WO2012128002A1 - 成形型の製造方法 - Google Patents

成形型の製造方法 Download PDF

Info

Publication number
WO2012128002A1
WO2012128002A1 PCT/JP2012/055029 JP2012055029W WO2012128002A1 WO 2012128002 A1 WO2012128002 A1 WO 2012128002A1 JP 2012055029 W JP2012055029 W JP 2012055029W WO 2012128002 A1 WO2012128002 A1 WO 2012128002A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
molding
base
manufacturing
shaping
Prior art date
Application number
PCT/JP2012/055029
Other languages
English (en)
French (fr)
Inventor
公久 金子
邦彦 吉岡
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP12761326.3A priority Critical patent/EP2689906B1/en
Publication of WO2012128002A1 publication Critical patent/WO2012128002A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/36Linings or coatings, e.g. removable, absorbent linings, permanent anti-stick coatings; Linings becoming a non-permanent layer of the moulded article
    • B28B7/364Linings or coatings, e.g. removable, absorbent linings, permanent anti-stick coatings; Linings becoming a non-permanent layer of the moulded article of plastic material or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/38Treating surfaces of moulds, cores, or mandrels to prevent sticking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/40Plastics, e.g. foam or rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material

Definitions

  • the present invention relates to a method for manufacturing a mold used when molding a molded body.
  • a molded body such as a urethane molded body
  • the following steps are sequentially performed.
  • slurry or the like which is a precursor of a molded body
  • the “molding surface” is a surface where slurry, paste, etc., which are precursors of the molded body injected into the molding space, actually come into contact.
  • the slurry or the like is solidified (and dried) to form a molded body in the molding space. Then, by removing the mold from the molded body (released), the molded body is obtained.
  • the molded body may stick to the molding surface of the mold.
  • a technique for providing a fluororesin layer on the molding surface of a molding die in order to suppress the occurrence of adhesion of the molded body is widely known (for example, JP-A-2006-264225). See).
  • Japanese Patent Application Laid-Open No. 2006-264225 a base plating layer containing nickel or the like is formed on the molding surface of a mold, and a fluororesin layer (thickness of 50 ⁇ m or less) is formed on the base plating layer by coating. It is described that. Japanese Patent Application Laid-Open No. 2006-264225 describes that, by these treatments, on the molding surface of the mold, hardness is ensured by the base plating layer, and good releasability is obtained by the fluororesin layer. .
  • the surface of the coated fluororesin layer itself becomes the “molding surface”.
  • the shape accuracy surface roughness, flatness, parallelism, etc.
  • the shape accuracy of the molding surface of the mold described in the above document is also low.
  • the present invention has been made to cope with such a problem, and an object thereof is to provide a method for manufacturing a mold in which the shape accuracy of the resin layer constituting the molding surface is high.
  • the molding die obtained by the manufacturing method according to the present invention includes a base, and a resin layer that is formed on the base and whose surface forms a molding surface.
  • the base has higher rigidity than the resin layer.
  • “Rigidity” refers to the product EI of the Young's modulus E [N / m 2 ] of the material and the cross-sectional secondary moment I [m 4 ] in the thickness direction.
  • the material of the resin layer is a fluorine compound
  • the material of the base is a metal.
  • a resin layer having a thickness of 1 mm or more is formed on (on the surface of) the base.
  • a resin layer is formed so as to cover the surface of the base.
  • the resin layer can be formed, for example, by lining, coating, painting (coating), or attaching a resin plate. In order to ensure a sufficient thickness of the resin layer, it is particularly preferable to employ lining or resin plate sticking.
  • the molding surface is formed (completed) by applying cutting to the surface of the formed resin layer.
  • the cutting process include end milling and flat grinding.
  • Various finishing processes may be added thereafter. Note that all of the surface of the resin layer may be used as the molding surface, or only a part of the surface of the resin layer may be used as the molding surface. The entire surface of the resin layer used as the molding surface is formed (completed) by cutting.
  • the molding surface of the resin layer of the mold is completed by cutting. Therefore, unlike the molding die described in the above document (molding die in which the surface of the fluororesin layer formed by coating itself becomes a “molding surface”), the shape accuracy of the molding surface is equivalent to the shape accuracy obtained by processing. High accuracy is obtained. That is, a molding die having a high shape accuracy of the surface of the resin layer used as the molding surface can be obtained. As a result, a molding surface having a shape that is difficult to realize with the molding die described in the above document, such as a case where the molding surface is a sufficiently long and narrow inner surface (with a sufficiently large aspect ratio) through-hole, etc., is employed. Even in this case, the shape accuracy of the entire molding surface can be increased.
  • the resin layer is formed on the surface of the base portion having higher rigidity than the resin layer. Therefore, the resin layer is less likely to be deformed than a molding die composed of only the resin layer, and the shape accuracy of the molding surface of the resin layer can be further enhanced. Furthermore, the surface of the resin layer formed sufficiently thick as “1 mm or more” is processed to form a molding surface. Therefore, a relatively large machining allowance (thickness of a portion removed by machining) can be ensured.
  • the ten-point average roughness (RzJIS) of the molding surface formed by the processing is 10 ⁇ m or less.
  • the contact angle of water with respect to the molding surface formed by the processing is 60 ° or more. Thereby, favorable mold release property can be obtained.
  • FIG. 2 is a cross-sectional view obtained by cutting the mold shown in FIG. 1 along line 2-2.
  • FIG. 3 is a first process diagram corresponding to FIG. 2 when the mold shown in FIG. 1 is manufactured.
  • FIG. 4 is a second process diagram corresponding to FIG. 2 when the mold shown in FIG. 1 is manufactured.
  • FIG. 4 is a third process diagram corresponding to FIG. 2 when the mold shown in FIG. 1 is manufactured.
  • FIG. 6 is a fourth process diagram corresponding to FIG. 2 when the mold shown in FIG. 1 is manufactured.
  • the molding die produced by the production method according to the present invention is prepared by, for example, producing a slurry from a raw material for molding a slurry containing ceramic raw material powder, a dispersion medium, a gelling agent, and a dispersing agent, and injecting this slurry. It can be applied to a mold for manufacturing.
  • a part of the molding die only needs to have the configuration of the molding die according to the present invention, but the entire molding die preferably has the configuration of the molding die according to the present invention.
  • the mold is divided into a plurality of parts such as an upper mold and a lower mold, at least one part only needs to have the configuration of the mold according to the present invention.
  • FIG.1 and FIG.2 shows an example of the shaping
  • the mold includes a base 10 and a resin layer 20 formed on the entire surface of the base 10 (covering the entire surface).
  • the surface of the resin layer 20 formed on the inner wall surface of the cylindrical through hole formed in the base 10 that is, a part of the resin layer 20 covering the entire base 10) (that is, in the cylinder)
  • the wall surface P1 is used as the “molding surface”.
  • Molding surface is a surface that defines a molding space for molding a molded body, and is a surface on which slurry, paste, and the like, which are precursors of the molded body injected into the molding space, actually contact. . That is, by using this mold, a cylindrical molded body can be obtained.
  • the base 10 is made of a metal such as an aluminum alloy, stainless steel, titanium, or iron.
  • the base 10 has higher rigidity than the resin layer 20. That is, the base 10 can exhibit a function as a support substrate that suppresses deformation of the resin layer 20.
  • the resin layer 20 is made of a highly releasable material such as a fluororesin (fluorine compound), a silicon resin (silicon compound), or PVA.
  • fluorine compound fluorine compound
  • silicon resin silicon compound
  • PVA fluorine-based compound
  • fluorine-based compound include PTFE, PFA, ETFE, FEP, PVDF, PCTFE, and the like.
  • the thickness Ta (see FIG. 2) of the portion corresponding to the molding surface P1 of the resin layer 20 (that is, the hollow cylindrical portion) is 0.1 to 1 mm.
  • the molding surface P1 is completed by machining.
  • the ten-point average roughness (RzJIS) of the molding surface P1 (that is, the cylindrical inner wall surface) is 20 ⁇ m or less (more preferably 10 ⁇ m or less).
  • the contact angle of water with respect to the molding surface P1 is preferably 60 ° or more (more preferably 85 ° or more). Thereby, favorable mold release property can be obtained.
  • an additive and a primer are not contained in the material constituting the molding surface P1.
  • an additive or a primer may be included in the resin layer 20 (a portion not constituting the molding surface).
  • FIG. 3 First, the base 10 is fabricated using one of the known techniques. Next, as shown in FIG. 4, the entire surface of the base 10 (including the inner wall surface of the cylindrical through hole) is subjected to primer treatment using one of well-known methods.
  • the resin layer 20 is formed on the entire surface (including the inner wall surface of the cylindrical through hole) of the base portion 10 subjected to the primer treatment.
  • the resin layer 20 is formed by, for example, lining, coating, painting (coating), or pasting a resin plate.
  • the formed resin layer 20 has a thickness Tb (see FIG. 5) of 1 to 3 mm.
  • the surface portion of the resin layer 20 is finished by machining until the thickness of the portion corresponding to the inner wall of the cylindrical through hole of the base portion 10 changes from Tb to Ta.
  • this machining include end milling.
  • the molding surface P1 (cylindrical inner wall surface) of the mold is completed.
  • the base 10 having high rigidity can be handled as a processing reference and the above processing can be performed, the processing accuracy is increased as compared with the case where only the resin layer is used. Thereby, the shape accuracy of the molding surface P1 is increased.
  • the molding surface P1 (cylindrical inner wall surface) of the resin layer 20 of the mold is completed by machining. Therefore, high accuracy equivalent to the shape accuracy obtained by machining can be obtained as the shape accuracy of the molding surface P1. That is, a mold having a high shape accuracy of the molding surface P1 of the resin layer 20 is obtained.
  • the resin layer 20 is formed on the surface of the base 10 having higher rigidity than the resin layer 20. Therefore, the resin layer is not easily deformed as compared with a molding die composed of only the resin layer, and the shape accuracy of the molding surface of the resin layer 20 can be further enhanced. Furthermore, the surface portion of the resin layer 20 formed to be sufficiently thick with a thickness Tb of 1 to 3 mm (that is, 1 mm or more) is machined to form a molding surface P1. Therefore, a relatively large machining allowance (thickness of a portion removed by machining, specifically, Tb-Ta) can be ensured. As a result, for example, even when the molding surface P1 is an inner wall surface of a through hole that is sufficiently elongated (the aspect ratio is sufficiently large), the shape accuracy of the entire molding surface P1 can be increased.
  • the “molding surface” is the inner wall surface of the cylinder, but as long as it is the surface of the resin layer formed on the surface of the base portion and the surface finished by machining.
  • the shape of the “molding surface” may be any shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 この成形型は、基部10と、基部10の表面上に形成された樹脂層20とを備える。基部10は樹脂層20と比べて剛性が高い。基部10の表面上に、厚さ(Tb)が1mm以上の樹脂層20がライニング等によって形成される。次いで、形成された樹脂層20のうち成形面に対応する部分の厚さがTbからTaになるまで、その部分の表面部がエンドミル加工等の切削加工によって仕上げられる。これにより、成形面P1が完成する。成形面P1の形状精度として、切削加工によって得られる形状精度と同等の高い精度が得られる。また、樹脂層が形成される基部の剛性が高いので、樹脂層のみから構成される成形型と比べて、樹脂層が変形し難くなり、成形面の形状精度がより一層高められる。以上より、成形面を構成する樹脂層の形状精度が高い成形型の製造方法が提供され得る。

Description

成形型の製造方法
 本発明は、成形体を成形する際に使用される成形型の製造方法に関する。
 従来より、ウレタン成形体等の成形体が成形型を使用して製造される際、通常、以下の工程が順に実行される。先ず、成形型の成形面により画定される成形空間に成形体の前駆体であるスラリー等が注入される。「成形面」とは成形空間に注入された成形体の前駆体であるスラリー、ペースト等が実際に接触する面である。次いで、係るスラリー等が固化(及び乾燥)されて、成形空間内に成形体が形成される。そして、成形体から成形型が取り除かれることにより(離型されて)、成形体が得られる。
 係る離型の際、成形型の成形面に成形体が粘着することがある。係る成形体の粘着の発生を抑制する(即ち、離型性を向上する)ため、成形型の成形面にフッ素樹脂層を設ける技術が広く知られている(例えば、特開2006-264225号公報を参照)。
 例えば、特開2006-264225号公報では、成形型の成形面にニッケル等を含む下地メッキ層が形成され、その下地メッキ層の上にフッ素樹脂層(厚さが50μ以下)がコーティングにより形成されることが記載されている。特開2006-264225号公報では、これらの処理により、成形型の成形面では、下地メッキ層によって硬度が確保されるとともに、フッ素樹脂層によって良好な離型性が得られる、と記載されている。
 ところで、上記文献に記載の成形型では、コーティングされたフッ素樹脂層の表面そのものが「成形面」となる。一般に、コーティングによって形成された層の表面の形状精度(表面粗さ、平面度、平行度等)は低い。従って、上記文献に記載の成形型の成形面の形状精度も低い。
 本発明は、係る問題に対処するためになされたものであり、その目的は、成形面を構成する樹脂層の形状精度が高い成形型の製造方法を提供することにある。
 本発明に係る製造方法によって得られる成形型は、基部と、前記基部の上に形成されるとともに表面が成形面を構成する樹脂層とを備える。前記基部は、前記樹脂層と比べて剛性が高い。なお、「剛性」とは、材料のヤング率E[N/m]と、厚み方向に関する断面2次モーメントI[m]の積EIのことを指す。例えば、前記樹脂層の材料はフッ素化合物であり、前記基部の材料は金属である。
 本発明に係る成形型の製造方法では、先ず、前記基部の(表面の)上に厚さが1mm以上の樹脂層が形成される。係る樹脂層は基部の表面を被覆するように形成される。樹脂層の形成は、例えば、ライニング、コーティング、塗装(塗付)、樹脂板の貼付等によってなされ得る。樹脂層の厚さを十分に確保する上では、特に、ライニング、又は樹脂板の貼付を採用することが好適である。
 次いで、前記形成された樹脂層の表面に切削加工を加えることによって前記成形面が形成(完成)される。前記切削加工として、例えば、エンドミル加工、平研加工等が上げられる。その後に種々の仕上げ加工が追加されても良い。なお、樹脂層の表面の全てが成形面として使用されても、樹脂層の表面の一部のみが成形面として使用されてもよい。成形面として使用される樹脂層の表面は全て切削加工によって形成(完成)される。
 これによれば、成形型の樹脂層の成形面が、切削加工によって完成される。従って、上記文献に記載した成形型(コーティングによって形成されたフッ素樹脂層の表面そのものが「成形面」となる成形型)と異なり、成形面の形状精度として、加工によって得られる形状精度と同等の高い精度が得られる。即ち、成形面として使用される樹脂層の表面の形状精度が高い成形型が得られる。この結果、成形面が十分に細長い(アスペクト比が十分に大きい)貫通孔の内壁面等である場合のように、上記文献に記載の成形型では実現が困難な形状を有する成形面が採用された場合においても、成形面全体としての形状精度を高くすることができる。
 加えて、上記成形型によれば、樹脂層が、樹脂層より剛性が高い基部の表面に形成されている。従って、樹脂層のみから構成される成形型と比べて、樹脂層が変形し難くなり、樹脂層の成形面の形状精度をより一層高めることができる。更には、「1mm以上」と十分に厚く形成された樹脂層の表面が加工されて成形面が形成される。従って、比較的大きい加工代(加工によって除去される部分の厚さ)が確保され得る。この結果、平面のみからなる成形面のみならず、十分に細長い(アスペクト比が十分に大きい)貫通孔の内壁面からなる成形面や、上記文献に記載の成形型では実現が困難な種々の角部形状を有する成形面も実現することができる。
 具体的には、前記加工によって形成された成形面の十点平均粗さ(RzJIS)は10μm以下であることが好適である。加えて、前記加工によって形成された成形面に対する水の接触角が60°以上であることが好適である。これにより、良好な離型性を得ることができる。
本発明の実施形態に係る成形型の製造方法によって得られた成形型の斜視図である。 図1に示した成形型を2-2線に沿って切断して得られる断面の図である。 図1に示した成形型を製造する際の図2に対応する第1工程図である。 図1に示した成形型を製造する際の図2に対応する第2工程図である。 図1に示した成形型を製造する際の図2に対応する第3工程図である。 図1に示した成形型を製造する際の図2に対応する第4工程図である。
 本発明に係る製造方法によって製造される成形型は、例えば、セラミック原料粉末、分散媒、ゲル化剤、分散剤を含むスラリーの成形用原料からスラリーを作製し、これを注入して成形体を製造するための成形型に適用され得る。成形型の一部が本発明に係る成形型の構成を備えていればよいが、成形型の全体が本発明に係る成形型の構成を備えていることが好ましい。成形型が上型及び下型等のように複数の部分に分割されている場合、少なくとも1つの部分が本発明に係る成形型の構成を備えていればよい。
(構成)
 図1及び図2は、本発明の実施形態に係る成形型の製造方法によって得られた成形型の一例を示す。図1の2-2断面図である図2に示すように、この成形型は、基部10と、基部10の全表面上に形成された(全表面を覆う)樹脂層20とを備える。本例では、樹脂層20のうちで基部10に形成された円筒貫通孔の内壁面上に形成された部分(即ち、基部10全体を覆う樹脂層20の一部)の表面(即ち、円筒内壁面)P1が、「成形面」として使用される。「成形面」とは、成形体を成形するための成形空間を画定する面であり、且つ、成形空間に注入された成形体の前駆体であるスラリー、ペースト等が実際に接触する面である。即ち、この成形型を用いることによって、円筒状の成形体が得られる。
 基部10は、例えば、アルミニウム系合金、ステンレス系、チタン、鉄系などの金属から構成される。基部10は、樹脂層20と比べて剛性が高い。即ち、基部10は、樹脂層20の変形を抑制する支持基板としての機能を発揮し得る。
 樹脂層20は、フッ素樹脂(フッ素系化合物)、シリコン樹脂(シリコン系化合物)、PVAなどの離型性の高い材料から構成される。フッ素系化合物としては、PTFE、PFA、ETFE、FEP、PVDF、PCTFE等が挙げられる。
 樹脂層20のうち成形面P1に対応する部分(即ち、中空円筒状の部分)の厚さTa(図2を参照)は0.1~1mmである。後述するように、この成形面P1は機械加工によって完成されている。成形面P1(即ち、円筒内壁面)の十点平均粗さ(RzJIS)は、20μm以下(より好ましくは10μm以下)である。また、成形面P1に対する水の接触角は60°以上(より好ましくは85°以上)であることが好ましい。これにより、良好な離型性を得ることができる。成形面P1を構成する材料には、添加剤やプライマーが含まれないことが好ましい。なお、樹脂層20の内部(成形面を構成しない部分)には、添加剤やプライマーが含まれていてもよい。
(製造方法)
 次に、本発明に係る上記成形型の製造方法について、図2に対応する図3~図6を参照しながら説明する。図3に示すように、先ず、基部10が公知の手法の1つを利用して作製される。次いで、図4に示すように、基部10の全表面(円筒貫通孔の内壁面を含む)に、周知の手法の1つを利用してプライマー処理がなされる。
 次に、図5に示すように、プライマー処理がなされた基部10の全表面(円筒貫通孔の内壁面を含む)に樹脂層20が形成される。樹脂層20の形成は、例えば、ライニング、コーティング、塗装(塗付)、樹脂板の貼付等によってなされる。形成される樹脂層20の厚さTb(図5を参照)は1~3mmである。
 次に、図6に示すように、樹脂層20のうち基部10の円筒貫通孔の内壁に対応する部分の厚さがTbからTaになるまで、その部分の表面部が機械加工によって仕上げられる。この機械加工としては、例えば、エンドミル加工等が挙げられる。この機械加工によって、成形型の成形面P1(円筒内壁面)が完成する。このとき、剛性の高い基部10を加工の基準として扱って上記加工が施され得るため、樹脂層のみからなる場合と比べて加工精度が高まる。これにより、成形面P1の形状精度が高くなる。
(作用・効果)
 本発明の実施形態に係る成形型の製造方法によれば、成形型の樹脂層20の成形面P1(円筒内壁面)が、機械加工によって完成される。従って、成形面P1の形状精度として、機械加工によって得られる形状精度と同等の高い精度が得られる。即ち、樹脂層20の成形面P1の形状精度が高い成形型が得られる。
 加えて、この成形型では、樹脂層20が、樹脂層20より剛性が高い基部10の表面に形成されている。従って、樹脂層のみから構成される成形型と比べて、樹脂層が変形し難くなり、樹脂層20の成形面の形状精度をより一層高めることができる。更には、厚さTbが1~3mm(即ち、1mm以上)と十分に厚く形成された樹脂層20の表面部分が機械加工されて成形面P1が形成される。従って、比較的大きい加工代(加工によって除去される部分の厚さ、具体的には、Tb-Ta)が確保され得る。この結果、例えば、成形面P1が十分に細長い(アスペクト比が十分に大きい)貫通孔の内壁面である場合においても、成形面P1全体としての形状精度を高くすることができる。
 なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、「成形面」が円筒内壁面であるが、前記基部の表面の上に形成された樹脂層の表面であって且つ機械加工によって仕上げられた表面である限りにおいて、「成形面」の形状はどのような形状であってもよい。
 また、上記実施形態では、基部の表面に形成された樹脂層の表面の一部(円筒内壁面)のみが成形面として使用されているが、基部の表面に形成された樹脂層の表面の全てが成形面として使用されてもよい。何れにしろ、成形面として使用される樹脂層の表面の全域が、加工によって仕上げられる(完成される)。

Claims (5)

  1.  基部と、前記基部の上に形成されるとともに表面が成形面を構成する樹脂層とを備え、前記基部が前記樹脂層と比べて剛性が高い成形型の製造方法であって、
     前記基部の上に厚さが1mm以上の樹脂層を形成する形成工程と、
     前記形成された樹脂層の表面に切削加工を加えることにより前記成形面を形成する加工工程と、
     を含む、成形型の製造方法。
  2.  請求項1に記載の成形型の製造方法において、
     前記加工によって形成された成形面の十点平均粗さ(RzJIS)が20μm以下である、成形型の製造方法。
  3.  請求項1又は請求項2に記載の成形型の製造方法において、
     前記加工によって形成された成形面に対する水の接触角が60°以上である、成形型の製造方法。
  4.  請求項1乃至請求項3の何れか一項に記載の成形型の製造方法において、
     前記樹脂層の材料がフッ素化合物である、成形型の製造方法。
  5.  請求項1乃至請求項4の何れか一項に記載の成形型の製造方法において、
     前記基部の材料が金属である、成形型の製造方法。
PCT/JP2012/055029 2011-03-22 2012-02-29 成形型の製造方法 WO2012128002A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12761326.3A EP2689906B1 (en) 2011-03-22 2012-02-29 Method for manufacturing molding tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011061908A JP5677876B2 (ja) 2011-03-22 2011-03-22 成形型の製造方法
JP2011-061908 2011-03-22

Publications (1)

Publication Number Publication Date
WO2012128002A1 true WO2012128002A1 (ja) 2012-09-27

Family

ID=46876071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055029 WO2012128002A1 (ja) 2011-03-22 2012-02-29 成形型の製造方法

Country Status (4)

Country Link
US (1) US20120240383A1 (ja)
EP (1) EP2689906B1 (ja)
JP (1) JP5677876B2 (ja)
WO (1) WO2012128002A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5816625B2 (ja) * 2010-09-16 2015-11-18 日本碍子株式会社 成形型及びその製造方法
US11079056B2 (en) * 2014-04-24 2021-08-03 Progressive Products, Inc. Ceramic-backed elbow and coating system and method
DE102014012738B4 (de) * 2014-08-27 2023-03-30 Rampf Formen Gmbh Form, Rüttelbare Unterlage und Ziehblech mit beschichteten Oberflächen, Verfahren zu deren Herstellung sowie Verwendung der Beschichtungen
WO2016051921A1 (ja) * 2014-09-30 2016-04-07 日本碍子株式会社 膜構造体及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299116A (ja) * 1985-10-25 1987-05-08 Honda Motor Co Ltd 成形型の製造方法
JPH0938933A (ja) * 1995-08-02 1997-02-10 Inoac Corp コンクリートの型枠
JP2006264225A (ja) 2005-03-25 2006-10-05 Toyota Boshoku Corp ウレタン用成形型およびウレタン用成形型の表面処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1279428A (fr) * 1960-11-09 1961-12-22 Cafac Fond de moule
US3341348A (en) * 1963-12-11 1967-09-12 Chromium Corp Of America Release surfaces and processes
FR1586203A (ja) * 1968-09-12 1970-02-13
JP2673623B2 (ja) * 1991-10-01 1997-11-05 旭化成工業株式会社 合成樹脂の成形法
US7632434B2 (en) * 2000-11-17 2009-12-15 Wayne O. Duescher Abrasive agglomerate coated raised island articles
JP2003340849A (ja) * 2002-05-29 2003-12-02 Canon Chemicals Inc 成形型
TWI225819B (en) * 2003-07-21 2005-01-01 Asia Optical Co Inc Processing method of mold insert hole
US8178192B2 (en) * 2008-03-06 2012-05-15 Ngk Insulators, Ltd. Ceramic green sheet, ceramic green sheet laminate, production method of ceramic green sheet, and production method of ceramic green sheet laminate
JP4789971B2 (ja) * 2008-05-08 2011-10-12 本田技研工業株式会社 金型およびその製造方法
JP2010094897A (ja) * 2008-10-16 2010-04-30 Canon Chemicals Inc ブレード部材成型用金型
JP5816625B2 (ja) * 2010-09-16 2015-11-18 日本碍子株式会社 成形型及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299116A (ja) * 1985-10-25 1987-05-08 Honda Motor Co Ltd 成形型の製造方法
JPH0938933A (ja) * 1995-08-02 1997-02-10 Inoac Corp コンクリートの型枠
JP2006264225A (ja) 2005-03-25 2006-10-05 Toyota Boshoku Corp ウレタン用成形型およびウレタン用成形型の表面処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2689906A4

Also Published As

Publication number Publication date
JP5677876B2 (ja) 2015-02-25
US20120240383A1 (en) 2012-09-27
JP2012196848A (ja) 2012-10-18
EP2689906A4 (en) 2015-03-04
EP2689906A1 (en) 2014-01-29
EP2689906B1 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2012128002A1 (ja) 成形型の製造方法
JP2843725B2 (ja) 被覆をもつ型、およびその製作方法
WO2009054513A1 (ja) スタンパとその製造方法、成形体の製造方法、およびスタンパ用のアルミニウム原型
TWI642488B (zh) 疏水結構及其製作方法
JP3983194B2 (ja) プレス成形用金型
WO2017030945A3 (en) Molds and methods to control mold surface quality
CA2776406A1 (en) Method for producing coated water-soluble particles
JP4650113B2 (ja) 積層構造体、ドナー基板、および積層構造体の製造方法
JP5816625B2 (ja) 成形型及びその製造方法
JP2017537827A (ja) ポリマーマイクロウェッジ作製用の金属モールド
WO2004002707A1 (ja) 積層モールドの製造方法及び積層モールド
US8153247B2 (en) Method of manufacturing ABS resin molded part and ABS resin molded part
JP2009039850A (ja) キャリアプレートの製造方法
KR101736554B1 (ko) 구성부재 및 그 제조방법
JP4451546B2 (ja) 鋳造用金型およびその製造方法
JP5627177B2 (ja) 金属デザインモックアップの作成方法および金属デザインモックアップ
JP2021054058A (ja) 金型、及び成形体の製造方法
CN111001987B (zh) 一种墙板工装铸件一次成型方法
TWI421147B (zh) 轉動元件製作方法及其使用之模具
WO2024038479A1 (ja) 成型金型、成型金型の製造方法、及び、成型品の製造方法
TWI274080B (en) Method and the device for making high precision coating of insert for glass molding
JP2009226441A (ja) 金型及びこの金型を用いた成形方法
JP6928464B2 (ja) プレス成形用樹脂型及びその製造方法
JP2006056020A (ja) 成形用型及びこの成形用型を用いたフレネルレンズの製造方法
JP2015016564A (ja) 樹脂型及び樹脂型の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012761326

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012761326

Country of ref document: EP