating that is received by the refractory on the inner wall of the burner duct.
  • the present invention has been made in view of the above-described problems, and is produced by generating a mixed gas in which a fuel gas and combustion air are sufficiently mixed in a burner system, and by burning the mixed gas in a burner duct.
  • a mixed gas in which a fuel gas and combustion air are sufficiently mixed in a burner system, and by burning the mixed gas in a burner duct.
  • the combustion gas with a sufficient straight component to flow into the combustion chamber, form a large swirl flow in the combustion chamber to supply the high-temperature combustion gas to the entire heat storage chamber, and further, an area on the combustion chamber side of the burner duct
  • a furnace top combustion type hot stove comprises a heat storage chamber having a blower tube to which hot air is supplied, a hot air tube for supplying hot air to a blast furnace, and a burner system.
  • a furnace top combustion type hot air furnace for supplying hot air generated in the process of passing to a blast furnace through a hot air pipe, wherein the burner system is composed of three or more multiple pipes having different diameters, each pipe line being A burner for flowing fuel gas or combustion air, and a burner duct communicating with the burner.
  • the burner duct communicates with the combustion chamber, and the outermost of the pipes constituting the multiple pipes.
  • Pipeline or later A swirl flow generating means is provided in the pipe line to generate a swirl flow of fuel gas or combustion air flowing inside the pipe, and a straight flow of fuel gas or combustion air flows in the outermost pipe line.
  • the swirling flow of the mixed gas is generated by the swirling flow of the fuel gas and the combustion air that has flowed into the burner duct, and the swirling flow of the mixed gas and the straight flow of the fuel gas or the combustion air are generated in the burner duct.
  • a combustion gas having a straight component and a swirl component is generated in the course of flowing through the combustion chamber, and the combustion chamber includes at least one burner system from the combustion chamber to the combustion chamber. Combustion gas is supplied in the inflow direction that does not pass through the center position.
  • the furnace top combustion type hot stove of the present invention is an improvement to the burner constituting the burner system that is a component of the burner, and among the burners comprising three or more multiple pipes having different diameters, pipes other than the outermost pipe Is provided with a swirling flow generating means to generate a swirling flow of fuel gas or combustion air, and these swirling flows can be mixed in the burner duct to generate a sufficiently mixed gas, Further, the fuel gas or combustion air is caused to flow straight through the outermost conduit of the burner without being swirled, and flows directly into the burner duct, so that the swirling flow of the mixed gas and the fuel gas or combustion air Is made to circulate through the burner duct.
  • combustion air is supplied to the central pipe, fuel gas is supplied to the central pipe, and additional combustion air is supplied to the outermost pipe.
  • the fuel gas and the combustion air are both swirled by the swirl flow generating means in the two central pipes and mixed in the burner duct.
  • this mixed gas flows in the burner duct with the separate combustion air which goes straight without turning around. That is, in the burner duct, a gas flow is formed in which a straight component due to combustion air and a swirl component due to mixed gas are mixed, and this is ignited and burned in the region near the combustion chamber side of the burner duct.
  • the gas also flows into the combustion chamber as a combustion gas having a straight component and a swirl component in the same manner as the gas flow before combustion.
  • the negative pressure region is formed in the center portion of the burner duct by the swirling component generated by the swirling flow generating means of the two pipes at the center of the combustion gas.
  • the high-temperature atmosphere in the combustion chamber is taken in here, and the taken-in high-temperature atmosphere is radiated to the inner wall of the burner duct, so that the inner wall of the burner duct that is easily cooled during combustion can be warmed. .
  • combustion gas it is possible to allow the combustion gas to have sufficient rectilinearity due to the straight component of the combustion gas and flow it into the combustion chamber, and the combustion gas that has flowed into the combustion chamber with this straight component will enter the combustion chamber from other burner systems.
  • a large swirl of the combustion gas in a plan view in the combustion chamber by interfering with the inflowing combustion gas or changing the flow direction by hitting the inner wall of the opposing combustion chamber after entering the combustion chamber As a result, a flow is easily formed, and high-temperature combustion gas can be supplied to the entire region of the heat storage chamber.
  • the top-fired hot stove of the present invention is an improvement to the burner constituting the burner system that is a component of the furnace, and the swirling flow of the mixed gas and the fuel gas or the combustion air straight advance in the burner duct.
  • the burner constituting the burner system that is a component of the furnace, and the swirling flow of the mixed gas and the fuel gas or the combustion air straight advance in the burner duct.
  • a mixed gas in which combustion air is sufficiently mixed can be generated in the burner system, and the combustion efficiency of the burner system can be increased.
  • a large swirl flow of combustion gas can be formed in the combustion chamber and supplied to the entire heat storage chamber, and a hot stove excellent in hot air generating ability can be formed.
  • the temperature difference between the combustion of the inner wall of the burner duct and the air blowing can be reduced, thereby increasing the durability of the refractory material on the inner wall of the burner duct.
  • One embodiment is to provide swirling blades in each of the pipelines other than the outermost pipeline.
  • each of the central two pipes is provided with a unique turning blade, and is composed of concentric quintuple pipes. Are provided with their own swirling blades in the central four pipelines.
  • the outermost pipe line is not provided with the swirling blades, and the fuel gas or the combustion air is caused to flow straight and flow into the burner duct.
  • the generating means is made different for each of the multiple pipes constituting the burner, and a swirling blade is provided in the center pipe having the smallest diameter, and the outermost pipe is provided.
  • the fuel gas or the combustion air is supplied to the pipes other than the road and the central pipe from a position eccentric with respect to the axis or in an inclined direction.
  • the central pipeline located at the center has the swirling blades, but as a form of the swirling flow generating means applied to other pipelines except the outermost pipeline, Adjust the supply direction of fuel gas or combustion air to the pipeline, and supply the fuel gas or combustion air from a position eccentric with respect to the pipeline axis or in an inclined direction.
  • a swirling flow (or spiral flow) can be formed around the pipeline.
  • the gas is swirled around the central pipe line by supplying gas from a position eccentric to the axis to the pipe line located in the middle. A flow is formed which will flow into the burner duct.
  • the three burner systems are arranged at intervals of 120 degrees with respect to the combustion chamber, and the central position of the combustion chamber does not pass from each burner system to the combustion chamber.
  • the combustion gas is supplied in the inflow direction
  • the four burner systems are arranged at intervals of 90 degrees with respect to the combustion chambers, and the center positions of the combustion chambers from the respective burner systems to the combustion chambers. It is desirable that the combustion gas be supplied in the inflow direction that does not pass.
  • the burner system swirls in the combustion chamber as long as it is arranged so as to supply combustion gas in an inflow direction that does not pass through the center position of the combustion chamber.
  • a flow can be generated.
  • the combustion gas that has flowed into the combustion chamber from one burner system collides with the opposing inner wall of the combustion chamber, changes its direction, and forms a swirling flow while flowing along the inner wall of the combustion chamber.
  • a swirling flow of mixed gas and a straight flow of fuel gas or combustion air are generated in the burner duct, and these are generated in the burner duct.
  • a combustion gas having a straight component and a swirl component By generating a combustion gas having a straight component and a swirl component by burning in, a mixed gas in which fuel gas and combustion air are sufficiently mixed can be generated in the burner system.
  • the combustion efficiency in the system can be increased.
  • combustion gas having a sufficiently straight component can be allowed to flow from the burner duct into the combustion chamber, so that a large swirling flow of combustion gas can be formed in the combustion chamber and supplied to the entire heat storage chamber. It becomes a furnace top combustion type hot air furnace excellent in hot air generating ability.
  • a negative pressure region is formed by the swirling component of the combustion gas in the burner duct, the high temperature atmosphere in the combustion chamber is taken in here, and the radiant heat is supplied to the inner wall of the burner duct.
  • FIG. 2 is an II-II arrow view of FIG. 1.
  • (A) and (b) are both views taken along the line III-III in FIG. 1, showing both the flow of combustion gas in the combustion chamber, and showing the form of attachment of the burner system to the combustion chamber.
  • FIGS. 3A and 3B are views taken along the line III-III in FIG. 1 and show the flow of combustion gas in the combustion chamber, as in FIGS. 3A and 3B. It is the figure which showed the attachment form of the burner system.
  • FIG. 8 is a view taken along the line VIII-VIII in FIG. 7 and shows the flow of combustion gas in the combustion chamber. It is a longitudinal cross-sectional view of one embodiment of a conventional burner system.
  • FIG. 1 is a schematic diagram showing an embodiment of a furnace top combustion type hot air furnace according to the present invention, and shows the flows of mixed gas, combustion gas, hot air and hot air. Is a view taken along the line II-II in FIG. 1, and FIGS. 3a, b, and 4a, b are both views taken along the line III-III in FIG. 1, showing the flow of combustion gas in the combustion chamber.
  • FIG. 2 is a view showing a form of mounting of a burner system to a combustion chamber.
  • FIG. 5 is a longitudinal sectional view of an embodiment of the burner system.
  • the furnace top combustion type hot stove 10 shown in FIG. 1 is configured to have a circular shape or a substantially circular shape (such as an oval shape) in plan view, and a combustion chamber 3 is disposed above the heat storage chamber 4.
  • the combustion chamber 3 is ignited in the process of passing through the burner duct 2 and the mixed gas of fuel gas and combustion air supplied from the burner 1 (X1 direction) and burns to become a high-temperature combustion gas in the combustion chamber 3. Inflow.
  • the burner system is composed of the burner 1 and the burner duct 2. Strictly speaking, in addition to the combustion gas, unburned mixed gas, fuel gas, and the like flow into the combustion chamber 3 from the burner duct 2, but in this specification, mainly in the combustion chamber 3. It explains by taking up the combustion gas which is an inflowing gas component.
  • the burner duct 2 is provided at four locations in plan view with respect to the combustion chamber 3, and each burner duct 2 is disposed at a position shifted every 90 degrees.
  • Each of 2 communicates with the combustion chamber 3 at an eccentric position where the inflow direction of the combustion gas into the combustion chamber 3 does not pass through the center O of the circular combustion chamber 3 in plan view. Therefore, the combustion gas flowing into the combustion chamber 3 from each burner duct 2 interferes with the combustion gas flowing into the combustion chamber 3 from other adjacent burner ducts 2 to change the flow direction of each combustion gas.
  • a large swirling flow (flow in the X4 direction) of the combustion gas as shown in the figure is formed in the chamber 3.
  • the burner duct 2 is attached to the combustion chamber 3 in a form in which three burner systems are arranged at intervals of 120 degrees with respect to the combustion chamber 3, as shown in FIG. 4a.
  • the form in which one burner system is attached to the combustion chamber 3 and the form in which two burner systems are attached to the combustion chamber 3 at positions shifted by 90 degrees may be used.
  • the burner duct 2 communicates with the combustion chamber 3 at an eccentric position where the inflow direction of the mixed gas into the combustion chamber 3 does not pass through the center O of the combustion chamber 3 having a circular shape in plan view.
  • the combustion gas swirls greatly in a plan view and flows down to the entire heat storage chamber 4 while forming a spiral flow descending in the X2 direction in FIG. 1 in a longitudinal section.
  • the heat is stored in the heat storage chamber 4, and the combustion gas that has passed through the heat storage chamber 4 is exhausted through the flue pipe 7 whose shut-off valve 7a is controlled to open.
  • the combustion of the mixed gas in the burner system and the operation of raising the temperature of the heat storage chamber 4 by supplying the high temperature combustion gas to the heat storage chamber 4 can be referred to as “during combustion”.
  • the burner 1 is a concentric, three-hole multi-pipe, and as shown in FIG. 5, the burner 1 is connected to the burner duct 2 in a communicating posture at its end face 1a.
  • Combustion air A1 flows through 1b
  • fuel gas G flows through the central conduit 1c
  • separate combustion air A2 flows through the outermost conduit 1d.
  • central pipe 1b and the central pipe 1c other than the outermost pipe 1d are provided with turning blades 8b and 8c fixed in the pipe, respectively.
  • the combustion air A1 and the fuel gas G generate the respective swirling flows X1 ′ (Y1 direction and Y2 direction) by the swirling blades 8b and 8c, respectively.
  • X1 ′ is mixed in the burner duct 2 to generate a swirling flow of the mixed gas MG.
  • the mixed gas MG flows in the burner duct 2 together with the separate combustion air A2 that goes straight without turning around the mixed gas MG.
  • a gas flow is generated in which a straight component due to the combustion air A 2 and a swirl component due to the mixed gas MG are mixed, and this is ignited and burned in a region near the combustion chamber side of the burner duct 2. Then, the combustion gas HG having the straight traveling component HG ′′ and the swirling component HG ′ is generated in the same manner as the gas flow before combustion, and flows into the combustion chamber 3.
  • the negative pressure region NP is formed in the region on the combustion chamber 3 side of the burner duct 2 by the swirl component HG 'of the combustion gas HG.
  • the high-temperature atmosphere in the combustion chamber 3 is taken in here (Z1 direction), and the taken-in high-temperature atmosphere is radiated to the inner wall of the burner duct 2 (Z2 direction).
  • the inner wall of the combustion chamber side region of the burner duct 2 which is sometimes easily cooled can be warmed.
  • the combustion gas HG can be made to have sufficient rectilinearity by the straight component HG "of the combustion gas HG and flow into the combustion chamber 3, and the combustion gas HG flowing into the combustion chamber 3 with this straight component is Interfering with the combustion gas flowing into the combustion chamber 3 from another burner system (in the case of FIGS. 3a and b), or after flowing into the combustion chamber 3 and hitting the inner wall of the opposing combustion chamber 3 to change the flow direction
  • a large swirl flow X4 of the combustion gas HG is easily formed in the combustion chamber 3 as viewed in a plan view. It becomes possible to supply to the area.
  • FIG. 6a shows another embodiment of the burner constituting the burner system.
  • This burner 1A is also composed of concentric triple pipes, but the center pipe 1b is provided with a swirl vane 8b, and as shown in FIG.
  • the supply direction into the pipe line is supplied from a position eccentric with respect to the pipe axis, and the fuel gas G is supplied into the central pipe line 1c from an eccentric position or in an oblique direction.
  • a swirl flow X1 ′′ (or spiral flow) can be formed around the inner central pipe line 1b.
  • shutoff valve 2a in the burner duct 2 and the flue valve 7a in the flue pipe 7 are closed and the shutoff valve 6a is controlled to open.
  • high temperature air of about 150 ° C. is supplied to the heat storage chamber 4 through the blower pipe 6, and hot air of about 1200 ° C. is generated in the process of the high temperature air rising in the heat storage chamber 4, and this hot air opens the shut-off valve 5 a.
  • generates a hot air within a hot stove and supplies this to a blast furnace can be called "at the time of ventilation.”
  • a swirl flow of the mixed gas MG and a straight flow of fuel gas or combustion air are generated in the burner duct 2, and these are burned in the burner duct 2 so as to go straight.
  • the mixed gas MG in which the fuel gas and the combustion air are sufficiently mixed can be generated in the burner system.
  • the combustion efficiency in the system can be increased, and the combustion gas HG having a sufficiently straight component can be introduced from the burner duct 2 into the combustion chamber 3, so that a large swirling flow of the combustion gas HG in the combustion chamber 3.
  • the negative pressure region NP is formed by the swirl component HG ′ of the combustion gas HG, the high temperature atmosphere in the combustion chamber 3 is taken in here, and the radiant heat is supplied to the inner wall of the burner duct.
  • the durability of the refractory disposed on the inner wall can be increased by eliminating or mitigating the repeated cooling and heating cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

 バーナーシステムの燃焼効率を高めることができ、高温の燃焼ガスを蓄熱室の全体に供給することができ、さらに、バーナーダクト内壁の耐火物が損傷し難い炉頂燃焼式熱風炉を提供する。 バーナーシステムを有する炉頂燃焼式熱風炉10であって、このバーナーシステムは、3以上の多重管路の各管路に燃料ガスもしくは燃焼用エアを流すバーナー1とバーナーダクト2から構成され、中心管路1bと中央管路1cには旋回流生成手段が設けられて燃料ガスもしくは燃焼用エアの旋回流を生じさせ、最外管路1dには燃料ガスもしくは燃焼用エアの直進流が流れるようになっており、バーナーダクト2内には直進成分HG"と旋回成分HG'を備えた燃焼ガスHGが生成される。燃焼室3には、少なくとも1以上のバーナーシステムから燃焼室3に対して該燃焼室3の中心位置を通らない流入方向に燃焼ガスHGが供給される。

Description

炉頂燃焼式熱風炉
 本発明は、バーナーシステムに特徴を有する炉頂燃焼式熱風炉に関するものである。
 熱を蓄えた蓄熱室にエアを流通させて熱風を生じさせ、これを高炉へ供給する蓄熱式熱風炉には、円筒外皮内に燃焼室と蓄熱室を併設させた内燃式熱風炉や、燃焼室と蓄熱室を別個の円筒外皮内に設け、双方の外皮の一端で両室を連通させた外燃式熱風炉などがあるが、この外燃式熱風炉と同等の性能を備えながら外燃式熱風炉よりも設備費を低減できる蓄熱式熱風炉として、蓄熱室の上方にバーナーが通じる燃焼室が設けられた炉頂燃焼式熱風炉が特許文献1に開示されている。
 ここで、図7の模式図を参照して従来の炉頂燃焼式熱風炉の構成を概説する。同図で示すように、従来の炉頂燃焼式熱風炉Fは蓄熱室Tの上方に燃焼室Nが配置され、いわゆる燃焼時には、この燃焼室Nに対してバーナーBから供給された(X1方向)燃料ガスと燃焼用エアの混合ガスがバーナーダクトBDを通過する過程で着火され、燃焼して高温の燃焼ガスとなって燃焼室Nに流入する。図7のVIII-VIII矢視図である図8で示すように、このバーナーダクトBDは燃焼室Nに対して平面的に見て複数箇所(図8では4箇所)に設けてあり、高温の燃焼ガスは燃焼室内で大きく旋回しながら(X4方向)下方へ流下し、燃焼ガスが蓄熱室Tを流下する過程(X2方向)でその熱が蓄熱室Tで蓄熱され、蓄熱室Tを通過した燃焼ガスは煙道Eを介して排気される。なお、バーナーBとバーナーダクトBDをまとめて本明細書ではバーナーシステムと称する。
 燃焼室Nに対するバーナーダクトBDの具体的な取り付き形態は、図8で示すようにたとえば4基のバーナーダクトBDが燃焼室Nに対して平面的に見て90度ずれた態様で設けられ、各バーナーダクトBDはいずれも、燃焼室Nへの燃焼ガスの流入方向が平面視円形の燃焼室Nの中心Oを通らない偏心位置で燃焼室Nに通じており、その結果として、各バーナーダクトBDから燃焼室N内に流入した燃焼ガスは他の隣接するバーナーダクトBDから燃焼室N内に流入した燃焼ガスと干渉してそれぞれの燃焼ガスの流れ方向が転換され、燃焼室N内に大きな燃焼ガスの旋回流(X4方向の流れ)を形成するようにしている。
 図8で示すように燃焼室N内に燃焼ガスの大きな旋回流が形成されることにより、高温の燃焼ガスが蓄熱室Tの全体に供給されることから、蓄熱室Tの全体を利用して熱風生成能の高い熱風炉となり得る。
 一方、不図示の高炉へ熱風を供給するいわゆる送風時においては、バーナーダクトBD内の遮断弁Vが閉制御されてバーナーシステムにおける燃料ガスと燃焼用エアの供給が停止され、送風管Sを介してたとえば150℃程度のエアを蓄熱室Tに供給し、エアが蓄熱室T内を上昇する過程でたとえば1200℃程度の熱風とされ、この熱風が熱風管Hを介して高炉へ供給されることになる(X3方向)。
 このように、燃焼時においては、燃焼前の低温の燃料ガスや燃焼用エアが混合された低温の混合ガスがバーナーダクトを流通するために当該バーナーダクトは冷却され、冷えた状態となっている。これに対し、送風時には蓄熱室を通過して上昇する熱風が燃焼室内に充満するために当該燃焼室に連通しているバーナーダクトは加熱される。すなわち、バーナーダクトは燃焼時の冷却と送風時の加熱を交互に繰返し受けることとなり、この冷却・加熱の繰返しによってたとえばバーナーダクトの内壁を防護する耐火物(レンガ等のセラミックス)が損傷し易く、寿命律速になっているという課題がある。
 ところで、バーナーシステムの燃焼効率を向上させることは当該技術分野における重要な課題の一つであるが、この燃焼効率向上のためには、燃料ガスと燃焼用エアが十分に混合された混合ガスを得ることが重要となる。
 バーナーシステムを構成する従来のバーナーとして、図9a,bで示すように同芯で3重管構造のバーナーBを挙げることができる。このバーナーBは、中心管路Baに燃焼用エアA1を、その外周の中央管路Bbに燃料ガスGを、さらにその外周の最外管路Bcに別途の燃焼用エアA2をそれぞれ流通させ(X1方向)、管路Ba、Bb,Bcのそれぞれに固定されている旋回用羽根Ra,Rb,RcによってY1方向、Y2方向、Y3方向に燃焼用エアA1,A2と燃料ガスGの旋回流を生ぜしめ、バーナーダクトBD内でこれらの旋回流が混合してなる混合ガスMGを生成するものである。なお、特許文献2には、多重管路の最外管路に旋回用羽根を設けた構造の燃焼バーナーが開示されている。
 混合ガスMGがバーナーダクトBD内を旋回しながら流通する過程で着火して燃焼し、燃焼後の燃焼ガスは燃焼前と同様に旋回しながら燃焼室Nに流入することになる。
 しかし、図9aで示すようにバーナーダクトBD内で混合ガスMGの旋回流が生成され、これが燃焼してなる燃焼ガスの旋回流が燃焼室N内に流入した際には、燃焼室N内でより一層大きな燃焼ガスの旋回流(この旋回流は図8で示す平面的な旋回流X4ではない)が形成されてたとえば燃焼室Nの下方の蓄熱室T側へ急激に落ち込んでしまい、図8で示すようにバーナーダクトBDから直進流(X1方向)で燃焼室N内に流入する燃焼ガスの流れが形成し難い。
 図8で示すような燃焼室N内における燃焼ガスの大きな旋回流(X4方向の流れ)は、各バーナーダクトBDから燃焼室Nに流入してくる燃焼ガスの流れがある程度の直進成分をもって流入してくることで燃焼ガス同士が相互に干渉し合い、大きな旋回流の形成に繋がる。したがって、燃料ガスと燃焼用エアを十分に混合させて混合ガスを形成するべく、図9aで示すような混合ガスの大きな旋回流、ひいてはその燃焼後の燃焼ガスの旋回流をバーナーダクトBD内に形成させただけでは、燃焼ガスが十分な直進成分を有していないことから、燃焼室N内で蓄熱室Tの全領域に高温の燃焼ガスを供給するための大きな旋回流(X4方向の流れ)を形成することはできない。
 これらのことから、燃料ガスと燃焼用エアが十分に混合された混合ガスをバーナーシステム内で生成すること、バーナーダクト内で混合ガスが燃焼してできた燃焼ガスに十分な直進成分をもたせて燃焼室内に流入させ、燃焼室内で大きな旋回流を形成して高温燃焼ガスを蓄熱室の全体に供給すること、さらには、バーナーダクトの内壁の耐火物が受ける冷却・加熱の繰返しによってバーナーダクト内壁の耐火物が損傷し易いという課題を解消すること、といった全ての課題を解消することのできる技術開発が望まれている。
特公昭48-4284号公報 特許第3793466号公報
 本発明は上記する問題に鑑みてなされたものであり、燃料ガスと燃焼用エアが十分に混合された混合ガスをバーナーシステム内で生成すること、バーナーダクト内で混合ガスが燃焼してできた燃焼ガスに十分な直進成分をもたせて燃焼室内に流入させ、燃焼室内で大きな旋回流を形成して高温燃焼ガスを蓄熱室の全体に供給すること、さらには、バーナーダクトの燃焼室側の領域が受ける冷却・加熱の繰返しによってバーナーダクト内壁の耐火物が損傷し易いという課題を解消すること、といった全ての課題を解消することのできる炉頂燃焼式熱風炉を提供することを目的としている。
 前記目的を達成すべく、本発明による炉頂燃焼式熱風炉は、熱風用エアが供給される送風管を備えた蓄熱室と、高炉へ熱風を供給する熱風管とバーナーシステムを備えて蓄熱室の上部に配設された燃焼室と、から構成され、バーナーシステムから燃焼室へ供給された燃料ガスと燃焼用エアの混合ガスの燃焼によって蓄熱室が昇温され、熱風用エアが蓄熱室を通過する過程で生成された熱風を熱風管を介して高炉へ供給する炉頂燃焼式熱風炉であって、前記バーナーシステムは、径の異なる3以上の多重管路であってそれぞれの管路が燃料ガスもしくは燃焼用エアを流すバーナーと、バーナーと連通するバーナーダクトと、から構成され、バーナーダクトは燃焼室に連通しており、前記多重管路を構成するそれぞれの管路のうち、最外管路以外の管路には旋回流生成手段が設けられてその内部を流れる燃料ガスもしくは燃焼用エアの旋回流を生じさせ、前記最外管路には燃料ガスもしくは燃焼用エアの直進流が流れるようになっており、バーナーダクト内に流入した燃料ガスと燃焼用エアの旋回流によって混合ガスの旋回流が生ぜしめられ、該混合ガスの旋回流と燃料ガスもしくは燃焼用エアの直進流がバーナーダクト内を流れる過程で燃焼して直進成分と旋回成分を備えた燃焼ガスが生成されるようになっており、前記燃焼室には、少なくとも1以上の前記バーナーシステムから前記燃焼室に対して該燃焼室の中心位置を通らない流入方向に燃焼ガスが供給されるものである。
 本発明の炉頂燃焼式熱風炉は、その構成要素であるバーナーシステムを構成するバーナーに改良を加え、径の異なる3以上の多重管路からなるバーナーのうち、最外管路以外の管路には旋回流生成手段を設けて燃料ガスもしくは燃焼用エアの旋回流を生ぜしめ、これらの旋回流がバーナーダクト内で混合されることで十分に混合された混合ガスを生成することができ、さらに、バーナーの最外管路には燃料ガスもしくは燃焼用エアを旋回させることなく直進させるように流し、これがそのままバーナーダクト内に流入することで、混合ガスの旋回流と燃料ガスもしくは燃焼用エアの直進流をバーナーダクトに流通させるようにしたものである。
 バーナーがたとえば同芯の3重管路からなる構造形態の場合であって、中心管路に燃焼用エアを流し、中央管路に燃料ガスを流し、最外管路に別途の燃焼用エアを流す場合を取り挙げると、中央の2つの管路では燃料ガスと燃焼用エアがともに旋回流生成手段によって旋回流が生ぜしめられてこれらがバーナーダクト内で混合される。そして、この混合ガスは、その周囲で旋回することなく直進する別途の燃焼用エアとともにバーナーダクト内を流れることになる。すなわち、バーナーダクト内には燃焼用エアによる直進成分と混合ガスによる旋回成分が混成されたガス流れが形成され、これがバーナーダクトの燃焼室側近傍の領域で着火して燃焼し、燃焼後の燃焼ガスも燃焼前のガス流れと同様に直進成分と旋回成分を有する燃焼ガスとなって燃焼室に流入することになる。
 この燃焼ガスの中心の2つの管路の旋回流生成手段によって生成された旋回成分により、バーナーダクトの中心部に負圧領域が形成される。負圧領域が形成されることでここに燃焼室内の高温雰囲気が取り込まれ、取り込まれた高温雰囲気がバーナーダクトの内壁に輻射されることによって燃焼時に冷却され易いバーナーダクトの内壁を温めることができる。
 燃焼時にバーナーダクトの燃焼室側領域の内壁が温められることから、燃焼時と送風時での内壁の温度差が格段に少なくなり、冷却・加熱の繰返しによるバーナーダクト内壁の耐火物の損傷を効果的に抑制することができる。
 一方、燃焼ガスの直進成分によって燃焼ガスに十分な直進性を持たせてこれを燃焼室内に流入させることができ、この直進成分をもって燃焼室に流入した燃焼ガスが他のバーナーシステムから燃焼室に流入した燃焼ガスと相互に干渉して、もしくは燃焼室に流入した後に対向する燃焼室の内壁にぶつかって流れ方向を転換されることで、燃焼室内には平面的に見て燃焼ガスの大きな旋回流が形成され易くなり、もって高温の燃焼ガスを蓄熱室の全領域に供給することが可能となる。
 このように、本発明の炉頂燃焼式熱風炉は、その構成要素であるバーナーシステムを構成するバーナーに改良を加えて、バーナーダクト内で混合ガスの旋回流と燃料ガスもしくは燃焼用エアの直進流を生ぜしめ、これらをバーナーダクト内で燃焼させることで直進成分と旋回成分をもった燃焼ガスを生成するようにしたこと、すなわち、燃焼ガスの流れ成分を適正化したことによって、燃料ガスと燃焼用エアが十分に混合された混合ガスをバーナーシステム内で生成することができ、バーナーシステムの燃焼効率を高めることができる。また、燃焼室内で燃焼ガスの大きな旋回流を形成してこれを蓄熱室の全体に供給することができ、熱風生成能に優れた熱風炉を形成することができる。さらに、バーナーダクト内壁の燃焼時と送風時の温度差を少なくし、もってバーナーダクト内壁の耐火物の耐久性を高めることができる。
 ここで、前記旋回流生成手段として、以下で示す2つの実施の形態を挙げることができる。
 その一つの実施の形態は、最外管路以外のそれぞれの管路内に旋回用羽根を設けることである。
 たとえば、バーナーが同芯の3重管路から構成される場合には、中央2つの管路内でそれぞれに固有の旋回用羽根が設けられ、同芯の5重管路から構成される場合には、中央4つの管路内でそれぞれに固有の旋回用羽根が設けられる。いずれの形態であっても、最外管路には旋回用羽根を設けず、燃料ガスもしくは燃焼用エアを直進させるように流してバーナーダクトに流入させるようにする。
 一方、旋回流生成手段の他の実施の形態は、バーナーを構成する多重管路ごとに生成手段を異ならせるものであって、最小径の中心管路には旋回用羽根を設け、最外管路および中心管路以外の管路にはその軸心に対して偏心した位置から、もしくは傾斜した方向で燃料ガスもしくは燃焼用エアを供給することである。
 中央に位置する中心管路が旋回用羽根を有することは既述する実施の形態と同様であるが、最外管路を除くそれ以外の管路に適用される旋回流生成手段の形態として、管路への燃料ガスもしくは燃焼用エアの供給方向に調整を加え、管路軸心に対して偏心した位置から、もしくは傾斜方向で燃料ガスもしくは燃焼用エアを供給することでそれよりも小径の管路の周りに旋回流(もしくは螺旋流)を形成することができる。
 たとえばバーナーが同芯の3重管路から構成される場合には、中間に位置する管路に対してガスを軸心に対して偏心した位置から供給することにより、中心管路の周囲で旋回流が形成され、これがバーナーダクト内に流入することになる。
 また、燃焼室に対するバーナーシステムの取り付き形態としては、3つの前記バーナーシステムが燃焼室に対して120度間隔で配設され、それぞれのバーナーシステムから前記燃焼室へ該燃焼室の中心位置を通らない流入方向で燃焼ガスが供給される形態が好ましく、さらに、4つの前記バーナーシステムが燃焼室に対して90度間隔で配設され、それぞれのバーナーシステムから前記燃焼室へ該燃焼室の中心位置を通らない流入方向で燃焼ガスが供給される形態が望ましい。
 燃焼室に対するバーナーシステムの取り付き形態は、たとえば1つのバーナーシステムのみであっても、これが燃焼室の中心位置を通らない流入方向で燃焼ガスを供給するように配置されていれば、燃焼室内で旋回流を生成させることができる。しかし、この場合は、1つのバーナーシステムから燃焼室内に流入した燃焼ガスが燃焼室の対向内壁にぶつかって方向転換され、燃焼室の内壁に沿うように流れながら旋回流を形成することになる。
 これに対して、3つのバーナーシステムが燃焼室に対して120度間隔で配設される場合や、4つのバーナーシステムが燃焼室に対して90度間隔で配設される場合は、1つのバーナーシステムから燃焼室に流入した燃焼ガスは他のバーナーシステムからの燃焼ガスと干渉し易くなり、この相互干渉によって燃焼室内に平面的に見て大きな旋回流をスムーズに形成することができる。
 以上の説明から理解できるように、本発明の炉頂燃焼式熱風炉によれば、バーナーダクト内で混合ガスの旋回流と燃料ガスもしくは燃焼用エアの直進流を生ぜしめ、これらをバーナーダクト内で燃焼させることで直進成分と旋回成分をもった燃焼ガスを生成するようにしたことによって、燃料ガスと燃焼用エアが十分に混合された混合ガスをバーナーシステム内で生成することができ、バーナーシステムにおける燃焼効率を高めることができる。また、バーナーダクトから燃焼室へ十分な直進成分をもった燃焼ガスを流入させることができ、もって燃焼室内で燃焼ガスの大きな旋回流を形成してこれを蓄熱室の全体に供給することができ、熱風生成能に優れた炉頂燃焼式熱風炉となる。さらに、バーナーダクト内における燃焼ガスの旋回成分によって負圧領域を形成し、燃焼室内の高温雰囲気をここに取り込んでその輻射熱をバーナーダクト内壁に供給することにより、燃焼時と送風時のバーナーダクト内壁の温度差を少なくし、ここでの冷却・加熱の繰返しサイクルを解消もしくは緩和して該内壁に配された耐火物の耐久性を高めることができる。
本発明の炉頂燃焼式熱風炉の一実施の形態を示した模式図であって、混合ガス、燃焼ガス、熱風用エアおよび熱風の各流れをともに示した図である。 図1のII-II矢視図である。 (a),(b)はいずれも、図1のIII-III矢視図であって、燃焼室内における燃焼ガスの流れをともに示した図であり、燃焼室に対するバーナーシステムの取付き形態を示した図である。 (a),(b)はいずれも、図3a,bと同様に、図1のIII-III矢視図であって、燃焼室内における燃焼ガスの流れをともに示した図であり、燃焼室に対するバーナーシステムの取付き形態を示した図である。 バーナーシステムの一実施の形態の縦断面図であって、直進成分と旋回成分を備えた燃焼ガスと、この燃焼ガスによって負圧領域が形成されることを説明した図である。 (a)はバーナーシステムを構成するバーナーの他の実施の形態の縦断面図であり、(b)は(a)のb-b矢視図である。 従来の炉頂燃焼式熱風炉の一実施の形態を示した模式図であって、混合ガス、燃焼ガス、熱風用エアおよび熱風の各流れをともに示した図である。 図7のVIII-VIII矢視図であって、燃焼室内における燃焼ガスの流れをともに示した図である。 従来のバーナーシステムの一実施の形態の縦断面図である。
 以下、図面を参照して本発明の炉頂燃焼式熱風炉の実施の形態を説明する。
 図1は本発明の炉頂燃焼式熱風炉の一実施の形態を示した模式図であって、混合ガス、燃焼ガス、熱風用エアおよび熱風の各流れをともに示した図であり、図2は図1のII-II矢視図であり、図3a,b、図4a,bはいずれも、図1のIII-III矢視図であって、燃焼室内における燃焼ガスの流れをともに示したもので、燃焼室に対するバーナーシステムの取付き形態を示した図である。さらに、図5はバーナーシステムの一実施の形態の縦断面図である。
 図1で示す炉頂燃焼式熱風炉10は、その全体が平面視円形もしくは略円形(楕円形など)に構成され、蓄熱室4の上方に燃焼室3が配されたものであって、この燃焼室3にはバーナー1から供給された(X1方向)燃料ガスと燃焼用エアの混合ガスがバーナーダクト2を通過する過程で着火され、燃焼して高温の燃焼ガスとなって燃焼室3に流入するようになっている。なお、バーナー1とバーナーダクト2からバーナーシステムが構成される。なお、厳密に言えば、バーナーダクト2から燃焼室3へ流入するのは燃焼ガス以外にも、未燃の混合ガスや燃料ガスなども存在するが、本明細書においては、主として燃焼室3に流入するガス成分である燃焼ガスを取り上げて説明している。
 図3aで示すように、バーナーダクト2は燃焼室3に対して平面的に見て4箇所設けてあり、それぞれが90度ごとにずれた位置に配設されたものであって、各バーナーダクト2はいずれも、燃焼室3への燃焼ガスの流入方向が平面視円形の燃焼室3の中心Oを通らない偏心位置で燃焼室3に通じている。そのため、各バーナーダクト2から燃焼室3内に流入した燃焼ガスは他の隣接するバーナーダクト2から燃焼室3内に流入した燃焼ガスと干渉してそれぞれの燃焼ガスの流れ方向が転換され、燃焼室3内には図示するような大きな燃焼ガスの旋回流(X4方向の流れ)が形成されることになる。
 なお、燃焼室3に対するバーナーダクト2の取り付き形態はそれ以外にも、図3bで示すように、3つのバーナーシステムが燃焼室3に対して120度間隔で配設された形態、図4aで示すように、1つのバーナーシステムが燃焼室3に取付いた形態、図4bで示すように、2つのバーナーシステムが90度ずれた位置で燃焼室3に取付いた形態などであってもよく、いずれの形態であっても、バーナーダクト2は、燃焼室3への混合ガスの流入方向が平面視円形の燃焼室3の中心Oを通らない偏心位置で燃焼室3に通じている。
 この燃焼ガスは、図3、図4で示すように平面的に見て大きく旋回しながら、縦断面的には図1のX2方向で降下する螺旋流を形成しながら蓄熱室4の全体に流下し、この流下過程でその熱が蓄熱室4で蓄熱され、蓄熱室4を通過した燃焼ガスは遮断弁7aが開制御された煙道管7を介して排気される。このようにバーナーシステムにおける混合ガスの燃焼と、高温の燃焼ガスを蓄熱室4に供給して蓄熱室4を昇温させる操業を「燃焼時」と称することができる。
 図2で示すようにバーナー1は同芯で3孔式の多重管路であり、図5で示すように、バーナーダクト2にバーナー1がその端面1aで連通姿勢で繋がれ、その中心管路1bには燃焼用エアA1が流れ、中央管路1cには燃料ガスGが流れ、最外管路1dには別途の燃焼用エアA2が流れるようになっている。
 さらに、最外管路1d以外の中心管路1bと中央管路1cには、それぞれに固定された旋回用羽根8b、8cが管路内に設けてある。
 中央の2つの管路1b、1cでは、燃焼用エアA1と燃料ガスGがそれぞれ、旋回用羽根8b、8cによって(Y1方向、Y2方向)それぞれの旋回流X1’が生成され、これらの旋回流X1’がバーナーダクト2内で混合されて混合ガスMGの旋回流が生ぜしめられる。そして、この混合ガスMGは、その周囲で旋回することなく直進する別途の燃焼用エアA2とともにバーナーダクト2内を流れることになる。
 すなわち、バーナーダクト2内には、燃焼用エアA2による直進成分と混合ガスMGによる旋回成分が混成されたガス流れが生ぜしめられ、これがバーナーダクト2の燃焼室側近傍の領域で着火して燃焼し、燃焼前のガス流れと同様に直進成分HG”と旋回成分HG’を有する燃焼ガスHGが生成されてこれが燃焼室3に流入することになる。
 この燃焼ガスHGの旋回成分HG’により、バーナーダクト2の燃焼室3側の領域には負圧領域NPが形成される。負圧領域NPが形成されることでここに燃焼室3内の高温雰囲気が取り込まれ(Z1方向)、取り込まれた高温雰囲気がバーナーダクト2の内壁に輻射されることにより(Z2方向)、燃焼時に冷却され易いバーナーダクト2の燃焼室側領域の内壁を温めることができる。
 燃焼時にバーナーダクト2の内壁が温められることから、燃焼時と送風時での内壁の温度差が格段に少なくなり、冷却・加熱の繰返しによるバーナーダクト内壁の耐火物の損傷を効果的に抑制することができる。
 また、燃焼ガスHGの直進成分HG”によって燃焼ガスHGに十分な直進性を持たせてこれを燃焼室3内に流入させることができ、この直進成分をもって燃焼室3に流入した燃焼ガスHGが他のバーナーシステムから燃焼室3に流入した燃焼ガスと相互に干渉して(図3a,bの場合)、もしくは燃焼室3に流入した後に対向する燃焼室3の内壁にぶつかって流れ方向を転換されることで(図4a,bの場合)、燃焼室3内には平面的に見て燃焼ガスHGの大きな旋回流X4が形成され易くなり、もって高温の燃焼ガスHGを蓄熱室4の全領域に供給することが可能となる。
 図6aには、バーナーシステムを構成するバーナーの他の実施の形態を示している。このバーナー1Aも同芯の3重管路から構成されるものであるが、中心管路1bには旋回用羽根8bが設けられ、図6bで示すように、中央管路1cでは燃料ガスGの該管路内への供給方向を管路軸心に対して偏心した位置から供給させるようにしたものであり、中央管路1c内に燃料ガスGが偏心した位置から、もしくは斜め方向に供給されることでその内側の中心管路1bの周りに旋回流X1”(もしくは螺旋流)を形成することができる。
 図1に戻り、不図示の高炉へ熱風を供給する際には、バーナーダクト2内の遮断弁2a、煙道管7内の煙道弁7aを閉制御し、遮断弁6aが開制御された送風管6を介してたとえば150℃程度の高温エアを蓄熱室4に供給し、高温エアが蓄熱室4内を上昇する過程でたとえば1200℃程度の熱風とされ、この熱風が遮断弁5aが開制御された熱風管5を介して高炉へ供給されることになる(X3方向)。このように熱風炉内で熱風を生成してこれを高炉へ供給する操業を「送風時」と称することができる。
 図示する炉頂燃焼式熱風炉10によれば、バーナーダクト2内で混合ガスMGの旋回流と燃料ガスもしくは燃焼用エアの直進流を生ぜしめ、これらをバーナーダクト2内で燃焼させることで直進成分HG”と旋回成分HG’をもった燃焼ガスHGを生成するようにしたことによって、燃料ガスと燃焼用エアが十分に混合された混合ガスMGをバーナーシステム内で生成することができ、バーナーシステムにおける燃焼効率を高めることができる。また、バーナーダクト2から燃焼室3へ十分な直進成分をもった燃焼ガスHGを流入させることができ、もって燃焼室3内で燃焼ガスHGの大きな旋回流を形成してこれを蓄熱室4の全体に供給することができ、熱風生成能に優れた炉頂燃焼式熱風炉となる。さらに、バーナーダクト2内における燃焼ガスHGの旋回成分HG’によって負圧領域NPを形成し、燃焼室3内の高温雰囲気をここに取り込んでその輻射熱をバーナーダクト内壁に供給することにより、燃焼時と送風時のバーナーダクト内壁の温度差を少なくし、ここでの冷却・加熱の繰返しサイクルを解消もしくは緩和して該内壁に配された耐火物の耐久性を高めることができる。
 以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。
 1,1A…バーナー、1b…中心管路、1c…中央管路、1d…最外管路、1a…バーナー出口、2…バーナーダクト、2a…遮断弁、3…燃焼室、4…蓄熱室、5…熱風管、6…送風管、7…煙道管、8b、8c…旋回用羽根、10…炉頂燃焼式熱風炉、G…燃料ガス、A1,A2…燃焼用エア、MG…混合ガス、HG…燃焼ガス、HG’…燃焼ガスの旋回成分、HG”…燃焼ガスの直進成分

Claims (5)

  1.  熱風用エアが供給される送風管を備えた蓄熱室と、高炉へ熱風を供給する熱風管とバーナーシステムを備えて蓄熱室の上部に配設された燃焼室と、から構成され、バーナーシステムから燃焼室へ供給された燃料ガスと燃焼用エアの混合ガスの燃焼によって蓄熱室が昇温され、熱風用エアが蓄熱室を通過する過程で生成された熱風を熱風管を介して高炉へ供給する炉頂燃焼式熱風炉であって、
     前記バーナーシステムは、径の異なる3以上の多重管路であってそれぞれの管路が燃料ガスもしくは燃焼用エアを流すバーナーと、バーナーと連通するバーナーダクトと、から構成され、バーナーダクトは燃焼室に連通しており、
     前記多重管路を構成するそれぞれの管路のうち、最外管路以外の管路には旋回流生成手段が設けられてその内部を流れる燃料ガスもしくは燃焼用エアの旋回流を生じさせ、前記最外管路には燃料ガスもしくは燃焼用エアの直進流が流れるようになっており、
     バーナーダクト内に流入した燃料ガスと燃焼用エアの旋回流によって混合ガスの旋回流が生ぜしめられ、該混合ガスの旋回流と前記最外管路の燃料ガスもしくは燃焼用エアの直進流がバーナーダクト内を流れる過程で燃焼して直進成分と旋回成分を備えた燃焼ガスが生成されるようになっており、
     前記燃焼室には、少なくとも1以上の前記バーナーシステムから前記燃焼室に対して該燃焼室の中心位置を通らない流入方向に燃焼ガスが供給される炉頂燃焼式熱風炉。
  2.  前記旋回流生成手段は、最外管路以外のそれぞれの管路内に設けられた旋回用羽根である請求項1に記載の炉頂燃焼式熱風炉。
  3.  前記旋回流生成手段は管路ごとに異なっており、
     最小径の中心管路における旋回流生成手段は該管路内に設けられた旋回用羽根であり、
     最外管路および中心管路以外の管路における旋回流生成手段は、その軸心に対して偏心した位置から、もしくは傾斜した方向で燃料ガスもしくは燃焼用エアを供給することである請求項1に記載の炉頂燃焼式熱風炉。
  4.  3つの前記バーナーシステムが燃焼室に対して120度間隔で配設され、それぞれのバーナーシステムから前記燃焼室に対して該燃焼室の中心位置を通らない流入方向で燃焼ガスが供給される請求項1~3のいずれかに記載の炉頂燃焼式熱風炉。
  5.  4つの前記バーナーシステムが燃焼室に対して90度間隔で配設され、それぞれのバーナーシステムから前記燃焼室に対して該燃焼室の中心位置を通らない流入方向で燃焼ガスが供給される請求項1~3のいずれかに記載の炉頂燃焼式熱風炉。
PCT/JP2012/057051 2011-03-23 2012-03-19 炉頂燃焼式熱風炉 WO2012128259A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2012232150A AU2012232150B2 (en) 2011-03-23 2012-03-19 Top-firing hot blast stove
RU2013138451/02A RU2539492C1 (ru) 2011-03-23 2012-03-19 Воздухонагреватель с верхним обогревом
ES12760409.8T ES2561535T3 (es) 2011-03-23 2012-03-19 Alto horno con inyección de aire forzado caliente de combustión en la parte superior
CA2820831A CA2820831C (en) 2011-03-23 2012-03-19 Top-firing hot blast stove
KR1020137017089A KR101302760B1 (ko) 2011-03-23 2012-03-19 로(爐) 상단연소식 열풍로
EP12760409.8A EP2653567B1 (en) 2011-03-23 2012-03-19 Top-combustion hot-blast furnace
PL12760409T PL2653567T3 (pl) 2011-03-23 2012-03-19 Wielki piec prowadzony na gorącym dmuchu od góry
US14/005,616 US9017068B2 (en) 2011-03-23 2012-03-19 Top-firing hot blast stove
CN201280012288.3A CN103429761B (zh) 2011-03-23 2012-03-19 炉顶燃烧式热风炉
UAA201312422A UA107163C2 (xx) 2011-03-23 2012-03-19 Повітронагрівник з верхнім обігрівом
BR112013023987A BR112013023987B8 (pt) 2011-03-23 2012-03-19 aquecedor de queima superior
ZA2013/04468A ZA201304468B (en) 2011-03-23 2013-06-18 Top-firing hot blast stove

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011064320A JP4892107B1 (ja) 2011-03-23 2011-03-23 炉頂燃焼式熱風炉
JP2011-064320 2011-03-23

Publications (1)

Publication Number Publication Date
WO2012128259A1 true WO2012128259A1 (ja) 2012-09-27

Family

ID=45907913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057051 WO2012128259A1 (ja) 2011-03-23 2012-03-19 炉頂燃焼式熱風炉

Country Status (15)

Country Link
US (1) US9017068B2 (ja)
EP (1) EP2653567B1 (ja)
JP (1) JP4892107B1 (ja)
KR (1) KR101302760B1 (ja)
CN (1) CN103429761B (ja)
AU (1) AU2012232150B2 (ja)
BR (1) BR112013023987B8 (ja)
CA (1) CA2820831C (ja)
ES (1) ES2561535T3 (ja)
PL (1) PL2653567T3 (ja)
RU (1) RU2539492C1 (ja)
TW (1) TWI415948B (ja)
UA (1) UA107163C2 (ja)
WO (1) WO2012128259A1 (ja)
ZA (1) ZA201304468B (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245880A (ja) * 2012-05-25 2013-12-09 Daido Ecomet Co Ltd 粉粒体溶融バーナーおよび粉粒体溶融装置
CN102853429B (zh) * 2012-07-04 2014-12-31 江苏中圣园科技股份有限公司 一种燃气烧嘴
EP2703339A1 (en) * 2012-09-04 2014-03-05 Casale Chemicals S.A. Burner for the production of synthesis gas
US9783309B2 (en) * 2013-07-16 2017-10-10 The Boeing Company Methods and device for mixing airflows in environmental control systems
CN103574606B (zh) * 2013-11-18 2016-01-06 南通宝聚颜料有限公司 一种氢气燃烧装置
US10520221B2 (en) 2015-04-06 2019-12-31 Carrier Corporation Refractory for heating system
EP3173696A1 (en) * 2015-11-30 2017-05-31 Paul Wurth S.A. Top combustion stove
WO2018021248A1 (ja) * 2016-07-26 2018-02-01 Jfeスチール株式会社 電気炉用助燃バーナー
KR102178505B1 (ko) * 2019-06-12 2020-11-13 국민대학교산학협력단 재순환 영역이 구비된 연소방열판
DE102019122940A1 (de) * 2019-08-27 2021-03-04 Ebner Industrieofenbau Gmbh Regenerativbrenner für stark reduzierte NOx Emissionen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123006A (ja) * 1974-03-15 1975-09-27
JP3793466B2 (ja) 2002-01-30 2006-07-05 新日本製鐵株式会社 電気炉用廃プラスチック燃焼バーナー

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB952036A (en) * 1962-03-22 1964-03-11 Daniel Petit Improvements relating to gas blast heating stoves for use with furnaces
SU231572A1 (ru) * 1967-05-23 1978-02-15 Государственный Союзный Институт По Проектированию Метвллургических Заводов Газова горелка воздухонагревател
US3905751A (en) 1974-03-21 1975-09-16 Midland Ross Corp Gas burner
JPS51133108A (en) * 1975-05-15 1976-11-18 Nippon Kokan Kk <Nkk> A swirl burner for hot stoves
JPS5840086B2 (ja) 1976-01-22 1983-09-03 新日本製鐵株式会社 熱風炉用ガスバ−ナ−
DE3328973A1 (de) * 1983-08-11 1985-02-21 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Einspritzduesen fuer einspritzkoepfe von brennkammern fuer raketentriebwerke
SU1239458A1 (ru) * 1984-07-04 1986-06-23 Институт Высоких Тепмератур Ан Ссср Газова горелка
CN85100733B (zh) 1985-04-01 1988-05-18 中国科学院化工冶金研究所 顶燃式热风炉的多火孔环形燃烧器
JPS625012A (ja) 1985-06-28 1987-01-12 Chugai Ro Kogyo Kaisha Ltd 排熱回収バ−ナ
JPH084284B2 (ja) 1986-11-25 1996-01-17 パイオニアコミュニケーションズ株式会社 多回線応答装置
NL8702036A (nl) * 1987-08-31 1989-03-16 Hoogovens Groep Bv Keramische brander voor gas voor een brandschacht van een windverhitter van een hoogoven.
NL8901620A (nl) * 1989-06-27 1991-01-16 Hoogovens Groep Bv Keramische brander en een daarvoor geschikte vormsteen.
EP0491079B1 (de) 1990-12-19 1996-10-16 Asea Brown Boveri Ag Brennerkopf für die vormischartige Verbrennung eines flüssigen Brennstoffes in einer atmosphärischen Feuerungsanlage
JP2555738Y2 (ja) 1991-12-25 1997-11-26 住友金属工業株式会社 液体燃料用バーナー
NL9200486A (nl) * 1992-03-16 1993-10-18 Hoogovens Groep Bv Keramische brander voor een brandschacht van een windverhitter van een hoogoven.
JPH0921509A (ja) * 1995-07-04 1997-01-21 Mitsubishi Heavy Ind Ltd 水素燃焼用バーナ
NL1007581C2 (nl) * 1997-11-19 1999-05-20 Hoogovens Tech Services Keramische brander voor gassen en regeneratieve warmtegenerator voorzien daarvan.
ATE306050T1 (de) * 2001-01-04 2005-10-15 Haldor Topsoe As Drallbrenner
JP3669311B2 (ja) 2001-08-29 2005-07-06 中央技研工業株式会社 燃焼バーナー
CN2557527Y (zh) * 2002-06-12 2003-06-25 李永镇 高效顶燃式热风炉
CN101793393B (zh) * 2002-08-09 2012-09-05 杰富意钢铁株式会社 管状火焰燃烧炉以及燃烧控制方法
JP4506337B2 (ja) 2003-07-31 2010-07-21 Jfeスチール株式会社 冶金炉用微粉炭吹き込みバーナー及び冶金炉内への微粉炭吹き込み方法
MY141203A (en) * 2006-01-05 2010-03-31 Shandong Province Metallurg Eng Co Ltd A top combustion stove having heat- insulating layers in its precombustion chamber
US8696348B2 (en) 2006-04-26 2014-04-15 Air Products And Chemicals, Inc. Ultra-low NOx burner assembly
CN101196298B (zh) * 2007-12-19 2013-02-13 济南钢铁股份有限公司 一种紊流长火焰顶燃式热风炉燃烧器
JP5022248B2 (ja) 2008-01-23 2012-09-12 三菱重工業株式会社 ボイラ構造
US7775791B2 (en) 2008-02-25 2010-08-17 General Electric Company Method and apparatus for staged combustion of air and fuel
CN101381786B (zh) * 2008-10-27 2011-02-02 郑州豫兴耐火材料有限公司 采用环形气流上喷预混燃烧回流加热的顶燃式热风炉
JP5103454B2 (ja) * 2009-09-30 2012-12-19 株式会社日立製作所 燃焼器
JP4955117B1 (ja) 2011-03-15 2012-06-20 新日鉄エンジニアリング株式会社 炉頂燃焼式熱風炉

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123006A (ja) * 1974-03-15 1975-09-27
JP3793466B2 (ja) 2002-01-30 2006-07-05 新日本製鐵株式会社 電気炉用廃プラスチック燃焼バーナー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2653567A4 *

Also Published As

Publication number Publication date
EP2653567A1 (en) 2013-10-23
EP2653567B1 (en) 2015-11-25
ES2561535T3 (es) 2016-02-26
AU2012232150A1 (en) 2013-02-28
AU2012232150B2 (en) 2013-11-07
US20140011152A1 (en) 2014-01-09
US9017068B2 (en) 2015-04-28
KR20130080874A (ko) 2013-07-15
CA2820831A1 (en) 2012-09-27
TWI415948B (zh) 2013-11-21
JP2012201887A (ja) 2012-10-22
TW201250006A (en) 2012-12-16
CN103429761A (zh) 2013-12-04
EP2653567A4 (en) 2014-08-27
CN103429761B (zh) 2015-06-17
UA107163C2 (xx) 2014-11-25
JP4892107B1 (ja) 2012-03-07
BR112013023987A2 (pt) 2016-12-13
CA2820831C (en) 2014-06-17
RU2539492C1 (ru) 2015-01-20
KR101302760B1 (ko) 2013-09-02
ZA201304468B (en) 2014-09-25
BR112013023987B1 (pt) 2018-05-08
PL2653567T3 (pl) 2016-05-31
BR112013023987B8 (pt) 2019-11-19

Similar Documents

Publication Publication Date Title
JP4892107B1 (ja) 炉頂燃焼式熱風炉
CN103017199B (zh) 燃烧器以及用于向燃烧器供给燃料的方法
CN104081125B (zh) 快速能量释放喷燃器及其使用方法
JP5772047B2 (ja) 頂部燃焼式熱風炉
JP5936400B2 (ja) 管状火炎バーナ及びラジアントチューブ式加熱装置
JP6156378B2 (ja) 燃料燃焼装置
WO2009096554A1 (ja) 燃焼加熱器
TWI415947B (zh) Top burner hot air stove
JP6821274B2 (ja) レキュペレーター及びラジアントチューブ式加熱装置
JP6732960B2 (ja) 燃料を燃焼させる方法及びボイラー
TWI751217B (zh) 蓄熱式燃燒器裝置
TWI751216B (zh) 蓄熱式燃燒器裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012232150

Country of ref document: AU

Date of ref document: 20120319

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2820831

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137017089

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012760409

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14005616

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201312422

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2013138451

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013023987

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013023987

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130918