WO2012127991A1 - 蓄電デバイス - Google Patents

蓄電デバイス Download PDF

Info

Publication number
WO2012127991A1
WO2012127991A1 PCT/JP2012/054701 JP2012054701W WO2012127991A1 WO 2012127991 A1 WO2012127991 A1 WO 2012127991A1 JP 2012054701 W JP2012054701 W JP 2012054701W WO 2012127991 A1 WO2012127991 A1 WO 2012127991A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
layer
active material
thickness
Prior art date
Application number
PCT/JP2012/054701
Other languages
English (en)
French (fr)
Inventor
信雄 安東
照明 手塚
渡辺 裕
真 田口
健治 小島
千葉 隆
鈴木 浩史
Original Assignee
Jmエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jmエナジー株式会社 filed Critical Jmエナジー株式会社
Priority to EP12760198.7A priority Critical patent/EP2688079B1/en
Priority to CN201280012955.8A priority patent/CN103430263B/zh
Priority to US14/005,472 priority patent/US9287058B2/en
Priority to JP2013505865A priority patent/JPWO2012127991A1/ja
Priority to KR1020137025745A priority patent/KR101863399B1/ko
Publication of WO2012127991A1 publication Critical patent/WO2012127991A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electricity storage device excellent in high voltage, high energy density, and high output characteristics.
  • an electricity storage device called a hybrid capacitor, which is a combination of the electricity storage principles of a lithium ion secondary battery and an electric double layer capacitor, has been developed as an electricity storage device for applications that require high energy density and high output characteristics. Attention has been paid.
  • a hybrid capacitor activated carbon is used for the positive electrode, a carbon material capable of inserting and extracting lithium ions is used for the negative electrode, and lithium ions are previously stored and supported by a chemical method or an electrochemical method (also referred to as “dope”).
  • An electric storage device that can obtain a high energy density by lowering the potential of the negative electrode is proposed (for example, see Patent Document 1).
  • JP-A-8-107048 Japanese Patent No. 4015993
  • the present invention has been made in view of the above reasons, and an object thereof is to provide a high energy density and high output power storage device.
  • the electricity storage device of the present invention is (D) an electricity storage device having (A) a positive electrode on which a positive electrode layer is formed, (B) a negative electrode on which a negative electrode layer is formed, and (C) an electrolytic solution,
  • W A the weight of the positive electrode layer
  • B the weight of the negative electrode layer
  • T A the thickness of the positive electrode on which the positive electrode layer (A) is formed
  • 1.02 ⁇ W a / W is B ⁇ 2.08, and, and satisfies a 390 ⁇ m ⁇ T a ⁇ 750 ⁇ m.
  • the electric storage device of the present invention is characterized by satisfying 500 ⁇ ⁇ (T A 2 ⁇ W A / W B) ⁇ 1000.
  • the electricity storage device of the present invention is characterized in that 100 ⁇ m ⁇ T B ⁇ 300 ⁇ m is satisfied, where T B is the thickness of the negative electrode on which the negative electrode layer (B) is formed.
  • the (D) power storage device of the present invention is characterized by having a stacked electrode unit or a wound electrode unit.
  • the (D) electricity storage device having such a configuration includes a stacked electrode unit or a wound electrode unit configured such that the positive electrode and the negative electrode are stacked or wound via a separator, and the positive electrode It is preferable to have a configuration in which a plurality of current collectors having holes penetrating the front and rear surfaces are provided and the plurality of current collectors are stacked via a positive electrode layer.
  • the electricity storage device of the present invention is suitable as a lithium ion capacitor.
  • an electricity storage device having a higher energy density and higher output can be provided by configuring the electricity storage device under the above conditions.
  • the electricity storage device of the present invention can be applied to, for example, a hybrid capacitor type lithium ion capacitor, a lithium secondary battery, an electric double layer capacitor, and the like.
  • the (D) electricity storage device of the present invention will be described by taking a lithium ion capacitor as an example.
  • a lithium ion capacitor basically has an electrode unit (laminated electrode unit or wound electrode unit) in which a positive electrode and a negative electrode are alternately stacked or wound through a separator in an outer container. is there.
  • the outer container a cylindrical type, a square type, a laminate type, or the like can be used as appropriate, and is not particularly limited.
  • the negative electrode constituting the laminated electrode unit is usually used. Is greater than the number of positive electrodes, and each of the negative electrodes constituting the multilayer electrode unit is opposed to one or more positive electrodes, and the outermost layer is a negative electrode.
  • “dope” means occlusion, adsorption or insertion, and broadly refers to a phenomenon in which at least one of lithium ions and anions enters the positive electrode active material, or a phenomenon in which lithium ions enter the negative electrode active material.
  • “de-doping” means desorption and release, and refers to a phenomenon in which lithium ions or anions are desorbed from the positive electrode active material, or a phenomenon in which lithium ions are desorbed from the negative electrode active material.
  • a lithium ion supply source such as metallic lithium is disposed in the capacitor cell as a lithium electrode, and at least one of the negative electrode and the positive electrode and a lithium ion supply source A method of doping lithium ions by electrochemical contact is used.
  • the lithium ion capacitor according to the present invention it is possible to uniformly dope lithium ions into at least one of the negative electrode and the positive electrode also by locally disposing the lithium electrode in the cell and bringing it into electrochemical contact. Therefore, even when a large-capacity cell is formed by laminating or further winding the positive electrode and the negative electrode, by disposing the lithium electrode in a part of the cell located on the outermost periphery or outermost layer, At least one can be smoothly and uniformly doped with lithium ions.
  • the lithium ion capacitor according to the present invention includes, for example, a positive electrode having a positive electrode active material layer formed on a positive electrode current collector, a first separator, a negative electrode having a negative electrode current collector formed with a negative electrode active material layer, and a second separator.
  • the lithium ion capacitor element is wound or laminated in order, and at least one lithium ion supply source is disposed in the surplus portion of the first separator so as not to contact the positive electrode, and the negative electrode current collector and the lithium ion supply source are short-circuited.
  • the doping of the lithium electrode is started and the negative electrode active material layer can be doped with lithium ions it can. This constitutes a lithium ion capacitor.
  • the positive electrode and the negative electrode are respectively provided with a positive electrode current collector and a negative electrode current collector that receive and distribute electricity.
  • a positive electrode current collector and the negative electrode current collector for example, an expanded metal or a material in which fine through holes opened on the front and back surfaces are formed by etching treatment such as electrolytic etching is used. It is preferable to supply lithium ions electrochemically by disposing them so as to face at least one of them.
  • the form and number of the through holes are not particularly limited, and can be set so that lithium ions in the electrolytic solution can be moved between the front and back surfaces of the electrodes without being blocked by each electrode current collector.
  • the thickness of the positive electrode current collector is not particularly limited, but is usually 1 to 50 ⁇ m, preferably 5 to 40 ⁇ m, particularly preferably 10 to 40 ⁇ m.
  • Examples of the method of forming the through hole of the positive electrode current collector include a method of forming an opening by mechanical driving, an etching process, a laser process such as a CO 2 laser, a YAG laser, or a UV laser. Since the shape of the through-hole to be formed is different, the formation conditions can be optimized as appropriate so as to obtain a target shape.
  • the diameter of the through hole is, for example, 0.001 to 1 mm, preferably 0.001 to 0.3 mm, and particularly preferably 0.005 to 0.3 mm.
  • the aperture ratio of the positive electrode current collector is preferably 10 to 60%, more preferably 10 to 50%.
  • the positive electrode active material a material capable of reversibly doping and dedoping at least one kind of anion such as lithium ion and tetrafluoroborate is used, and examples thereof include activated carbon powder.
  • Activated carbon preferably has a specific surface area of 1000 to 2800 m 2 / g, more preferably 1900 to 2600 m 2 / g.
  • the 50% volume cumulative diameter (D50) (average particle diameter) of the activated carbon is preferably 2 to 8 ⁇ m, particularly preferably 3 to 8 ⁇ m, from the viewpoint of the packing density of the activated carbon.
  • the energy density of the lithium ion capacitor can be further improved.
  • the value of 50% volume cumulative diameter (D50) in this embodiment is calculated
  • the negative electrode current collector stainless steel, copper, nickel, or the like can be used.
  • the thickness of the negative electrode current collector is not particularly limited, but is usually 1 to 50 ⁇ m, preferably 5 to 40 ⁇ m, and particularly preferably 10 to 30 ⁇ m.
  • Examples of the method of forming the through hole of the negative electrode current collector include a method of forming an opening by mechanical implantation, an etching process, a laser process such as a CO 2 laser, a YAG laser, or a UV laser. Since the shape of the through-hole to be formed is different, the formation conditions can be optimized as appropriate so as to obtain a target shape.
  • the diameter of the through hole is, for example, 0.001 to 1 mm, preferably 0.001 to 0.3 mm, and particularly preferably 0.005 to 0.3 mm.
  • the aperture ratio of the negative electrode current collector is preferably 10 to 60%, more preferably 10 to 50%.
  • a graphite-based material is used among substances that can be reversibly doped / dedoped with lithium ions.
  • Specific examples include artificial graphite, natural graphite, and graphite-based composite particles.
  • the “graphite-based composite particles” have a configuration in which the surface of particles made of a crystalline material is coated with an amorphous material, and specifically, made of a crystalline material such as graphite. The surface of the particles is coated with an amorphous material such as tar or pitch-derived amorphous carbon.
  • the graphite-based composite particles are carbon electrode materials obtained by, for example, a method in which the surface of graphite (graphite) is coated with tar, pitch, or the like, and the surface tar or pitch is carbonized by heat treatment.
  • the presence or absence of coating with amorphous carbon derived from tar or pitch on the surface of the graphite particles can be confirmed by measurement of Raman spectrum, XRD or the like.
  • the particle size of the negative electrode active material is preferably 50% volume cumulative diameter (D50) in the range of 1.0 to 10 ⁇ m and more preferably D50 in the range of 2 to 5 ⁇ m from the viewpoint of improving output.
  • the 50% volume cumulative diameter (D50) is a value determined by, for example, a microtrack method.
  • a negative electrode layer comprising a negative electrode active material layer formed by applying a negative electrode active material to a current collector by application, printing, injection, spraying, vapor deposition, pressure bonding, or the like, and a conductive layer provided as necessary, and the current collector the total thickness of the collector, ie when the total thickness of the thicknesses of the negative electrode layer of the current collector and the thickness T B of the negative electrode is preferably 100 [mu] m ⁇ T B ⁇ 300 [mu] m.
  • the value of the thickness T B of the negative electrode is in the above range, it is possible to improve the durability while achieving a high energy density.
  • the ratio W A / W B of the weight W A of the positive electrode layer to the weight W B of the negative electrode layer is in the range of 1.02 ⁇ W A / W B ⁇ 2.08. It is preferable that By setting the value of the ratio in this range, it becomes possible to use the electrostatic capacity of the negative electrode more efficiently, and a further increase in energy density can be achieved.
  • the square T A 2 of the positive electrode of the thickness T A of the lithium ion capacitor according to the present invention the product of the square root of the ratio (W A / W B) to the weight W B of the negative electrode layer of the weight W A of the positive electrode layer values [ ⁇ (T a 2 ⁇ W a / W B) ] is preferably in the range of 500 ⁇ ⁇ (T a 2 ⁇ W a / W B) ⁇ 1000.
  • each electrode includes each active material powder (positive electrode active material or negative electrode active material), a binder, and, if necessary, a conductive material, a thickener such as carboxymethyl cellulose (CMC), It can be prepared by adding to water or an organic solvent, mixing, and applying the resulting slurry to a current collector, or by pasting the slurry into a sheet shape to the current collector.
  • CMC carboxymethyl cellulose
  • a rubber-based binder such as SBR
  • a fluorine-containing resin obtained by seed polymerization of polytetrafluoroethylene, polyvinylidene fluoride, or the like with an acrylic resin, an acrylic resin, or the like is used.
  • the conductive material include acetylene black, ketjen black, graphite, and metal powder.
  • the amount of each of the binder and the conductive material to be added varies depending on the electric conductivity of the active material used, the shape of the electrode to be produced, etc., but both are usually 2 to 40% by mass with respect to the active material. preferable.
  • a material of the separator in the lithium ion capacitor according to the present invention a material having an air permeability measured by a method based on JISP8117 in the range of 1 to 500 sec can be used.
  • a nonwoven fabric composed of polyethylene, polypropylene, polyester, cellulose, polyolefin, cellulose / rayon, or the like, or a microporous membrane can be used as appropriate.
  • the thickness of the separator is, for example, 1 to 100 ⁇ m, and preferably 5 to 50 ⁇ m.
  • electrolyte In the lithium ion capacitor according to the present invention, an electrolyte solution of an aprotic organic solvent of lithium salt is used as the electrolyte.
  • Aprotic organic solvent of electrolyte examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate (DEC), and methyl propyl carbonate. And chain carbonates such as A mixed solvent in which two or more of these are mixed may be used, and in particular, an electrolyte having a low viscosity, a high degree of dissociation, and a high ionic conductivity is obtained. It is preferable to use a mixture.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate (DEC), and methyl propyl carbonate.
  • chain carbonates such as A mixed solvent in which two or more of these are mixed may be used, and in particular, an electrolyte having a low viscosity, a
  • the mixed solvent include an EC / PC / DEC mixed solvent and an EC / DEC mixed solvent.
  • the ratio of the cyclic carbonate and the chain carbonate in such a mixed solvent is preferably 1:99 to 80:20 by weight, and more preferably 10:90 to 60:40.
  • the organic solvent used as the electrolytic solution in the present invention is an organic solvent other than cyclic carbonate and chain carbonate, for example, cyclic esters such as ⁇ -butyrolactone, cyclic sulfones such as sulfolane, cyclic ethers such as dioxolane, ethyl propionate, and the like. It may contain a chain ether such as a chain carboxylic acid ester or dimethoxyethane.
  • lithium salt of the electrolyte in the electrolytic solution examples include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiN (C 2 F 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2, etc.
  • LiPF 6 is preferably used because of its high ion conductivity and low resistance.
  • the concentration of the lithium salt in the electrolytic solution is preferably 0.1 mol / L or more, more preferably 0.5 to 1.5 mol / L, because low internal resistance can be obtained.
  • a lithium ion capacitor is configured using the above components.
  • the ratio of the sum of the weight W A of the positive electrode layer and the weight W B of the negative electrode layer to the weight W C of the lithium ion capacitor [(W A + W B ) / W D ]. value is preferably 0.19 ⁇ (W a + W B ) / W D ⁇ 0.28. By setting the ratio value within this range, it is possible to achieve higher energy density.
  • the ratio of the weight W C of the electrolyte to the sum of the weight W A of the positive electrode layer and the weight W B of the negative electrode layer [W C / (W A + W B )] 1.58 ⁇ W C / (W A + W B ) ⁇ 1.85.
  • a wound-type cell in which a strip-like positive electrode and a negative electrode are wound through a separator, and a plate-like or sheet-like positive electrode and a negative electrode each have three separators.
  • Examples include a laminated cell in which more than one layer is laminated, a laminated cell in which units having such a laminated structure are enclosed in an exterior film or a rectangular exterior can.
  • the structure of these capacitor cells is known from Japanese Patent Application Laid-Open No. 2004-266091 and the like, and can be configured similarly to those capacitor cells.
  • the lithium ion capacitor has an electrode unit (laminated electrode unit or wound electrode unit) having a structure in which a positive electrode and a negative electrode are stacked or wound via a separator
  • an electrode unit laminated electrode unit or wound electrode unit
  • the positive electrode constituting the unit may include a plurality of positive electrode current collectors having holes penetrating the front and back surfaces, and the plurality of current collectors may be stacked via a positive electrode layer. .
  • a positive electrode having a plurality of positive electrode current collectors for example, a plurality of laminates in which a positive electrode layer composed of a positive electrode active material layer and a conductive layer is formed on both surfaces or one surface of the positive electrode current collector are prepared, and these are stacked. And can be manufactured by stacking. Note that in the positive electrode having a plurality of positive electrode current collector, the thickness T A of the positive electrode, a plurality of the thickness of each of the positive electrode current collector, all positive electrode layer formed on the plurality of positive electrode current collector It is a total thickness with each thickness.
  • the weight W A of the positive electrode layer made of the positive electrode active material layer and the conductive layer is, for example, 8 to 15 g
  • the weight W B of the negative electrode layer made of the negative electrode active material layer and the conductive layer is, for example, 3 5 to 12 g
  • the weight W C of the electrolyte is, for example, 15 to 45 g
  • the weight W D of the lithium ion capacitor is, for example, 50 to 100 g.
  • Example 1 Production of positive electrode sheet 10 parts by weight of commercially available activated carbon particles having a 50% volume cumulative diameter (D50) value of 3 ⁇ m, 1.1 parts by weight of acetylene black powder, and 20 parts by weight of isopropanol are sufficiently mixed. A slurry is obtained, and 0.7 parts by weight of a binder made of polytetrafluoroethylene is added thereto to prepare a kneaded product, which is formed into a sheet using a rolling roller, and a positive electrode sheet having a thickness of 210 ⁇ m is formed. Obtained.
  • D50 volume cumulative diameter
  • An aluminum chemical etching foil having a through-hole diameter of 0.3 mm, an aperture ratio of 40%, and a thickness of 30 ⁇ m was used as a positive electrode current collector, and a conductive paint for forming a conductive layer was coated on both sides thereof.
  • the positive electrode current collector and the positive electrode sheet body were adhered to both surfaces of the electric current body using a rolling roller, and then vacuum-dried.
  • the thickness of the positive electrode (the thickness of the positive electrode current collector and the conductive layers on both surfaces total) T a of the thickness of the positive electrode active material layer according to the positive electrode sheet to obtain a positive electrode material 461Myuemu.
  • the positive electrode material obtained by laminating the conductive layer and the positive electrode active material layer on a part of the positive electrode current collector thus obtained is used as the portion where the conductive layer and the positive electrode active material layer are laminated (hereinafter, the positive electrode sheet).
  • 60 mm ⁇ 65 mm, which is also referred to as “coated portion”), and 60 mm ⁇ 65 mm so that the portion where no layer is formed (hereinafter also referred to as “uncoated portion” for the positive electrode sheet) is 60 mm ⁇ 15 mm.
  • the coating conditions of the coating speed is 8m / min, after the negative electrode thickness (total of the thickness of the negative electrode current collector and both sides of the negative electrode active material layer) T B has double-sided coated so as to be 181 ⁇ m
  • the electrode layer made of the negative electrode active material layer was formed on both surfaces of the negative electrode current collector by drying under reduced pressure at 200 ° C. for 24 hours.
  • the material in which the electrode layer is formed on a part of the negative electrode current collector thus obtained is 65 mm in the part where the electrode layer is formed (hereinafter also referred to as “coating part” for the negative electrode sheet).
  • the negative electrode collector is cut by cutting to a size of 65 mm ⁇ 85 mm so that a portion where the electrode layer is not formed (hereinafter also referred to as “uncoated portion” for the negative electrode sheet) is 65 mm ⁇ 15 mm.
  • a negative electrode sheet in which electrode layers were formed on both sides of the electric body was produced.
  • a lithium ion supply member is produced by cutting lithium metal having a thickness of 195 ⁇ m into a foil shape and crimping it onto a copper chemical etching foil having a thickness of 20 ⁇ m.
  • the lithium ion supply member is placed on the upper side of the electrode lamination unit and a negative electrode sheet. Arranged to face each other.
  • a positive electrode made of aluminum having a width of 30 mm, a length of 30 mm, and a thickness of 0.2 mm, in which a sealant film is heat-sealed in advance to the uncoated portion of each of the seven positive electrode sheets of the produced electrode laminate unit. We welded power tabs for use.
  • a sealant film is heat-sealed in advance to a seal portion on each of the uncoated portions of each of the eight negative electrode sheets of the electrode laminate unit and the lithium ion supply member, 30 mm in width, 30 mm in length, 0.2 mm in thickness.
  • a nickel-plated copper negative electrode power supply tab was stacked and welded to prepare a lithium ion capacitor element.
  • a polypropylene layer, an aluminum layer, and a nylon layer are laminated, the dimensions are 90 mm long, 117 mm wide, 0.15 mm thick, and the center part is drawn 70 mm long and 97 mm wide.
  • One exterior film, a polypropylene layer, an aluminum layer, and a nylon layer were laminated, and the other exterior film having dimensions of 90 mm in length, 117 mm in width, and 0.15 mm in thickness was produced.
  • the lithium ion capacitor element is arranged at the center portion on the other exterior film so that each of the positive electrode power tab and the negative electrode power tab protrudes outward from the end of the other exterior film.
  • One exterior film is overlaid on the lithium ion capacitor element, and three sides including the two sides from which the positive power supply tab and the negative power supply tab protrude are heat-sealed at the outer peripheral edge of one external film and the other external film. did.
  • using a mixed solvent in which ethylene carbonate, propylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 1: 4 lithium bis (oxalato) borate represented by the following formula (1) was added as an additive to the entire electrolyte solution.
  • Example 2 An electrode layer made of the negative electrode active material layer to set the negative electrode of thickness T B having the both surfaces 226Myuemu, to form an electrode layer made of the negative electrode active material layer on both faces of the anode current collector.
  • a cell S2 (W D 70) having the same configuration as that of Example 1 except that an electrolytic solution (W C 27.7 g) having the same composition ratio as that of Example 1 was filled and lithium metal having a thickness of 250 ⁇ m was used. 9 g).
  • the weight W A of the positive electrode layer was 8.51 g
  • the weight W B of the negative electrode layer was 8.02 g.
  • Example 3 An electrode layer made of the negative electrode active material layer to set the negative electrode of thickness T B having the both surfaces 122Myuemu, to form an electrode layer made of the negative electrode active material layer on both faces of the anode current collector.
  • a cell S3 (W D 61) having the same configuration as that of Example 1 except that an electrolytic solution (W C 22.6 g) having the same composition ratio as that of Example 1 was filled and lithium metal having a thickness of 120 ⁇ m was used. 0.5 g). Weight W A of the positive electrode layer is 8.51 g, the weight W B of the negative electrode layer was 4.15 g.
  • Example 4 The thickness T A of the positive electrode having an electrode layer composed of a conductive layer and a positive electrode active material layer on both surfaces was set to 390 ⁇ m, and an electrode layer composed of a conductive layer and a positive electrode active material layer was formed on both surfaces of the positive electrode current collector.
  • the cell S4 (W D 61) has the same configuration as that of Example 1 except that the electrolyte solution (W C 22.3 g) having the same composition ratio as that of Example 1 is filled and lithium metal having a thickness of 165 ⁇ m is used. 4 g).
  • the weight W A of the positive electrode layer was 7.34 g, and the weight W B of the negative electrode layer was 5.42 g.
  • Example 5 An electrode layer made of the negative electrode active material layer to set the negative electrode of thickness T B having on both sides to 106 [mu] m, to form an electrode layer made of the negative electrode active material layer on both faces of the anode current collector.
  • a cell S5 (W D 56 having the same configuration as that of Example 4 except that an electrolyte solution (W C 19.8 g) having the same composition ratio as that of Example 1 was filled and lithium metal having a thickness of 105 ⁇ m was used. 9 g).
  • the weight W A of the positive electrode layer was 7.34 g, and the weight W B of the negative electrode layer was 3.55 g.
  • Example 6 An electrode layer comprising a conductive layer and the positive electrode active material layer to set the thickness T A of the positive electrode to 747 ⁇ m having on both sides, to form an electrode layer comprising a conductive layer and the positive electrode active material layer on both surfaces of a cathode current collector.
  • An electrode layer made of the negative electrode active material layer to set the negative electrode of thickness T B having the both surfaces 273Myuemu, to form an electrode layer made of the negative electrode active material layer on both faces of the anode current collector.
  • a cell S6 (W D 86) having the same configuration as that of Example 1 except that an electrolytic solution (W C 37.4 g) having the same composition ratio as that of Example 1 was filled and lithium metal having a thickness of 300 ⁇ m was used. 8 g) was produced.
  • the weight W A of the positive electrode layer was 12.85 g
  • the weight W B of the negative electrode layer was 9.78 g.
  • Example 7 A cell S7 (W D 67.5 g) was produced in the same configuration as in Example 3 except that an electrolyte solution (W C 28.6 g) having the same composition ratio as in Example 1 was filled.
  • Example 8 A cell S8 (W D 57.5 g) was produced in the same configuration as in Example 3 except that an electrolyte solution (W C 18.6 g) having the same composition ratio as in Example 1 was filled.
  • Example 9 A cell S9 (W D 91.8 g) was produced in the same configuration as in Example 6 except that an electrolyte solution (W C 42.4 g) having the same composition ratio as in Example 1 was filled.
  • Example 10 An electrode layer made of the negative electrode active material layer to set the negative electrode of thickness T B having the both surfaces 342Myuemu, to form an electrode layer made of the negative electrode active material layer on both faces of the anode current collector. Then, a cell S10 (W D 93) having the same configuration as that of Example 6 except that an electrolytic solution (W C 40.9 g) having the same composition ratio as that of Example 1 was filled and lithium metal having a thickness of 390 ⁇ m was used. 0.1 g) was produced. The weight W A of the positive electrode layer was 12.85 g, and the weight W B of the negative electrode layer was 12.37 g.
  • Example 11 S11 1 having a configuration in which two positive electrode sheets each having an electrode layer composed of a conductive layer and a positive electrode active material layer are laminated and uncoated portions of the two positive electrode sheets are stacked and electrically connected
  • each of the positive electrodes constituting the electrode laminated unit is formed by two positive electrode sheets, and a plurality (specifically, two) positive electrode current collectors are electrically conductive.
  • the cell S11 (W D) was configured in the same manner as in Example 1 except that the electrolyte solution (W C 24.8 g) having the same composition ratio as in Example 1 was filled and the obtained electrode laminate unit was used. 65.7 g) was produced.
  • the weight W A of the positive electrode layer was 8.12 g
  • the weight W B of the negative electrode layer was 6.34 g.
  • Example 12 having a configuration in which two positive electrode sheets each having an electrode layer composed of a conductive layer and a positive electrode active material layer are laminated and uncoated portions of the two positive electrode sheets are stacked and electrically connected
  • an electrode layer formed in the same manner as the negative electrode sheet from the anode active material layer used in Example 6 the negative electrode of thickness T B having on both sides is set to 273Myuemu, from the anode active material layer on both surfaces of the anode current collector
  • An electrode laminate unit was produced in the same manner as in Example 11 except that the electrode layer was formed.
  • each of the positive electrodes constituting the electrode laminated unit is formed by two positive electrode sheets, and a plurality (specifically, two) positive electrode current collectors are electrically conductive. It is the structure laminated
  • FIG. 1 The weight W A of the positive electrode layer was 13.48 g, and the weight W B of the negative electrode layer was 9.78 g.
  • Example 13 S13 1 having a structure in which three positive electrode sheets each having an electrode layer composed of a conductive layer and a positive electrode active material layer are laminated and uncoated portions of the three positive electrode sheets are stacked and electrically connected.
  • each of the positive electrodes constituting the electrode laminated unit is formed by three positive electrode sheets, and a plurality (specifically, three) positive electrode current collectors are electrically conductive.
  • Example 1 An electrode layer made of the negative electrode active material layer to set the negative electrode of thickness T B having the both surfaces 257Myuemu, to form an electrode layer made of the negative electrode active material layer on both faces of the anode current collector.
  • the cell C1 (W D 73) has the same configuration as that of Example 1 except that the electrolyte solution (W C 29.3 g) having the same composition ratio as that of Example 1 is filled and lithium metal having a thickness of 290 ⁇ m is used. 0.7 g) was produced.
  • the weight W A of the positive electrode layer was 8.51 g
  • the weight W B of the negative electrode layer was 9.19 g.
  • Example 2 An electrode layer made of the negative electrode active material layer to set the negative electrode of thickness T B having the both surfaces 116Myuemu, to form an electrode layer made of the negative electrode active material layer on both faces of the anode current collector.
  • the cell C2 (W D 60) was constructed in the same manner as in Example 1 except that an electrolyte solution (W C 22.2 g) having the same composition ratio as in Example 1 was filled and lithium metal having a thickness of 110 ⁇ m was used. 9 g). Weight W A of the positive electrode layer is 8.51 g, the weight W B of the negative electrode layer was 3.89 g.
  • the thickness T A of the positive electrode having an electrode layer composed of a conductive layer and a positive electrode active material layer on both surfaces was set to 385 ⁇ m, and an electrode layer composed of a conductive layer and a positive electrode active material layer was formed on both surfaces of the positive electrode current collector.
  • Example 2 a cell C3 (W D 61) having the same configuration as in Example 1 except that an electrolytic solution (W C 22.0 g) having the same composition ratio as in Example 1 was filled and lithium metal having a thickness of 165 ⁇ m was used. 0.0 g).
  • the weight W A of the positive electrode layer was 7.26 g, and the weight W B of the negative electrode layer was 5.35 g.
  • the weight W A of the positive electrode layer was 7.26 g
  • the weight W B of the negative electrode layer was 7.75 g.
  • the thickness T A of the positive electrode having an electrode layer composed of a conductive layer and a positive electrode active material layer on both surfaces was set to 838 ⁇ m, and an electrode layer composed of a conductive layer and a positive electrode active material layer was formed on both surfaces of the positive electrode current collector.
  • a negative electrode having a thickness T B having an electrode layer made of the negative electrode active material layer on both sides was set to 300 [mu] m, to form an electrode layer made of the negative electrode active material layer on both faces of the anode current collector.
  • Example 2 a cell C6 (W D 92) having the same configuration as that of Example 1 except that an electrolytic solution (W C 40.9 g) having the same composition ratio as that of Example 1 was filled and lithium metal having a thickness of 335 ⁇ m was used. 0.7 g) was produced.
  • the weight W A of the positive electrode layer was 14.13 g
  • the weight W B of the negative electrode layer was 10.79 g.
  • the weight W A of the positive electrode layer was 14.13 g, and the weight W B of the negative electrode layer was 6.63 g.
  • [Comparative Example 9: C9] 1 having a configuration in which two positive electrode sheets each having an electrode layer composed of a conductive layer and a positive electrode active material layer are laminated and uncoated portions of the two positive electrode sheets are stacked and electrically connected
  • an electrode layer formed in the same manner as the negative electrode sheet from the anode active material layer used in Comparative Example 3 A negative electrode of thickness T B having on both sides is set to 154Myuemu, from both the active material layer of the negative electrode current collector
  • An electrode laminate unit was produced in the same manner as in Example 11 except that the electrode layer was formed.
  • each of the positive electrodes constituting the electrode laminated unit is formed by two positive electrode sheets, and a plurality (specifically, two) positive electrode current collectors are electrically conductive. It is the structure laminated
  • FIG. 1 The weight W A of the positive electrode layer was 6.67 g, and the weight W B of the negative electrode layer was 5.35 g.
  • an electrode layer made of the negative electrode active material layer in the same manner as the negative electrode sheet used in Comparative Example 8 A negative electrode of thickness T B having on both sides is set to 189Myuemu, from both the active material layer of the negative electrode current collector
  • An electrode laminate unit was produced in the same manner as in Example 11 except that the electrode layer was formed.
  • each of the positive electrodes constituting the electrode laminated unit is formed by two positive electrode sheets, and a plurality (specifically, two) positive electrode current collectors are electrically conductive. It is the structure laminated
  • Example 11 by filling an electrolytic solution having the same composition ratio as in Example 1 (W C 37.3g), was prepared cell C10 (W D 85.6g) in the same structure as in Example 11.
  • the weight W A of the positive electrode layer was 15.24 g
  • the weight W B of the negative electrode layer was 6.63 g.
  • [Comparative Example 11: C11] 1 having a structure in which three positive electrode sheets each having an electrode layer composed of a conductive layer and a positive electrode active material layer are laminated and uncoated portions of the three positive electrode sheets are stacked and electrically connected.
  • an electrode layer made of the negative electrode active material layer in the same manner as the negative electrode sheet used in Comparative Example 10 A negative electrode of thickness T B having on both sides is set to 189Myuemu, from both the active material layer of the negative electrode current collector
  • An electrode laminate unit was produced in the same manner as in Example 13 except that an electrode layer was formed.
  • each of the positive electrodes constituting the electrode laminated unit is formed by three positive electrode sheets, and a plurality (specifically, three) positive electrode current collectors are electrically conductive. It is the structure laminated
  • FIG. 13 The weight W A of the positive electrode layer was 14.60 g, and the weight W B of the negative electrode layer was 6.63 g.
  • AC internal resistance (C) Product of AC internal resistance and capacitance R ⁇ C Measure the 1 KHz AC internal resistance R ( ⁇ ) of the laminated lithium-ion capacitor cell for testing in an environment of 25 ° C. ⁇ 5 ° C., and the product R ⁇ C ( ⁇ ⁇ F) of this and the capacitance C of the cell ) Device: Hioki Electric AC Milliohm HiTester 3560 Measurement temperature: 25 ° C
  • the evaluation criteria for the evaluation items (a) to (c) are as follows. In addition, in the comprehensive determination, if any one of the evaluation items (a) to (c) has an evaluation “A”, the comprehensive determination is “bad”, otherwise, the evaluation “A”. When there was no, the comprehensive judgment was set as “good”.
  • A Weight energy density “A”: It is less than 17 (Wh / kg) and is defective. “B”: 17 (Wh / kg) or more and less than 18 (Wh / kg), which is favorable. “C”: 18 (Wh / kg) or more and very good.
  • B Capacity retention “A”: less than 93%, indicating a failure. “B”: 93% or more and less than 95%, which is good. “C”: 95 (%) or more, which is very good.
  • C AC internal resistance (RC) “A”: Greater than 10 ( ⁇ ⁇ F). “B”: 10 ( ⁇ ⁇ F) or less and good.
  • the cells S1 to S13 according to the embodiment of the present invention satisfy 1.02 ⁇ W A / W B ⁇ 2.08 and 390 ⁇ m ⁇ T A ⁇ 750 ⁇ m, and thus have high energy density, low resistance, and long life. .
  • Particularly cells S1 and S5 it is clear that the energy density is high because satisfying 500 ⁇ ⁇ (T A 2 ⁇ W A / W B) ⁇ 1000.
  • the cells S11 to S13 according to the example have a low resistance and a long life because the positive electrode has a plurality of positive electrode current collectors.
  • the cell C1 of the comparative example satisfies 1.02> (W A / W B )
  • the energy density is lower than that of the cells S1, S2, and S3 of the example
  • the cell C2 of the comparative example has (W A / Since W B )> 2.08, the cycle characteristics were lower than those of the cells S1, S2 and S3 of the example.
  • the cells C3 and C4 of Comparative Example 390 [mu] m> T A is lower energy density than cells S4 and S5 embodiment since it is the cell C5 of the comparative example 390 [mu] m> T A at which one at 500 ⁇ ⁇ ( Since T A 2 ⁇ W A / W B ) ⁇ 1000, the energy density is equivalent to the cells S4 and S5 of the example, but (W A / W B )> 2.08, so the cycle characteristics Since the cell C6, C7 and C8 of the comparative example had T A > 750 ⁇ m, the energy density was high, but the resistance was higher than that of the cell S6 of the example.
  • C9 to C11 of the comparative example have a low resistance because the positive electrode has a plurality of positive electrode current collectors, 1.02 ⁇ W A / W B ⁇ 2.08 and / or 390 ⁇ m ⁇ Since T A ⁇ 750 ⁇ m was not satisfied, both high energy density and long life could not be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、高エネルギー密度で且つ高出力の蓄電デバイスを提供することを目的とするものである。 本発明の蓄電デバイスは、(A)正極電極層が形成された正極と、(B)負極電極層が形成された負極と、(C)電解液とを有する(D)蓄電デバイスであって、(A)正極電極層の重量をWA 、(B)負極電極層の重量をWB 、(A)正極電極層が形成された正極の厚みをTA としたとき、1.02≦WA /WB ≦2.08であり、且つ、390μm≦TA ≦750μmを満たすことを特徴とする。

Description

蓄電デバイス
 本発明は、高電圧、高エネルギー密度、高出力特性に優れた蓄電デバイスに関する。
 環境問題がクローズアップされる中、太陽光発電や風力発電によるクリーンエネルギーの貯蔵システムや、ガソリン車に代わる電気自動車またはハイブリッド電気自動車に用いられる蓄電デバイスの開発が盛んに行われている。さらに、最近では、パワーウインドウやIT関連機器などの車載装置や設備が高性能・高機能化されることに伴い、高エネルギー密度および高出力特性を有する新しい蓄電デバイスの開発が求められている。
 そして、高エネルギー密度および高出力特性を必要とする用途に対応する蓄電デバイスとして、近年、リチウムイオン二次電池および電気二重層キャパシタの蓄電原理が組み合わされた、ハイブリッドキャパシタと称される蓄電デバイスが注目されている。かかるハイブリッドキャパシタとしては、正極に活性炭、負極にリチウムイオンを吸蔵、脱離し得る炭素材料を用い、負極には予め化学的方法または電気化学的方法によってリチウムイオンを吸蔵、担持(「ドープ」とも称される。)させて負極の電位を下げることにより、高いエネルギー密度が得られる蓄電デバイスが提案されている(例えば特許文献1参照。)。
 そこで、高エネルギー密度化を目的としたハイブリッドキャパシタ型の蓄電デバイスが提案されている(例えば特許文献2参照)。しかし、高性能が期待されるものの、ハイブリッドキャパシタ型の蓄電デバイスは、集電体、セパレータ、電解液の重量が大きいため、8~16Wh/Kgのエネルギー密度が主流であった。更に、エネルギー密度を高めると、寿命が低下しやすいという問題があり、高エネルギー密度な蓄電デバイスの実用化が困難とされていた。
特開平8-107048号公報 特許第4015993号公報
 本発明は、以上の理由に鑑みてなされたものであり、その目的は、高エネルギー密度で且つ高出力の蓄電デバイスを提供することにある。
 本発明の蓄電デバイスは、(A)正極電極層が形成された正極と、(B)負極電極層が形成された負極と、(C)電解液とを有する(D)蓄電デバイスであって、
 前記(A)正極電極層の重量をW、前記(B)負極電極層の重量をW、前記(A)正極電極層が形成された正極の厚みをTとしたとき、1.02≦W/W≦2.08であり、且つ、390μm≦T≦750μmを満たすことを特徴とする。
 また、本発明の蓄電デバイスは、前記(D)蓄電デバイスの重量をW、前記(C)電解液の重量をWとしたとき、0.19≦(W+W)/ W≦0.28であり、且つ、1.58≦W/(W+W)≦1.85を満たすことを特徴とする。
 また、本発明の蓄電デバイスは、500≦√(TA 2 ×W/W)≦1000を満たすことを特徴とする。
 また、本発明の蓄電デバイスは、前記(B)負極電極層が形成された負極の厚みをTとしたとき、100μm≦T≦300μmを満たすことを特徴とする。
 また、本発明の(D)蓄電デバイスは、積層型電極ユニットまたは捲回型電極ユニットを有することを特徴とする。
 このような構成の(D)蓄電デバイスは、前記正極および前記負極がセパレータを介して積層または捲回されてなる構成の積層型電極ユニットまたは捲回型電極ユニットを有しており、当該正極が、表裏面を貫通する孔を有する集電体を複数有し、当該複数の集電体が正極電極層を介して積層されてなる構成を有することが好ましい。
 また、本発明の蓄電デバイスは、リチウムイオンキャパシタとして好適である。
 本発明によれば、上記条件で蓄電デバイスを構成することにより、より高いエネルギー密度で且つ高出力な蓄電デバイスを提供することができる。
 本発明の蓄電デバイスは、例えばハイブリッドキャパシタ型のリチウムイオンキャパシタや、リチウム二次電池、電気二重層キャパシタ等にも適用することができる。
 以下において、リチウムイオンキャパシタを例として、本発明の(D)蓄電デバイスを説明する。
 リチウムイオンキャパシタは、基本的に、正極と負極とを、セパレータを介して交互に積層あるいは捲回させてなる電極ユニット(積層型電極ユニットあるいは捲回型電極ユニット)を外装容器内に有するものである。外装容器は、円筒型、角型、ラミネート型等のものを適宜使用することができ、特に限定されるものではない。
 ここに、リチウムイオンキャパシタが、正極および負極がセパレータを介して交互に積層されてなる構成の積層型電極ユニットを有してなるものである場合には、通常、積層型電極ユニットを構成する負極の数は正極の数よりも多く、当該積層型電極ユニットを構成する負極の各々が1枚以上の正極と対向し、最外層が負極となるように積層された構成とされる。
 本明細書において、「ドープ」とは、吸蔵、吸着または挿入を意味し、広く、正極活物質にリチウムイオンおよびアニオンの少なくとも一方が入る現象、あるいはまた、負極活物質にリチウムイオンが入る現象をいう。また、「脱ドープ」とは、脱離、放出を意味し、正極活物質からリチウムイオンもしくはアニオンが脱離する現象、または負極活物質からリチウムイオンが脱離する現象をいう。
 負極および正極の少なくとも一方にリチウムイオンを予めドープする方法としては、例えば、金属リチウム等のリチウムイオン供給源をリチウム極としてキャパシタセル内に配置し、負極および正極の少なくとも一方とリチウムイオン供給源との電気化学的接触によって、リチウムイオンをドープさせる方法が用いられる。
 本発明に係るリチウムイオンキャパシタでは、リチウム極をセル中に局所的に配置して電気化学的接触させることによっても、負極および正極の少なくとも一方にリチウムイオンを均一にドープすることができる。
 従って、正極および負極を積層または更に捲回してなる大容量のセルを構成する場合にも、最外周または最外層に位置されるセルの一部にリチウム極を配置することによって、負極および正極の少なくとも一方に円滑にかつ均一にリチウムイオンをドープすることができる。
 本発明に係るリチウムイオンキャパシタは、例えば、正極集電体に正極活物質層を形成した正極、第1のセパレータ、負極集電体に負極活物質層を形成した負極、第2のセパレータをこの順に捲回または積層させ、正極と接触しないように第1のセパレータの余剰部に少なくとも1つのリチウムイオン供給源を配置し、負極集電体とリチウムイオン供給源を短絡させて、リチウムイオンキャパシタ要素を構成する。角型、円筒型またはラミネート状の外装容器にリチウムイオンキャパシタ要素を封入した後、電解液を充填することにより、リチウム極のドープが開始され、負極活物質層中にリチウムイオンをドープすることができる。これによりリチウムイオンキャパシタが構成される。
 以下、本発明に係るリチウムイオンキャパシタを構成する要素の各々について説明する。
〔集電体〕
 正極および負極には、それぞれ電気を受配電する正極集電体および負極集電体が備えられる。正極集電体および負極集電体としては、例えば、エキスパンドメタルや、電解エッチングなどのエッチング処理等により表裏面に開口する微細な貫通孔が形成された材料を用い、リチウム極を負極および正極の少なくとも一方に対向させて配置することにより、電気化学的にリチウムイオンを供給することが好ましい。貫通孔の形態、数等は特に限定されず、電解液中のリチウムイオンが各電極集電体に遮断されることなく、電極の表裏間を移動できるように設定することができる。
〔正極集電体〕
 正極集電体の材質としては、アルミニウム、ステンレス鋼等を用いることができる。正極集電体の厚みは特に限定されるものではないが、通常1~50μmであればよく、5~40μmが好ましく、10~40μmが特に好ましい。
 正極集電体の貫通孔を形成する方法は、機械的な打ち込みにより開孔を形成する方法、エッチング処理、COレーザー、YAGレーザーまたはUVレーザー等のレーザー処理等が挙げられるが、各方法により形成される貫通孔の形状が異なるので、目的とする形状が得られるよう形成条件を適宜最適化することができる。貫通孔の孔径は、例えば0.001~1mmであり、0.001~0.3mmが好ましく、0.005~0.3mmが特に好ましい。
 また、正極集電体の開口率は、10~60%が好ましく、10~50%がより好ましい。
〔正極活物質〕
 正極活物質としては、リチウムイオンおよびテトラフルオロボレート等の少なくとも1種のアニオンを可逆的にドープ・脱ドープ可能な物質が用いられ、例えば活性炭粉末が挙げられる。活性炭は、その比表面積が1000~2800m/gであることが好ましく、さらに、1900~2600m/gであることが好ましい。また、活性炭の50%体積累積径(D50)(平均粒子径)は、活性炭の充填密度の観点から、2~8μmが好ましく、特に3~8μmが好ましい。活性炭の比表面積およびD50が前記範囲にあると、リチウムイオンキャパシタのエネルギー密度をさらに向上させることができる。なお、本実施形態における50%体積累積径(D50)の値は、例えば、マイクロトラック法により求められる。
〔(A)正極の厚み:T
 正極活物質を集電体に塗布、印刷、射出、噴霧、蒸着または圧着等により付着させることによって形成される導電層および正極活物質層からなる正極電極層と当該集電体の総厚、すなわち集電体の厚みと正極電極層の厚みとの合計の厚みを正極の厚みTとしたとき、390μm≦T≦750μmであることが好ましい。正極の厚みを上記範囲とすることにより、抵抗上昇を抑制しつつ、高エネルギー密度化を図ることができる。
〔負極集電体〕
 負極集電体としては、ステンレス鋼、銅、ニッケル等を用いることができる。この負極集電体の厚みは特に限定されるものではないが、通常1~50μmであればよく、5~40μmが好ましく、10~30μmが特に好ましい。
 負極集電体の貫通孔を形成する方法は、機械的な打ち込みにより開孔を形成する方法、エッチング処理、COレーザー、YAGレーザーまたはUVレーザー等のレーザー処理等が挙げられるが、各方法により形成される貫通孔の形状が異なるので、目的とする形状が得られるよう形成条件を適宜最適化することができる。貫通孔の孔径は、例えば0.001~1mmであり、0.001~0.3mmが好ましく、0.005~0.3mmが特に好ましい。
 また、負極集電体の開口率は、10~60%が好ましく、10~50%がより好ましい。
〔負極活物質〕
 負極活物質としては、リチウムイオンを可逆的にドープ・脱ドープ可能である物質のうち、黒鉛系材料が用いられる。具体的には、人造黒鉛、天然黒鉛、黒鉛系複合粒子が挙げられる。
 ここに、「黒鉛系複合粒子」とは、結晶性材料よりなる粒子の表面を、非結晶性材料によって被覆した構成を有し、具体的には、黒鉛(グラファイト)等の結晶性材料よりなる粒子の表面が、タールもしくはピッチ由来の非結晶性カーボン等の非結晶性材料によって被覆されてなるものである。
 前記黒鉛系複合粒子は、例えば黒鉛(グラファイト)の表面をタールやピッチ等で被覆し、熱処理を行なうことによって表面のタールやピッチを炭化する方法によって得られる炭素電極物質である。このような黒鉛系複合粒子において、黒鉛粒子表面におけるタールやピッチ由来の非結晶性カーボンによる被覆の有無は、ラマンスペクトル、XRD等の測定により確認することができる。
 負極活物質の粒度は、出力向上の点から、50%体積累積径(D50)が1.0~10μmの範囲であることが好ましく、D50が2~5μmの範囲であることがより好ましい。
 なお、前記50%体積累積径(D50)は、例えば、マイクロトラック法により求められる値である。
〔(B)負極の厚み:T
 負極活物質を集電体に塗布、印刷、射出、噴霧、蒸着または圧着等により付着させることによって形成される負極活物質層、および必要に応じて設けられる導電層からなる負極電極層と当該集電体の総厚、すなわち集電体の厚みと負極電極層の厚みとの合計の厚みを負極の厚みTとしたとき、100μm≦T≦300μmであることが好ましい。負極の厚みTB の値を上記範囲とすることにより、高エネルギー密度化を図るとともに耐久性を向上させることができる。
〔正極電極層の重量Wおよび負極電極層の重量W
 本発明に係るリチウムイオンキャパシタにおいて、負極電極層の重量Wに対する正極電極層の重量Wの比率W/Wの値は、1.02≦W/WB ≦2.08の範囲であることが好ましい。当該比率の値をこの範囲とすることにより、負極の静電容量をより効率的に使用することが可能となり、更なる高エネルギー密度化を図ることができる。
〔√(TA 2×W/W)〕
 本発明に係るリチウムイオンキャパシタの正極の厚みTの二乗TA 2と、正極電極層の重量Wの負極電極層の重量Wに対する比率(W/W)との積の平方根の値〔√(TA 2×W/W)〕は、500≦√(TA 2×W/W)≦1000の範囲であることが好ましい。当該値をこの範囲とすることにより、負極の静電容量をより効率的に使用することが可能となり、更なる高エネルギー密度化を図ることができる。
〔バインダ〕
 上記のような正極活物質層を有する正極および負極活物質層を有する負極の作製は、通常用いられる既知の方法によって行うことができる。
 例えば、各電極(正極または負極)は、各活物質粉末(正極活物質または負極活物質)と、バインダと、必要に応じて、導電材、カルボキシメチルセルロース(CMC)等の増粘剤とを、水または有機溶媒に加えて混合し、得られるスラリーを集電体に塗布する方法、あるいは当該スラリーをシート状に成形したものを集電体に貼付することにより、作製することができる。
 上記の各電極の作製において、バインダとしては、例えば、SBR等のゴム系バインダ、ポリ四フッ化エチレン、ポリフッ化ビニリデン等をアクリル系樹脂でシード重合させた含フッ素系樹脂、アクリル系樹脂等を用いることができる。
 また、導電材としては、例えば、アセチレンブラック、ケッチェンブラック、グラファイト、金属粉末等が挙げられる。
 バインダおよび導電材の各々の添加量は、用いる活物質の電気伝導度、作製される電極の形状等によっても異なるが、いずれも、通常、活物質に対して2~40質量%であることが好ましい。
〔セパレータ〕
 本発明に係るリチウムイオンキャパシタにおけるセパレータの材料としては、JISP8117に準拠した方法により測定された透気度が1~500secの範囲内にある材料を用いることができる。具体的には、例えばポリエチレン、ポリプロピレン、ポリエステル、セルロース、ポリオレフィン、セルロース/レーヨンなどから構成される不織布や微多孔質膜等の中から適宜選択したものを用いることができ、またこれらの不織布や微多孔質膜等の表面にセラミック等を塗布して耐熱性を向上させたものを用いてもよい。特にポリロプロピレン、ポリエチレンおよびセルロース/レーヨンよりなる群から選ばれる少なくとも1種よりなるものを用いることが好ましい。セパレータの厚みは、例えば1~100μmであり、5~50μmが好ましい。
〔(C)電解液〕
 本発明に係るリチウムイオンキャパシタにおいては、電解液として、リチウム塩の非プロトン性有機溶媒による電解質溶液が用いられる。
〔電解液の非プロトン性有機溶媒〕
 電解液を構成する非プロトン性有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート(DEC)、メチルプロピルカーボネート等の鎖状カーボネートが挙げられる。これらのうちの2種以上を混合した混合溶媒を用いてもよく、特に、粘度が低く、解離度が高く、イオン伝導度が高い電解液が得られることから、環状カーボネートと鎖状カーボネートとの混合物を用いることが好ましい。
 混合溶媒の具体例としては、EC/PC/DECの混合溶媒、EC/DECの混合溶媒等を挙げることができる。このような混合溶媒における環状カーボネートと鎖状カーボネートとの比率は、重量で1:99~80:20であることが好ましく、10:90~60:40であることがより好ましい。
 本発明において電解液とされる有機溶媒は、環状カーボネートおよび鎖状カーボネート以外の有機溶媒、例えば、γ-ブチロラクトン等の環状エステル、スルホラン等の環状スルホン、ジオキソラン等の環状エーテル、プロピオン酸エチル等の鎖状カルボン酸エステル、ジメトキシエタン等の鎖状エーテル等を含有するものであってもよい。
 〔電解質〕
 電解液における電解質のリチウム塩としては、例えば、LiClO、LiAsF、LiBF、LiPF、LiN(CSO、LiN(CFSO等が挙げられ、特に、イオン伝導性が高く、低抵抗であることから、LiPFが好適に用いられる。電解液におけるリチウム塩の濃度は、低い内部抵抗が得られることから、0.1mol/L以上であることが好ましく、0.5~1.5mol/Lであることがより好ましい。
〔(D)リチウムイオンキャパシタの重量W
 以上の各構成要素を用いて、リチウムイオンキャパシタが構成される。
 本発明に係るリチウムイオンキャパシタは、当該リチウムイオンキャパシタの重量Wに対する、正極電極層の重量Wと負極電極層の重量Wとの和の比率〔(W+W)/W〕の値が、0.19≦(W+W)/W≦0.28であることが好ましい。当該比率の値をこの範囲とすることにより、より高エネルギー密度化を図ることが可能となる。
 本発明に係るリチウムイオンキャパシタは、正極電極層の重量Wと負極電極層の重量Wとの和に対する電解液の重量Wの比率〔W/(W+W)〕の値が、1.58≦W/(W+W)≦1.85であることが好ましい。当該比率の値をこの範囲とすることにより、より高エネルギー密度化を図ることが可能となる。
〔リチウムイオンキャパシタの構造〕
 以上、本発明の実施の形態について説明したが、本発明はこれらの形態に限定されず、種々の変更が可能である。
 本発明に係るリチウムイオンキャパシタの構造としては、特に、帯状の正極と負極とをセパレータを介して捲回させる捲回型セル、板状またはシート状の正極と負極とがセパレータを介して各3層以上積層された積層型セル、このように積層された構成のユニットが外装フィルム内または角型外装缶内に封入された積層セル等が挙げられる。
 これらのキャパシタセルの構造は、特開2004-266091号公報等により既知であり、それらのキャパシタセルと同様の構成とすることができる。
 また、リチウムイオンキャパシタが正極および負極がセパレータを介して積層または捲回されてなる構成の電極ユニット(積層型電極ユニットまたは捲回型電極ユニット)を有してなるものである場合においては、電極ユニットを構成する正極が、表裏面を貫通する孔を有する正極集電体を複数有し、当該複数の集電体が正極電極層を介して積層されてなる構成を有するものであってもよい。このような構成のリチウムイオンキャパシタにおいては、より一層の低抵抗化および長寿命化を図ることができる。   
 また、複数の正極集電体を有する正極は、例えば正極集電体の両面または片面に正極活物質層および導電層からなる正極電極層が形成された積層体を複数用意し、それらを重ね合わせて積層することによって作製することができる。
 なお、複数の正極集電体を有する正極において、正極の厚みTとは、複数の正極集電体の各々の厚みと、これらの複数の正極集電体に形成されたすべての正極電極層の各々の厚みとの合計の厚みである。
 本発明に係るリチウムイオンキャパシタにおいて、正極活物質層および導電層からなる正極電極層の重量Wは例えば8~15g、負極活物質層および導電層からなる負極電極層の重量Wは例えば3.5~12g、電解液の重量Wは例えば15~45gであり、リチウムイオンキャパシタの重量Wは、例えば50~100gであるが、これらは、種々の条件によって異なり、また適宜の範囲から選択されるものである。
 以下、本発明の実施例について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
〔実施例1:S1〕
(1)正極シートの作製
 市販の50%体積累積径(D50)の値が3μmの活性炭粒子10重量部と、アセチレンブラック粉体1.1重量部と、イソプロパノール20重量部とを充分に混合してスラリーを得、これにポリ四フッ化エチレンよりなるバインダ0.7重量部を加えて混練物を作製し、これを圧延ローラーを用いてシート状に成形し、厚さ210μmの正極シート体を得た。
 貫通孔径0.3mm、開口率40%、厚さが30μmのアルミケミカルエッチング箔を正極集電体としてその両面に導電層形成用の導電性塗料をコーティングし、すぐに上記正極シート体を正極集電体の両面に貼り付け、次いで、圧延ローラーにて正極集電体と正極シート体を密着させた後、真空乾燥し、正極の厚み(正極集電体および両面の導電層の厚さと両面の正極シート体による正極活物質層の厚さとの合計)Tが461μmの正極材料を得た。
 このようにして得られた、正極集電体の一部分に導電層および正極活物質層が積層されてなる正極材料を、導電層および正極活物質層が積層されている部分(以下、正極シートについて「塗工部」ともいう。)が60mm×65mm、いずれの層も形成されてない部分(以下、正極シートについて「未塗工部」ともいう。)が60mm×15mmとなるように、60mm×80mmの大きさに切断することにより、正極集電体の両面に導電層を介して正極活物質層が形成されてなる正極シートを作製した。
(2)負極シートの作製
 貫通孔径0.3mm、開口率43%、厚さ20μmの銅製ケミカルエッチング箔からなる負極集電体の両面に、50%体積累積径(D50)の値が2μmの黒鉛粒子(市販の黒鉛を粉砕したもの)よりなる負極活物質と、SBRバインダ(JSR株式会社製:TRD2001)を含有してなるスラリーを、縦型ダイ方式の両面塗工機を用いて、塗工幅が85mm、塗工速度が8m/minの塗工条件により、負極の厚み(負極集電体および両面の負極活物質層の厚さとの合計)Tが181μmとなるよう両面塗工した後、200℃で24時間の条件で減圧乾燥させることにより、負極集電体の両面に負極活物質層からなる電極層を形成した。
 このようにして得られた、負極集電体の一部分に電極層が形成されてなる材料を、電極層が形成されている部分(以下、負極シートについて「塗工部」ともいう。)が65mm×70mm、電極層が形成されてない部分(以下、負極シートについて「未塗工部」ともいう。)が65mm×15mmになるように、65mm×85mmの大きさに切断することにより、負極集電体の両面に電極層が形成されてなる負極シートを作製した。
(3)セパレータの作製
 厚み20μm、透気度120secのセルロース/レーヨン複合材料からなるフィルムを67mm×90mmに切断してセパレータを作製した。
(4)リチウムイオンキャパシタ要素の作製
 先ず、正極シート7枚、負極シート8枚、セパレータ16枚を用意し、正極シートと負極シートとを、それぞれの塗工部は重なるが、それぞれの未塗工部は反対側になり重ならないよう、セパレータ、負極シート、セパレータ、正極シートの順で積重し、積重体の4辺をテープにより固定することにより、電極積層ユニットを作製した。正極電極層の重量Wは8.51g、負極電極層の重量Wは6.34gであった。
 次いで、厚み195μmのリチウム金属を箔状に切断し、厚さ20μmの銅製ケミカルエッチング箔に圧着することによりリチウムイオン供給部材を作製し、このリチウムイオン供給部材を電極積層ユニットの上側に負極シートと対向するよう配置した。
 そして、作製した電極積層ユニットの7枚の正極シートの各々の未塗工部に、予めシール部分にシーラントフィルムを熱融着した幅30mm、長さ30mm、厚さ0.2mmのアルミニウム製の正極用電源タブを重ねて溶接した。一方、電極積層ユニットの8枚の負極シートの各々の未塗工部およびリチウムイオン供給部材の各々に、予めシール部分にシーラントフィルムを熱融着した幅30mm、長さ30mm、厚さ0.2mmのニッケルメッキした銅製の負極用電源タブを重ねて溶接し、もってリチウムイオンキャパシタ要素を作製した。
(5)リチウムイオンキャパシタの作製
 ポリプロピレン層、アルミニウム層およびナイロン層が積層されてなり、寸法が縦90mm、横117mm、厚み0.15mmで、中央部分に縦70mm、横97mmの絞り加工が施された一方の外装フィルム、並びにポリプロピレン層、アルミニウム層およびナイロン層が積層されてなり、寸法が縦90mm、横117mm、厚み0.15mmの他方の外装フィルムを作製した。
 次いで、他方の外装フィルム上における中央部分に、リチウムイオンキャパシタ要素を、その正極用電源タブおよび負極用電源タブの各々が、他方の外装フィルムの端部から外方に突出するよう配置し、このリチウムイオンキャパシタ要素に一方の外装フィルムを重ね合わせ、一方の外装フィルムおよび他方の外装フィルムの外周縁部における、正極用電源タブおよび負極用電源タブが突出する2辺を含む3辺を熱融着した。
 一方、エチレンカーボネート、プロピレンカーボネートおよびジエチルカーボネートを体積比で3:1:4の割合で混合した混合溶媒を用い、添加剤として下記式(1)で表わされるリチウムビス(オキサラト)ボレートを電解液全重量に対して0.2重量%の割合で含有する、濃度1.2mol/LのLiPFを含む電解液を調製した。
 次いで、一方の外装フィルムおよび他方の外装フィルムの間に上記電解液25.5gを注入した後、一方の外装フィルムおよび他方の外装フィルムの外周縁部における残りの一辺を熱融着した。
 以上のようにして試験用ラミネート外装リチウムイオンキャパシタセル(以下、単に「セル」ともいう。)S1を作製した。このセルS1の重量Wは66.8gであった。
Figure JPOXMLDOC01-appb-C000001
 以上、本発明のセルS1の構成要件について説明したが、以下、セルS1に基づいて本発明のセルS2~S13および比較用のセルC1~C11の構成要件について示す。
〔実施例2:S2〕
 負極活物質層からなる電極層を両面に有する負極の厚みTを226μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W27.7g)を充填し、厚み250μmのリチウム金属を使用したこと以外は、実施例1と同様の構成でセルS2(W70.9g)を作製した。正極電極層の重量Wは8.51g、負極電極層の重量Wは8.02gであった。
〔実施例3:S3〕
 負極活物質層からなる電極層を両面に有する負極の厚みTを122μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W22.6g)を充填し、厚み120μmのリチウム金属を使用したこと以外は、実施例1と同様の構成でセルS3(W61.5g)を作製した。正極電極層の重量Wは8.51g、負極電極層の重量Wは4.15gであった。
〔実施例4:S4〕
 導電層と正極活物質層からなる電極層を両面に有する正極の厚みTを390μmに設定し、正極集電体の両面に導電層と正極活物質層からなる電極層を形成した。
 負極活物質層からなる電極層を両面に有する負極の厚みTを156μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W22.3g)を充填し、厚み165μmのリチウム金属を使用したこと以外は、実施例1と同様の構成でセルS4(W61.4g)を作製した。正極電極層の重量Wは7.34g、負極電極層の重量Wは5.42gであった。
〔実施例5:S5〕
 負極活物質層からなる電極層を両面に有する負極の厚みTを106μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W19.8g)を充填し、厚み105μmのリチウム金属を使用したこと以外は、実施例4と同様の構成でセルS5(W56.9g)を作製した。正極電極層の重量Wは7.34g、負極電極層の重量Wは3.55gであった。
〔実施例6:S6〕
 導電層と正極活物質層からなる電極層を両面に有する正極の厚みTを747μmに設定し、正極集電体の両面に導電層と正極活物質層からなる電極層を形成した。
 負極活物質層からなる電極層を両面に有する負極の厚みTを273μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W37.4g)を充填し、厚み300μmのリチウム金属を使用したこと以外は、実施例1と同様の構成でセルS6(W86.8g)を作製した。正極電極層の重量Wは12.85g、負極電極層の重量Wは9.78gであった。
〔実施例7:S7〕
 実施例1と同様の組成比の電解液(W28.6g)を充填したこと以外は実施例3と同様の構成でセルS7(W67.5g)を作製した。
〔実施例8:S8〕
 実施例1と同様の組成比の電解液(W18.6g)を充填したこと以外は実施例3と同様の構成でセルS8(W57.5g)を作製した。
〔実施例9:S9〕
 実施例1と同様の組成比の電解液(W42.4g)を充填したこと以外は実施例6と同様の構成でセルS9(W91.8g)を作製した。
〔実施例10:S10〕
 負極活物質層からなる電極層を両面に有する負極の厚みTを342μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W40.9g)を充填し、厚み390μmのリチウム金属を使用したこと以外は、実施例6と同様の構成でセルS10(W93.1g)を作製した。正極電極層の重量Wは12.85g、負極電極層の重量Wは12.37gであった。
〔実施例11:S11〕
 導電層と正極活物質層からなる電極層を両面に有する2枚の正極シートが積層され、当該2枚の正極シートの未塗工部が重ねられて電気的に接続された構成のものを1つの正極とし、正極の厚み(2枚の正極シートの厚みの合計)Tが461μmとなるよう、正極集電体の両面に導電層と正極活物質層からなる電極層を形成した。そして、正極シート14枚(1つの正極を形成するための2枚の正極シート7組)、負極シート8枚、セパレータ16枚を用意し、正極シートと負極シートとを、それぞれの塗工部は重なるが、それぞれの未塗工部は反対側になり重ならないよう、セパレータ、負極シート、セパレータ、1つの正極を形成するための2枚の正極シート1組(具体的には、正極シート、正極シート)の順で積重したこと以外は実施例1と同様にして電極積層ユニットを作製した。ここに、得られた電極積層ユニットにおいて、当該電極積層ユニットを構成する正極の各々は、2枚の正極シートによって形成されており、複数(具体的には2枚)の正極集電体が導電層と正極活物質層からなる電極層を介して積層された構成のものである。次いで、実施例1と同様の組成比の電解液(W24.8g)を充填し、得られた電極積層ユニットを用いたこと以外は、実施例1と同様の構成でセルS11(W65.7g)を作製した。正極電極層の重量Wは8.12g、負極電極層の重量Wは6.34gであった。
〔実施例12:S12〕
 導電層と正極活物質層からなる電極層を両面に有する2枚の正極シートが積層され、当該2枚の正極シートの未塗工部が重ねられて電気的に接続された構成のものを1つの正極とし、正極の厚み(2枚の正極シートの厚みの合計)Tが747μmとなるよう、正極集電体の両面に導電層と正極活物質層からなる電極層を形成した。また、実施例6で用いた負極電極シートと同様にして負極活物質層からなる電極層を両面に有する負極の厚みTを273μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成したこと以外は実施例11と同様にして電極積層ユニットを作製した。ここに、得られた電極積層ユニットにおいて、当該電極積層ユニットを構成する正極の各々は、2枚の正極シートによって形成されており、複数(具体的には2枚)の正極集電体が導電層と正極活物質層からなる電極層を介して積層された構成のものである。そして、実施例1と同様の組成比の電解液(W38.5g)を充填し、実施例11と同様の構成でセルS12(W88.5g)を作製した。正極電極層の重量Wは13.48g、負極電極層の重量Wは9.78gであった。
〔実施例13:S13〕
 導電層と正極活物質層からなる電極層を両面に有する3枚の正極シートが積層され、当該3枚の正極シートの未塗工部が重ねられて電気的に接続された構成のものを1つの正極とし、正極の厚み(3枚の正極シートの厚みの合計)Tが747μmとなるよう、正極集電体の両面に導電層と正極活物質層からなる電極層を形成した。そして、正極シート21枚(1つの正極を形成するための3枚の正極シート7組)、負極シート8枚、セパレータ16枚を用意し、正極シートと負極シートとを、それぞれの塗工部は重なるが、それぞれの未塗工部は反対側になり重ならないよう、セパレータ、負極シート、セパレータ、1つの正極を形成するための3枚の正極シート1組(具体的には、正極シート、正極シート、正極シート)の順で積重したこと以外は実施例12と同様にして電極積層ユニットを作製した。ここに、得られた電極積層ユニットにおいて、当該電極積層ユニットを構成する正極の各々は、3枚の正極シートによって形成されており、複数(具体的には3枚)の正極集電体が導電層と正極活物質層からなる電極層を介して積層された構成のものである。次いで、実施例1と同様の組成比の電解液(W37.5g)を充填し、得られた電極積層ユニットを用いたこと以外は、実施例1と同様の構成でセルS13(W86.9g)を作製した。正極電極層の重量Wは12.87g、負極電極層の重量Wは9.78gであった。
〔比較例1:C1〕
 負極活物質層からなる電極層を両面に有する負極の厚みTを257μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W29.3g)を充填し、厚み290μmのリチウム金属を使用したこと以外は、実施例1と同様の構成でセルC1(W73.7g)を作製した。正極電極層の重量Wは8.51g、負極電極層の重量Wは9.19gであった。
〔比較例2:C2〕
 負極活物質層からなる電極層を両面に有する負極の厚みTを116μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W22.2g)を充填し、厚み110μmのリチウム金属を使用したこと以外は、実施例1と同様の構成でセルC2(W60.9g)を作製した。正極電極層の重量Wは8.51g、負極電極層の重量Wは3.89gであった。
〔比較例3:C3〕
 導電層と正極活物質層からなる電極層を両面に有する正極の厚みTを385μmに設定し、正極集電体の両面に導電層と正極活物質層からなる電極層を形成した。
 負極活物質層からなる電極層を両面に有する負極の厚みTを154μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W22.0g)を充填し、厚み165μmのリチウム金属を使用したこと以外は、実施例1と同様の構成でセルC3(W61.0g)を作製した。正極電極層の重量Wは7.26g、負極電極層の重量Wは5.35gであった。
〔比較例4:C4〕
 負極活物質層からなる電極層を両面に有する負極の厚みTを219μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W25.2g)を充填し、厚み245μmのリチウム金属を使用したこと以外は、比較例3と同様の構成でセルC4(W66.8g)を作製した。正極電極層の重量Wは7.26g、負極電極層の重量Wは7.75gであった。
〔比較例5:C5〕
 負極活物質層からなる電極層を両面に有する負極の厚みTを99μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W19.3g)を充填し、厚み95μmのリチウム金属を使用したこと以外は、比較例3と同様の構成でセルC5(W56.0g)を作製した。正極電極層の重量Wは7.26g、負極電極層の重量Wは3.28gであった。
〔比較例6:C6〕
 導電層と正極活物質層からなる電極層を両面に有する正極の厚みTを838μmに設定し、正極集電体の両面に導電層と正極活物質層からなる電極層を形成した。
 負極活物質層からなる電極層を両面に有する負極の厚みTを300μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W40.9g)を充填し、厚み335μmのリチウム金属を使用したこと以外は、実施例1と同様の構成でセルC6(W92.7g)を作製した。正極電極層の重量Wは14.13g、負極電極層の重量Wは10.79gであった。
〔比較例7:C7〕
 負極活物質層からなる電極層を両面に有する負極の厚みTを429μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W47.4g)を充填し、厚み500μmのリチウム金属を使用したこと以外は、比較例6と同様の構成でセルC7(W104.4g)を作製した。正極電極層の重量Wは14.13g、負極電極層の重量Wは15.63gであった。
〔比較例8:C8〕
 負極活物質層からなる電極層を両面に有する負極の厚みTを189μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成した。そして、実施例1と同様の組成比の電解液(W35.4g)を充填し、厚み190μmのリチウム金属を使用したこと以外は、比較例6と同様の構成でセルC8(W82.6g)を作製した。正極電極層の重量Wは14.13g、負極電極層の重量Wは6.63gであった。
〔比較例9:C9〕
 導電層と正極活物質層からなる電極層を両面に有する2枚の正極シートが積層され、当該2枚の正極シートの未塗工部が重ねられて電気的に接続された構成のものを1つの正極とし、正極の厚み(2枚の正極シートの厚みの合計)Tが385μmとなるよう、正極集電体の両面に導電層と正極活物質層からなる電極層を形成した。また、比較例3で用いた負極電極シートと同様にして負極活物質層からなる電極層を両面に有する負極の厚みTを154μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成したこと以外は実施例11と同様にして電極積層ユニットを作製した。ここに、得られた電極積層ユニットにおいて、当該電極積層ユニットを構成する正極の各々は、2枚の正極シートによって形成されており、複数(具体的には2枚)の正極集電体が導電層と正極活物質層からなる電極層を介して積層された構成のものである。そして、実施例1と同様の組成比の電解液(W21.0g)を充填し、実施例11と同様の構成でセルC9(W59.4g)を作製した。正極電極層の重量Wは6.67g、負極電極層の重量Wは5.35gであった。
〔比較例10:C10〕
 導電層と正極活物質層からなる電極層を両面に有する2枚の正極シートが積層され、当該2枚の正極シートの未塗工部が重ねられて電気的に接続された構成のものを1つの正極とし、正極の厚み(2枚の正極シートの厚みの合計)Tが838μmとなるよう、正極集電体の両面に導電層と正極活物質層からなる電極層を形成した。また、比較例8で用いた負極電極シートと同様にして負極活物質層からなる電極層を両面に有する負極の厚みTを189μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成したこと以外は実施例11と同様にして電極積層ユニットを作製した。ここに、得られた電極積層ユニットにおいて、当該電極積層ユニットを構成する正極の各々は、2枚の正極シートによって形成されており、複数(具体的には2枚)の正極集電体が導電層と正極活物質層からなる電極層を介して積層された構成のものである。そして、実施例1と同様の組成比の電解液(W37.3g)を充填し、実施例11と同様の構成でセルC10(W85.6g)を作製した。正極電極層の重量Wは15.24g、負極電極層の重量Wは6.63gであった。
〔比較例11:C11〕
 導電層と正極活物質層からなる電極層を両面に有する3枚の正極シートが積層され、当該3枚の正極シートの未塗工部が重ねられて電気的に接続された構成のものを1つの正極とし、正極の厚み(3枚の正極シートの厚みの合計)Tが838μmとなるよう、正極集電体の両面に導電層と正極活物質層からなる電極層を形成した。また、比較例10で用いた負極電極シートと同様にして負極活物質層からなる電極層を両面に有する負極の厚みTを189μmに設定し、負極集電体の両面に負極活物質層からなる電極層を形成したこと以外は実施例13と同様にして電極積層ユニットを作製した。ここに、得られた電極積層ユニットにおいて、当該電極積層ユニットを構成する正極の各々は、3枚の正極シートによって形成されており、複数(具体的には3枚)の正極集電体が導電層と正極活物質層からなる電極層を介して積層された構成のものである。そして、実施例1と同様の組成比の電解液(W36.2g)を充填し、実施例13と同様の構成でセルC11(W83.9g)を作製した。正極電極層の重量Wは14.60g、負極電極層の重量Wは6.63gであった。
〔試験用ラミネート外装リチウムイオンキャパシタセルの評価〕
 上記の本発明のセルS1~S13および比較用のセルC1~C11の各々について、下記の項目を評価した。その結果を表1に示す。
(a)重量エネルギー密度
 試験用ラミネート外装リチウムイオンキャパシタセルに対し、1CAの定電流によってキャパシタの電圧が3.8Vになるまで充電し、その後、3.8Vの定電圧を印加する定電流-定電圧充電を0.5時間行った。次いで、1CAの定電流によってキャパシタの電圧が2.2Vになるまで放電した結果、求められたエネルギー量より、重量エネルギー密度(Wh/kg)を求めた。
(b)容量保持率
 上記充放電を5000サイクル繰り返した際の容量保持率(%)を求めた。
〔交流内部抵抗〕
(c)交流内部抵抗と静電容量との積R・C
 試験用ラミネート外装リチウムイオンキャパシタセルの25℃±5℃の環境下における1KHzの交流内部抵抗R(Ω)を測定し、これと当該セルの静電容量Cとの積R・C(Ω・F)を求めた。
装置:日置電機社製 ACミリオームハイテスタ3560
測定温度:25℃
 上記評価項目(a)~(c)の評価基準は下記のとおりである。また、総合判定においては、評価項目(a)~(c)の何れかに1つでも評価「A」がある場合は、総合判定を「不良」とし、それ以外の場合、すなわち評価「A」がない場合は、総合判定を「良好」とした。
(a)重量エネルギー密度
 「A」:17(Wh/kg)未満であって不良である。
 「B」:17(Wh/kg)以上で18(Wh/kg)未満であって良好である。
 「C」:18(Wh/kg)以上であって非常に良好である。
(b)容量保持率
 「A」:93(%)未満であって不良である。
 「B」:93(%)以上で95(%)未満であって良好である。
 「C」:95(%)以上であって非常に良好である。
(c)交流内部抵抗(R・C)
 「A」:10(Ω・F)より大きく不良である。
 「B」:10(Ω・F)以下であって良好である。
Figure JPOXMLDOC01-appb-T000002
 本発明の実施例に係るセルS1~S13は、1.02≦W/W≦2.08および390μm≦T≦750μmを満たすことから、エネルギー密度が高く、低抵抗、長寿命である。特にセルS1およびS5は、500≦√(TA 2 ×W/W)≦1000を満たすことからエネルギー密度が高いことが明らかである。
 また、実施例に係るセルS11~S13は、正極が複数の正極集電体を有する構成のものであることから、低抵抗および長寿命となることが明らかである。
 比較例のセルC1は、1.02>(W/WB)であることから、実施例のセルS1、S2およびS3よりもエネルギー密度が低く、比較例のセルC2は、(W/W)>2.08であることから、実施例のセルS1、S2およびS3よりもサイクル特性が低いものであった。
 また、比較例のセルC3およびC4は390μm>Tであることから実施例のセルS4およびS5よりもエネルギー密度が低く、比較例のセルC5は390μm>Tである一方で500≦√(TA 2 ×W/W)≦1000を満たすことからエネルギー密度は実施例のセルS4およびS5と同等であるものの、(W/W)>2.08であることから、サイクル特性が低く、比較例のセルC6、C7およびC8はT>750μmであることから、エネルギー密度は高いものの、実施例のセルS6よりも抵抗が高いものであった。
 また、比較例のC9~C11は正極が複数の正極集電体を有する構成のものであることから低抵抗となるものの、1.02≦W/W≦2.08および/または390μm≦T≦750μmを満たさないため、高エネルギー密度と長寿命の両立ができないものであった。

Claims (7)

  1. (A)正極電極層が形成された正極と、
    (B)負極電極層が形成された負極と、
    (C)電解液とを有する
    (D)蓄電デバイスであって、
    前記(A)正極電極層の重量をW
    前記(B)負極電極層の重量をW
    前記(A)正極電極層が形成された正極の厚みをTとしたとき、
    1.02≦W/W≦2.08であり、且つ、390μm≦T≦750μmを満たすことを特徴とする蓄電デバイス。
  2.  前記(D)蓄電デバイスの重量をW
    前記(C)電解液の重量をWとしたとき、
    0.19≦(W+W)/ W≦0.28であり、且つ、1.58≦W/(W+W)≦1.85を満たすことを特徴とする請求項1に記載の蓄電デバイス。
  3.  500≦√(TA 2×W/W)≦1000を満たすことを特徴とする請求項1または請求項2に記載の蓄電デバイス。
  4.  前記(B)負極電極層が形成された負極の厚みをTとしたとき、100μm≦T≦300μmを満たすこと特徴とする請求項1~請求項3の何れか1項に記載の蓄電デバイス。
  5.  前記(D)蓄電デバイスが、積層型電極ユニットまたは捲回型電極ユニットを有することを特徴とする請求項1~請求項4の何れか1項に記載の蓄電デバイス。
  6.  前記(D)蓄電デバイスが、前記正極および前記負極がセパレータを介して積層または捲回されてなる構成の積層型電極ユニットまたは捲回型電極ユニットを有しており、当該正極が、表裏面を貫通する孔を有する集電体を複数有し、当該複数の集電体が正極電極層を介して積層されてなる構成を有することを特徴とする請求項5に記載の蓄電デバイス。
  7.  リチウムイオンキャパシタであることを特徴とする請求項1~請求項6の何れか1項に記載の蓄電デバイス。
PCT/JP2012/054701 2011-03-18 2012-02-27 蓄電デバイス WO2012127991A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12760198.7A EP2688079B1 (en) 2011-03-18 2012-02-27 Power storage device
CN201280012955.8A CN103430263B (zh) 2011-03-18 2012-02-27 蓄电装置
US14/005,472 US9287058B2 (en) 2011-03-18 2012-02-27 Accumulator device
JP2013505865A JPWO2012127991A1 (ja) 2011-03-18 2012-02-27 蓄電デバイス
KR1020137025745A KR101863399B1 (ko) 2011-03-18 2012-02-27 축전 디바이스

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011060192 2011-03-18
JP2011-060192 2011-03-18
JP2011209125 2011-09-26
JP2011-209125 2011-09-26

Publications (1)

Publication Number Publication Date
WO2012127991A1 true WO2012127991A1 (ja) 2012-09-27

Family

ID=46879150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054701 WO2012127991A1 (ja) 2011-03-18 2012-02-27 蓄電デバイス

Country Status (6)

Country Link
US (1) US9287058B2 (ja)
EP (1) EP2688079B1 (ja)
JP (1) JPWO2012127991A1 (ja)
KR (1) KR101863399B1 (ja)
CN (1) CN103430263B (ja)
WO (1) WO2012127991A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152243A (ja) * 2016-02-25 2017-08-31 積水化学工業株式会社 リチウムイオン二次電池
JP2018166140A (ja) * 2017-03-28 2018-10-25 太陽誘電株式会社 電気化学デバイス
WO2021060412A1 (ja) * 2019-09-25 2021-04-01 積水化学工業株式会社 蓄電素子及び蓄電素子の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170125175A1 (en) * 2015-10-30 2017-05-04 Korea Institute Of Energy Research High-voltage and high-power supercapacitor having maximum operating voltage of 3.2 v
JP6866202B2 (ja) 2017-03-28 2021-04-28 太陽誘電株式会社 電気化学デバイス
JP2020161669A (ja) * 2019-03-27 2020-10-01 太陽誘電株式会社 電気化学デバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107048A (ja) 1994-08-12 1996-04-23 Asahi Glass Co Ltd 電気二重層キャパシタ
WO2004059672A1 (ja) * 2002-12-26 2004-07-15 Fuji Jukogyo Kabushiki Kaisha 蓄電装置および蓄電装置の製造方法
JP2004266091A (ja) 2003-02-28 2004-09-24 Kanebo Ltd フィルム型蓄電装置
JP2007173615A (ja) * 2005-12-22 2007-07-05 Fuji Heavy Ind Ltd 電池又はキャパシタ用リチウム金属箔
JP4015993B2 (ja) 2001-06-29 2007-11-28 富士重工業株式会社 有機電解質キャパシタ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953204A (en) * 1994-12-27 1999-09-14 Asahi Glass Company Ltd. Electric double layer capacitor
JP4813152B2 (ja) 2005-11-14 2011-11-09 富士重工業株式会社 リチウムイオンキャパシタ
JP4800232B2 (ja) * 2006-03-07 2011-10-26 三菱電機株式会社 電気二重層キャパシタ
JP4971729B2 (ja) * 2006-09-04 2012-07-11 富士重工業株式会社 リチウムイオンキャパシタ
JP2010205846A (ja) * 2009-03-02 2010-09-16 Asahi Kasei Corp 非水系リチウム型蓄電素子
KR101861409B1 (ko) 2009-12-28 2018-05-28 제이에무에나지 가부시키가이샤 축전 디바이스
WO2011122181A1 (ja) 2010-03-31 2011-10-06 Jmエナジー株式会社 蓄電デバイス
DE102012208222A1 (de) 2012-05-16 2013-11-21 Evonik Litarion Gmbh Modellbasiertes Elektrolyt-Befüllverfahren

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107048A (ja) 1994-08-12 1996-04-23 Asahi Glass Co Ltd 電気二重層キャパシタ
JP4015993B2 (ja) 2001-06-29 2007-11-28 富士重工業株式会社 有機電解質キャパシタ
WO2004059672A1 (ja) * 2002-12-26 2004-07-15 Fuji Jukogyo Kabushiki Kaisha 蓄電装置および蓄電装置の製造方法
JP2004266091A (ja) 2003-02-28 2004-09-24 Kanebo Ltd フィルム型蓄電装置
JP2007173615A (ja) * 2005-12-22 2007-07-05 Fuji Heavy Ind Ltd 電池又はキャパシタ用リチウム金属箔

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152243A (ja) * 2016-02-25 2017-08-31 積水化学工業株式会社 リチウムイオン二次電池
JP2018166140A (ja) * 2017-03-28 2018-10-25 太陽誘電株式会社 電気化学デバイス
WO2021060412A1 (ja) * 2019-09-25 2021-04-01 積水化学工業株式会社 蓄電素子及び蓄電素子の製造方法
JP6876883B1 (ja) * 2019-09-25 2021-05-26 積水化学工業株式会社 蓄電素子及び蓄電素子の製造方法

Also Published As

Publication number Publication date
EP2688079A4 (en) 2014-09-24
JPWO2012127991A1 (ja) 2014-07-24
KR20140016917A (ko) 2014-02-10
US20140002959A1 (en) 2014-01-02
EP2688079A1 (en) 2014-01-22
US9287058B2 (en) 2016-03-15
CN103430263B (zh) 2016-10-12
KR101863399B1 (ko) 2018-05-31
CN103430263A (zh) 2013-12-04
EP2688079B1 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
JP4857073B2 (ja) リチウムイオンキャパシタ
US20120045685A1 (en) Electric storage device
KR101862433B1 (ko) 리튬 이온 캐패시터
JP2023171777A (ja) 多層電極膜のための組成物および方法
JP4283598B2 (ja) 非水電解質溶液及びリチウムイオン2次電池
JP2010225545A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2012063545A1 (ja) リチウムイオンキャパシタ
JP2008252013A (ja) リチウムイオンキャパシタ
WO2012127991A1 (ja) 蓄電デバイス
JP2012004491A (ja) 蓄電デバイス
JP2012156405A (ja) 蓄電デバイス
JP2010287641A (ja) 蓄電デバイス
JP5921897B2 (ja) リチウムイオンキャパシタ
JP5298815B2 (ja) リチウムイオン二次電池の製造方法、電解液及びリチウムイオン二次電池
JP2012038900A (ja) リチウムイオンキャパシタ
JP6487841B2 (ja) 蓄電デバイス
JP2010062299A (ja) 蓄電デバイス
JP6254360B2 (ja) 蓄電デバイス
JP5650029B2 (ja) リチウムイオンキャパシタ
JP2014212304A (ja) 蓄電デバイスおよび蓄電モジュールの作製方法
JP2012114201A (ja) 蓄電デバイス
US20220352511A1 (en) Lithium transition metal oxide electrodes including additional metals and methods of making the same
JP2014203909A (ja) 蓄電デバイス
JP2011151168A (ja) 蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505865

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14005472

Country of ref document: US

Ref document number: 2012760198

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137025745

Country of ref document: KR

Kind code of ref document: A