WO2011122181A1 - 蓄電デバイス - Google Patents

蓄電デバイス Download PDF

Info

Publication number
WO2011122181A1
WO2011122181A1 PCT/JP2011/054070 JP2011054070W WO2011122181A1 WO 2011122181 A1 WO2011122181 A1 WO 2011122181A1 JP 2011054070 W JP2011054070 W JP 2011054070W WO 2011122181 A1 WO2011122181 A1 WO 2011122181A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
terminal
storage device
electrode terminal
Prior art date
Application number
PCT/JP2011/054070
Other languages
English (en)
French (fr)
Inventor
真 田口
渡辺 裕
信雄 安東
英則 高木
Original Assignee
Jmエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jmエナジー株式会社 filed Critical Jmエナジー株式会社
Priority to US13/637,385 priority Critical patent/US9496541B2/en
Priority to JP2012508148A priority patent/JP5421454B2/ja
Publication of WO2011122181A1 publication Critical patent/WO2011122181A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electricity storage device comprising an electrode terminal provided in such a manner.
  • an electrode in which a plurality of positive electrode sheets and a plurality of negative electrode sheets are alternately stacked via separators in an outer container In an electricity storage device such as an electric double layer capacitor, a lithium ion secondary battery, or a lithium ion capacitor, an electrode in which a plurality of positive electrode sheets and a plurality of negative electrode sheets are alternately stacked via separators in an outer container.
  • An electrode unit formed by winding a unit or a positive electrode sheet and a negative electrode sheet stacked with a separator interposed therebetween is housed together with an electrolytic solution.
  • the positive electrode sheet is formed by forming an electrode layer containing a positive electrode active material on a current collector made of aluminum, for example, and the negative electrode sheet is made of a negative electrode active material on a current collector made of copper, for example.
  • An electrode layer containing it is formed.
  • a container in which two exterior films stacked on each other are airtightly joined to each other by joints formed along respective outer peripheral edges. And in the electrical storage device having such an exterior container, a plate-like positive electrode terminal electrically connected to the current collector of the positive electrode sheet and a plate electrically connected to the current collector of the negative electrode sheet A negative electrode terminal is provided so as to protrude from the inside of the outer container to the outside of the outer container through the joint.
  • the positive electrode terminal is made of aluminum
  • the terminal base made of aluminum is formed with a nickel plating film on the surface
  • the negative electrode terminal is made of copper, nickel, or the like.
  • Such a conventional power storage device has the following problems.
  • the surface of the outer end portion of the positive electrode terminal located outside the outer container is oxidized by long-term use, so that the electrical resistance value between the electrode terminals increases.
  • the negative electrode terminal made of copper or nickel in another power storage device is welded to the positive electrode terminal made of aluminum.
  • the electrical resistance value between the electrode terminals increases due to long-term use.
  • a current collector made of aluminum in the positive electrode sheet is formed on the surface of the nickel plating film in the positive electrode terminal. Since the body is welded, electric contact is likely to occur in the welded part during charge and discharge, and nickel dissolved in the electrolyte solution is deposited on the current collector of the negative electrode sheet by the electric contact, and this precipitate is deposited on the positive electrode sheet. There exists a problem that a short circuit arises between a positive electrode sheet and a negative electrode sheet by contacting.
  • the present invention has been made based on the circumstances as described above, and the purpose of the present invention is to make two exterior films overlapped with each other airtight by joints formed along respective outer peripheral edges.
  • the electrical resistance value between electrode terminals does not increase even when used for a long time, and a short circuit between the positive electrode sheet and the negative electrode sheet does not occur.
  • the object is to provide an electricity storage device.
  • the electricity storage device of the present invention is packaged in an exterior container in which the exterior films overlaid on each other are airtightly joined to each other by joints formed along the respective outer peripheral edges, An electrode unit in which a positive electrode sheet and a negative electrode sheet each having an electrode layer formed on a current collector overlap with each other via a separator, and an outer container of the outer container through the joint from the inside of the outer container
  • An electricity storage device comprising a positive electrode terminal and a negative electrode terminal provided so as to protrude to the outside, and an electrolytic solution filled in the outer container
  • the positive electrode terminal includes a terminal base made of aluminum, and a nickel plating film formed on the surface of the outer end portion of the terminal base located outside the outer casing. An end edge is located in the joint.
  • the inner edge of the nickel plating film is located in a central region in the width direction of the joint, and the width of the joint is W and the width of the central region is L.
  • the ratio L / W is preferably larger than 0 and smaller than 1.
  • the distance of the outer periphery of the said junction part and the inner edge of the said nickel plating film is 0.5 mm or more.
  • the distance of the inner periphery of the said junction part and the inner edge of the said nickel plating film is 1.0 mm or more.
  • the width of the joint is preferably 5 to 15 mm.
  • at least the surface of the negative electrode terminal is made of nickel.
  • the electricity storage device of the present invention is suitable as a lithium ion capacitor, an electric double layer capacitor, or a lithium ion secondary battery.
  • the nickel plating film is formed on the surface of the outer end portion of the positive electrode terminal located outside the outer container, and the inner edge of the nickel plating film, that is, the plating region on the positive electrode terminal and Since the boundary line with the non-plating region is located in the joint portion of the outer container, the terminal base body is not oxidized, and thus the electrical resistance value between the electrode terminals increases even after long-term use. This can be prevented.
  • the surface of the negative electrode terminal is made of nickel, the surface of the outer end portion of the positive electrode terminal and the surface of the negative electrode terminal are made of the same material, so a plurality of power storage devices are arranged in series.
  • FIG. 2 is an explanatory cross-sectional view showing the lithium ion capacitor shown in FIG. 1 cut along XX.
  • FIG. 2 is an explanatory cross-sectional view showing an enlargement of a positive electrode terminal and a peripheral portion thereof in the lithium ion capacitor shown in FIG. 1.
  • FIG. 1 is a plan view showing the appearance of an example of a lithium ion capacitor according to the present invention
  • FIG. 2 is a sectional view for explanation showing the lithium ion capacitor shown in FIG. 1 cut along XX
  • FIG. FIG. 2 is an explanatory cross-sectional view showing an enlargement of a positive electrode terminal and a peripheral portion thereof in the lithium ion capacitor shown in FIG.
  • This lithium ion capacitor includes an exterior container 20 in which two exterior films 21 and 22 overlapped with each other are hermetically joined to each other by a joint portion 23 formed along each outer peripheral edge portion, and the exterior container.
  • the 20 is a laminated electrode unit 10 having a plurality of positive electrode sheets 11 and a plurality of negative electrode sheets 12, and a plate-like positive electrode terminal provided at one end and the other end of the outer container 20, respectively. 30 and the negative electrode terminal 35, and the electrolyte solution with which the exterior container 20 was filled.
  • the electrode unit 10 is configured by alternately laminating a plurality of rectangular positive electrode sheets 11 and a plurality of rectangular negative electrode sheets 12 via sheet-like separators 13.
  • the positive electrode sheet 11 is configured by forming electrode layers 11b containing a positive electrode active material on both surfaces of a positive electrode current collector 11a, and the negative electrode sheet 12 is formed of the negative electrode current collector 12a.
  • An electrode layer 12b containing a negative electrode active material is formed on one surface or both surfaces, and the positive electrode sheet 11 and the negative electrode sheet 12 are opposed to each other with a separator 13 therebetween. It is laminated to do.
  • the electrode sheets relating to the uppermost layer and the lowermost layer are the negative electrode sheets 12, and each of these negative electrode sheets 12 is configured by forming an electrode layer 12b on one surface of the negative electrode current collector 12a.
  • Each of the positive electrode current collectors 11 a is electrically connected to the positive electrode terminal 30, and each of the negative electrode current collectors 12 a is electrically connected to the negative electrode electrode terminal 35.
  • a film-like lithium ion supply source 15 is arranged on the upper surface of the electrode unit 10 with a separator 13 interposed therebetween. The lithium ion supply source 15 is crimped or stacked on the lithium electrode current collector 16, and the lithium electrode current collector 16 is electrically connected to the negative electrode terminal 35.
  • the “positive electrode” means a pole on the side where a current flows out during discharging and a current flows in during charging
  • the “negative electrode” refers to a current flowing in during discharging. This means the pole on the side where current flows out.
  • the positive electrode current collector 11a and the negative electrode current collector 12a are made of a porous material having holes penetrating the front and back surfaces. Examples of the form include expanded metal, punching metal, metal net, foam, or porous foil having through holes formed by etching.
  • the shape of the hole of the electrode current collector can be set to a circle, a polygon such as a rectangle, or any other appropriate shape.
  • the thickness of the electrode current collector is preferably 20 to 50 ⁇ m from the viewpoint of strength and weight reduction.
  • the porosity of the electrode current collector is usually 10 to 79%, preferably 20 to 60%.
  • the porosity is calculated by [1 ⁇ (mass of electrode current collector / true specific gravity of electrode current collector) / (apparent volume of electrode current collector)] ⁇ 100.
  • the material of the electrode current collector various materials generally used for applications such as organic electrolyte batteries can be used.
  • Specific examples of the material of the negative electrode current collector 12a include stainless steel, copper, and nickel.
  • Examples of the material of the positive electrode current collector 11a include aluminum and stainless steel.
  • the holes in the electrode current collector are closed with a conductive material that is difficult to fall off, and in this state, electrode layers 11b and 12b are formed on one surface of the electrode current collector. It is preferable that the productivity of the electrode can be improved, and the deterioration of the reliability of the electricity storage device caused by the electrode layers 11b and 12b dropping off from the electrode current collector can be prevented or suppressed. Can do. Further, by reducing the thickness of the electrode (total thickness of the electrode current collector and the electrode layer), a higher output density can be obtained. Also, the shape and number of holes in the electrode current collector are blocked by a conductive material so that lithium ions in the electrolyte described later can move between the front and back of the electrode without being blocked by the current collector. It can be set as appropriate so as to facilitate.
  • the electrode layer 12b in the negative electrode sheet 12 contains a negative electrode active material capable of reversibly carrying lithium ions.
  • the negative electrode active material constituting the electrode layer 12b is, for example, a heat-treated product of graphite, non-graphitizable carbon, and aromatic condensation polymer, and the hydrogen atom / carbon atom number ratio (hereinafter referred to as “H / C”).
  • H / C hydrogen atom / carbon atom number ratio
  • PAS polyacene skeleton structure having a polyacene skeleton structure of 0.50 to 0.05
  • the negative electrode active material preferably has a pore diameter of 3 nm or more and a pore volume of 0.10 mL / g or more, and the upper limit of the pore diameter is not limited, but is usually in the range of 3 to 50 nm. is there.
  • the range of the pore volume is not particularly limited, but is usually 0.10 to 0.5 mL / g, preferably 0.15 to 0.5 mL / g.
  • the electrode layer 12b in the negative electrode sheet 12 is formed on the negative electrode current collector 12a using a material containing the above-described carbon material or negative electrode active material such as PAS.
  • the method is not specified and a known method can be used. Specifically, a negative electrode active material powder, a binder and, if necessary, a slurry in which conductive powder is dispersed in an aqueous medium or an organic solvent are prepared, and this slurry is applied to the surface of the negative electrode current collector 12a.
  • the electrode layer 12b can be formed by drying or by previously forming the slurry into a sheet shape and attaching the resulting molded body to the surface of the negative electrode current collector 12a.
  • examples of the binder used for preparing the slurry include rubber-based binders such as SBR, fluorine-based resins such as polytetrafluoroethylene and polyvinylidene fluoride, and thermoplastic resins such as polypropylene and polyethylene.
  • a fluorine-based resin is preferable as the binder, and in particular, a fluorine-based resin having a fluorine atom / carbon atom number ratio (hereinafter referred to as “F / C”) of 0.75 or more and less than 1.5. It is preferable to use a fluorine-based resin having F / C of 0.75 or more and less than 1.3.
  • the amount of the binder used varies depending on the type of the negative electrode active material, the electrode shape, and the like, but is 1 to 20% by mass, preferably 2 to 10% by mass with respect to the negative electrode active material.
  • electroconductive powder used as needed acetylene black, a graphite, a metal powder etc. are mentioned, for example.
  • the amount of the conductive powder used varies depending on the electrical conductivity of the negative electrode active material, the electrode shape, and the like, but it is preferably used in a proportion of 2 to 40% by mass with respect to the negative electrode active material.
  • the electrode layer 12b is formed by applying the slurry to the negative electrode current collector 12a, it is preferable to form a base layer of a conductive material on the coated surface of the negative electrode current collector 12a.
  • the negative electrode current collector 12a is a porous material, so that the slurry leaks from the hole of the negative electrode current collector 12a or the negative electrode current collector 12a. Since the surface is not smooth, it may be difficult to form the electrode layer 12b having a uniform thickness.
  • An electrode layer 12b having the following can be formed.
  • the thickness of the electrode layer 12b in the negative electrode sheet 12 is designed in balance with the thickness of the electrode layer 11b in the positive electrode sheet 11 so as to ensure a sufficient energy density for the obtained lithium ion capacitor. From the viewpoint of the output density, energy density, industrial productivity, and the like of the capacitor, when formed on one surface of the negative electrode current collector 12a, it is usually 15 to 100 ⁇ m, preferably 20 to 80 ⁇ m.
  • the electrode layer 11b in the positive electrode sheet 11 contains a positive electrode active material capable of reversibly carrying lithium ions and / or anions such as tetrafluoroborate.
  • the positive electrode active material constituting the electrode layer 11b is, for example, a heat-treated product of activated carbon, conductive polymer, aromatic condensation polymer, and has a polyacene skeleton structure with H / C of 0.05 to 0.50. PAS or the like can be used.
  • the electrode layer 11 b in the positive electrode sheet 11 can be formed by the same method as the electrode layer 12 b in the negative electrode sheet 12.
  • the separator 13 there can be used a porous body that has durability against an electrolytic solution, a positive electrode active material, or a negative electrode active material and has continuous air holes that can be impregnated with the electrolytic solution, and has low electrical conductivity.
  • thermoplastic resins such as cellulose (paper), polyethylene, polypropylene, cellulose / rayon, engineer plastic / super engineer plastic, glass fiber, and other known materials can be used. Among these, cellulose / rayon is preferable in terms of durability and economy.
  • the thickness of the separator 13 is not particularly limited, but is usually preferably about 20 to 50 ⁇ m.
  • the volume of the lithium ion supply source 15 is appropriately determined in consideration of the amount of lithium ions doped in the electrode layer 12a of the negative electrode sheet 12 and the electrode layer 11a of the positive electrode sheet 11, but the positive electrode sheet 11 and the negative electrode It is preferable to set the amount of lithium ions doped so that the potential of the positive electrode sheet 11 after the sheet 12 is short-circuited is 2.0 V or less.
  • the thickness of the lithium ion supply source 15 is, for example, 0.1 to 0.3 mm, preferably 0.12 to 0.28 mm, and more preferably 0.15 to 0.25 mm.
  • the same porous structure as that of the electrode current collector is used so that the lithium metal constituting the lithium ion supply source 15 can be easily pressure-bonded and lithium ions can pass through if necessary.
  • the material of the lithium electrode current collector 16 is preferably a material that does not react with the lithium ion supply source 15 such as stainless steel.
  • a conductive porous body such as a stainless mesh is used as the lithium electrode current collector 16
  • at least a part of lithium metal constituting the lithium ion supply source 15, particularly 80% by mass or more is a lithium electrode current collector. It is preferable that the gap is generated between the positive electrode sheet 11 and the negative electrode sheet 12 due to the disappearance of lithium metal even after lithium ions are supported on the negative electrode sheet 12. As a result, the reliability of the obtained lithium ion capacitor can be more reliably maintained.
  • the thickness of the lithium electrode current collector 16 is preferably about 10 to 200 ⁇ m.
  • the exterior container 20 is formed by joining two exterior films 21 and 22 each made of a rectangular laminate film in an airtight manner along the respective outer peripheral edges in a state where the exterior films 21 and 22 are overlapped with each other. Has been configured.
  • the central portion of one of the exterior films 21 is subjected to drawing processing, thereby forming an accommodation space in which the electrode unit 10 is accommodated inside the exterior container 20.
  • the electrode unit 10 is accommodated in the space and is filled with an electrolytic solution.
  • the exterior films 21 and 22 for example, a film having a three-layer structure including an inner layer made of a polypropylene layer, an intermediate layer made of an aluminum layer, and an outer layer made of nylon, for example, can be used.
  • the vertical and horizontal dimensions of the exterior films 21 and 22 are appropriately selected according to the dimensions of the electrode unit 10 to be accommodated.
  • the vertical dimension is 40 to 200 mm
  • the horizontal dimension is 60 to 300 mm.
  • the width W of the joint portion 23 is preferably 5 to 15 mm.
  • a plate-like positive electrode terminal 30 is provided at one end (the left end in FIGS. 1 and 2) of the exterior container 20 so as to protrude from the interior of the exterior container 20 to the outside of the exterior container 20 through the joint portion 23.
  • a plate-like negative electrode terminal 35 is provided at the other end (the right end in FIGS. 1 and 2) of the exterior container 20 so as to protrude from the interior of the exterior container 20 to the outside of the exterior container 20 via the joint 23. It has been.
  • the positive terminal electrode 30 is composed of a terminal base 31 made of aluminum and a nickel plating film 32 formed on the surface of the outer end portion of the terminal base 31 located outside the exterior container 20.
  • the nickel plating film 32 is formed so that the inner end edge 32 ⁇ / b> E is positioned in the joint portion 23. If the positive electrode terminal 30 is arranged such that the inner edge 32E of the nickel plating film 32 is located outside the outer container 20, electrical contact is generated at the inner edge 32E of the nickel plating film 32 during charging and discharging. It is easy to cause a problem that the electrical resistance value between the electrode terminals increases due to long-term use.
  • the present invention proposes a design that is low resistance and hardly causes electrical contact.
  • the inner end edge 32 ⁇ / b> E of the nickel plating film 32 is located in the center region 23 a in the width direction of the joint portion 23.
  • the ratio L / W is preferably larger than 0 and smaller than 1, more preferably 0.1 to 0. .9.
  • the distance d1 between the outer peripheral edge of the joint 23 of the outer container 20 and the inner end edge 32E of the nickel plating film 32 is preferably 0.5 mm or more, more preferably 1 to 15 mm.
  • the distance d1 can be changed by design.
  • the distance d1 is too small, corrosion may occur in the vicinity of the inner edge 32E of the nickel plating film 32 due to the influence of moisture entering the joint 23 from the outside when used for a long time.
  • the distance d2 between the inner peripheral edge of the joint portion 23 of the outer container 20 and the inner edge 32E of the nickel plating film 32 is preferably 1.0 mm or more.
  • the distance d2 can be changed by design. When this distance d2 is too small, there is a concern about corrosion due to the penetration of the electrolytic solution into the joint 23.
  • the thickness of the positive electrode terminal 30 is, for example, 0.1 to 0.5 mm.
  • the thickness of the nickel plating film 32 is preferably 1 to 3 ⁇ m.
  • the negative electrode terminal 35 one made of copper, nickel, or the like, or one having a nickel plating film formed on the surface of a terminal base made of copper, etc. can be used, but at least the surface is made of nickel. Specifically, it is preferable that the negative electrode terminal 35 as a whole is made of nickel, or a nickel base coat is formed on the surface of a terminal base made of copper.
  • the thickness of the negative electrode terminal 35 is, for example, 0.1 to 0.5 mm. Further, when the negative electrode terminal 35 having a nickel plating film formed on the surface thereof is used, the thickness of the nickel plating film is preferably 1 to 3 ⁇ m.
  • the exterior container 20 is filled with an electrolytic solution made of an aprotic organic solvent electrolyte solution of a lithium salt.
  • a lithium salt constituting the electrolyte
  • any lithium salt can be used as long as it is capable of transporting lithium ions, does not cause electrolysis even under high voltage, and lithium ions can exist stably.
  • Specific examples thereof include LiClO 4
  • Examples include LiAsF 6 , LiBF 4 , LiPF 6 , and Li (C 2 F 5 SO 2 ) 2 N.
  • aprotic organic solvent examples include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane and the like. These aprotic organic solvents can be used alone or in admixture of two or more.
  • the electrolytic solution is prepared by mixing the above electrolyte and solvent in a sufficiently dehydrated state, but the concentration of the electrolyte in the electrolytic solution is at least 0.1 in order to reduce the internal resistance due to the electrolytic solution. It is preferably at least mol / L, more preferably from 0.5 to 1.5 mol / L.
  • the lithium ion capacitor accommodates the electrode unit 10 in the outer container 20 and electrically connects the positive electrode current collector 11a and the negative electrode current collector 12a in the electrode unit 10 to the positive electrode terminal 30 and the negative electrode terminal 35. Furthermore, after the exterior container 20 is filled with the electrolytic solution, the exterior container 20 is sealed. In the lithium ion capacitor thus manufactured, the outer container 20 is filled with an electrolyte solution capable of supplying lithium ions. Therefore, when left for an appropriate period, the negative electrode sheet 12 and / or By electrochemical contact between the positive electrode sheet 11 and the lithium ion supply source 15, lithium ions released from the lithium ion supply source 15 are doped into the negative electrode sheet 12 and / or the positive electrode sheet 11.
  • the nickel plating film 32 is formed on the surface of the outer end portion of the positive electrode terminal 30 located outside the outer container 20, and the inner edge 32 E of the nickel plating film 32, that is, the positive electrode. Since the boundary line between the plated region and the non-plated region in the terminal 30 is located in the joint portion 23 of the outer container 20, the terminal base 31 is not oxidized, and therefore even when used for a long time. An increase in the electrical resistance value between the electrode terminals can be prevented. In addition, since at least the surface of the negative electrode terminal 35 is made of nickel, the surface of the outer end portion of the positive electrode terminal 30 and the surface of the negative electrode terminal 35 are made of the same material.
  • the electrode terminals When used in an array, there is no electrical contact at the welded portion between the positive electrode terminal 30 and the negative electrode terminal 35 of another electricity storage device during charge / discharge, and therefore the electrode terminals can be connected even after long-term use. It is possible to prevent the electrical resistance value from increasing. Further, since the nickel plating film 32 is not formed on the portion of the positive electrode terminal 30 located inside the outer container 20 and the terminal base 31 made of aluminum is exposed, the negative electrode collector of the negative electrode sheet 12 is exposed. Nickel does not deposit on the electric body 12a, and therefore, short-circuiting between the positive electrode sheet 11 and the negative electrode sheet 12 can be avoided even when used for a long time.
  • thermocompression protective film is provided in advance in a region including the inner edge 32 ⁇ / b> E of the nickel plating film 32, and the outer peripheral edge portions of the exterior films 21 and 22 are positioned on the protective film.
  • the joining part 23 may be formed by joining in the state which was made.
  • a resin film such as polyethylene or polypropylene can be used as the protective film.
  • the electrode unit may be of a configuration other than the laminated type, for example, a wound type in which a positive electrode sheet and a negative electrode sheet are wound in a state where they are stacked via a separator.
  • the electricity storage device of the present invention is not limited to a lithium ion capacitor, and can be configured as an electric double layer capacitor or a lithium ion secondary battery.
  • a lithium ion capacitor was manufactured as follows.
  • a vertical die-type double-side coating machine is used to apply slurry containing a negative electrode active material on both sides of a negative electrode current collector made of copper expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) having a porosity of 57% and a thickness of 32 ⁇ m.
  • a coating width of 130 mm and a coating speed of 8 m / min setting the target value of the coating thickness on both sides to 80 ⁇ m, and coating on both sides, then at 200 ° C. for 24 hours.
  • electrode layers were formed on the front and back surfaces of the negative electrode current collector precursor.
  • the material in which the electrode layer is formed on a part of the current collector precursor thus obtained is the part where the electrode layer is formed (hereinafter also referred to as “coating part” for the negative electrode sheet). Is cut to a size of 100 ⁇ 143 mm so that the portion where the electrode layer is not formed (hereinafter also referred to as “uncoated portion” for the negative electrode sheet) is 100 mm ⁇ 15 mm.
  • a negative electrode sheet having electrode layers formed on both sides of the negative electrode current collector was prepared.
  • a slurry containing the positive electrode active material is applied at a coating speed of 8 m / min using a vertical die type double-side coating machine.
  • the target value of the coating thickness combined on both sides was set to 150 ⁇ m, and both sides were coated, and then dried under reduced pressure at 200 ° C. for 24 hours to form an electrode layer on the conductive layer.
  • the material obtained by laminating the conductive layer and the electrode layer on a part of the positive electrode current collector precursor obtained in this manner is used as the portion where the conductive layer and the positive electrode layer are laminated (hereinafter referred to as “coating” 98 mm ⁇ 126 mm so that the portion where no layer is formed (hereinafter also referred to as “uncoated portion” for the positive electrode sheet) is 98 mm ⁇ 15 mm.
  • the positive electrode sheet in which the electrode layers are formed on both surfaces of the positive electrode current collector was prepared by cutting into a size of.
  • Electrode unit First, 10 positive electrode sheets, 11 negative electrode sheets, and 22 separators are prepared. The positive electrode sheet and the negative electrode sheet are overlapped with each other, but the uncoated portions are opposite. A separator, a negative electrode sheet, a separator, and a positive electrode sheet were stacked in this order so as not to overlap each other, and the four sides of the stacked body were fixed with a tape to produce an electrode unit. Next, a lithium foil having a thickness of 100 ⁇ m is cut and bonded to a copper mesh having a thickness of 40 ⁇ m to produce a lithium ion supply member, and the lithium ion supply member is disposed on the upper side of the electrode unit so as to face the negative electrode. .
  • a sealant film was previously heat-sealed to the uncoated portion of each of the 10 positive electrode sheets of the produced electrode unit, and the aluminum having a width of 50 mm, a length of 50 mm, and a thickness of 0.2 mm
  • the positive electrode terminals made by superimposing were ultrasonically welded.
  • a 2 mm copper negative electrode terminal was stacked and resistance welded.
  • a terminal base body made of plate-like aluminum having a length of 70 mm, a width of 50 mm, and a thickness of 0.2 mm is manufactured, and a nickel plating with a thickness of 2 ⁇ m is formed on the entire surface of one end portion which is the outer end portion of the terminal base end.
  • a positive electrode terminal was produced by forming a film. The length from the outer edge of the positive electrode terminal to the inner edge of the nickel plating film is 53 mm.
  • a negative electrode terminal was prepared in which a nickel plating film having a thickness of 2 ⁇ m was formed on the entire surface of a terminal base made of plate-like copper having a length of 70 mm, a width of 50 mm, and a thickness of 0.2 mm.
  • a polypropylene layer, an aluminum layer, and a nylon layer are laminated, and the other dimension is 125 mm (vertical width) ⁇ 160 mm (horizontal width) ⁇ 0.15 mm (thickness)
  • An exterior film was produced.
  • the electrode unit was arranged at the center position on the other exterior film so that each of the positive electrode terminal and the negative electrode terminal protruded outward from the end of the other exterior film.
  • the positive electrode terminal is connected to the distance between the inner edge of the nickel plating film and the outer edge of the other exterior film (the distance between the outer edge of the joint 23 and the inner edge 32E of the nickel plating film 32 in FIG. 3).
  • the distance (corresponding to d1) was about 5 mm. Then, one exterior film is piled up on the electrode unit, and along the three sides (including two sides from which the positive electrode terminal and the negative electrode terminal protrude) of the outer periphery of one exterior film and the other exterior film. A bonded portion having a width of 10 mm was formed by heat sealing.
  • a nickel plating film having a thickness of 2 ⁇ m is formed on the entire surface of a terminal substrate made of plate-like copper having a length of 70 mm, a width of 50 mm, and a thickness of 0.2 mm on the outer end of the positive electrode terminal in the lithium ion capacitor.
  • the terminal plate was ultrasonically welded and subjected to a high-temperature and high-humidity float test for 1000 hours under conditions of a temperature of 60 ° C. and a relative humidity of 80%. There was no change in value.
  • Example 1 except that a positive electrode terminal made of plate-like aluminum having a length of 70 mm, a width of 50 mm, and a thickness of 0.2 mm (having no nickel plating film) was used. Thus, a lithium ion capacitor was manufactured. When the characteristics of the obtained lithium ion capacitor were examined, the capacitance was 1100 F, the energy density was 25 Wh / L, and the internal resistance was 2.3 m ⁇ . The lithium ion capacitor was subjected to a high-temperature and high-humidity float test in the same manner as in Example 1. As a result, no change was observed in the capacitance, but contact occurred at the welded portion between the positive electrode terminal and the terminal plate. The electrical resistance value between the negative electrode terminal and the terminal plate increased by 20%.
  • a lithium ion capacitor was manufactured in the same manner as in Example 1 except that the positive electrode terminal was disposed so that the inner edge of the nickel plating film was located outside the outer container.
  • the capacitance was 1100 F
  • the energy density was 25 Wh / L
  • the internal resistance was 2.3 m ⁇ .
  • this lithium ion capacitor was subjected to a high-temperature and high-humidity float test in the same manner as in Example 1, no change was observed in the capacitance, but contact occurred at the inner edge of the nickel plating film at the positive electrode terminal. Therefore, the electrical resistance value between the negative electrode terminal and the terminal plate increased by 10%.
  • Electrode unit 11 Positive electrode sheet
  • Electrode layer 13 Separator 15 Lithium ion supply source 16 Lithium electrode collector 20 Exterior container 21, 22 Exterior film 23 Joining Part 23a Central region 30 Positive electrode terminal 31 Terminal base 32 Nickel plating film 32E Inner edge 35 Negative electrode terminal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 長期間の使用によっても、電極端子間の電気抵抗値が増大することがなく、しかも、正極電極シートと負極電極シートとの短絡が生じることがない蓄電デバイスを提供する。 本発明の蓄電デバイスは、互いに重ね合わせた外装フィルムが、それぞれの外周縁部に沿って形成された接合部によって相互に気密に接合されてなる外装容器と、外装容器内に収納された、それぞれ集電体に電極層が形成されてなる正極電極シートおよび負極電極シートがセパレータを介して重なるよう配置されてなる電極ユニットと、外装容器の内部から接合部を介して外部に突出するよう設けられた正極電極端子および負極電極端子と、外装容器内に充填された電解液とを有し、正極電極端子は、アルミニウムよりなる端子基体と、端子基体における外装容器の外部に位置する外端部分の表面に形成されたニッケルメッキ被膜とを有し、ニッケルメッキ被膜の内端縁が、接合部内に位置されている。

Description

蓄電デバイス
 本発明は、互いに重ね合わせた2つの外装フィルムが、それぞれの外周縁部に沿って形成された接合部によって相互に気密に接合されてなる外装容器と、この外装容器の内部から外部に突出するよう設けられた電極端子を具えてなる蓄電デバイスに関する。
 電気二重層キャパシタ、リチウムイオン二次電池、リチウムイオンキャパシタなどの蓄電デバイスにおいては、外装容器内に、複数の正極電極シートと複数の負極電極シートとがセパレータを介して交互に積層されてなる電極ユニット、或いは、正極電極シートと負極電極シートとがセパレータを介して積重された状態で捲回されてなる電極ユニットが、電解液と共に収納されている。
 この蓄電デバイスにおいて、正極電極シートは、例えばアルミニウムよりなる集電体に正極活物質を含有する電極層が形成されて構成され、負極電極シートは、例えば銅よりなる集電体に負極活物質を含有する電極層が形成されて構成されている。
 また、蓄電デバイスにおける外装容器としては、互いに重ね合わせた2つの外装フィルムが、それぞれの外周縁部に沿って形成された接合部によって相互に気密に接合されてなるものが知られている。
 そして、このような外装容器を有する蓄電デバイスにおいては、正極電極シートの集電体に電気的に接続された板状の正極電極端子および負極電極シートの集電体に電気的に接続された板状の負極電極端子が、外装容器の内部から当該接合部を介して当該外装容器の外部に突出するよう設けられている。
 従来、正極電極端子としては、アルミニウムよりなるもの、アルミニウムよりなる端子基体の表面にニッケルメッキ被膜が形成されてなるものなどが用いられ、負極電極端子としては、銅、ニッケルよりなるものなどが用いられている(特許文献1および特許文献2参照)。
国際公開第2005/031773号パンフレット 特開2010-3711号公報
 しかしながら、このような従来の蓄電デバイスにおいては、以下のよう問題がある。
 正極電極端子としてアルミニウムよりなるものを用いる場合には、長期間の使用によって、正極電極端子における外装容器の外部に位置する外端部分の表面が酸化するため、電極端子間の電気抵抗値が増大する、という問題がある。
 また、複数の蓄電デバイスを直列に配列して使用するときには、アルミニウムよりなる正極電極端子に、他の蓄電デバイスにおける銅またはニッケルよりなる負極電極端子を溶接するため、充放電時に溶接部分において電触が生じやすく、長期間の使用によって電極端子間の電気抵抗値が増大する、という問題がある。
 一方、正極電極端子として、アルミニウムよりなる端子基体の表面にニッケルメッキ被膜が形成されてなるものを用いる場合には、正極電極端子におけるニッケルメッキ被膜の表面に、正極電極シートにおけるアルミニウムよりなる集電体を溶接するため、充放電時に溶接部分において電触が生じやすく、しかも、電触によって電解液中に溶解したニッケルが負極電極シートの集電体に析出し、この析出体が正極電極シートに接触することにより、正極電極シートと負極電極シートとの間に短絡が生じる、という問題がある。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、互いに重ね合わせた2つの外装フィルムが、それぞれの外周縁部に沿って形成された接合部によって相互に気密に接合されてなる外装容器を有する蓄電デバイスにおいて、長期間の使用によっても、電極端子間の電気抵抗値が増大することがなく、しかも、正極電極シートと負極電極シートとの短絡が生じることがない蓄電デバイスを提供することにある。
 本発明の蓄電デバイスは、互いに重ね合わせた外装フィルムが、それぞれの外周縁部に沿って形成された接合部によって相互に気密に接合されてなる外装容器と、この外装容器内に収納された、それぞれ集電体に電極層が形成されてなる正極電極シートおよび負極電極シートがセパレータを介して重なるよう配置されてなる電極ユニットと、前記外装容器の内部から当該接合部を介して当該外装容器の外部に突出するよう設けられた正極電極端子および負極電極端子と、前記外装容器内に充填された電解液とを有してなる蓄電デバイスにおいて、
 前記正極電極端子は、アルミニウムよりなる端子基体と、この端子基体における前記外装容器の外部に位置する外端部分の表面に形成されたニッケルメッキ被膜とを有してなり、当該ニッケルメッキ被膜の内端縁が、前記接合部内に位置されていることを特徴とする。
 本発明の蓄電デバイスにおいては、前記ニッケルメッキ被膜の内端縁は、前記接合部における幅方向の中央領域内に位置されており、前記接合部の幅をWとし、前記中央領域の幅をLとしたとき、比L/Wが0より大きく1より小さいことが好ましい。
 また、前記接合部の外周縁と前記ニッケルメッキ被膜の内端縁との距離が0.5mm以上であることが好ましい。
 また、前記接合部の内周縁と前記ニッケルメッキ被膜の内端縁との距離が1.0mm以上であることが好ましい。
 また、前記接合部の幅が5~15mmであることが好ましい。
 また、前記負極電極端子の少なくとも表面がニッケルによって形成されていることが好ましい。
 また、本発明の蓄電デバイスは、リチウムイオンキャパシタ、電気二重層キャパシタまたはリチウムイオン二次電池として好適である。
 本発明の蓄電デバイスによれば、正極電極端子における外装容器の外部に位置する外端部分の表面にニッケルメッキ被膜が形成され、このニッケルメッキ被膜の内端縁、すなわち正極電極端子におけるメッキ領域と非メッキ領域との境界線が、外装容器の接合部内に位置されていることにより、端子基体の酸化が生じることがなく、従って、長時間の使用によっても電極端子間の電気抵抗値が増大することを防止することができる。
 また、負極電極端子の少なくとも表面をニッケルによって形成することにより、正極電極端子の外端部分の表面と負極電極端子の表面とが同一の材質よりなるため、複数の蓄電デバイスを直列に配列して使用する場合には、充放電時に正極電極端子と他の蓄電デバイスにおける負極電極端子との溶接部分において電触が生じることがなく、従って、長時間の使用によっても電極端子間の電気抵抗値が増大することを防止することができる。
 また、正極電極端子における外装容器の内部に位置する部分には、ニッケルメッキ被膜が形成されておらず、アルミニウムよりなる端子基体が露出しているため、負極電極シートの集電体にニッケルが析出することがなく、従って、長時間の使用によっても、正極電極シートと負極電極シートとの短絡を回避することができる。
本発明に係るリチウムイオンキャパシタの一例における外観を示す平面図である。 図1に示すリチウムイオンキャパシタをX-Xで切断して示す説明用断面図である。 図1に示すリチウムイオンキャパシタにおける正極電極端子およびその周辺部分を拡大して示す説明用断面図である。
 以下、本発明の蓄電デバイスについて、リチウムイオンキャパシタとして実施した場合を例に挙げて説明する。
 図1は、本発明に係るリチウムイオンキャパシタの一例における外観を示す平面図、図2は、図1に示すリチウムイオンキャパシタをX-Xで切断して示す説明用断面図、図3は、図1に示すリチウムイオンキャパシタにおける正極電極端子およびその周辺部分を拡大して示す説明用断面図である。
 このリチウムイオンキャパシタは、互いに重ね合わせた2つの外装フィルム21,22が、それぞれの外周縁部に沿って形成された接合部23によって相互に気密に接合されてなる外装容器20と、この外装容器20内に収納された、複数の正極電極シート11および複数の負極電極シート12を有する積層型の電極ユニット10と、外装容器20の一端および他端に設けられた、それぞれ板状の正極電極端子30および負極電極端子35と、外装容器20内に充填された電解液とを有してなる。
 電極ユニット10は、複数の矩形の正極電極シート11および複数の矩形の負極電極シート12がシート状のセパレータ13を介して交互に積層されて構成されている。
 この電極ユニット10において、正極電極シート11は、正極集電体11aの両面に正極活物質を含有してなる電極層11bが形成されて構成され、負極電極シート12は、負極集電体12aの一面または両面に負極活物質を含有してなる電極層12bが形成されて構成されており、正極電極シート11および負極電極シート12は、それぞれの電極層11b,12bがセパレータ13を介して互いに対向するよう積層されている。図示の例では、最上層および最下層に係る電極シートが負極電極シート12とされ、これらの負極電極シート12の各々は、負極集電体12aの一面に電極層12bが形成されて構成されている。そして、 正極集電体11aの各々は、正極電極端子30に電気的に接続され、負極集電体12aの各々は、負極電極端子35に電気的に接続されている。
 また、電極ユニット10の上面には、セパレータ13を介して膜状のリチウムイオン供給源15が配置されている。このリチウムイオン供給源15は、リチウム極集電体16に圧着または積重されており、このリチウム極集電体16は、負極電極端子35に電気的に接続されている。
 本発明において、「正極」とは、放電の際に電流が流出し、充電の際に電流が流入する側の極を意味し、「負極」とは、放電の際に電流が流入し、充電の際に電流が流出する側の極を意味する。
 正極集電体11aおよび負極集電体12a(以下、両者を併せて「電極集電体」ともいう。)は、表裏面を貫通する孔を有する多孔材よりなるものであり、かかる多孔材の形態としては、エキスパンドメタル、パンチングメタル、金属網、発泡体、あるいはエッチングにより貫通孔が形成された多孔質箔等が挙げられる。
 電極集電体の孔の形状は、円形、矩形等の多角形、その他適宜の形状に設定することができる。また、電極集電体の厚みは、強度および軽量化の観点から、20~50μmであることが好ましい。
 電極集電体の気孔率は、通常、10~79%、好ましくは20~60%である。ここで、気孔率は、[1-(電極集電体の質量/電極集電体の真比重)/(電極集電体の見かけ体積)]×100によって算出されるものである。
 電極集電体の材質としては、一般に有機電解質電池などの用途で使用されている種々のものを用いることができる。負極集電体12aの材質の具体例としては、ステンレス、銅、ニッケル等が挙げられ、正極集電体11aの材質のとしては、アルミニウム、ステンレス等が挙げられる。
 このような多孔材を電極集電体として用いることにより、リチウム極集電体16に積層されたリチウムイオン供給源15から放出されるリチウムイオンが電極集電体の孔を通って自由に各電極間を移動するので、負極電極シート12および/または正極電極シート11における電極層11b,12bにリチウムイオンをドーピングすることができる。
 また、本発明においては、電極集電体における少なくとも一部の孔を、脱落しにくい導電性材料を用いて閉塞し、この状態で、電極集電体の一面に、電極層11b,12bが形成されることが好ましく、これにより、電極の生産性を向上させることができると共に、電極集電体から電極層11b,12bが脱落することによって生じる蓄電デバイスの信頼性の低下を防止または抑制することができる。
 また、電極の厚み(電極集電体および電極層の合計の厚み)を小さくすることにより、一層高い出力密度を得ることができる。
 また、電極集電体における孔の形態および数等は、後述する電解液中のリチウムイオンが集電体に遮断されることなく電極の表裏間を移動できるように、また、導電性材料によって閉塞し易いように適宜設定することができる。
 負極電極シート12における電極層12bは、リチウムイオンを可逆的に担持可能な負極活物質を含有してなるものである。
 電極層12bを構成する負極活物質としては、例えば黒鉛、難黒鉛化炭素、芳香族系縮合ポリマーの熱処理物であって水素原子/炭素原子の原子数比(以下「H/C」と記す。)が0.50~0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(以下、「PAS」という。)等を好適に用いることができる。
 本発明において、負極活物質は、細孔直径が3nm以上で細孔容積が0.10mL/g以上のものが好ましく、その細孔直径の上限は限定されないが、通常は3~50nmの範囲である。また、細孔容積の範囲についても特に限定されないが、通常0.10~0.5mL/gであり、好ましくは0.15~0.5mL/gである。
 本発明に係るリチウムイオンキャパシタにおいて、負極電極シート12における電極層12bは、上記の炭素材料やPAS等の負極活物質を含有してなる材料を用いて負極集電体12a上に形成されるが、その方法は特定されず公知の方法を利用することができる。具体的には、負極活物質粉末、バインダーおよび必要に応じて導電性粉末が水系媒体または有機溶媒中に分散されてなるスラリーを調製し、このスラリーを負極集電体12aの表面に塗布して乾燥することによって、或いは上記スラリーを予めシート状に成形し、得られる成形体を負極集電体12aの表面に貼り付けることによって、電極層12bを形成することができる。
 ここで、スラリーの調製に用いられるバインダーとしては、例えばSBR等のゴム系バインダーや、ポリ四フッ化エチレン、ポリフッ化ビニリデン等のフッ素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂が挙げられる。これらの中では、バインダーとしてフッ素系樹脂が好ましく、特にフッ素原子/炭素原子の原子数比(以下、「F/C」という。)が0.75以上で1.5未満であるフッ素系樹脂を用いることが好ましく、F/Cが0.75以上で1.3未満のフッ素系樹脂が更に好ましい。
 バインダーの使用量は、負極活物質の種類や電極形状等により異なるが、負極活物質に対して1~20質量%、好ましくは2~10質量%である。
 また、必要に応じて使用される導電性粉末としては、例えばアセチレンブラック、グラファイト、金属粉末等が挙げられる。この導電性粉末の使用量は、負極活物質の電気伝導度、電極形状等により異なるが、負極活物質に対して2~40質量%の割合で用いることが好ましい。
 負極集電体12aに上記スラリーを塗工することによって、電極層12bを形成する場合には、負極集電体12aの塗工面に導電性材料の下地層を形成することが好ましい。負極集電体12aの表面にスラリーを直接塗工する場合には、負極集電体12aが多孔材であるため、スラリーが負極集電体12aの孔から洩れ出したり、あるいは負極集電体12aの表面が平滑でないため、均一な厚みを有する電極層12bを形成することが困難となることがある。そして、負極集電体12aの表面に下地層を形成することにより、孔が下地層によって塞がれると共に、平滑な塗工面が形成されるので、スラリーを塗工しやすくなると共に、均一な厚みを有する電極層12bを形成することができる。
 負極電極シート12における電極層12bの厚みは、得られるリチウムイオンキャパシタに十分なエネルギー密度を確保されるよう正極電極シート11における電極層11bの厚みとのバランスで設計されるが、得られるリチウムイオンキャパシタの出力密度、エネルギー密度および工業的生産性等の観点から、負極集電体12aの一面に形成される場合では、通常、15~100μm、好ましくは20~80μmである。
 正極電極シート11における電極層11bは、リチウムイオンおよび/または例えばテトラフルオロボレートのようなアニオンを可逆的に担持できる正極活物質を含有してなるものである。
 電極層11bを構成する正極活物質としては、例えば活性炭、導電性高分子、芳香族系縮合ポリマーの熱処理物であってH/Cが0.05~0.50であるポリアセン系骨格構造を有するPAS等を用いることができる。
 正極電極シート11における電極層11bは、負極電極シート12における電極層12bと同様の方法によって形成することができる。
 セパレータ13としては、電解液、正極活物質或いは負極活物質に対して耐久性があり、電解液を含浸可能な連通気孔を有する電気伝導性の小さい多孔体等を用いることができる。
 セパレータ13の材質としては、セルロース(紙)、ポリエチレン、ポリプロピレン、セルロース/レーヨン、エンジニアプラスチック・スーパーエンジニアプラスチック等の熱可塑性樹脂、ガラス繊維、その他公知のものを用いることができる。これらの中では、セルロース/レーヨンが耐久性および経済性の点で好ましい。
 また、セパレータ13の厚みは特に限定されないが、通常、20~50μm程度が好ましい。
 リチウムイオン供給源15の体積は、負極電極シート12の電極層12aおよび正極電極シート11の電極層11aにドーピングされるリチウムイオンの量を考慮して適宜定められるが、正極電極シート11と負極電極シート12とを短絡させた後における正極電極シート11の電位が2.0V以下となるように、リチウムイオンがドーピングされる量に設定することが好ましい。
 また、リチウムイオン供給源15の厚みは、例えば0.1~0.3mmであり、好ましくは0.12~0.28mm、より好ましくは0.15~0.25mmである。
 リチウム極集電体16としては、リチウムイオン供給源15を構成するリチウム金属が圧着しやすく、必要に応じてリチウムイオンが通過するよう、電極集電体と同様な多孔構造のものを用いることが好ましい。また、リチウム極集電体16の材質は、ステンレス等のリチウムイオン供給源15と反応しないものを用いることが好ましい。
 また、リチウム極集電体16として、ステンレスメッシュ等の導電性多孔体を用いる場合には、リチウムイオン供給源15を構成するリチウム金属の少なくとも一部、特に80質量%以上が、リチウム極集電体16の孔に埋め込まれていることが好ましく、これにより、リチウムイオンが負極電極シート12に担持された後も、リチウム金属の消失によって正極電極シート11および負極電極シート12の間に生じる隙間が少なくなり、得られるリチウムイオンキャパシタの信頼性をより確実に維持することができる。
 また、リチウム極集電体16の厚みは10~200μm程度であることが好ましい。
 外装容器20は、それぞれ矩形のラミネートフィルムよりなる2つの外装フィルム21,22が、互いに重ね合わせた状態で、それぞれの外周縁部に沿って相互に気密に接合されることによって接合部23が形成されて構成されている。図示の例では、一方の外装フィルム21における中央部分には、絞り加工が施されており、これにより、外装容器20の内部には、電極ユニット10が収容される収容空間が形成され、当該収容空間内に電極ユニット10が収容されると共に、電解液が充填されている。
 外装フィルム21,22としては、例えばポリプロピレン層よりなる内層と、例えばアルミニウム層よりなる中間層と、例えばナイロンよりなる外層との三層構造よりなるものを用いることができる。
 外装フィルム21,22の縦横の寸法は、収容される電極ユニット10の寸法に応じて適宜選択されるが、例えば縦方向の寸法が40~200mm、横方向の寸法が60~300mmである。
 また、接合部23の幅Wは、5~15mmであることが好ましい。
 この外装容器20の一端(図1および図2において左端)には、板状の正極電極端子30が、外装容器20の内部から接合部23を介して外装容器20の外部に突出するよう設けられ、外装容器20の他端(図1および図2において右端)には、板状の負極電極端子35が、外装容器20の内部から接合部23を介して外装容器20の外部に突出するよう設けられている。
 正極端子電極30は、アルミニウムよりなる端子基体31と、この端子基体31における外装容器20の外部に位置する外端部分の表面に形成されたニッケルメッキ被膜32とにより構成されている。このニッケルメッキ被膜32は、その内端縁32Eが接合部23内に位置されるよう形成されている。 
 仮に、正極電極端子30を、ニッケルメッキ被膜32の内端縁32Eが外装容器20の外部に位置するよう配置した場合には、充放電時にニッケルメッキ被膜32の内端縁32Eにおいて電触が生じやすく、長期間の使用によって電極端子間の電気抵抗値が増大する、という問題が生じる。一方、正極電極端子30を、ニッケルメッキ被膜32の内端縁32Eが外装容器20の内部に位置するよう配置した場合には、ニッケルメッキ被膜32の内端縁32Eが電解液と接触するため、充放電時に内端縁32Eにおいて電触が生じやすくなる。しかも、電触によって電解液中に溶解したニッケルが負極電極シート12の負極集電体12aに析出し、この析出体が正極電極シート11に接触することにより、正極電極シート11と負極電極シート12との間に短絡が生じる、という問題が生じる。本発明は、前述した問題に鑑みて、低抵抗で、電触が生じ難い設計を提案するものである。
 また、ニッケルメッキ被膜32の内端縁32Eは、接合部23における幅方向の中央領域23a内に位置されていることが好ましい。ここで、接合部23の幅をWとし、接合部23の中央領域23aの幅をLとしたとき、比L/Wが0より大きく1より小さいことが好ましく、より好ましくは0.1~0.9である。
 具体的には、外装容器20の接合部23の外周縁とニッケルメッキ被膜32の内端縁32Eとの距離d1が、0.5mm以上であることが好ましく、より好ましくは1~15mmである。但し、距離d1は設計により変更することができる。この距離d1が過小である場合には、長期間使用した際に、接合部23内に外部から水分が侵入することなどの影響により、ニッケルメッキ被膜32の内端縁32E付近において腐食が生じる恐れがある。
 また、外装容器20の接合部23の内周縁とニッケルメッキ被膜32の内端縁32Eとの距離d2は、1.0mm以上であることが好ましい。但し、距離d2は設計により変更することができる。この距離d2が過小である場合には、接合部23内への電解液の浸入などによる腐蝕が懸念される。
 また、正極電極端子30の厚みは、例えば0.1~0.5mmである。また、ニッケルメッキ被膜32の厚みは、1~3μmであることが好ましい。
 負極電極端子35としては、銅、ニッケルなどよりなるもの、銅よりなる端子基体の表面にニッケルメッキ被膜が形成されてなるものなどを用いることができるが、少なくとも表面がニッケルによって形成されているもの、具体的には、負極電極端子35全体がニッケルよりなるもの、銅よりなる端子基体の表面にニッケルメッキ被膜が形成されてなるものが好ましい。
 また、負極電極端子35の厚みは、例えば0.1~0.5mmである。
 また、負極電極端子35として、表面にニッケルメッキ被膜が形成されてなるものを用いる場合には、当該ニッケルメッキ被膜の厚みは、1~3μmであることが好ましい。
 外装容器20内には、リチウム塩の非プロトン性有機溶媒電解質溶液よりなる電解液が充填されている。
 電解質を構成するリチウム塩としては、リチウムイオンを移送可能で、高電圧下においても電気分解を起こさず、リチウムイオンが安定に存在し得るものであればよく、その具体例としては、LiClO、LiAsF、LiBF、LiPF、Li(CSONなどが挙げられる。
 非プロトン性有機溶媒の具体例としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホランなどが挙げられる。これらの非プロトン性有機溶媒は、単独でまたは2種以上を混合して用いることができる。
 電解液は、上記の電解質および溶媒を充分に脱水された状態で混合することによって調製されるが、電解液中の電解質の濃度は、電解液による内部抵抗を小さくするために、少なくとも0.1モル/L以上であることが好ましく、0.5~1.5モル/Lであることが更に好ましい。
 上記のリチウムイオンキャパシタは、電極ユニット10を外装容器20内に収容すると共に、電極ユニット10における正極集電体11aおよび負極集電体12aを正極電極端子30および負極電極端子35に電気的に接続し、更に、外装容器20内に電解液を充填した後、外装容器20を封止することによって得られる。
 そして、このようにして作製されたリチウムイオンキャパシタにおいては、外装容器20内にリチウムイオンを供給し得る電解液が充填されているため、適宜の期間放置されると、負極電極シート12および/または正極電極シート11とリチウムイオン供給源15との電気化学的接触によって、リチウムイオン供給源15から放出されたリチウムイオンが負極電極シート12および/または正極電極シート11にドーピングされる。
 上記のリチウムイオンキャパシタによれば、正極電極端子30における外装容器20の外部に位置する外端部分の表面にニッケルメッキ被膜32が形成され、このニッケルメッキ被膜32の内端縁32E、すなわち正極電極端子30におけるメッキ領域と非メッキ領域との境界線が、外装容器20の接合部23内に位置されていることにより、端子基体31の酸化が生じることがなく、従って、長時間の使用によっても電極端子間の電気抵抗値が増大することを防止することができる。
 また、負極電極端子35の少なくとも表面をニッケルによって形成することにより、正極電極端子30の外端部分の表面と負極電極端子35の表面とが同一の材質よりなるため、複数の蓄電デバイスを直列に配列して使用する場合には、充放電時に正極電極端子30と他の蓄電デバイスにおける負極電極端子35との溶接部分において電触が生じることがなく、従って、長時間の使用によっても電極端子間の電気抵抗値が増大することを防止することができる。
 また、正極電極端子30における外装容器20の内部に位置する部分には、ニッケルメッキ被膜32が形成されておらず、アルミニウムよりなる端子基体31が露出しているため、負極電極シート12の負極集電体12aにニッケルが析出することがなく、従って、長時間の使用によっても、正極電極シート11と負極電極シート12との短絡を回避することができる。
 以上、本発明のリチウムイオンキャパシタの実施の形態について説明したが、本発明は、上記の実施の形態に限定されず、種々の変更を加えることが可能である。
 例えば正極電極端子30の表面には、ニッケルメッキ被膜32の内端縁32Eを含む領域に予め熱圧着性の保護フィルムが設けられ、この保護フィルム上に外装フィルム21,22の外周縁部が位置された状態で接合されることによって接合部23が形成されていてもよい。ここで、保護フィルムとしては、ポリエチレン、ポリプロピレンなどの樹脂フィルムを用いることができる。
 また、電極ユニットは、積層型以外の構成のもの、例えば正極電極シートと負極電極シートとがセパレータを介して積重された状態で捲回されてなる捲回型のものであってもよい。
 また、本発明の蓄電デバイスは、リチウムイオンキャパシタに限定されず、電気二重層キャパシタ、リチウムイオン二次電池として構成することができる。
〈実施例1〉
 図1~図3の構成に従い、以下のようにしてリチウムイオンキャパシタを製造した。
(1)負極電極シートの製造:
 気孔率57%、厚さ32μmの銅製エキスパンドメタル(日本金属工業株式会社製)からなる負極集電体の両面に、負極活物質を含有してなるスラリーを、縦型ダイ方式の両面塗工機を用い、塗工幅が130mm、塗工速度が8m/minの塗工条件により、両面合わせた塗布厚みの目標値を80μmに設定して両面塗工した後、200℃で24時間の条件で減圧乾燥させることにより、負極集電体前駆体の表裏面に電極層を形成した。このようにして得られた、集電体前駆体の一部分に電極層が形成されてなる材料を、電極層が形成されてなる部分(以下、負極電極シートについて「塗工部」ともいう。)が100mm×128mm、電極層が形成されてない部分(以下、負極電極シートについて「未塗工部」ともいう。)が100mm×15mmになるように、100×143mmの大きさに切断することにより、負極集電体の両面に電極層が形成されてなる負極電極シートを作製した。
(2)正極電極シートの製造:
 気孔率47%、厚さ38μmのアルミニウム製エキスパンドメタル(日本金属工業株式会社製)の両面に、導電性塗料を、縦型ダイ方式の両面塗工機を用い、塗工幅が130mm、塗工速度が8m/minの塗工条件により、両面合わせた塗布厚みの目標値を20μmに設定して両面塗工した後、200℃で24時間の条件で減圧乾燥させることにより、正極集電体前駆体の表裏面に導電層を形成した。
 次いで、正極集電体前駆体の表裏面に形成された導電層上に、正極活物質を含有してなるスラリーを、縦型ダイ方式の両面塗工機を用い、塗工速度8m/minの塗工条件により、両面合わせた塗布厚みの目標値を150μmに設定して両面塗工した後、200℃で24時間の条件で減圧乾燥させることにより、導電層上に電極層を形成した。
 このようにして得られた、正極集電体前駆体の一部分に導電層および電極層が積層されてなる材料を、導電層および正極層が積層されてなる部分(以下、正極電極シートについて「塗工部」ともいう。)が98mm×126mm、いずれの層も形成されてない部分(以下、正極電極シートについて「未塗工部」ともいう。)が98mm×15mmとなるように、98mm×141mmの大きさに切断することにより、正極集電体の両面に電極層が形成されてなる正極電極シートを作製した。
(3)セパレータの作製:
 縦横の寸法が102cm×130cm、厚みが35μmのセルロース/レーヨン混合不織布よりなるセパレータを合計で22枚作製した。
(4)電極ユニットの作製:
 先ず、上記の正極電極シート10枚、負極電極シート11枚およびセパレータ22枚を用意し、正極電極シートと負極電極シートとを、それぞれの塗工部は重なるが、それぞれの未塗工部は反対側になり重ならないよう、セパレータ、負極電極シート、セパレータ、正極電極シートの順で積重し、積重体の4辺をテープにより固定することにより、電極ユニットを作製した。
 次いで、厚みが100μmのリチウム箔を切断し、厚さ40μmの銅網に圧着することにより、リチウムイオン供給部材を作製し、このリチウムイオン供給部材を電極ユニットの上側に負極と対向するよう配置した。
 そして、作製した電極ユニットの10枚の正極電極シートの各々の未塗工部に、予めシール部分にシーラントフィルムを熱融着した、幅が50mm、長さが50mm、厚みが0.2mmのアルミニウム製の正極電極端子を重ねて超音波溶接した。一方、電極ユニットの11枚の負極電極シートの各々の未塗工部およびリチウムイオン供給部材の各々に、予めシール部分にシーラントフィルムを熱融着した幅が50mm、長さが50mm、厚みが0.2mmの銅製の負極電極端子を重ねて抵抗溶接した。
(5)電極端子の作製:
 長さが70mm、幅が50mm、厚みが0.2mmの板状のアルミニウムよりなる端子基体を作製し、この端子基端における外端部分となる一端部分の全表面に、厚みが2μmのニッケルメッキ被膜を形成することにより、正極電極端子を作製した。この正極電極端子の外端縁からニッケルメッキ被膜の内端縁までの長さは53mmである。
 また、長さが70 mm、幅が50mm、厚みが0.2mmの板状の銅よりなる端子基体の全表面に厚みが2μmのニッケルメッキ被膜が形成されてなる負極電極端子を作製した。
(6)リチウムイオンキャパシタの作製:
 正極電極端子における内端部分となる他端部分に、電極ユニットにおける各正極集電体の端部を重ね合わせて溶接した。一方、負極電極端子における内端部分となる他端部分に、電極ユニットにおける各負極集電体の端部およびリチウム極集電体の端部を重ね合わせて溶接した。
 次いで、ポリプロピレン層、アルミニウム層およびナイロン層が積層されてなり、寸法が125mm(縦幅)×160mm(横幅)×0.15mm(厚み)で、中央部分に、102mm(縦幅)×130mm(横幅)の絞り加工が施された一方の外装フィルムと、ポリプロピレン層、アルミニウム層およびナイロン層が積層されてなり、寸法が125mm(縦幅)×160mm(横幅)×0.15mm(厚み)の他方の外装フィルムとを作製した。
 次いで、他方の外装フィルム上における中央位置に、電極ユニットを、その正極電極端子および負極電極端子の各々が、他方の外装フィルムの端部から外方に突出するよう配置した。このとき、正極電極端子を、そのニッケルメッキ被膜の内端縁と他方の外装フィルムの外周縁との距離(図3において接合部23の外周縁とニッケルメッキ被膜32の内端縁32Eとの距離d1に相当する距離)が約5mmとなるよう配置した。その後、電極ユニットに、一方の外装フィルムを重ね合わせ、一方の外装フィルムおよび他方の外装フィルムの外周縁部における3辺(正極電極端子および負極電極端子が突出する2辺を含む。)に沿って熱融着することにより、幅が10mmの接合部を形成した。
 そして、一方の外装フィルムと他方の外装フィルムとの間に、プロピレンカーボネートに1モル/Lの濃度でLiPFが溶解されてなる電解液を注入すると共に、一方の外装フィルムおよび他方の外装フィルムの外周縁部における未接合の一辺に沿って熱融着することにより、幅が10mmの接合部を形成して外装容器を作製し、以て、リチウムイオンキャパシタを製造した。
 得られたリチウムイオンキャパシタの特性を調べたところ、静電容量が1100F、エネルギー密度が25Wh/L、内部抵抗が2.3mΩであった。
 このリチウムイオンキャパシタにおける正極電極端子の外端に、長さが70mm、幅が50mm、厚みが0.2mmの板状の銅よりなる端子基体の全表面に厚みが2μmのニッケルメッキ被膜が形成されてなる端子板を超音波溶接し、温度が60℃、相対湿度が80%の条件で、1000時間の高温多湿フロート試験を行ったところ、静電容量および負極電極端子-端子板間の電気抵抗値に変化が認められなかった。
〈比較例1〉
 正極電極端子として、長さが70mm、幅が50mm、厚みが0.2mmの板状のアルミニウムよりなるもの(ニッケルメッキ被膜が形成されていないもの)を用いたこと以外は、実施例1と同様にしてリチウムイオンキャパシタを製造した。
 得られたリチウムイオンキャパシタの特性を調べたところ、静電容量が1100F、エネルギー密度が25Wh/L、内部抵抗が2.3mΩであった。
 このリチウムイオンキャパシタについて、実施例1と同様にして高温多湿フロート試験を行ったところ、静電容量に変化が認められなかったが、正極電極端子と端子板との溶接部分において電触が生じたため、負極電極端子-端子板間の電気抵抗値が20%上昇した。
〈比較例2〉
 正極電極端子を、そのニッケルメッキ被膜の内端縁が外装容器の外部に位置するよう配置したこと以外は、実施例1と同様にしてリチウムイオンキャパシタを製造した。
 得られたリチウムイオンキャパシタの特性を調べたところ、静電容量が1100F、エネルギー密度が25Wh/L、内部抵抗が2.3mΩであった。
 このリチウムイオンキャパシタについて、実施例1と同様にして高温多湿フロート試験を行ったところ、静電容量に変化が認められなかったが、正極電極端子におけるニッケルメッキ被膜の内端縁において電触が生じたため、負極電極端子-端子板間の電気抵抗値が10%上昇した。
〈比較例3〉
 正極電極端子として、長さが70mm、幅が50mm、厚みが0.2mmの板状のアルミニウムよりなる端子基体の全表面に厚みが2μmのニッケルメッキ被膜が形成されてなるものを用いたこと以外は、実施例1と同様にしてリチウムイオンキャパシタを製造した。
 得られたリチウムイオンキャパシタの特性を調べたところ、静電容量が1100F、エネルギー密度が25Wh/L、内部抵抗が2.3mΩであった。
 このリチウムイオンキャパシタについて、実施例1と同様にして高温多湿フロート試験を行ったところ、リーク電流が大きいために試験を中断した。そして、リチウムイオンキャパシタを分解して調べたところ、正極電極端子の内端部分におけるニッケルメッキ被膜が溶解し、負極電極シート上にニッケルが析出することによって、正極電極シートと負極電極シートとが短絡していることが確認された。
10 電極ユニット
11 正極電極シート
11a 正極集電体
11b 電極層
12 負極電極シート
12a 負極集電体
12b 電極層
13 セパレータ
15 リチウムイオン供給源
16 リチウム極集電体
20 外装容器
21,22 外装フィルム
23 接合部
23a 中央領域
30 正極電極端子
31 端子基体
32 ニッケルメッキ被膜
32E 内端縁
35 負極電極端子

Claims (7)

  1.  互いに重ね合わせた外装フィルムが、それぞれの外周縁部に沿って形成された接合部によって相互に気密に接合されてなる外装容器と、この外装容器内に収納された、それぞれ集電体に電極層が形成されてなる正極電極シートおよび負極電極シートがセパレータを介して重なるよう配置されてなる電極ユニットと、前記外装容器の内部から当該接合部を介して当該外装容器の外部に突出するよう設けられた正極電極端子および負極電極端子と、前記外装容器内に充填された電解液とを有してなる蓄電デバイスにおいて、
     前記正極電極端子は、アルミニウムよりなる端子基体と、この端子基体における前記外装容器の外部に位置する外端部分の表面に形成されたニッケルメッキ被膜とを有してなり、当該ニッケルメッキ被膜の内端縁が、前記接合部内に位置されていることを特徴とする蓄電デバイス。
  2.  前記ニッケルメッキ被膜の内端縁は、前記接合部における幅方向の中央領域内に位置されており、前記接合部の幅をWとし、前記中央領域の幅をLとしたとき、比L/Wが0より大きく1より小さいことを特徴とする請求項1に記載の蓄電デバイス。
  3.  前記接合部の外周縁と前記ニッケルメッキ被膜の内端縁との距離が0.5mm以上であることを特徴とする請求項1または請求項2に記載の蓄電デバイス。
  4.  前記接合部の内周縁と前記ニッケルメッキ被膜の内端縁との距離が1.0mm以上であることを特徴とする請求項1乃至請求項3のいずれかに記載の蓄電デバイス。
  5.  前記接合部の幅が5~15mmであることを特徴とする請求項1乃至請求項4のいずれかに記載の蓄電デバイス。
  6.  前記負極電極端子の少なくとも表面がニッケルによって形成されていることを特徴とする請求項1乃至請求項5のいずれかに記載の蓄電デバイス。
  7.  リチウムイオンキャパシタ、電気二重層キャパシタまたはリチウムイオン二次電池であることを特徴とする請求項1乃至請求項6のいずれかに記載の蓄電デバイス。
PCT/JP2011/054070 2010-03-31 2011-02-24 蓄電デバイス WO2011122181A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/637,385 US9496541B2 (en) 2010-03-31 2011-02-24 Accumulator device
JP2012508148A JP5421454B2 (ja) 2010-03-31 2011-02-24 蓄電デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-082162 2010-03-31
JP2010082162 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011122181A1 true WO2011122181A1 (ja) 2011-10-06

Family

ID=44711913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054070 WO2011122181A1 (ja) 2010-03-31 2011-02-24 蓄電デバイス

Country Status (4)

Country Link
US (1) US9496541B2 (ja)
JP (1) JP5421454B2 (ja)
TW (1) TW201218484A (ja)
WO (1) WO2011122181A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012072437A1 (de) * 2010-11-30 2012-06-07 Sb Limotive Company Ltd. Akkumulatorzelle mit beschichtetem terminal
US20140162116A1 (en) * 2012-11-29 2014-06-12 The Swatch Group Research And Development Ltd Electrochemical cell
JP2019023974A (ja) * 2017-07-24 2019-02-14 住友電気工業株式会社 リード部材およびリード部材の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101863399B1 (ko) 2011-03-18 2018-05-31 제이에무에나지 가부시키가이샤 축전 디바이스
DE112012006588T5 (de) * 2012-06-28 2015-04-02 Toyota Jidosha Kabushiki Kaisha Verfahren zur Herstellung einer Batterie und Batterie
EP3010069B1 (en) * 2013-06-14 2018-11-07 Automotive Energy Supply Corporation Secondary battery
KR102311507B1 (ko) * 2014-11-11 2021-10-12 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
CN107305939B (zh) * 2016-04-25 2021-12-03 松下知识产权经营株式会社 电池
CN110140236B (zh) * 2016-12-27 2021-12-10 日立金属株式会社 负极用引线材料和负极用引线材料的制造方法
US20220352496A1 (en) * 2021-04-28 2022-11-03 GM Global Technology Operations LLC Method and apparatus for fabricating an electrode for a battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332240A (ja) * 2000-05-24 2001-11-30 Mitsubishi Chemicals Corp 電池用リード及び電池用リードの取り付け構造
JP2005019213A (ja) * 2003-06-26 2005-01-20 Nec Lamilion Energy Ltd 電気リード部の構造、該リード部構造を有する電気デバイス、電池および組電池
JP2006324143A (ja) * 2005-05-19 2006-11-30 Nissan Motor Co Ltd 二次電池
JP2010003711A (ja) * 2006-10-13 2010-01-07 Kyoritsu Kagaku Sangyo Kk タブリード材及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582125B2 (en) * 2004-11-26 2009-09-01 The Gillette Company Method of forming a nickel layer on the cathode casing for a zinc-air cell
JP5684462B2 (ja) * 2008-12-22 2015-03-11 昭和電工パッケージング株式会社 正極タブリード及び電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332240A (ja) * 2000-05-24 2001-11-30 Mitsubishi Chemicals Corp 電池用リード及び電池用リードの取り付け構造
JP2005019213A (ja) * 2003-06-26 2005-01-20 Nec Lamilion Energy Ltd 電気リード部の構造、該リード部構造を有する電気デバイス、電池および組電池
JP2006324143A (ja) * 2005-05-19 2006-11-30 Nissan Motor Co Ltd 二次電池
JP2010003711A (ja) * 2006-10-13 2010-01-07 Kyoritsu Kagaku Sangyo Kk タブリード材及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012072437A1 (de) * 2010-11-30 2012-06-07 Sb Limotive Company Ltd. Akkumulatorzelle mit beschichtetem terminal
US20140162116A1 (en) * 2012-11-29 2014-06-12 The Swatch Group Research And Development Ltd Electrochemical cell
JP2015187989A (ja) * 2012-11-29 2015-10-29 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド 電気化学セル
US10522811B2 (en) * 2012-11-29 2019-12-31 The Swatch Group Research And Development Ltd Electrochemical cell
JP2019023974A (ja) * 2017-07-24 2019-02-14 住友電気工業株式会社 リード部材およびリード部材の製造方法

Also Published As

Publication number Publication date
TW201218484A (en) 2012-05-01
JPWO2011122181A1 (ja) 2013-07-08
US9496541B2 (en) 2016-11-15
US20130017438A1 (en) 2013-01-17
JP5421454B2 (ja) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5421454B2 (ja) 蓄電デバイス
US10297867B2 (en) Sheet-laminated lithium ion secondary battery and production method for sheet-laminated lithium ion secondary battery
JP5667537B2 (ja) 蓄電デバイス
JP5730321B2 (ja) リチウムイオンキャパシタ
JP2017069207A (ja) リチウムイオン二次電池及びその製造方法
JP2019021805A (ja) 電極体及び蓄電デバイス
JP5680868B2 (ja) リチウムイオンキャパシタ
US9030804B2 (en) Accumulator device
JP5308646B2 (ja) リチウムイオンキャパシタ
WO2011080988A1 (ja) 蓄電デバイス
JP5576654B2 (ja) 蓄電デバイス
JP2009199962A (ja) セパレータ合体型の電極およびその製造方法、並びにそれを用いた蓄電装置
JP2014212304A (ja) 蓄電デバイスおよび蓄電モジュールの作製方法
JP5271860B2 (ja) 蓄電源
WO2017010129A1 (ja) 電気化学デバイス
JP2011192784A (ja) リチウムイオンキャパシタ
JP5868158B2 (ja) 蓄電デバイス
JP2017059435A (ja) 蓄電デバイス
JP5430329B2 (ja) 蓄電源
JP2014203909A (ja) 蓄電デバイス
JP2014220220A (ja) 蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508148

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13637385

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762421

Country of ref document: EP

Kind code of ref document: A1