WO2009096554A1 - 燃焼加熱器 - Google Patents

燃焼加熱器 Download PDF

Info

Publication number
WO2009096554A1
WO2009096554A1 PCT/JP2009/051642 JP2009051642W WO2009096554A1 WO 2009096554 A1 WO2009096554 A1 WO 2009096554A1 JP 2009051642 W JP2009051642 W JP 2009051642W WO 2009096554 A1 WO2009096554 A1 WO 2009096554A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
combustion
peripheral surface
inner tube
outer tube
Prior art date
Application number
PCT/JP2009/051642
Other languages
English (en)
French (fr)
Inventor
Soichiro Kato
Katsuyoshi Takahashi
Taku Mizutani
Original Assignee
Ihi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihi Corporation filed Critical Ihi Corporation
Priority to BRPI0906717-5A priority Critical patent/BRPI0906717A2/pt
Priority to US12/812,868 priority patent/US20110041837A1/en
Priority to CN2009801034445A priority patent/CN101932876B/zh
Priority to EP09705985A priority patent/EP2244012A4/en
Priority to CA2713306A priority patent/CA2713306C/en
Publication of WO2009096554A1 publication Critical patent/WO2009096554A1/ja
Priority to US14/851,393 priority patent/US20160003482A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/04Stoves or ranges for gaseous fuels with heat produced wholly or partly by a radiant body, e.g. by a perforated plate
    • F24C3/06Stoves or ranges for gaseous fuels with heat produced wholly or partly by a radiant body, e.g. by a perforated plate without any visible flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/125Radiant burners heating a wall surface to incandescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/006Air heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/005Radiant burner heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/10Burner material specifications ceramic

Definitions

  • the present invention relates to a combustion heater for burning a premixed gas of fuel gas and combustion air.
  • This application claims priority based on Japanese Patent Application No. 2008-22976 for which it applied to Japan on February 1, 2008, and uses the content here.
  • a radiant tube burner that burns the entire premixed mixture of fuel gas and combustion air in a heat-resistant circular tube (heat radiating tube) and red heats this heat radiating tube with this flame has been manufactured, It is used for heating furnaces, heating, etc. as an elongated heat source that does not expose the flame.
  • a combustion burner is known in which combustion gas is burned in an inner pipe, a jet of combustion gas is made to collide with an orthogonally installed shielding surface to change the direction of flow, and heat is extracted from a heat radiating pipe.
  • Patent Document 1 includes a porous tube whose inside is a supply path for a premixed gas and a heat radiating tube disposed coaxially on the outer periphery of the porous tube, and is ejected radially from the porous tube.
  • the premixed gas in a laminar flow is burned on the cylindrical surface where the flame propagation speed and the premixed gas flow rate are balanced between the heat radiating pipe and the porous pipe.
  • a combustion heater that can increase the temperature, easily generate a large amount of heat, and realize low NOx is disclosed. JP-A-6-241419
  • the inner pipe placed inside the outer pipe which is a heat radiating pipe, becomes very hot due to the combustion gas flowing on the outer circumference, so the temperature of the unburned gas flowing inside the inner pipe rises too much and the unburned gas is oxidized with the fuel.
  • spontaneous ignition may occur and burning may occur.
  • the inner pipe is distorted by heat, resulting in residual deformation and the like, and the desired combustion characteristics (heating characteristics) may not be obtained.
  • the present invention has been made in consideration of the above points, and an object of the present invention is to provide a combustion heater capable of suppressing an excessive increase in the temperature of the inner tube and improving the heating efficiency. .
  • a combustion heater according to the present invention includes an inner tube having a combustion gas supply passage therein, and an outer tube disposed on the outer periphery of the inner tube with a combustion space therebetween, and ejects the combustion gas.
  • the portion is a combustion heater formed on the tube wall of the inner tube, and has a radiation promoting surface on the outer periphery of the inner tube.
  • the combustion heater of the present invention since radiation of heat is promoted as radiant heat (radiant heat) from the heated inner tube, the temperature of the inner tube can be prevented from being excessively high. Further, since the outer tube is heated by the radiant heat radiated from the inner tube, it is possible to improve the heating efficiency through the outer tube.
  • the inner pipe is at a low temperature, the amount of heat transfer due to radiation is small, so there is almost no problem in heating the combustion gas (unburned gas) in the supply channel (heat transfer due to radiation is the fourth power of temperature). Proportional to).
  • a structure that is a coating layer provided on the outer peripheral surface of the inner tube can be suitably employed.
  • stimulation surface can be easily formed by coat
  • pipe can also be employ
  • the structure whose said radiation promotion surface is a film layer provided in the said internal peripheral surface can be employ
  • stimulation surface can be easily formed by coat
  • the radiation promotion surface may have a configuration in which an inner tube and an outer tube are formed of a radiation promoting material.
  • the structure formed using a ceramic binder can be employ
  • this invention can also employ
  • the heat of the inner tube can be transferred to the outer tube via the heat transfer member, so that excessively high temperature of the inner tube can be suppressed and heating efficiency via the outer tube is also improved. It becomes possible to make it.
  • the outer peripheral surface of the inner tube includes a first region having a shortest distance from the inner peripheral surface of the outer tube, and a second region longer than the first region, and the hole portion.
  • pipe can also be employ
  • this combustion heater by igniting (igniting) the combustion gas around the stagnation point where the flow velocity is close to zero, a stable flame can be formed and held easily (ie without increasing the cost). it can. Conventionally, in order to form a stagnation point, it is necessary to increase the gas flow velocity.
  • a sufficient exhaust path for the combustion gas cannot be secured, and the flame reaches the inner peripheral surface of the outer tube, and both axial ends. Only a flame may form.
  • a hole is formed in the second region having a short distance from the inner peripheral surface of the outer tube, thereby stably forming and holding a flame on the inner peripheral surface of the outer tube facing the hole.
  • since a flame is formed and held at the stagnation point on the inner peripheral surface of the outer tube, it is possible to efficiently heat through the outer tube.
  • the inner tube it is possible to suitably employ a configuration in which it is arranged at a position eccentric with respect to the outer tube and the hole is formed on the outer peripheral surface located in the eccentric direction of the inner tube.
  • region where the distance of the outer peripheral surface of an inner tube and the inner peripheral surface of an outer tube is short can be formed easily.
  • a configuration in which a plurality of inner pipes are arranged around the central axis of the outer pipe at intervals in the circumferential direction can also be suitably employed.
  • the present invention is also applicable to a configuration in which the inner tube and the outer tube are arranged concentrically.
  • the distal end side of the inner tube that is cantilevered on the proximal end side is supported between the inner tube and the outer tube, and the outer peripheral surface of the inner tube and the inner periphery of the outer tube are supported.
  • a configuration having a support member that maintains a distance from the surface can be suitably employed.
  • the support member can be plate-shaped, or can be rod-shaped suspended between the outer tube and the inner tube.
  • the combustion space is provided with a stagnation point forming member that is provided in the axial direction so as to face the hole portion and forms a stagnation point of the combustion gas ejected from the hole portion. It can be suitably employed. Therefore, in the combustion heater of the present invention, ignition (ignition) is performed on the combustion gas around the stagnation point formed on the surface of the stagnation point forming member and the flow velocity is close to zero. No) A stable flame can be formed and held. Conventionally, in order to form a stagnation point, it is necessary to increase the gas flow velocity. In this case, a sufficient exhaust path for the combustion gas cannot be secured, and the flame reaches the inner peripheral surface of the outer tube, and both axial ends. Only a flame may form.
  • a flame can be stably formed and held on the surface of the stagnation point forming member facing the hole, and combustion gas is exhausted to a region where the inner tube and the stagnation point forming member do not face each other.
  • a route can be secured.
  • the inner tube and the stagnation point forming member that are cantilevered at the base end side are supported between the outer tube and the outer tube, and the outer periphery of the inner tube and the stagnation point forming member is supported.
  • a configuration having a support member that maintains a distance between the surface and the inner peripheral surface of the outer tube can be suitably employed.
  • the support member can be plate-shaped, or can be rod-shaped suspended between the outer tube and the inner tube.
  • the stagnation point can be formed stably and continuously, and as a result, the flame can be formed and held stably and continuously.
  • occludes the whole combustion space can also be employ
  • a configuration in which the support plate is provided so as to be relatively movable in the axial direction with respect to the outer tube can be suitably employed.
  • the support plate moves relative to the outer tube. Without generating, it is possible to maintain the distance between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube.
  • the structure by which the 2nd hole part which ejects the said gas for combustion is provided in the position spaced apart from the said stagnation point in the said inner pipe can also be employ
  • the structure arrange
  • occluded by the said front end side can also be employ
  • combustion heater of the present invention it is possible to suppress an excessively high temperature of the inner pipe and to improve the heating efficiency.
  • combustion heater 1 It is a front sectional view of combustion heater 1 concerning a 1st embodiment. It is side surface sectional drawing of the combustion heater 1 which concerns on 1st Embodiment. It is the top view which looked at the inner pipe from the 1st field side. It is side surface sectional drawing of the combustion heater with which the inner pipe
  • G Combustion gas
  • S Stagnation point
  • 1 Combustion heater
  • 10A Inner circumferential surface
  • 10B, 20B Radiation promotion layer (radiation promotion surface)
  • FIG. 1A is a front sectional view of the combustion heater 1 according to the first embodiment
  • FIG. 1B is a side sectional view.
  • the combustion heater 1 is supported in a cantilever manner by an outer tube 10 as a heat-resistant metal heat-dissipating tube having a closed end and a supporting means (not shown) on the base end side (left side in FIG. 1A).
  • a heat resistant metal inner pipe 20 having a combustion gas G supply passage 21 therein.
  • a gas premixed with fuel and air, or a gas premixed with fuel and oxygen-containing gas can be used, and methane, propane, or the like is used as the fuel.
  • the liquid fuel can also be used by providing a location for pre-evaporation.
  • the outer pipe 10 has a bottomed cylindrical shape with a closed end, and an exhaust pipe 11 for exhausting the burned gas is connected to the base end side. Further, a radiation promoting layer (radiation promoting surface) 10B for promoting radiation is formed on the inner peripheral surface 10A of the outer tube 10. The radiation promoting layer 10B will be described later.
  • the inner tube 20 has a bottomed cylindrical shape with a closed tip, and a premixed gas supply mechanism (not shown) for supplying the combustion gas G described above is provided on the proximal end side. For example, a total premixed gas having an excess air ratio of about 1.0 to 1.6 is supplied.
  • the inner tube 20 is arranged eccentrically on the inner side of the outer tube 10 on the distal end side, and forms a combustion space 30 between the outer peripheral surface 20A and the inner peripheral surface 10A of the outer tube 10.
  • a radiation promoting layer (radiation promoting surface) 20B that promotes radiation is formed in the same manner as the radiation promoting layer 10B.
  • the radiation promoting layers 10B and 20B are formed of a coating layer provided on the inner peripheral surface 10A and the outer peripheral surface 20A by spraying, for example, using a ceramic binder.
  • a coating layer for example, a layer having a heat resistant temperature of about 800 ° C. is used. Further, by forming the radiation promoting layers 10B and 20B by thermal spraying, a high adhesion force and a long life can be achieved.
  • the outer peripheral surface 20 ⁇ / b> A of the inner tube 20 has a first region 22 having the shortest distance from the inner peripheral surface 10 ⁇ / b> A of the outer tube 10 and a second region 23 longer than the first region 22. More specifically, the portion of the outer peripheral surface 20A located in the eccentric direction of the inner tube 20 (downward in FIG. 1, see FIG. 1B) has the largest distance from the inner peripheral surface 10A of the outer tube 10. A short first region (bus bar) 22 is formed along the axial direction, and a second region 23 having a longer distance from the inner peripheral surface 10A than the first region 22 is formed in the other regions.
  • the first region 22 is located on the distal end side of the inner tube 20, and a plurality of (here, five) hole portions 24 are spaced from each other along the first region 22. It is formed through.
  • An ignition device (not shown) is provided in the vicinity of the position facing the hole 24 of the outer tube 10. Note that the outer peripheral surface 20A on the base end side (left side in FIG. 1A) from the region where the hole 24 is formed is a preheating region P for preheating the combustion gas G in the supply passage 21 with the burned gas (flame). It is said that.
  • the combustion gas G supplied from the premixed gas supply mechanism to the supply passage 21 of the inner tube 20 is ejected from the hole 24 toward the inner peripheral surface 10A of the outer tube 10.
  • the combustion gas G ejected from the hole 24 is opposed to the opposing outer tube.
  • the stagnation point S is formed on the inner peripheral surface 10A for each hole 24, and the stagnation point S is used as a boundary to branch off along the inner peripheral surface 10A.
  • a flame is formed by igniting the combustion gas G near the stagnation point S by the ignition device. Further, the combustion gas G branched at the stagnation point S flows from the vicinity of the first region 22 having a small cross-sectional area to the combustion space on the opposite side to the first region 22 having a large cross-sectional area, and as shown in FIG. Flames F are formed on both sides of the inner tube 20 of the space 30. At this time, since the flow velocity of the gas at the stagnation point S is zero, the formed flame is stably held by the circulating flow formed around the jet toward the stagnation point S.
  • the combustion gas flows through the combustion space 30 and is exhausted from the exhaust pipe 11.
  • the combustion gas passes through the wall of the inner pipe 20 in the preheating region P of the inner pipe 20.
  • heat exchange with the combustion gas (unburned gas) G is performed.
  • the combustion gas G in the supply passage 21 is ejected from the hole 24 in a state of being preheated to a high temperature, and the stability of the flame F is increased. It is possible to burn stably without generating fuel.
  • the inner tube 20 becomes particularly hot due to heat from the combustion gas and heat from the flame F, but since the radiation promoting layer 20B is provided on the outer peripheral surface 20A of the inner tube 20, the thermal emissivity of the inner tube 20 is increased. Increasing and radiation (radiation) as radiant heat is promoted. On the other hand, also in the outer tube 10, since the radiation promoting layer 10 ⁇ / b> B is provided on the inner peripheral surface 10 ⁇ / b> A, absorption of radiant heat from the inner tube 20 and radiant heat from the flame F is promoted.
  • the radiation of the inner tube 20 is radiated and promoted as radiation heat by the radiation promoting layer 20B of the inner tube 20. Therefore, it is possible to suppress an excessive increase in the temperature of the inner pipe 20, and even when the temperature is low, the radiation capacity is reduced, so that most of the heat of the inner pipe 20 is heated by the internal combustion gas G ( It can be used for preheating) and the heating characteristics can be maintained. Accordingly, it is possible to adjust the preheating temperature for the combustion gas G by adjusting the structure (material, thickness, distribution, etc.) of the radiation promoting layer 20B.
  • the outer tube 10 can be heated by this radiant heat, and the heating efficiency through the outer tube 10 can also be improved.
  • the radiation promoting layer 10B is also provided on the inner peripheral surface 10A of the outer tube 10, the heat in the combustion space 30 can be effectively absorbed by the outer tube 10, The heating efficiency through the tube 10 can be further improved.
  • the combustion gas G is ejected from the hole portion 24 formed in the tube wall of the inner tube 20, and the flame F is held at the stagnation point S. It is possible to easily form a stable flame F without changing the flow rate even when the flow rate is changed.
  • in order to increase the combustion amount it is only necessary to increase the number of holes 24.
  • the manufacturing cost of the combustion heater 1 can be suppressed, and the supply pressure of the combustion gas G is greatly increased as in the case of using a porous tube. Even if it is a low-pressure city gas line, it can be applied sufficiently.
  • the first region 22 having a short distance between the outer peripheral surface 20A of the inner tube 20 and the inner peripheral surface 10A of the outer tube 10 is arranged with the inner tube 20 eccentric with respect to the outer tube 10. Therefore, it is possible to form and hold the flame F stably and easily at a low cost.
  • the flame may reach the outer tube and be unable to be held, and the exhaust path for the burned gas may not be sufficiently secured.
  • a sufficient exhaust system path can be ensured in the combustion space 30 facing the region (second region) opposite to the first region 22.
  • the stagnation point S is formed on the inner peripheral surface 10A of the outer tube 10 and the flame F is also held along the inner peripheral surface 10A. Heating efficiency via the outer tube 10 can be improved without making it difficult to take out heat as in the case of being formed apart.
  • FIG. 2A is a plan view of the inner tube 20 viewed from the first region 22 side
  • FIG. 2B is a side sectional view of the combustion heater 1 in which the inner tube 20 is disposed.
  • the tube wall of the inner tube 20 is provided with holes 24 located in the first region 22, and alternately with the holes 24 in the direction along the first region 22.
  • Second holes 25 are provided on both sides of the region 22.
  • the combustion gas G is ejected from these second holes 25 toward a position away from the stagnation point S.
  • the second hole 25 is provided at a position where the combustion gas G ejected from the second hole 25 stably transfers from the flame S formed at the stagnation point S.
  • Other configurations are the same as those in the first embodiment, including that the radiation promoting layer 20B is provided on the outer peripheral surface 20A of the inner tube 20 and the radiation promoting layer 10B is provided on the inner peripheral surface 10A of the outer tube 10. .
  • combustion in which the flame F formed and held at the stagnation point S is ejected from the second hole portion 25 It becomes possible to burn to the working gas G, and the gas can be easily burned with the flow rate increased. Therefore, in this embodiment, pressure loss does not occur as in the case of using a porous body. Further, it is possible to increase the input heat amount without increasing the length of the inner tube 20 and the outer tube 10 in order to increase the flow rate.
  • the holes 24 and the second holes 25 are alternately arranged along the first region 22, and the second holes 25 are arranged on both sides of the first region 22. It becomes possible to form and hold the flame F and to transfer the flame in a stable state with almost equal distribution.
  • a support plate (support member) 40 made of a heat-resistant metal or the like is provided along the direction orthogonal to the axial direction on the tip side of the hole portion 24 of the inner tube 20.
  • the support plate 40 is fitted and fixed to the outer peripheral surface 20A of the inner tube 20 through the through hole 40A, and is supported on the inner peripheral surface 10A of the outer tube 10 by the outer peripheral surface 40B so as to be movable in the axial direction. Is done. That is, the support plate 40 has a size that closes the entire combustion space 30, is configured integrally with the inner tube 20, and is provided so as to be movable in the axial direction with respect to the outer tube 10.
  • the support plate 40 is the distal end side of the inner tube 20 that is cantilevered on the proximal end side.
  • the distance between the outer peripheral surface 20A of the inner tube 20 (that is, the first region 22) and the inner peripheral surface 10A of the outer tube 10 is kept constant.
  • the support plate 40 that is configured integrally with the inner tube 20 is provided inside the outer tube 10. Since it moves relative to the peripheral surface 10A in the axial direction, deformation and distortion are prevented.
  • the combustion gas G ejected from the hole 24 located on the most distal side collides with the inner peripheral surface 10A of the opposed outer tube 10, and the stagnation point S on the inner peripheral surface 10A for each hole 24. And is branched along the inner peripheral surface 10A with this stagnation point S as a boundary.
  • the combustion space 30 facing the first region 22 is closed by the support plate 40, it is directed toward the support plate 40.
  • the combustion gas G branched off in this way is guided to the combustion space 30 facing the first region 22 and the opposite side (second region 23) after colliding with the support plate 40. Therefore, it becomes easy to ignite the surrounding combustion gas G by the flame held at the stagnation point S.
  • the combustion space 30 is partitioned by the support plate 40, the combustion gas G stays at the distal end portion of the outer tube 10 at a relatively low temperature, resulting in an unburned state and generating CO. It becomes possible to avoid the situation to do.
  • the plate-like support plate 40 is used as the support member.
  • the present invention is not limited to this.
  • the support member 40 is supported on the inner peripheral surface 10A of the outer tube 10 so as to be movable in the axial direction.
  • a support member including a ring member and a rod member that connects the ring member and the inner tube 20 may be used.
  • each plate 41 is provided.
  • the support plate 41 is provided with a size that closes the combustion space 30 facing the first region 22.
  • each support plate 41 has a combustion space like the support plate 40 so that the combustion gas G ejected from the hole 24 flows into the combustion space 30 on the opposite side and can be exhausted from the exhaust pipe 11. Instead of closing the entire region 30, only the combustion space 30 around the first region 22 is blocked.
  • Each support plate 41 protrudes toward the outer tube 10 only in the vicinity of the first region 22 from the tube wall of the inner tube 20 so that the position of the inner tube 20 with respect to the outer tube 10 can be maintained.
  • it is formed in a fan shape supported by the surface 10A.
  • Other configurations are the same as those in the third embodiment, including the point that the radiation promoting layer 20B is provided on the outer peripheral surface 20A of the inner tube 20 and the radiation promoting layer 10B is provided on the inner peripheral surface 10A of the outer tube 10. .
  • FIG. 5 is a diagram schematically showing the outer tube 10 and the inner tube 20.
  • the inner tube 20 is spaced from the combustion space 30 in the outer tube 10 in the circumferential direction around the central axis of the outer tube 10, respectively.
  • Each inner pipe 20 has a hole 24 (not shown in FIG. 5) located in the first region 22 where the outer peripheral face 20A and the inner peripheral face 10A of the outer pipe 10 are the shortest distance.
  • a plurality are formed at intervals in the direction.
  • Other configurations are the same as those in the first embodiment, including that the radiation promoting layer 20B is provided on the outer peripheral surface 20A of the inner tube 20 and the radiation promoting layer 10B is provided on the inner peripheral surface 10A of the outer tube 10. .
  • the combustion gas G is ejected from the plurality of inner pipes 20 (holes thereof) to form a stagnation point on the inner peripheral surface 10A of the outer pipe 10.
  • a plurality of stable flames are formed around the axis along the inner peripheral surface of the outer tube 10. Therefore, in this embodiment, in addition to obtaining the same operation and effect as the first embodiment, the outer tube 10 can be heated to a higher temperature.
  • the combustion heater 1 of the present embodiment is supported in a cantilever manner by a support means (not shown) on the base end side (left side of FIG. 6A) and disposed in the combustion space 30 inside the outer tube 10.
  • a support means not shown
  • a plurality of heat-resistant metal inner pipes 20 and bluff bodies (stagnation points and circulation flow forming members) 50 each having a supply path 21 for the combustion gas G are provided.
  • the inner tube 20 is arranged around the central axis of the outer tube 10 (here, six at intervals of 60 °) at intervals.
  • Each inner tube 20 has a plurality of (in this case, five) hole portions 24 in the radial direction, spaced from each other along the axial direction at a position facing the bluff body 50 on the distal end side and facing the central axis of the outer tube 10. Is formed through the tube wall.
  • the bluff body 50 is arranged so that the axis line coincides with the central axis of the outer tube 10 and is surrounded by the inner tube 20.
  • the bluff body 50 is disposed at a position facing each inner tube 20 (hole 24).
  • a concave curved surface 50A formed around 20 axes is formed along the axial direction.
  • Other configurations are the same as those in the first embodiment, including that the radiation promoting layer 20B is provided on the outer peripheral surface 20A of the inner tube 20 and the radiation promoting layer 10B is provided on the inner peripheral surface 10A of the outer tube 10. (However, in FIGS. 6B and 6C, the radiation promoting layers 10B and 20B are not shown).
  • the combustion gas G supplied to the supply passage 21 of the inner pipe 20 is directed from the hole 24 toward the concave curved surface 50A of the bluff body 50, as shown in FIG. 6C. Erupted.
  • the combustion gas G ejected from the hole 24 collides with the concave curved surface 50A of the opposing bluff body 50 to form a stagnation point S on the concave curved surface 50A for each hole 24, and the stagnation point S is defined as a boundary. And branching along the concave curved surface 50A.
  • the combustion gas G branched at the stagnation point S burns from the vicinity of the bluff body 50 having a high gas pressure to the inner peripheral surface 10 ⁇ / b> A side of the outer pipe 10 that is opposite to the bluff body 50 with respect to the inner pipe 20. It flows into the space 30.
  • the combustion gas flows through the combustion space 30 and is exhausted from the exhaust pipe 11.
  • the combustion gas passes through the wall of the inner pipe 20 in the preheating region P of the inner pipe 20.
  • heat exchange with the combustion gas (unburned gas) G is performed.
  • the combustion gas G in the supply passage 21 is ejected from the hole 24 in a state of being preheated to a high temperature, and the stability of the flame F is increased. It is possible to burn stably without generating fuel.
  • the combustion gas G is ejected from the hole 24 formed in the tube wall of the inner tube 20 toward the concave curved surface 50A of the bluff body 50, and the flame F is held at the stagnation point S. Therefore, it is possible to easily form and hold the stable flame F even when the flow rate is changed without incurring a cost increase as in the case of providing a porous tube.
  • in this embodiment in order to increase the combustion amount, it is only necessary to increase the number of holes 24. Therefore, since there are few components and the structure is simple, the manufacturing cost of the combustion heater 1 can be suppressed, and the supply pressure of the combustion gas G is greatly increased as in the case of using a porous tube.
  • the radiation promoting layer 20B is provided on the outer peripheral surface 20A of each inner tube 20 and the radiation promoting layer 10B is also provided on the inner peripheral surface 10A of the outer tube 10, the heat in the combustion space 30 is effectively removed. It becomes possible to make the pipe
  • the inner tube 120 is arranged so that the axis coincides with the central axis of the outer tube 10 and is spaced from the inner tube 20.
  • the inner tube 120 has a bottomed cylindrical shape with a closed end, and a premixed gas supply mechanism (not shown) that supplies the above-described combustion gas G to the internal supply path 121 on the base end side. Is connected.
  • a radiation promoting layer 120B similar to the radiation promoting layer 20B is provided on the outer peripheral surface 120A of the inner tube 120.
  • the inner pipe 120 is formed with holes 124 through which the combustion gas G is ejected at positions facing the pipes 20 arranged around the inner pipe 120.
  • the hole 124 is formed in a position facing the outer peripheral surface 20 ⁇ / b> A without facing the hole 24 with respect to each inner tube 20 in the axial direction. That is, the hole 24 of the inner tube 20 is also opposed to the outer peripheral surface 120 ⁇ / b> A without facing the hole 124 of the inner tube 120.
  • Other configurations are the same as those in the sixth embodiment, including that the outer peripheral surface 20A of the inner tube 20 is provided with a radiation promoting layer 20B and the inner peripheral surface 10A of the outer tube 10 is provided with a radiation promoting layer 10B. (However, in FIG. 7B, the radiation promoting layers 10B, 20B, and 120B are not shown).
  • the combustion gas G supplied from the premixed gas supply mechanism to the supply passage 21 of the inner tube 20 is ejected from the hole 24 toward the outer peripheral surface 120A of the inner tube 120, respectively.
  • the A stagnation point S of the combustion gas G is formed on the outer peripheral surface 120A, and the combustion gas G branches off at the stagnation point S and flows along the outer peripheral surface 120A.
  • the combustion gas G supplied to the supply passage 121 of the inner pipe 120 is ejected from the hole portion 124 toward the outer peripheral surface 20A of the inner pipe 20.
  • a stagnation point S of the combustion gas G is formed on the outer peripheral surface 20A, and the combustion gas G branches at the stagnation point S and flows along the outer peripheral surface 20A. That is, in this embodiment, not only the inner tube 120 but also the inner tube 20 acts as a stagnation point forming member.
  • the combustion gas G is also ejected from the inner tube 120, so that heating is performed more effectively. Is possible.
  • the stagnation point S is formed on the outer peripheral surface 20A of the inner pipe 20 disposed around and a flame is formed and held, a more stable flame can be formed and held in a wider range.
  • the hole 24 of the inner tube 20 and the hole 124 of the inner tube 120 may be provided at positions facing each other. However, in order to form the stagnation point S more stably, the outer peripheral surface 120A is mutually formed. , And preferably at a position facing 20A.
  • the inner tube is not provided on the central axis of the outer tube 1, and a plurality of inner tubes 20 are spaced apart from each other in the circumferential direction around the central axis (here, 60 ° intervals). 6).
  • each inner pipe 20 is provided with a hole 24 through which the combustion gas G is ejected at a position facing the adjacent inner pipe 20.
  • the partial enlargement of FIG. 7D is first performed so that the injected combustion gas G collides with the outer peripheral surface 20A of the adjacent inner pipe 20.
  • the adjacent inner pipes 20 are alternately arranged.
  • Other configurations are the same as those in the sixth embodiment, including that the outer peripheral surface 20A of the inner tube 20 is provided with a radiation promoting layer 20B and the inner peripheral surface 10A of the outer tube 10 is provided with a radiation promoting layer 10B. (However, in FIG. 8B, the radiation promoting layers 10B and 20B are not shown).
  • the stagnation point S and the flame are formed at a position closer to the outer tube 10 as a heat radiating tube. Therefore, it becomes easier to take out heat through the outer tube 10, and it becomes possible to improve heating efficiency.
  • the present invention is not limited to this.
  • the third embodiment to the eighth embodiment have been described.
  • the inner tube 20 may also be configured to provide a second hole in addition to the hole 24.
  • the support plate 40 is provided on the distal end side of the inner tube 20, but in the fourth to eighth embodiments, the distal end side is configured to support the support plate. It is possible to achieve the same operations and effects as in the third embodiment.
  • the inner tube 20 is eccentrically disposed with respect to the outer tube 10, so that the outer peripheral surface 20 ⁇ / b> A has the shortest distance from the inner peripheral surface 10 ⁇ / b> A of the outer tube 10.
  • the present invention is not limited to this, and a concentric arrangement may be adopted.
  • the said embodiment although demonstrated as a structure which provides a radiation acceleration layer in both the outer peripheral surface 20A of the inner tube 20, and the inner peripheral surface 10A of the outer tube 10, it is not restricted to this, Only the outer peripheral surface 20A of the inner tube 20 is provided. A structure may be provided in which a radiation promoting layer is provided. Furthermore, although the said embodiment demonstrated as a structure by which a radiation acceleration
  • the combustion heater of the present invention it is possible to suppress an excessive increase in temperature of the inner pipe and to improve the heating efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gas Burners (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

 この燃焼加熱器(1)は、内部に燃焼用ガス(G)の供給路(21)を有する内管(20)と、内管の外周に燃焼空間(30)を隔てて配置された外管(10)とを有し、燃焼用ガスを噴出する孔部(24)が内管の管壁に形成される。また、内管の外周に輻射促進面(20B)を有する。この構造により、内管の過度の高温化が抑制され、また燃焼加熱器の加熱効率も向上する。

Description

燃焼加熱器
 本発明は、燃料ガスと燃焼用空気との予混合ガス等を燃焼させる燃焼加熱器に関する。本願は、2008年2月1日に日本に出願された特願2008-22976号に基づき優先権を主張し、その内容をここに援用する。
 従来より、耐熱材製の円管(放熱管)内で、燃料ガスと燃焼用空気との全予混合気を燃焼させ、この炎でこの放熱管を赤熱させるラジアントチューブバーナが製造されており、炎が露出しない細長い発熱源として加熱炉、暖房などに使用されている。また、燃焼用ガスを内管中で燃焼させ、燃焼ガスの噴流を直交的に設置した遮蔽面に衝突させて流れの向きを変え、放熱管から熱を取り出す燃焼バーナが公知である。
 この種の燃焼加熱器では、燃焼が放熱管の途中部分で終了するため、全長に沿って均一な温度分布が得られ難いとともに、窒素酸化物(NOx)の発生が多いという欠点がある。そこで、特許文献1には、内部が予混合気の供給路となっている多孔質管と、多孔質管の外周に同軸的に配設した放熱管とからなり、多孔質管から放射状に噴出させ層流となっている予混合ガスを、放熱管と多孔質管との中間において、火炎伝播速度と予混合気の流速とが釣り合う円筒面において燃焼させることにより、放熱管の全体を均一に高温化でき、大発熱量化が容易であり、低NOxを実現可能な燃焼加熱器が開示されている。
特開平6-241419号公報
 しかしながら、上述したような従来技術には、以下のような問題が存在する。
 放熱管である外管の内部に配置される内管は、外周を流れる燃焼ガスにより非常に高温になるため、内管内を流れる未燃ガスの温度が上昇しすぎ、未燃ガスが燃料と酸化剤との混合ガスであった場合には自発着火が生じて焼損を引き起こす可能性がある。
 また、内管が熱により歪むことにより残留変形等が生じ、所望の燃焼特性(加熱特性)が得られなくなる可能性もある。
 本発明は、以上のような点を考慮してなされたもので、内管の過度の高温化を抑制し、また加熱効率も向上させることが可能な燃焼加熱器を提供することを目的とする。
 上記の目的を達成するために本発明は、以下の構成を採用している。
 本発明の燃焼加熱器は、内部に燃焼用ガスの供給路を有する内管と、内管の外周に燃焼空間を隔てて配置された外管とを有し、前記燃焼用ガスを噴出する孔部が前記内管の管壁に形成された燃焼加熱器であって、前記内管の外周に輻射促進面を有する。
 本発明の燃焼加熱器では、加熱されて温度上昇した内管から輻射熱(放射熱)として熱の放射が促進されるため、内管の過度の高温化を抑制することができる。また、内管から放射された輻射熱により外管が加熱されるため、外管を介した加熱効率も向上させることが可能になる。なお、内管が低温である場合、輻射による熱伝達量は小さいため、供給路の燃焼用ガス(未燃ガス)の加熱には、ほとんど支障はない(輻射による熱伝達は、温度の4乗に比例する)。
 前記輻射促進面としては、前記内管の外周面に設けられた被膜層である構成を好適に採用できる。
 これにより、本発明では、塗装、コーティング等により内管の外周面に輻射促進材を被覆することにより、容易に輻射促進面を形成することができる。
 また、本発明では、前記外管の内周面に前記輻射促進面を有する構成も好適に採用できる。
 これにより、本発明では、燃焼空間の火炎からの輻射熱及び内管(輻射促進面)からの輻射熱を効果的に外管に吸収させて、外管を介した加熱効率を一層向上させることが可能になる。
 上記構成では、前記輻射促進面が前記内周面に設けられた被膜層である構成を好適に採用できる。
 これにより、本発明では、塗装、コーティング等により外管の内周面に輻射促進材を被覆することにより、容易に輻射促進面を形成することができる。
 なお、前記輻射促進面としては、被膜層以外にも、輻射促進材により内管、外管が形成される構成であってもよい。
 また、前記輻射促進面としては、セラミックバインダーを用いて形成される構成を好適に採用できる。
 さらに、本発明は、前記燃焼空間で前記外管と前記内管とに連結され、前記外管と前記内管との間で伝熱させる伝熱部材が設けられる構成も好適に採用できる。
 これにより、本発明では、内管の熱を伝熱部材を介して外管に伝熱させることができるため、内管の過度の高温化を抑制できるとともに、外管を介した加熱効率も向上させることが可能になる。
 また、本発明では、前記内管の外周面は、前記外管の内周面との距離が最も短い第1領域と、前記第1領域よりも長い第2領域とを有し、前記孔部は、前記第1領域に配置されて前記外管の内周面上に前記燃焼用ガスのよどみ点を形成する構成も好適に採用できる。
 この燃焼加熱器では、流速がゼロに近いよどみ点周辺の燃焼用ガスに点火(着火)することにより、容易に(すなわち、コストアップを招くことなく)安定した火炎を形成して保持することができる。従来では、よどみ点を形成するためにガスの流速を大きくする必要があり、この場合燃焼ガスの排気経路を十分に確保できないとともに、火炎が外管の内周面に達し、軸方向の両端側のみに火炎が形成される可能性がある。これに対し、本発明では外管の内周面との距離が短い第2領域に孔部を形成することにより、孔部と対向する外管の内周面に火炎を安定して形成・保持することができるとともに、例えば第1領域と逆側の領域を含む第2領域と外管の内周面との間に燃焼ガスの排気経路を確保することが可能になる。
 さらに、本発明では、外管の内周面のよどみ点に火炎が形成・保持されることから、外管を介して効率的に加熱することが可能になる。
 前記内管としては、前記外管に対して偏心した位置に配置され、前記孔部が前記内管の偏心方向に位置する外周面に形成される構成を好適に採用できる。
 これにより、本発明では、内管の外周面と外管の内周面との距離が短い第1領域を容易に形成することができる。
 内管を外管に対して偏心して配置する場合、前記内管を前記外管の中心軸周りに、周方向に間隔をあけて複数配設する構成も好適に採用できる。
 これにより、本発明では、外管の内周面に対して周方向に間隔をあけて複数火炎を形成・保持することが可能になり、より効果的に加熱することが可能になる。
 また、本発明では、前記内管と前記外管とが同心に配置される構成にも適用可能である。
 また、本発明では、基端側で片持ち支持された前記内管の先端側をこの内管と前記外管との間で支持して、前記内管の外周面と前記外管の内周面との間隔を保持する支持部材を有する構成を好適に採用できる。この支持部材としては、板状とすることもでき、また外管と内管との間に懸架されたロッド状とすることもできる。
 これにより、本発明では、内管の先端部に振れが生じ、基端側と先端側とで内管の外周面と外管の内周面との間隔が一定にならなくなることを防止して、孔部が形成された第1領域と外管の内周面との間隔を一定に保持することが可能になる。そのため、よどみ点を安定して継続的に形成することができ、結果として安定、且つ継続的に火炎を形成・保持することが可能になる。
 また、本発明では、前記燃焼空間に軸方向に沿って前記孔部と対向して設けられ、前記孔部から噴出された前記燃焼用ガスのよどみ点を形成するよどみ点形成部材を有する構成を好適に採用できる。
 従って、本発明の燃焼加熱器では、よどみ点形成部材の表面に形成され流速がゼロに近いよどみ点周辺の燃焼用ガスに点火(着火)することにより、容易に(すなわち、コストアップを招くことなく)安定した火炎を形成して保持することができる。従来では、よどみ点を形成するためにガスの流速を大きくする必要があり、この場合燃焼ガスの排気経路を十分に確保できないとともに、火炎が外管の内周面に達し、軸方向の両端側のみに火炎が形成される可能性がある。これに対し、本発明では孔部と対向するよどみ点形成部材の表面に火炎を安定して形成・保持することができるとともに、内管とよどみ点形成部材とが対向しない領域に燃焼ガスの排気経路を確保することが可能になる。
 前記よどみ点形成部材は、前記外管の中心軸上に配置され、前記内管は、前記孔部を前記中心軸に向けて、この中心軸周りに複数配置される構成を好適に採用できる。
 これにより、本発明では、外管の中心軸周りに燃焼用ガスのよどみ点及び火炎を安定して形成・保持することが可能になり、温度分布を抑制しつつ外管を加熱することができる。
 また、本発明では、基端側で片持ち支持された前記内管及び前記よどみ点形成部材の先端側を前記外管との間で支持して、前記内管及び前記よどみ点形成部材の外周面と前記外管の内周面との間隔を保持する支持部材を有する構成を好適に採用できる。この支持部材としては、板状とすることもでき、また外管と内管との間に懸架されたロッド状とすることもできる。
 これにより、本発明では、内管及びよどみ点形成部材の先端部に振れが生じ、基端側と先端側とで内管及びよどみ点形成部材の外周面と外管の内周面との間隔が一定にならなくなることを防止して、孔部及びよどみ点形成部材と外管の内周面との間隔を一定に保持することが可能になる。そのため、よどみ点を安定して継続的に形成することができ、結果として安定、且つ継続的に火炎を形成・保持することが可能になる。
 また、本発明では、最も先端側に位置する前記孔部よりも先端側に配置された前記支持部材が前記燃焼空間全体を閉塞する大きさで設けられる構成も好適に採用できる。
 これにより、本発明では、低温の外管先端部に燃焼用ガスが滞留し未燃状態となってCOが生じたりする事態を回避することが可能になる。
 前記支持板は、前記外管に対して軸方向に相対移動自在に設けられる構成を好適に採用できる。
 これにより、本発明では、外管と内管の温度差により、特に軸方向に熱膨張量に大きな差が生じた場合でも、支持板が外管に相対移動するため、支持板に変形等が生じることなく、内管の外周面と外管の内周面との間隔を保持することが可能になる。
 また、本発明では、前記内管に前記よどみ点と離間した位置に前記燃焼用ガスを噴出する第2孔部が設けられる構成も好適に採用できる。
 これにより、本発明では、よどみ点に形成・保持された火炎を第2孔部から噴出した燃焼用ガスに火移りさせることが可能になる。そのため、本発明では、多孔質体を用いる場合のように圧力損失が生じない。また内管及び外管を長くすることなく、投入熱量を増加させることが可能になるため、内管及び外管を長くした場合のような機器の大型化を防ぐことが可能になる。そして、本発明では、圧力損失を抑えることができるため、低圧の都市ガスラインでも使用可能となる。
 前記第2孔部としては、前記第1領域を挟んだ両側に配置されるとともに、前記第1領域に沿う方向に前記孔部と交互に配置される構成や、前記よどみ点形成部材と対向する領域を挟んだ両側に配置されるとともに、前記対向する領域に沿う方向に前記孔部と交互に配置される構成を好適に採用できる。
 これにより、本発明では、火炎の形成・保持及び火炎の火移りを等分布で生じさせることが可能になる。
 また、本発明では、前記内管の前記供給路が前記先端側で閉塞されている構成も好適に採用できる。
 これにより、本発明では、基端側から燃焼用ガスを供給するとともに、排気ガスを排気できる小型で低価格の燃焼加熱器を実現することができる。
 本発明の燃焼加熱器によれば、内管の過度の高温化を抑制し、また加熱効率も向上させることが可能になる。
第1実施形態に係る燃焼加熱器1の正面断面図である。 第1実施形態に係る燃焼加熱器1の側面断面図である。 内管を第1領域側から視た平面図である。 内管が配設された燃焼加熱器の側面断面図である。 第3実施形態に係る燃焼加熱器の正面断面図である。 第3実施形態に係る燃焼加熱器側面断面図である。 第4実施形態に係る燃焼加熱器の要部詳細図である。 第5実施形態に係る外管及び内管を模式的に示した図である。 第6実施形態に係る燃焼加熱器の正面断面図である。 第6実施形態に係る燃焼加熱器の側面断面図である。 第6実施形態に係る燃焼加熱器の要部拡大図である。 第7実施形態に係る燃焼加熱器の正面断面図である。 第7実施形態に係る燃焼加熱器の側面断面図である。 第7実施形態に係る燃焼加熱器の要部拡大図である。 第7実施形態に係る燃焼加熱器の要部拡大図である。 第8実施形態に係る燃焼加熱器の正面断面図である。 第8実施形態に係る燃焼加熱器の側面断面図である。 第8実施形態に係る燃焼加熱器の要部拡大図である。 内管が外管と同心に配置された燃焼加熱器の要部詳細図である。
符号の説明
 G…燃焼用ガス、 S…よどみ点、 1…燃焼加熱器、 10…外管(放熱管)、 10A…内周面、 10B、20B…輻射促進層(輻射促進面)、 20…内管、 20A…外周面、 21…供給路、 22…第1領域、 23…第2領域、 24…孔部、 25…第2孔部、 30…燃焼空間、 40、41…支持板(支持部材)
 以下、本発明の燃焼加熱器の実施の形態を、図1ないし図8を参照して説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
(第1実施形態)
 図1Aは、第1実施形態に係る燃焼加熱器1の正面断面図であり、図1Bは側面断面図である。
 燃焼加熱器1は、先端が閉塞された耐熱金属製の放熱管としての外管10と、基端側(図1Aの左側)で図示しない支持手段により片持ちで支持されて外管10の内部に配設され、内部に燃焼用ガスGの供給路21を有する耐熱金属製の内管20とから概略構成されている。
 燃焼用ガスGとしては、燃料と空気とを予混合したガスや、燃料と酸素含有ガスとを予混合したガスを用いることができ、燃料としては、メタンやプロパンなどが用いられる。また、液体燃料も予蒸発させる箇所を設けることで使用可能である。
 外管10は、先端が閉塞された有底円筒形状を呈しており、基端側には燃焼したガスを排気する排気管11が接続されている。また、外管10の内周面10Aには、輻射を促進させる輻射促進層(輻射促進面)10Bが成膜されている。この輻射促進層10Bについては後述する。
 内管20は、外管10と同様に、先端が閉塞された有底円筒形状を呈しており、基端側には、上述した燃焼用ガスGを供給する予混合気供給機構(図示せず)が接続され、例えば空気過剰率1.0~1.6程度の全予混合気が供給される。
 この内管20は、先端側において外管10の内側に偏心して配置され、外周面20Aと外管10の内周面10Aとの間に燃焼空間30を形成する。内管20の燃焼空間30に臨む外周面20Aには、上記輻射促進層10Bと同様に、輻射を促進させる輻射促進層(輻射促進面)20Bが成膜されている。
 輻射促進層10B、20Bは、例えばセラミックバインダーを用い、熔射により内周面10A、外周面20Aに被覆して設けられた被覆層で形成されている。この被覆層としては、例えば耐熱温度が800℃程度のものが用いられる。また、輻射促進層10B、20Bを熔射で形成することにより、高密着力、長寿命を図ることができる。
 内管20の外周面20Aは、外管10の内周面10Aとの距離が最も短い第1領域22と、第1領域22よりも長い第2領域23とを有している。より具体的には、外周面20Aのうち、内管20の偏心方向(図1中、下方向、図1B参照)に位置する部分には、外管10の内周面10Aとの距離が最も短い第1領域(母線)22が軸方向に沿って形成され、他の領域には第1領域22よりも内周面10Aとの距離が長い第2領域23が形成される。
 この第1領域22には、内管20の先端側に位置し、第1領域22に沿って互いに間隔をあけて複数(ここでは5つ)の孔部24が径方向に沿って管壁を貫通して形成されている。外管10の孔部24と対向する位置の近傍には、図示しない着火装置が設けられている。
 なお、孔部24が形成された領域よりも基端側(図1Aでは左側)の外周面20Aは、燃焼したガス(火炎)により供給路21の燃焼用ガスGを予熱するための予熱領域Pとされている。
 次に、上記の燃焼加熱器1における燃焼動作について説明する。
 予混合気供給機構から内管20の供給路21に供給された燃焼用ガスGは、孔部24から外管10の内周面10Aに向けて噴出される。
 ここで、孔部24は外管10の内周面10Aとの距離が最も短い第1領域22に形成されていることから、孔部24から噴出された燃焼用ガスGは、対向する外管10の内周面10Aと衝突し、各孔部24毎に内周面10A上によどみ点Sを形成し、このよどみ点Sを境として内周面10Aに沿って分岐される。
 そして、着火装置により、よどみ点S近傍の燃焼用ガスGに着火することにより、火炎が形成される。また、よどみ点Sで分岐した燃焼用ガスGは断面積が小さい第1領域22の近傍から断面積が大きい第1領域22とは逆側の燃焼空間に流れ、図1Bに示すように、燃焼空間30の内管20を挟んだ両側に火炎Fが形成される。
 このとき、よどみ点Sにおけるガスの流速はゼロであるため、また、よどみ点Sに向かう噴流周囲に形成される循環流により、形成した火炎は安定して保持される。
 そして、燃焼ガスは、燃焼空間30を流れて排気管11から排気されるが、燃焼空間30から排気管11に至る中途において、内管20の予熱領域Pで内管20の管壁を介して、燃焼用ガス(未燃ガス)Gとの熱交換が行われる。
 これにより、供給路21における燃焼用ガスGは、高温に予熱された状態で孔部24から噴出することになり、火炎Fの安定性が増し、狭隘な燃焼空間30に噴出されても、未燃分を生じさせることなく、安定に燃焼することができる。
 また、燃焼ガスによる熱、及び火炎Fによる熱で特に内管20は高温になるが、内管20の外周面20Aに輻射促進層20Bが設けられているため、内管20の熱放射率が増加し輻射熱としての放射(輻射)が促進される。一方、外管10においても内周面10Aに輻射促進層10Bが設けられているため、内管20からの輻射熱及び火炎Fからの輻射熱の吸収が促進される。
 以上のように本実施の形態では、内管20が有する輻射促進層20Bにより、内管20の熱が輻射熱として放射促進される。そのため、内管20の過度の高温化を抑制することが可能になるとともに、温度が低い場合でも輻射能力が落ちることで内管20が有する熱の大部分を内部の燃焼用ガスGの加熱(予熱)に用いることができ、加熱特性を維持することができる。従って、輻射促進層20Bの構造(材質、厚さ、分布等)を調整することにより、燃焼用ガスGに対する予熱温度を調整することも可能になる。
 また、この輻射熱により外管10を加熱することができ、外管10を介した加熱効率も向上させることができる。特に、本実施形態では、外管10の内周面10Aにも輻射促進層10Bが設けられているため、燃焼空間30の熱を効果的に外管10に吸収させることが可能になり、外管10を介した加熱効率を一層向上させることができる。
 また、本実施形態では、内管20の管壁に形成された孔部24から燃焼用ガスGを噴出させ、よどみ点Sに火炎Fを保持させるため、多孔質管を設ける場合のようにコストアップを招くことなく、流量を変えた場合でも容易に安定した火炎Fを形成することが可能になる。加えて、本実施形態では、燃焼量を増加させるためには、孔部24の数を増やすだけで済む。従って、構成部品も少なく、構造もシンプルであることから、燃焼加熱器1の製造コストも抑えることができるとともに、多孔質管を用いた場合のように、燃焼用ガスGの供給圧を大幅に上げる必要もなく、低圧の都市ガスラインであっても十分に適用可能になる。さらに、本実施形態では、内管20の外周面20Aと、外管10の内周面10Aとの距離が短い第1領域22を、外管10に対して内管20を偏心させて配置するという簡単な構成で形成しているため、容易、且つ低コストで安定して火炎Fを形成・保持することが可能になる。
 また、多孔質管を用いてガスの供給圧を高めた場合には、火炎が外管に達して保持できなくなるとともに、燃焼したガスの排気経路を充分に確保できなくなる可能性があるが、本実施形態では第1領域22と逆側の領域(第2領域)と対向する燃焼空間30において十分な排気系路を確保することができる。
 また、本実施形態では、よどみ点Sが外管10の内周面10A上に形成され、火炎Fも内周面10A上に沿って保持されることから、管状火炎のように外管10から離間して形成された場合のように熱が取り出しにくくなることなく、外管10を介した加熱効率を向上させることができる。
(第2実施形態)
 続いて、燃焼加熱器1の第2実施形態について図2を参照して説明する。
 なお、この図において、図1に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
 第2の実施の形態と上記の第1の実施の形態とが異なる点は、孔部24とは別に、ガスの圧力損失を低下させるための第2孔部を設けたことである。
 図2Aは、内管20を第1領域22側から視た平面図であり、図2Bは、この内管20が配設された燃焼加熱器1の側面断面図である。
 図2Aに示すように、内管20の管壁には、第1領域22に位置して孔部24が設けられるとともに、第1領域22に沿う方向に孔部24と交互に、且つ第1領域22を挟んだ両側に位置して第2孔部25が設けられている。
 これら第2孔部25からは、図2Bに示すように、よどみ点Sから離間した位置に向けて燃焼ガスGが噴出される。
 また、第2孔部25は、第2孔部25から噴出された燃焼用ガスGによどみ点Sで形成された火炎Sから安定して火移りする位置に設けられる。
 他の構成は、内管20の外周面20Aに輻射促進層20Bが設けられ、外管10の内周面10Aに輻射促進層10Bが設けられる点も含めて上記第1実施形態と同様である。
 上記の構成の燃焼加熱器1では、上記第1実施形態と同様の作用・効果が得られることに加えて、よどみ点Sに形成・保持された火炎Fを第2孔部25から噴出した燃焼用ガスGに火移りさせることが可能になり、容易に流量を大きくした状態でガスを燃焼させることができる。そのため、本実施形態では、多孔質体を用いる場合のように圧力損失が生じない。また流量を増やすために内管20及び外管10を長くすることなく、投入熱量を増加させることが可能になる。その結果、内管20及び外管10を長くした場合のような機器の大型化を防ぐことが可能になるとともに、圧力損失を抑えることができるため、低圧の都市ガスラインでも使用可能となる。
 また、本実施形態では、孔部24と第2孔部25とが第1領域22に沿って交互に、また第2孔部25が第1領域22を挟んだ両側に配置されることから、火炎Fの形成・保持及び火炎の火移りをほぼ等分布で安定した状態で生じさせることが可能になる。
(第3実施形態)
 続いて、燃焼加熱器1の第3実施形態について図3を参照して説明する。
 なお、この図において、図1に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
 第3の実施形態と上記の第1実施形態とが異なる点は、内管20の先端側に支持板を設けたことである。
 図3Aに示すように、内管20の孔部24よりも先端側には、軸方向と直交する方向に沿って耐熱金属等で形成された支持板(支持部材)40が設けられている。この支持板40は、図3Bに示すように、貫通孔40Aで内管20の外周面20Aに嵌合固定され、外周面40Bで外管10の内周面10Aに軸方向に移動自在に支持される。
 すなわち、支持板40は、燃焼空間30の全体を閉塞する大きさを有して内管20と一体的に構成され、外管10に対して軸方向に移動自在に設けられている。
 他の構成は、内管20の外周面20Aに輻射促進層20Bが設けられ、外管10の内周面10Aに輻射促進層10Bが設けられる点も含めて上記第1実施形態と同様である(ただし、図3Aの部分拡大図及び図3Bにおいては、輻射促進層10B、20Bは図示略)。
 上記の構成の燃焼加熱器1においては、上記第1実施形態と同様の作用・効果が得られることに加えて、基端側で片持ちで支持された内管20の先端側が支持板40で支持されることにより、内管20の外周面20A(すなわち第1領域22)と、外管10の内周面10Aとの間隔が一定に保持される。また、外管10と内管20との温度差に起因して、高温となる内管20が熱膨張した場合でも、内管20と一体的に構成された支持板40が外管10の内周面10Aと軸方向に相対移動するため、変形や歪を生じることが防止される。
 また、最も先端側に位置する孔部24から噴出された燃焼用ガスGは、対向する外管10の内周面10Aと衝突し、各孔部24毎に内周面10A上によどみ点Sを形成し、このよどみ点Sを境として内周面10Aに沿って分岐されるが、支持板40により第1領域22と対向する燃焼空間30が閉塞されていることから、支持板40に向けて分岐された燃焼用ガスGは、支持板40に衝突した後に第1領域22と逆側(第2領域23)と対向する燃焼空間30に導かれる。そのため、よどみ点Sで保持される火炎により、周辺の燃焼用ガスGに着火させやすくなる。
 さらに、本実施形態では、支持板40によって燃焼空間30が区画されているため、比較的低温である外管10の先端部に燃焼用ガスGが滞留し未燃状態となってCOが生じたりする事態を回避することが可能になる。
 なお、上記実施形態では、支持部材として板状の支持板40を用いる構成としたが、これに限定されるものではなく、例えば外管10の内周面10Aに軸方向に移動自在に支持されたリング部材と、このリング部材と内管20とを連結するロッド部材とからなる支持部材を用いてもよい。
(第4実施形態)
 続いて、上記第3実施形態の変形例としての第4実施形態について、図4を参照して説明する。
 なお、この図において、図3に示す第3実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
 図4に示すように、本実施形態における内管20の外周面20Aには、支持板40よりも基端側で孔部24に対応するよどみ点Sを挟む孔部24の配列方向両側に支持板41がそれぞれ設けられている。この支持板41は、第1領域22と対向する燃焼空間30を閉塞する大きさで設けられている。具体的には、各支持板41は、孔部24から噴出された燃焼用ガスGが逆側の燃焼空間30に流れて排気管11から排気可能なように、支持板40のように燃焼空間30を全体的に閉塞するのではなく、第1領域22の周辺の燃焼空間30のみを閉塞する。また、各支持板41は、且つ外管10に対する内管20の位置を保持可能なように、内管20の管壁から第1領域22の周辺においてのみ外管10に向けて突出し、内周面10Aに支持される、例えば扇形形状に形成される。
 他の構成は、内管20の外周面20Aに輻射促進層20Bが設けられ、外管10の内周面10Aに輻射促進層10Bが設けられる点も含めて上記第3実施形態と同様である。
 上記の構成の燃焼加熱器1においては、上記第3実施形態と同様の作用・効果が得られることに加えて、各孔部24から噴出された燃焼用ガスGが支持板41に衝突した後に第1領域22と逆側(第2領域23)と対向する燃焼空間30にそれぞれ導かれる。そのため、よどみ点Sで保持される火炎により、周辺の燃焼用ガスGにより効果的に着火させやすくなる。
(第5実施形態)
 続いて、燃焼加熱器1の第5実施形態について、図5を参照して説明する。
 図5は、外管10及び内管20を模式的に示した図である。
 この図に示すように、本実施形態における燃焼加熱器1においては、内管20が外管10内の燃焼空間30に、外管10の中心軸周りに周方向に間隔をあけて、且つそれぞれが外管10と偏心して複数(図5では、60°間隔で6つ)配置されている。
 また、各内管20には、外周面20Aと外管10の内周面10Aとが最も短い距離となる第1領域22に位置して、孔部24(図5では図示せず)が軸方向に間隔をあけて複数形成されている。
 他の構成は、内管20の外周面20Aに輻射促進層20Bが設けられ、外管10の内周面10Aに輻射促進層10Bが設けられる点も含めて上記第1実施形態と同様である。
 上記の構成の燃焼加熱器1においては、複数設けられた内管20(の孔部)からそれぞれ燃焼用ガスGが噴出されて、外管10の内周面10A上によどみ点を形成することになり、燃焼用ガスGに着火することにより、外管10の内周面に沿った軸周りに複数の安定した火炎が形成される。
 従って、本実施形態では、上記第1実施形態と同様の作用・効果が得られることに加えて、より高温に外管10を加熱することが可能になる。
(第6実施形態)
 続いて、燃焼加熱器1の第6実施形態について図6を参照して説明する。
 なお、この図において、図1に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
 上記第1乃至第5実施形態では、いずれも、よどみ点Sを外管10の内周面10A上に形成する構成としたが、第6実施形態では、ブラフボディ(よどみ点および循環流形成部材)の表面に形成する場合について説明する。
 図6Aに示すように、本実施形態の燃焼加熱器1は、基端側(図6Aの左側)で図示しない支持手段により片持ちで支持されて外管10の内部の燃焼空間30に配設され、内部に燃焼用ガスGの供給路21を有する耐熱金属製の複数の内管20及びブラフボディ(よどみ点および循環流形成部材)50を有している。
 内管20は、図6Bに示すように、外管10の中心軸周りに複数(ここでは60°間隔で6つ)互いに間隔をあけて配置される。
 各内管20は、先端側でブラフボディ50と対向し外管10の中心軸に向く位置に、軸方向に沿って互いに間隔をあけて複数(ここでは5つ)の孔部24が径方向に管壁を貫通して形成されている。
 ブラフボディ50は、軸線を外管10の中心軸上に合致させ、周囲を内管20に囲まれて配置されており、各内管20(孔部24)と対向する位置には、内管20の軸周りに形成された凹曲面50Aが軸方向に沿って形成されている。
 他の構成は、内管20の外周面20Aに輻射促進層20Bが設けられ、外管10の内周面10Aに輻射促進層10Bが設けられる点も含めて上記第1実施形態と同様である(ただし、図6B及び図6Cにおいては、輻射促進層10B、20Bは図示略)。
 上記の構成の燃焼加熱器1においては、内管20の供給路21に供給された燃焼用ガスGは、図6Cに示すように、それぞれ孔部24からブラフボディ50の凹曲面50Aに向けて噴出される。
 孔部24から噴出された燃焼用ガスGは、対向するブラフボディ50の凹曲面50Aと衝突し、各孔部24毎に凹曲面50A上によどみ点Sを形成し、このよどみ点Sを境として凹曲面50Aに沿って分岐される。
 そして、着火装置により、よどみ点S近傍の燃焼用ガスGに着火することにより、よどみ点Sにおいて火炎を形成・保持させる。このとき、よどみ点Sにおけるガスの流速はゼロであるため、また、よどみ点Sに向かう噴流周囲に形成される循環流によって形成した火炎はよどみ点Sに安定して保持される。
 そして、よどみ点Sで分岐した燃焼用ガスGは、ガス圧が高いブラフボディ50の近傍から、内管20に対してブラフボディ50と逆側である外管10の内周面10A側の燃焼空間30に流れる。
 そして、燃焼ガスは、燃焼空間30を流れて排気管11から排気されるが、燃焼空間30から排気管11に至る中途において、内管20の予熱領域Pで内管20の管壁を介して、燃焼用ガス(未燃ガス)Gとの熱交換が行われる。
 これにより、供給路21における燃焼用ガスGは、高温に予熱された状態で孔部24から噴出することになり、火炎Fの安定性が増し、狭隘な燃焼空間30に噴出されても、未燃分を生じさせることなく、安定に燃焼することができる。
 このように本実施の形態では、内管20の管壁に形成された孔部24からブラフボディ50の凹曲面50Aに向けて燃焼用ガスGを噴出させ、よどみ点Sに火炎Fを保持させるため、多孔質管を設ける場合のようにコストアップを招くことなく、流量を変えた場合でも容易に安定した火炎Fを形成・保持することが可能になる。加えて、本実施形態では、燃焼量を増加させるためには、孔部24の数を増やすだけで済む。従って、構成部品も少なく、構造もシンプルであることから、燃焼加熱器1の製造コストも抑えることができるとともに、多孔質管を用いた場合のように、燃焼用ガスGの供給圧を大幅に上げる必要もなく、低圧の都市ガスラインであっても十分に適用可能になる。
 また、各内管20の外周面20Aに輻射促進層20Bが設けられ、外管10の内周面10Aにも輻射促進層10Bが設けられているため、燃焼空間30の熱を効果的に外管10に吸収させることが可能になり、外管10を介した加熱効率を一層向上させることができる。
(第7実施形態)
 続いて、燃焼加熱器1の第7実施形態について図7を参照して説明する。
 なお、この図において、図に示す第6実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
 第7実施形態と上記の第6実施形態とが異なる点は、外管10の中心軸上に内管20と同様の円管を配置したことである。
 すなわち、図7Cの部分拡大図に示すように、本実施形態では、外管10の中心軸に軸線を合致させ、且つ内管20と間隔をあけて内管(よどみ点形成部材)120が配置されている。内管120は、先端が閉塞された有底円筒形状を呈しており、基端側には、上述した燃焼用ガスGを内部の供給路121に供給する予混合気供給機構(図示せず)が接続されている。また、内管120の外周面120Aには、上記輻射促進層20Bと同様の輻射促進層120Bが設けられている。
 また、内管120は、周囲に配された各配管20と対向する位置に燃焼用ガスGを噴出する孔部124がそれぞれ形成されている。この孔部124は、図7Dに示すように、軸方向については、各内管20に対して孔部24とは対向せずに外周面20Aと対向する位置に形成されている。すなわち、内管20の孔部24も、内管120の孔部124とは対向せずに外周面120Aと対向している。
 他の構成は、内管20の外周面20Aに輻射促進層20Bが設けられ、外管10の内周面10Aに輻射促進層10Bが設けられる点も含めて上記第6実施形態と同様である(ただし、図7Bにおいては、輻射促進層10B、20B、120Bは図示略)。
 上記構成の燃焼加熱器1においては、予混合気供給機構から内管20の供給路21に供給された燃焼用ガスGは、それぞれ孔部24から内管120の外周面120Aに向けて噴出される。この外周面120Aには、燃焼用ガスGのよどみ点Sが形成され、燃焼用ガスGはよどみ点Sで分岐して外周面120Aに沿って流れる。
 一方、内管120の供給路121に供給された燃焼用ガスGは、それぞれ孔部124から内管20の外周面20Aに向けて噴出される。この外周面20Aには、燃焼用ガスGのよどみ点Sが形成され、燃焼用ガスGはよどみ点Sで分岐して外周面20Aに沿って流れる。つまり、本実施形態では、内管120のみならず、内管20もよどみ点形成部材として作用する。
 そして、よどみ点S近傍の燃焼用ガスGに着火することにより、よどみ点Sにおいて火炎を形成・保持させる。このとき、よどみ点Sにおけるガスの流速はゼロであるため、形成した火炎はよどみ点Sに安定して保持される。
 そして、よどみ点Sで分岐した燃焼用ガスGは、ガス圧が相対的に低い外管10の内周面10A側の燃焼空間30に流れる。燃焼したガスは、排気管11から排気される。
 このように、本実施形態では、上記第6実施形態と同様の作用・効果が得られることに加えて、内管120からも燃焼用ガスGが噴出されるため、より効果的に加熱することが可能になる。また、周囲に配置された内管20の外周面20Aにもよどみ点Sが形成されて火炎が形成・保持されるため、より広範囲に、且つ安定した火炎を形成・保持することができる。
 なお、内管20の孔部24と、内管120の孔部124とは、互いに対向する位置に設けてもよいが、よどみ点Sをより安定して形成するためには、互いに外周面120A、20Aに対向する位置に設けることが好ましい。
(第8実施形態)
 続いて、燃焼加熱器1の第8実施形態について図8を参照して説明する。
 なお、この図において、図6に示す第6実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
 図8Bに示すように、本実施形態では、外管1の中心軸上に内管を設けずに、中心軸周りに周方向に互いに間隔をあけて内管20が複数(ここでは60°間隔で6つ)設けられている。
 各内管20は、図8Cの部分拡大図に示すように、隣り合う内管20と対向する位置にそれぞれ燃焼用ガスGを噴出する孔部24が設けられている。
 また、孔部24の軸方向の位置については、第7実施形態と同様に、噴出した燃焼用ガスGが隣り合う内管20の外周面20Aに衝突するように、先に図7Dの部分拡大図に示したように、隣り合う内管20同士で互い違いに配置することが好ましい。
 他の構成は、内管20の外周面20Aに輻射促進層20Bが設けられ、外管10の内周面10Aに輻射促進層10Bが設けられる点も含めて上記第6実施形態と同様である(ただし、図8Bにおいては、輻射促進層10B、20Bは図示略)。
 上記の構成の燃焼加熱器1においては、上記第6実施形態と同様の作用・効果が得られることに加えて、よどみ点S及び火炎がより放熱管としての外管10に近接した位置に形成されることになるため、外管10を介してより熱を取り出しやすくなり、加熱効率を向上させることが可能になる。
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、上記第2実施形態では、孔部24の他に第2孔部25を設ける構成について説明したが、これに限定されるものではなく、例えば第3実施形態~第8実施形態で示した内管20についても、孔部24の他に第2孔部を設ける構成としてもよい。
 同様に、上記第3実施形態では、内管20の先端側に支持板40を設ける構成としたが、第4乃至第8実施形態においても、先端側を支持板を支持する構成とすることにより、第3実施形態と同様の作用・効果を奏することが可能になる。
 また、上記実施形態では、いずれも内管20が外管10に対して偏心して配置されることにより、外周面20Aが外管10の内周面10Aに対して最も距離が短い第1領域22が形成される構成としたが、これに限られるものではなく、同心で配置する構成としてもよい。
 また、上記実施形態では、内管20の外周面20A及び外管10の内周面10Aの双方に輻射促進層を設ける構成として説明したが、これに限られず、内管20の外周面20Aのみに輻射促進層を設ける構成であってもよい。
 さらに、上記実施形態では、輻射促進面が輻射促進層10B、20B(120B)で形成される構成として説明したが、これ以外にも、例えば外管10及び内管20、120が輻射促進層10B、20B、120Bを形成する材料で構成され、内周面10A、外周面20A、120A自身が輻射促進特性を有する構成であってもよい。
 また、上記実施形態では、いずれも内管20を外管10に対して偏心して配置する構成としたが、これに限定されるものではなく、例えば図9に示すように、孔部24が放射状に配され輻射促進層20Bを有する内管20を、輻射促進層10Bを有する外管10と同心に配置する構成としてもよい。
 以上説明した通り、本発明の燃焼加熱器によれば、内管の過度の高温化を抑制し、また加熱効率も向上させることが可能になる。

Claims (8)

  1.  内部に燃焼用ガスの供給路を有する内管と、この内管の外周に燃焼空間を隔てて配置された外管とを有し、前記燃焼用ガスを噴出する孔部が前記内管の管壁に形成され、前記内管の外周に輻射促進面を有する燃焼加熱器。
  2.  前記輻射促進面は、前記内管の外周面に設けられた被膜層である請求項1記載の燃焼加熱器。
  3.  前記外管の内周面に前記輻射促進面を有する請求項1記載の燃焼加熱器。
  4.  前記輻射促進面は、前記内周面に設けられた被膜層である請求項3記載の燃焼加熱器。
  5.  前記輻射促進面は、セラミックバインダーを用いて形成される請求項1記載の燃焼加熱器。
  6.  前記燃焼空間で前記外管と前記内管とに連結され、前記外管と前記内管との間で伝熱させる伝熱部材が設けられる請求項1記載の燃焼加熱器。
  7.  前記内管と前記外管とは、同心に配置される請求項1記載の燃焼加熱器。
  8.  前記内管は、前記外管に対して偏心して配置される請求項1記載の燃焼加熱器。
PCT/JP2009/051642 2008-02-01 2009-01-30 燃焼加熱器 WO2009096554A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0906717-5A BRPI0906717A2 (pt) 2008-02-01 2009-01-30 Aquecedor de combustão.
US12/812,868 US20110041837A1 (en) 2008-02-01 2009-01-30 Combustion heater
CN2009801034445A CN101932876B (zh) 2008-02-01 2009-01-30 燃烧加热器
EP09705985A EP2244012A4 (en) 2008-02-01 2009-01-30 COMBUSTION HEATER
CA2713306A CA2713306C (en) 2008-02-01 2009-01-30 Combustion heater
US14/851,393 US20160003482A1 (en) 2008-02-01 2015-09-11 Combustion heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-022976 2008-02-01
JP2008022976A JP2009186023A (ja) 2008-02-01 2008-02-01 燃焼加熱器

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/812,868 A-371-Of-International US20110041837A1 (en) 2008-02-01 2009-01-30 Combustion heater
US14/851,393 Division US20160003482A1 (en) 2008-02-01 2015-09-11 Combustion heater

Publications (1)

Publication Number Publication Date
WO2009096554A1 true WO2009096554A1 (ja) 2009-08-06

Family

ID=40912897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051642 WO2009096554A1 (ja) 2008-02-01 2009-01-30 燃焼加熱器

Country Status (10)

Country Link
US (2) US20110041837A1 (ja)
EP (1) EP2244012A4 (ja)
JP (1) JP2009186023A (ja)
KR (1) KR101215090B1 (ja)
CN (1) CN101932876B (ja)
BR (1) BRPI0906717A2 (ja)
CA (1) CA2713306C (ja)
RU (1) RU2454603C2 (ja)
TW (1) TWI374997B (ja)
WO (1) WO2009096554A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599336B1 (en) * 2012-03-01 2017-03-21 Midco International, Inc. Burner assembly and system for heating drying air
TWI498511B (zh) * 2013-03-08 2015-09-01 Ihi Corp 連續加熱爐
US20150225594A1 (en) 2014-02-11 2015-08-13 Gregory E Robinson Surface treatment composition
JP7014632B2 (ja) * 2018-02-21 2022-02-01 川崎重工業株式会社 バーナ装置
CN109870043A (zh) * 2018-12-29 2019-06-11 上海工程技术大学 一种介质参与性辐射加热气化装置的改良结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150608A (ja) * 1988-11-29 1990-06-08 Toho Gas Co Ltd チューブバーナ
JPH0590119U (ja) * 1992-04-15 1993-12-07 東邦瓦斯株式会社 チューブバーナの内部燃焼装置
JPH06213408A (ja) * 1993-01-18 1994-08-02 Nippon Steel Corp ラジアントチューブ
JPH06241419A (ja) 1993-02-17 1994-08-30 Toho Gas Co Ltd 環状火炎式のラジアントチューブバーナ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437415A (en) * 1966-08-22 1969-04-08 Graig & Seeley Ltd Radiant gas burner
US4519770A (en) * 1980-06-30 1985-05-28 Alzeta Corp. Firetube boiler heater system
US4524752A (en) * 1983-04-26 1985-06-25 Clarke Beresford N Recuperator
DE3341490A1 (de) * 1983-11-17 1985-05-30 Webasto-Werk W. Baier GmbH & Co, 8035 Gauting Brennstoffbetriebene heizvorrichtung, insbesondere fahrzeugzusatzheizgeraet
JPS61147009A (ja) * 1984-12-19 1986-07-04 Toshiba Ceramics Co Ltd ラジアントチユ−ブ
JPH0810041B2 (ja) * 1988-02-05 1996-01-31 株式会社日本ケミカル・プラント・コンサルタント 遠赤外線放射装置
JPH02110206A (ja) * 1988-10-19 1990-04-23 Kuree Baan Gijutsu Kenkyusho:Kk セラミックス工業用輻射管状バーナ
JPH0590119A (ja) * 1991-09-25 1993-04-09 Sony Corp 作業条件指示装置
ATE214139T1 (de) * 1997-10-08 2002-03-15 Shell Int Research Heizvorrichtung mit flammenloser verbrennung
CN2345871Y (zh) * 1997-10-18 1999-10-27 于强 抛物线聚热辐射气液燃料炉具
RU2202736C1 (ru) * 2001-09-11 2003-04-20 Дочернее открытое акционерное общество "Промгаз" Открытого акционерного общества "Газпром" U-образная радиационная труба
EP1524473A1 (de) * 2003-10-13 2005-04-20 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Verbrennen von Brennstoff
EP1701092A1 (de) * 2005-02-18 2006-09-13 CRAMER SR s.r.o. Brennerfläche für einen Strahlungsbrenner
EP2215404A1 (en) * 2007-09-21 2010-08-11 Wessex Incorporated Radiant tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150608A (ja) * 1988-11-29 1990-06-08 Toho Gas Co Ltd チューブバーナ
JPH0590119U (ja) * 1992-04-15 1993-12-07 東邦瓦斯株式会社 チューブバーナの内部燃焼装置
JPH06213408A (ja) * 1993-01-18 1994-08-02 Nippon Steel Corp ラジアントチューブ
JPH06241419A (ja) 1993-02-17 1994-08-30 Toho Gas Co Ltd 環状火炎式のラジアントチューブバーナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2244012A4

Also Published As

Publication number Publication date
CA2713306C (en) 2013-01-29
US20160003482A1 (en) 2016-01-07
EP2244012A4 (en) 2012-10-24
JP2009186023A (ja) 2009-08-20
CA2713306A1 (en) 2009-08-06
KR20100102694A (ko) 2010-09-24
RU2010133446A (ru) 2012-03-20
CN101932876A (zh) 2010-12-29
BRPI0906717A2 (pt) 2015-06-30
RU2454603C2 (ru) 2012-06-27
TW200940907A (en) 2009-10-01
CN101932876B (zh) 2012-08-15
EP2244012A1 (en) 2010-10-27
KR101215090B1 (ko) 2012-12-24
US20110041837A1 (en) 2011-02-24
TWI374997B (en) 2012-10-21

Similar Documents

Publication Publication Date Title
US20030235798A1 (en) U-tube diffusion flame burner assembly having unique flame stabilization
JP4892107B1 (ja) 炉頂燃焼式熱風炉
US5749720A (en) Gas heating apparatus with dual burners
WO2009096554A1 (ja) 燃焼加熱器
WO2009096562A1 (ja) 燃焼加熱器
JP5182618B2 (ja) 燃焼加熱器
JP5182617B2 (ja) 燃焼加熱器
JP4775398B2 (ja) 放射加熱装置
CN102245970B (zh) 燃烧器
RU2482394C2 (ru) Камера сгорания
JP6594749B2 (ja) ラジアントチューブバーナ
JP5272698B2 (ja) 燃焼器
JP5966352B2 (ja) ラジアントチューブ式加熱装置
KR20200037798A (ko) 유동 협소부를 갖는 석탄 노즐

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103444.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705985

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12812868

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 5240/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2713306

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009705985

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107017219

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010133446

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0906717

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100727